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ABSTRACT

Han, Qian. M.S.C.E., B.S., Department of Computer Engineering, Wright State University, 2010.
Mining Shared Decision Trees between Datasets.

This thesis studies the problem of mining models, patterns and structures (MPS) shared

by two datasets (applications), a well understood dataset, denoted as WD, and a poorly un-

derstood one, denoted as PD. Combined with users’ familiarity with WD, the shared MPS

can help users better understand PD, since they capture similarities between WD and PD.

Moreover, the knowledge on such similarities can enable the users to focus attention on an-

alyzing the unique behavior of PD. Technically, this thesis focuses on the shared decision

tree mining problem. In order to provide a view on the similarities between WD and PD,

this thesis proposes to mine a high quality shared decision tree satisfying the properties:

the tree has (1) highly similar data distribution and (2) high classification accuracy in the

datasets. This thesis proposes an algorithm, namely SDT-Miner, for mining such shared

decision tree. This algorithm is significantly different from traditional decision tree min-

ing, since it addresses the challenges caused by the presence of two datasets, by the data

distribution similarity requirement and by the tree accuracy requirement. The effectiveness

of the algorithm is verified by experiments.
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Introduction

This thesis studies the problem of mining models, patterns and structures (MPS) shared by

two datasets, for the purposes of (1) understanding between the datasets and (2) gaining

understanding of less understood datasets quickly.

We assume that we are given two datasets, one of the datasets, WD, is well understood,

and the other dataset, PD, is poorly understood. The shared MPS can help users quickly

gain useful insight on PD by leveraging their understanding and familiarity of WD, since

the MPS capture similarities between WD and PD. Gaining such insight on PD quickly

from the shared MPS can help the users to focus their main effort on analyzing the unique

behavior of PD (see Figure 1.1), and to gain better overall understanding of PD quickly.

Figure 1.1: Shared and unique knowledge/patterns between two applications

The usefulness of this study has been previously recognized in many application do-

mains. For example, in education and learning, the cross-domain analogy method has

been recognized as an effective learning method [1][2]. In business and economics, a
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country/company that lacks prior experience on economic/business development can adopt

winning practices successfully used by countries/companies with similar characteristics

[3][4]. In scientific investigations, researchers rely on cross-species similarities (homolo-

gies) between a well understood bacteria and a newly discovered bacteria, to help them

to identify biological structures (such as transcription sites and pathways) in the newly

discovered bacteria [5][6][7].

Despite its importance, previous studies have not systematically studied this problem,

to the best of our knowledge. The references given above are only concerned with the use

of shared similarity in applications. The learning transfer problem1 (e.g. [8][9]), concerned

with how to adapt and modify classifiers constructed from another dataset, is quilt different

from our problem since we focus on mining shared models, patterns and structures.

For the sake of concreteness, the algorithmic part of this thesis will focus on mining

of shared decision trees. Other forms of shared knowledge can be considered, including

correlation/association patterns, graph-like interaction patterns, hidden Markov models,

clusterings, and so on.

Specifically, this thesis proposes algorithms to mine high quality decision tree shared

by two given datasets (WD and PD). A high quality shared decision tree is a decision tree

that (1) has high classification accuracy on both WD and PD, and (2), to ensure that the

tree captures similar knowledge structure in WD and PD, (the nodes of) the tree should

partition WD and PD in a similar manner.

Besides motivating and defining the problem of mining shared models between appli-

cations, this thesis proposes an algorithm, namely SDT-Miner, for mining a decision tree

shared by two datasets. The SDT-Miner algorithm addresses the challenges caused by the

presence of two datasets, by the data distribution similarity requirement and by the tree

accuracy requirement. We measure the quality of a mined shared decision tree using a

weighted harmonic mean of average data distribution similarity, tree accuracy. Based on

1Learning transfer often assumes that the class label of data samples is unknown in the target dataset, this
paper assumes that the class labels are known for the target datasets so that shared knowledge can be mined.
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the above, it is clear that SDT-Miner is significantly different from traditional decision tree

algorithms. The effectiveness of the algorithm is verified by experiments on synthetic and

real world datasets. It should be noted that both the shared decision tree mining problem

and SDT-Miner can be generalized to three or more datasets.

The rest of the paper is organized as follows: Section 1.1 gives a small illustrating

example. Section II discusses related works and Section III provides the preliminaries.

Section IV defines the general shared decision tree mining problem and the specific prob-

lem of mining a shared decision tree. Sections V presents the shared decision tree mining

algorithm, namely SDT-Miner. An experimental analysis is given in Section VI. Section

VII gives the conclusion of the thesis and lists some future research topics.

1.1 An Illustrating Example

To illustrate, consider the small example containing two datasets D1 (as the WD) and D2

(as the PD), shown in Table 1.1 and Table 1.2.

Figure 1.2 contains a decision tree, T , shared by D1 and D2. T has high classification

accuracy (of 100%) in both D1 and D2, and has highly similar distributions at the tree

nodes on data from D1 and from D2. (That is, for each tree node V , the class distribution

of the subset of the data in D1 meeting the condition of V is highly similar to that of the

data in D2 meeting that condition.) T is a decision tree shared by D1 and D2 of fairly high

quality.

Table 1.1: Dataset D1

TID A1 A2 A3 A4 A5 Class
1 3 6 2 3 4 C1

2 2 2 9 5 6 C1

3 7 5 8 8 12 C2

4 4 8 15 6 9 C2
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Table 1.2: Dataset D2

TID A1 A2 A3 A4 A5 Class
1 5 4 8 3 5 C1

2 10 6 4 2 1 C1

3 9 3 5 7 8 C1

4 12 7 2 4 6 C1

5 1 5 17 9 10 C2

6 8 9 9 5 14 C2

Figure 1.2: Shared decision tree T between D1 and D2

4



Related Work

Previous studies related to our work can be divided into two main groups.

Learning Transfer: The first group of related works consists of studies on learning

transfer, which is mainly concerned with how to adapt/modify a classifier constructed from

a source context for use in a target context. Reference [8] considers adapting EM-based

Naive Bayes classifiers, for classifying text, built from a given context for use in a new

context. Reference [9] proposes to combine multiple classifiers built from one or more

source datasets, using a locally weighted ensemble framework, in order to build a new

classifier for a target dataset.

Decision Tree: The second group of related works consists of studies on decision

trees. This thesis studies the problem of mining models, patterns and structures (MPS)

shared by two datasets. For the sake of concreteness, the algorithmic of this thesis will

focus on mining of shared decision trees. But our shared decision tree mining problem is

significantly different from traditional decision tree algorithms, it addresses the challenges

caused by the presence of two datasets, by the data distribution similarity requirement and

by the tree accuracy requirement.

Our study is also related to studying regarding cross-platform and cross-laboratory

concordance of the microarray technology. For example, [10] studied how to use the trans-

ferability of discriminative genes and their associated classifiers to measure such concor-

dance. However, to the best of our knowledge, no previous studies considered the use of

shared decision trees to measure such concordance.

5



In summary, our aim is to mine shared patterns among multiple contexts, in order to

help users see the similarity between multiple contexts, help them understand the new ap-

plication using the similarity, and thereby help them focus their attention on unique knowl-

edge patterns in the new applications.
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Preliminaries

In this section we briefly review some concepts, and define several notations, regarding

decision tree and information gain.

3.1 Decision Tree

A decision tree is a tree; each internal node of the tree denotes a test on an attribute (the

splitting attribute of the node), each branch represents an outcome of the test, and each leaf

node has a class label. Figure 1.2 give an example. The test of an internal node partitions

the data of the node into a number of subsets, one for each branch of the node. A decision

tree is built from a given training dataset, which consists of tuples with class labels. In this

thesis we focus on binary decision trees to simplify the discussion, although our approach

and results can be easily generalized.

We will use the following two notations below. Given a node V of a decision tree T

and a dataset D, let SC(V ) denote the set of conditions on the edges in the path from the

root of T to V , and SDD(V ) the subset of D for V is defined by SDD(V ) = {t ∈ D | t

satisfies all tests in SC(V )}.
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3.2 Information Gain

The information gain measure is often used to select the splitting attributes for internal

nodes in the decision tree building process. For each internal node of the tree under con-

struction, the attribute with the highest information gain is chosen as the splitting attribute.

The concept of information gain is based on expected information. Suppose V is an

internal node of a tree and DV is the set of data associated with V . Suppose the classes of

the data are C1, . . . , and Cm. The expected information needed to classify a tuple in DV is

given by

Info(DV ) = −
m∑
i=1

pilog2(pi), (3.1)

where pi is the probability that an arbitrary tuple belongs to class Ci.

For binary trees, a splitting attribute A for V partitions DV using 2 tests on A. The

tests have the form A ≤ a and A > a, if A is a numerical attribute with many values and a

is a selected split value. These tests split DV into 2 subsets, D1, D2, where Dj = { t ∈ DV

| t[A] satisfies the jth test for V }. The information of this partition is given by

Info(A, a) =
2∑

j=1

|Dj|
|DV |

× Info(Dj). (3.2)

For each attribute A, let aV denote the split value of A that yields the best (smallest)

value of Info(A, a) among all possible split values a of A. The information gain of A for

node V is defined by

IG(A, aV ) = Info(DV )− Info(A, aV ). (3.3)

8



Problem Definition: Mining Shared

Decision Tree

Roughly speaking, our aim is to mine a high quality decision tree shared by two datasets,

which provides high classification accuracy and highly similar data distributions.

Before defining this problem, we first need to describe the input data for our problem,

and introduce several concepts, including what is a shared decision tree, what is a high

quality shared decision tree.

To mine decision tree shared by two datasets, we need two input datasets D1 and D2.

D1 and D2 are assumed to share an identical set of attributes. For the case that they contain

different sets of attributes, the user will need to determine equivalence between attributes

of D1 and attributes of D2, and then map the attributes of D1 and D2 to an identical set of

attributes using the equivalence relation and eliminate those attributes of Di that have no

equivalent attributes in Dj , j ̸=i.

A shared decision tree is a decision tree, that can be used to accurately classify data in

dataset D1 and accurately classify data in dataset D2.

A high quality shared decision tree is a decision tree that has high data distribution

similarity, and has high shared tree accuracy in both datasets D1 and D2.

The concepts of data distribution similarity and shared tree accuracy are defined next.

9



4.1 Data Distribution Similarity

Data distribution similarity (DS) captures cross-dataset distribution similarity of a tree

(DST). DST measures the similarity between the distributions of the classes of data in

the two datasets in the nodes of the tree. It is based on the concepts of class distribution

vector (CDV) and distribution similarity of a node (DSN).

We use the class distribution vector (CDV) for a node V of a tree T to describe the

distribution of the classes of a dataset Di at V , that is:

CDVi(V ) = (Cnt(C1, SDi(V )), Cnt(C2, SDi(V ))), (4.1)

where Cnt (Cj , SDi(V ))= | {t ∈ SDi(V ) | t′s class is Cj}|.

The distribution similarity (DSN) at a node V is measured by the similarity between

the class distributions for the two datasets at V . It is defined as the normalized inner product

of two CDV vectors for D1 and D2:

DSN(V ) =
CDV1(V ) · CDV2(V )

∥CDV1(V )∥ · ∥CDV2(V )∥
. (4.2)

where ||CDVi(V )|| presents the norm of the vector CDVi(V ), and CDV1(V ) · CDV2(V )

means the inner product of two vectors CDV1(V ) and CDV2(V ).

For example, suppose SD1(V ) contains 50 tuples of Class C1 and 10 tuples of Class

C2, and SD2(V ) contains 10 tuples of Class C1 and 5 tuples of Class C2. Then CDN1(V )=(50,

10), CDN2(V )=(10, 5), and DSN(V )=0.88.

4.1.1 Cross-Dataset Distribution Similarity of Tree (DST)

Now we turn to define DST. There are different methods to define the cross-dataset distri-

bution similarity of a shared tree according to the class distribution vector and distribution

10



similarity. These methods can be classified as follows:

A. All Node Measure

Firstly, all node measure, as implied by the name, considers the data distribution at all non-

root nodes. This method pays attention to all non-root nodes since the data distribution

similarity at the root is identical after the Equalizing Class Ratios process (Section VI). For

this measurement, we can use either weight based method or vectors based method.

(1) Weight Based Method

Since different nodes may have different importance, we can use weights of nodes in

defining DST to distinguish the difference. Formally, given a tree T, the DST is given as:

DST (T ) =

n∑
i=1

DSN(Vi)w(Vi)

n∑
i=1

w(Vi)
, (4.3)

where V1, V2, . . .,Vn are all non-root nodes in tree T , w(Vi) is the weight for node Vi.

About the weight assignment, two different methods can be applied to each node. One

method is to assign equal weight to each node. The other method is to assign level based

weight to each node. Specifically, level based weight means to assign higher weight to the

nodes near the root of the tree, since the nodes near the tree root may be more important

than the nodes near the leaves. These two weight assignment methods are also be described

as:

(a) Equal weight: the weight vector w(Vi) = 1 in equation 4.3 for all non-root nodes

Vi.

(b) Level based weight: weight vector w(Vi) = 2−Lvl(Vi) in equation 4.3 for all non-

root nodes Vi.

(2) Vectors Based Method

Besides the weight based method, we can also define DST regarding vectors. For

11



each node V , we measure the associated class distributions vector, namely [c11, c21] and

[c12, c22], where ci1 is the number of tuples from the first dataset D1 in class Ci that satisfy

all of the conditions on the path from the root to V , and similarly ci2 is that number for the

second dataset D2.

Each dataset Di has a CDV for each node. In that way, for each specific dataset, all

CDVs for every node could comprise of the class distribution vector for this dataset, namely

CDVi. In formula, CDVi can be expressed:

CDVi = (CDVi(V1), CDVi(V2), . . . , CDVi(Vn)), (4.4)

where V1, V2, . . .,Vn presents all non-root nodes in the tree.

Then the DST can be measured by the similarity between the vectors CDV1 and

CDV2. It is defined as the normalized inner product of two CDV vectors for D1 and D2:

DST (T ) =
CDV1 · CDV2

∥CDV1∥ · ∥CDV2∥
. (4.5)

B. Leaf Node Measure

The other measurement of DST is leaf node measure, which only focuses on analyzing the

data distribution similarity of all leaf nodes, and ignores the effect of the internal nodes.

This method is under the assumption that leaf nodes are more important than other internal

nodes in the classification of the shared decision trees. In this measurement method, equal

weight based method and vectors based method are also applied.

(1) Equal Weight Based Method

This method applies the same idea compared to the equal weight method in “All Node

Measure”. The only difference is that leaf node measure is averaging the DSNs of all leaf

nodes, instead of all non-root nodes.

(2) Vector Based Method

12



Compared to the same method in “All Node Measure”, the CDVi vectors are com-

posed of CDVs of all leaf nodes. In formula, we have:

CDVi = (CDVi(V1), CDVi(V2), . . . , CDVi(Vn)), (4.6)

where V1, V2, . . .,Vn present all leaf nodes. Then the DST can be measured by the same

equation 4.5 in all node measure.

We now use an example to illustrate the above DST measures and analyze each

method. The following Figure 4.1 presents a decision tree shared by datasets D1 and D2.

For each node Vi, [c11, c21] is shown on the left of the node, and [c12, c22] is shown on the

right. Table 4.1 and 4.2 list the weight based CDVs for datasets D1 and D2, respectively,

and table 4.3 lists the vector based CDVs for datasets D1 and D2 and the corresponding

DST.

Figure 4.1: A shared decision tree

Now we analyze each method based on the results of different DST methods.

(1) For the equal weight method of all node measure, the DST is 0.51. This method

considers all non-root nodes equally, and every node has an impact on the DST.

(2) For the level based weight method of all node measure, the DST is 0.67. This

13



Table 4.1: CDV1

CDV1(V2) [85,2]
CDV1(V3) [18,10]
CDV1(V4) [0,9]
CDV1(V5) [18,1]

Table 4.2: CDV2

CDV2(V2) [62,0]
CDV2(V3) [24,10]
CDV2(V4) [24,0]
CDV2(V5) [0,10]

method pays more attention to the nodes near the root, and pays less attention to the leaf

nodes. From this example, it is observed that the DST even reaches to 0.67 although two

leaf nodes obviously do not have any similarity.

(3) For the vector based method of all node measure, the DST is 0.898. The DST is

affected by the node that has more tuples in it.

(4) For the equal weight method of leaf node measure, the DST is 0.35. This method

only focuses on the leaf nodes and does not consider the influence of the internal nodes.

From this example, it is observed that the DST reduces to 0.35 although there is a node

with DSN= 1.

(5) For the vector based method of leaf node measure, the DST is 0.899. This method

can not give the comprehensive view of the whole tree since it only observes the leaf node.

To present the data similarity between two datasets more accurately, we select the

equal weight method of all node measure to calculate the DST in all of our following

experiments.
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Table 4.3: Vector Based Method

All Node Measure Leaf Node Measure
CDV1 [85,2,18,10,0,9,18,1] [85,2,0,9,18,1]
CDV2 [62,0,24,10,24,0,0,10] [62,0,24,0,0,10]
DST 0.898 0.899

4.2 Tree Accuracy

We define shared decision accuracy of a tree T as the minimum of the two tree accuracies

of T on the two given datasets:

AccD1,D2(T ) = min(AccD1(T ), AccD2(T )). (4.7)

where AccDj
(T ) is the accuracy of T on dataset Dj .

AccDj
(T ) is defined by:

AccDj
(T ) = 1− |W |

|Dj|
(4.8)

where |W |
|Dj | is the error rate for dataset Dj , W is the set of tuples classified wrongly in the

leaf nodes of T , and Dj is the set tuples in dataset Dj .

Using this definition, a tree with high tree accuracy will have high classification accu-

racy on both datasets.

To obtain the set of tuples classified wrongly in the leaf nodes, it is crucial to determine

the class for each leaf node. As we known, in traditional decision tree algorithms, the

class of a leaf node is assigned by the majority class of that node. Leaf nodes of shared

decision tree have data from two datasets, hence there is one majority class for each dataset.

For one leaf node, when the majority classes of two datasets are the same, we simply pic

that majority class. However, when the majority classes of two datasets are different, we
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determine the class label of this leaf node in a way to minimize the overall error, considering

both datasets.

The following two figures present two scenarios in which we need to figure out the

classes of leaf nodes. The first scenario shown in figure 4.2 describes that one child from the

parent is a leaf node and the other child could continue to split; while the second scenario

in figure 4.3 shows that two children from the parent are both leaf nodes.

In figure 4.2, we only need to determine the class of left child since the right child is

continued to split. There are two cases for the left leaf node class. When it is assigned by

C1, the number of tuples classified wrongly in dataset D1 is 10 and in dataset D2 is 15.

Then the error rate in this leaf node of D1 and D2 is computed to be 0.59. On the other

hand, when assigned by C2, the number of tuples classified wrongly in dataset D1 is 14 and

in dataset D2 is 0. Then the error rate of D1 and D2 becomes to 0.24. Comparing the error

rate 0.59 with 0.24, the class of this leaf node should be assigned by C2 to minimize the

overall error rate.

Considering the second scenario in figure 4.3, we need to determine the classes of both

leaf nodes. There are two cases for the classes. When the class of left leaf node is assigned

by C1 and the class of right node is assigned by C2, the number of tuples classified wrongly

in two leaf nodes of datasets D1 and D2 are 3, 17, respectively. Then the error rate of D1

and D2 is 0.23. On the other hand, when assigning C2 for left leaf node and C1 for right

node, the number of tuples classified wrongly in two leaf nodes of datasets D1 and D2 are

17, 5, respectively. Then the error rate of both datasets becomes to 0.34. To minimize the

overall error rate, the class of left leaf node should be assigned by C1 and the class of right

leaf node should be assigned by C2.
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Figure 4.2: Tree T1

Figure 4.3: Tree T2

4.3 Combining the Factors to Define Tree Quality

The quality of shared decision tree is influenced by two factors: data distribution similarity

and shared tree accuracy. We need to combine these factors into one number, to facilitate

the comparison of the quality values.

Several combination methods can be used, including the arithmetic mean (the av-

erage), the geometric mean (the root of the product), and the harmonic mean (detailed

below).

We select the harmonic mean method to combine the factors for the following reasons.
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The harmonic mean pays more attention to the smallest of the factors than the other two

methods. Among the two factors we consider, the tree accuracy factor is the most important

and it often has the smallest value among the factors.

We may also want to control the degree of importance of the factors in the harmonic

mean. This can be done using the weighted harmonic mean. The weighted harmonic mean

of n positive values x1,. . . , xn is defined by:

n∑
i=1

wi(
n∑

i=1

wi

xi

)−1, (4.9)

where wi is weight assigned to xi. We will discuss how to select the weights shortly.

Below we will use WHM as short-hand for weighted harmonic mean. Moreover, we

will use wDS to denote the weight assigned to data distribution similarity, wTA the weight

assigned to shared tree accuracy.

Definition 1. (SDTQWHM)

The weighted harmonic mean based quality of a shared decision tree T is defined by:

SDTQWHM(T ) =
wDS + wTA
wDS

DS(T )
+

wTA
TA(T )

. (4.10)

To determine the weights on the factors, we evaluated how the SDTQWHM values

respond to the different factor value combinations when different weight vectors are used.

We found that (wDS ,wTA)=(1,1) for SDTQWHM is good choice; since this weight vector

pays equal attention to the tree accuracy and distribution similarity factors. Therefore, in

all of our experiments, we use this weight vectors to define SDTQWHM.
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4.4 The Shared Decision Tree Mining Problem

We are now ready to define the shared decision tree mining problem that we will study

in this thesis. Our goal is to mine high quality decision tree that exhibits patterns/models

shared by two given datasets.

Definition 2. (The SDT Mining Problem)

Given two datasets D1 and D2 with an identical list of attributes, the shared decision

tree mining problem is to mine one shared decision tree T such that SDTQWHM(T ) is high;

that is T has highly similar data distribution and high tree accuracy in the two datasets.
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Shared Decision Tree Miner

(SDT-Miner)

This section introduces the Shared Decision Tree Miner (SDT-Miner) algorithm, for mining

a decision tree shared by two datasets.

Roughly speaking, to split a node, SDT-Miner uses a splitting attribute/value pair to

maximize an objective function that combines data distribution similarity and information

gain.

While SDT-Miner is similar to C4.5 in the tree building process2, it differs from C4.5

(i) concerning purpose (mining a decision tree shared by two datasets vs mining a decision

tree for a single dataset), and (ii) regarding two new ideas on how to select the splitting

attribute (it selects attributes (a) with high data distribution similarity in two given datasets,

and (b) with high information gain in two given datasets).

SDT-Miner (see Algorithm 1) has four input parameters: Two Datasets (D1 and D2), a

set (AttrSet) of candidate attributes for use in shared decision trees, a dataset size threshold

(MinSize) for split termination. SDT-Miner builds a shared decision tree by using the

SDTNode function (see Function 1) recursively.

SDTNode splits the data of a tree node by picking the best splitting attribute for the

data. To obtain shared decision tree with high data distribution similarity and high tree

2For each tree node, C4.5 finds the attribute that maximizes information gain as the splitting attribute.
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Algorithm 1. SDT-Miner
Input: Two Datasets: D1, D2;

AttrSet: Set of candidate attributes for use in shared decision trees;
MinSize: Dataset size threshold for splitting termination;

Output: A shared decision tree for D1 and D2.
Method:

1. Create root node V ;
2. Call SDTNode(V , D1, D2, AttrSet, Minsize);
3. Output the shared decision tree rooted at V .

accuracy, SDTNode uses a DI scoring function to help determine what the best splitting

attribute is. Roughly speaking, DI is defined to be a sum of data distribution similarity and

information gain. Specifically, let V be a node (to split), A a candidate splitting attribute

for V , aV a candidate split value for A. Then DI can be defined by:

DI(A, aV ) = DSN(A, aV ) + IG(A, aV ). (5.1)

We now explain three things about the SDTNode function.

(1) The SDTNode function (line 1) uses another function called ShouldTerminate to

determine if splitting should stop at a given node V . We designed ShouldTerminate to help

avoid building “overfitting” trees, in addition to checking other normal termination con-

ditions. Specifically, ShouldTerminate(V,D′
1, D

′
2,MinSize) returns “true” if (a) either

D′
1 or D′

2 is pure3, or (b) all available attributes have been used in the path from the root of

the tree to V , or (c) either |D′
1| ≤ MinSize or |D′

2| ≤ MinSize. Conditions (a) and (b)

are normal splitting termination conditions for decision tree construction. Condition (c) is

used to stop splitting the node if the datasets for the node are very small, which helps avoid

overfitting.

(2) Selecting the attribute B and split value bV to maximize DI (line 3) ensures that

the split attribute/value lead to fairly high DS and IG. Experiments confirmed that this

3A dataset is pure if all of its tuples belong to a common class.
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Function 1. SDTNode(V , D′
1,D

′
2, AttrSet, MinSize)

1. If ShouldTerminate(V , D′
1, D

′
2, MinSize) then assign

// determine shared class label for both D1 and D2 at V
2. the majority class in D′

1 and D′
2 as class label of V and return;

3. Select the attribute B and split value bV that maximize DI , that is
4. DI(B,bV )=max{DI(A,aV )|A ∈ AttrSet and A was,
5. not used on the path from the root of the tree to V ,
6. aV is a common candidate split value for A at V };
7. Let B and bV be the splitting attribute/value for V ;

// compute the left subtree of V
8. Create leaf child node Vl for V ;
9. Let “B ≤ bV ” be the test on the left outgoing edge of V ;
10. Let D′

il = { t ∈ D′
i | t satisfies “B ≤ bV ” } for i = 1, 2;

11. Call SDTNode(Vl, D′
1l,D

′
2l, AttrSet, MinSize);

// compute the right subtree of V
12. Create right child node Vr for V ;
13. Let “B > bV ” be the test on the right outgoing edge of V ;
14. Let D′

ir = { t ∈ D′
i | t satisfies “B > bV ” } for i = 1, 2;

15. Call SDTNode(Vr, D′
1r,D

′
2r, AttrSet, MinSize);

Function 2. ShouldTerminate(V , D′
1, D

′
2, MinSize)

1. Return true if at least one of the following three conditions is true:
2. (a) D′

1 is pure or D′
2 is pure;

3. (b) All attributes in AttrSet were used on the path from the root to V ;
4. (c) |D′

1| ≤ MinSize or |D′
2| ≤ MinSize; // the datasets of V are small

5. Return false. // none of the above three conditions is true.

heuristic can help us find high quality trees.

(3) The candidate common split values (CCSV) for A at V (line 6) are determined by

considering the A values in both datasets for V . They are the mid points of consecutive

such A values: If v1, v2, . . . , vn are the distinct values of A in D′
1 ∪D′

2 in increasing order,

then (vi, vi + 1)/2 is a candidate common split value for each i.

We now use the following example to illustrate how to find the CCSV between two

datasets. Two datasets Da and Db are given in the following tables 5.1 and 5.2. Table 5.3

lists the CCSV for both datasets Da and Db.
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Table 5.1: Dataset Da

value of Ai Class
1 C1

3 C2

5 C1

5 C1

Table 5.2: Dataset Db

value of Ai Class
2 C2

4 C1

8 C2

10 C1

Table 5.3: CCSV

CCSV
1.5
2.5
3.5
4.5
6.5
9
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Experimental Evaluation

This section presents experiment results on some real-world and synthetic datasets to eval-

uate the performance of our algorithms and to illustrate the trees mined by our algorithms.

The experiments were conducted on a 2.20 GHz AMD Athlon with 3 GB memory

running Windows XP, and the codes were implemented in Matlab.

6.1 The Datasets

6.1.1 Real Datasets

Our experiments on real world datasets used six microarray datasets for various diseases

(mostly cancers). Table 6.1 lists the names of these datasets, and their sizes (number of

tuples); more details are provided in Section 6.3.2. Each tuple in such a dataset is a mi-

croarray measurement of the gene expression levels in a patient sample; each column is the

gene expression level for a gene of in that patient sample. We normalized columns (genes)

so that each column of each dataset has a mean of zero and a standard deviation of one.

This was done to make value changes of different genes more comparable.

To mine decision trees shared by pairs of microarray datasets, we need to identify

equivalent attributes (genes) for each pair. We used the ArrayTrack software [11] to do

that. Equivalent genes are different names in different gene name systems for the same

gene. Table 6.2 lists the number of equivalent attributes for various dataset pairs.
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Table 6.1: Datasets

Datasets Number of tuples
Brease Cancer (BC) 19

Central Nervous System (CN) 60
DLBCL-Harvard (DH) 58

Lung Cancer-BAWH (LB) 32
Lung Cancer-Michigan (LM) 96

Prostate Cancer (PC) 21

Table 6.2: Number of equivalent attributes

Dataset pairs Number of equivalent attributes
BC vs CN 5114
BC vs DH 5114
BC vs LB 8123
BC vs LM 5114
BC vs PC 8124
CN vs DH 5555
CN vs PC 5317
DH vs LB 5313
LB vs PC 9030
LM vs PC 5317

6.1.2 Equalizing Class Ratios

After identifying equivalent attributes (genes) from those dataset pairs, we noticed that

the class distributions of two datasets may have huge difference. The big difference may

can have a big impact on the quality value of the shared decision trees, making it difficult

to compare quality values for shared trees mined from different dataset pairs. To solve

this problem, we modify the datasets using the sampling with replacement method. More

specifically, we replicate tuples of one class to the dataset that contains fewer tuples, to

make the class distributions of two datasets nearly equal. The method is given in Algorithm

2.
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Algorithm 2. Equalizing Class Ratios
Input: Two Datasets: D1 and D2;
Output: Two new generated datasets D∗

1 and D∗
2.

// D∗
1, D∗

2 are extensions of D1, D2, with near equal class distributions.
Method:

1. Let cij =|t ∈ Dj|t’s class is Ci|, Rj =
C1j

C2j
, D∗

1 = D1, D∗
2 = D2;

2. Let Ds be the smaller dataset among D1 and D2,
and Dt be the other dataset;

// Cr denotes the class of Ds that we will add tuples to;
3. If Rs > Rt, then let Cr be C2, and m=⌈ c1s

Rt
− c2s⌉ ;

4. Else let Cr be C1, and m=⌈c2s ·Rt − C1s⌉;
5. Using sampling with replacement, we select m tuples from Cr of Ds,

and then add these tuples to class Cr of D∗
s ;

6.1.3 Synthetic Datasets

Since the real microarray datasets for cancers usually contain very few tuples, and the

datasets from UCI often contain very few attributes, they cannot be directly used for scala-

bility experiments. To solve this problem, we generate some synthetic datasets from those

real microarray datasets using the method given in Algorithm 3.

Suppose we want to make a synthetic dataset with N tuples. We will make M=⌈ N
NT

⌉

copies of each tuple t of D. Each tuple’s attribute values will be changed randomly, and

the magnitude is less or equal than P as a percentage of the corresponding old values. In

order to get attributes with varying degrees of similarity to the old attributes, we also use

an upper-bound of change, Pi, for each attribute Ai, which is smaller than P .

6.2 Performance Analysis Using Synthetic Datasets on Ex-

ecution Time

We now use experiments to evaluate how computation time of SDT-Miner changes when

the number of tuples increases. The experiments use synthetic datasets built using Algo-
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Algorithm 3. Synthetic dataset generation
Input: A Datasets: D;

N : Desired number of tuples;
P : Maximal percentage of per-value change;

Output: A synthetic dataset DNP generated from D.
Method:

1. For each attribute Ai, generate a random number Pi ∈ [0,P];
Pi is to be the maximal percentage of change for each attribute Ai;

2. For each tuple t in D
3. Let t1, t2,. . . ,tM be multiple copies of t, where M=⌈ N

|D|⌉;
4. Let tj be the tuple such that tj[Ai] = t[Ai] · (1 + qij)

for each attribute Ai, where qij ∈ [−Pi, Pi] is a random number;
5. Add t1, t2, . . . , tM to DNP.

rithm 3.

Figure 6.1 shows how the execution time of SDT-Miner is affected by the number

of tuples. Five pairs of synthetic datasets, generated from (LM: PC), are used. All the

datasets have 5317 attributes, each dataset pair contains 100, 500, 1000, 1500, 2000 tuples,

respectively. Figure 6.1 shows that the execution time increases as the number of tuples

increases.

100 500 1000 1500 2000
0

5

10

15

20

25

30

35

40

45

50

P
er

−
T

re
e 

E
xe

cu
tio

n 
T

im
e 

in
 M

in
ut

es

Number of Tuples in each dataset

Execution Time vs Number of Tuples

Figure 6.1: Execution time vs number of tuples
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6.3 Quality Performance on Real Datasets

We now report experimental results on the quality of the shared tree found by our SDT-

Miner from the microarray dataset pairs listed in Table 6.2.

6.3.1 Quality of Shared Decision Tree Mined by SDT-Miner

SDT-Miner can be used to mine the shared decision tree. We now show qualities of shared

decision trees it mined.

Table 6.3 lists the quality of the shared decision tree mined by SDT-Miner for different

dataset pairs. The first column is the name of dataset pairs; the second column is the

data distribution similarity, (denoted by DS); the third column is the shared decision tree

accuracy, (denoted by TA); and the last column is the weighted harmonic mean based

quality of the shared decision tree, (denoted by quality of tree). From this table, it is

observed that the qualities of decision trees shared by different dataset pairs range from

0.58 to 0.99; the variance of the qualities is 0.03 and the standard deviation is 0.16.

Table 6.3: Quality of tree mined by SDT-Miner

Dataset pairs DS TA Quality of tree
BC vs CN 0.95 0.87 0.91
BC vs DH 0.62 0.69 0.65
BC vs LB 0.97 0.92 0.94
BC vs LM 0.52 0.73 0.61
BC vs PC 0.74 0.73 0.73
CN vs DH 0.88 0.79 0.83
CN vs PC 0.48 0.73 0.58
DH vs LB 0.99 0.95 0.97
LB vs PC 0.99 1 0.99
LM vs PC 0.50 0.90 0.64
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6.3.2 Shared Decision Tree Mined from Different Dataset Pairs

Table 6.3 lists the qualities of the shared decision trees mined by SDT-Miner for different

dataset pairs. After observing the overall qualities of decision trees shared by dataset pairs,

we drawn the detailed shared decision trees mined from each specific dataset pair, whose

description is also included in this section.

To better understand the shared decision trees, we first give the description of each

dataset.

Dataset BC is a “Breast Cancer” dataset first published in [12]; the “relapse” class

(denoted by C1 in trees) is tissues from patients who had developed distance metastases

within 5 years, and the “non-relapse” class (C2) is tissues from patients who remained

healthy for at least 5 years from the disease after their initial diagnosis.

Dataset CN is a “Central Nervous System Embryonal Tumour” dataset first published

in [13]; this dataset is about patient treatment outcome prediction. Survivors (C1) are

patients who are alive after treatment whiles the failures (C2) are those who succumbed to

their disease.

Dataset DH is a “Diffuse Large B-Cell Lymphoma-Harvard” dataset first published in

[14]; this dataset is to predict the patient outcome of DLBCL. The “cured” class (C1) is

tissues from cured patients, and the “fatal” class (C2) is tissues from patients with fatal or

refractory disease.

Dataset LB is a “LungCancer-Brigham And Women Hospital-Harvard Medical School”

dataset first published in [15]; this dataset is to classify between malignant pleural mesothe-

lioma (MPM) (C1) and adenocarcinoma (ADCA) (C2) of the lung.

Dataset LM is a “LungCancer-Michigan” dataset first published in [16]. The “tumor”

class (C1) is tissues form lung adenocarcinomas patients, and the “normal” class (C2) is

tissues from non-neoplastic lung patients.

Dataset PC is a “Prostate Cancer” dataset first published in [17]; this dataset is to

predict clinical outcome. The “relapse” class (C1) is tissues from patients having recurrence
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following surgery, and the “non-relapse” class (C2) is tissues from patients having remained

relapse free for at least 4 years.

Now we turn to present the detailed shared decision trees.

For each tree, the string inside each internal node is the name of the splitting gene. For

each node V , the figure includes the associated class distributions, namely [c11, c21] (shown

on the left of the node) and [c12, c22] (shown on the right), where ci1 is the number of tuples

from the first dataset in class Ci that satisfy all of the conditions on the path from the root

to V , and similarly ci2 is that number for the second dataset. For each branch, the figure

includes the splitting condition, denoted by (≤ aV ) or (> aV ). The figure also includes the

data distribution similarity of V , DSN(V ), shown below the node.

Figure 6.2 to Figure 6.11 give the shared decision trees, mined by SDT-Miner from

the dataset pairs (BC: CN), (BC: DH), (BC: LB), (BC: LM), (BC: PC), (CN: DH), (CN:

PC), (DH: LB), (LB: PC), and (LM: PC), respectively. For dataset pairs (BC: CN), (BC:

LB), (CN: DH), (DH: LB), and (LB: PC), high quality shared decision trees are mined

by SDT-Miner. On the other hand, we didn’t find high quality shared decision trees from

remaining dataset pairs.

Figure 6.2: Shared decision tree mined from (BC:CN)
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Figure 6.3: Shared decision tree mined from (BC:DH)

Figure 6.4: Shared decision tree mined from (BC:LB)
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Figure 6.5: Shared decision tree mined from (BC:LM)

Figure 6.6: Shared decision tree mined from (BC:PC)
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Figure 6.7: Shared decision tree mined from (CN:DH)

Figure 6.8: Shared decision tree mined from (CN:PC)
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Figure 6.9: Shared decision tree mined from (DH:LB)

Figure 6.10: Shared decision tree mined from (LB:PC)

Figure 6.11: Shared decision tree mined from (LM:PC)
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Discussion

7.1 Existence of High Quality Shared Decision Tree

The table 6.3 illustrates the qualities of shared decision trees mined from different dataset

pairs with the range from 0.58 to 0.99. From our experiments, it is evident that for the

dataset pair (CN:PC), the SDT-Miner mined a shared decision tree with only 0.58 tree

quality, which means there is few similarity catched between these two datasets. However,

when building the decision tree shared by dataset pair (LB:PC), SDT-Miner mined much

higher quality tree with the tree quality 0.99, indicating high similarity between datasets

LB and PC. This specific high quality shared tree is shown in Figure 6.10.

Therefore, it is obvious that the proposed miner can distinguish different degree of

similarities according to tree qualities. High quality shared tree doesn’t exist between

dataset pair without much shared behavior.

7.2 Class Pairing

For each dataset pair D1 and D2, we have two ways to match two classes C11, C21 in D1

and two classes C12, C22 in D2. The first class pairing method is that C11 matches C12, C21

matches C22, the second class pairing method is that C11 matches C22, C21 matches C12.

In experimental evaluation section, the experimental results on the quality of the
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shared tree found by our SDT-Miner from the microarray dataset pairs are based on the

first class pairing method.

In this section we select the second class pairing method to match the classes between

two datasets. Then we mined shared decision trees using our SDT-Miner. Table 7.1 lists the

quality of the shared decision tree mined by SDT-Miner for the second class pairing method.

The first column is the name of dataset pairs; the second column is the data distribution

similarity, (denoted by DS); the third column is the shared decision tree accuracy, (denoted

by TA); and the last column is the weighted harmonic mean based quality of the shared

decision tree, (denoted by quality of tree). From this table, it is observed that the qualities

of decision trees shared by different dataset pairs range from 0.50 to 0.98; the variance of

the qualities is 0.03 and the standard deviation is 0.18.

Table 7.1: Quality of tree mined by SDT-Miner

Dataset pairs DS TA Quality of tree
BC vs CN 0.77 0.55 0.64
BC vs DH 0.97 0.90 0.93
BC vs LB 0.99 0.92 0.96
BC vs LM 0.51 0.75 0.61
BC vs PC 0.42 0.62 0.50
CN vs DH 0.82 0.69 0.75
CN vs PC 0.96 0.90 0.93
DH vs LB 0.55 0.67 0.60
LB vs PC 0.99 0.96 0.98
LM vs PC 0.48 0.82 0.61

7.3 Looking into Attributes Used by Trees

We have mined shared decision trees for both class pairings. For each dataset pair and for

each class pairing, we find the set of attributes used in the shared decision tree.

Table 7.2 to Table 7.11 list the sets of attributes used in shared decision trees, mined
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by SDT-Miner from the dataset pairs (BC: CN), (BC: DH), (BC: LB), (BC: LM), (BC: PC),

(CN: DH), (CN: PC), (DH: LB), (LB: PC), and (LM: PC), respectively.

Table 7.2: Attributes used by trees from (BC:CN)

First Class Pairing Second Class Pairing
GFRA2 NAGA
AMT KEL
BRF1 CFTR

TXNRD1

Table 7.3: Attributes used by trees from (BC:DH)

First Class Pairing Second Class Pairing
PDCD4 SLC25A13
CTSG CTSG

PTPRN2 GATA3
CRYGC CPT1A
HTR3A

Table 7.4: Attributes used by trees from (BC:LB)

First Class Pairing Second Class Pairing
GMPS LSR

SERPINA3 IQGAP1

Then we introduce a concept, namely the fraction of attributes (FA). It is used to

determine the fraction of attributes shared by the trees mined from two class pairings over

attributes used by the tree mined from either class pairing. In formula, we have:

FA =
Ncommon

Neither

, (7.1)

where Ncommon is the number of attributes shared by the trees mined from the two class

pairings, and Neither is the set of attributes used by the tree mined from either class pairing.
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Table 7.5: Attributes used by trees from (BC:LM)

First Class Pairing Second Class Pairing
PAFAH1B1 CHN1

C1QB FOXF1

Table 7.6: Attributes used by trees from (BC:PC)

First Class Pairing Second Class Pairing
CDH11 IFI6
DIO2 PRY

DFFA

Now we discuss the FA of all dataset pairs. The following table 7.12 lists the Ncommon,

Neither and FA for each dataset pair and each class pairing. The Ncommon and Neither are

obtained from the shared decision trees mined by SDT-Miner. And we also list the set of

attributes used in the shared decision trees for both class pairings, mined by SDT-Miner.
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Table 7.7: Attributes used by trees from (CN: DH)

First Class Pairing Second Class Pairing
VIL1 IGF2
CPN1 RFC4
HAB1 PMPCA
SLK SLK
KEL DNAH3

ACTN1 ABCC8

Table 7.8: Attributes used by trees from (CN: PC)

First Class Pairing Second Class Pairing
PSMB6 FBN1
HMGA1 CFD
DBN1 PTPRO

HMGCS2 SHC1

Table 7.9: Attributes used by trees from (DH: LB)

First Class Pairing Second Class Pairing
RBM5 DBP

ZNF133 ATP5J
BIN1 CAPN2
ATP5J

BTN2A1

Table 7.10: Attributes used by trees from (LB: PC)

First Class Pairing Second Class Pairing
TGFBI SMARCC2
ABR SLC35E2

ENTPD6 ATP5B
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Table 7.11: Attributes used by trees from (LM: PC)

First Class Pairing Second Class Pairing
CES1 TRAF4

TNNC1 CAV1

Table 7.12: FA of dataset pairs

Dataset pairs Ncommon Neither FA

BC vs CN 0 7 11.1%
BC vs DH 1 9 0%
BC vs LB 0 4 0%
BC vs LM 0 4 0%
BC vs PC 0 5 0%
CN vs DH 1 12 8.3%
CN vs PC 0 8 0%
DH vs LB 0 8 0%
LB vs PC 0 6 0%
LM vs PC 0 4 0%
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Conclusion and Future Work

This thesis addressed the shared models, patterns and structures mining problem and pro-

posed an algorithm, namely SDT-Miner, for mining a high quality shared decision tree.

The effectiveness of the algorithm is verified by experiments on synthetic and real world

datasets.

In the future, there are several areas in which we can improve our work.

Firstly, both the shared decision tree mining problem and SDT-Miner can be gener-

alized to three or more datasets. The experiment results demonstrate that our SDT-Miner

could mine a high quality decision tree shared by two datasets. In practice, our proposed

method could also be used to mine a high quality decision tree shared by three or more

datasets. To apply our method for multiple datasets, we need to find equivalent attributes

among multiple datasets. Furthermore, we need to change the definition of distribution

similarity (DSN) at a node V and the tree accuracy (TA) for multiple datasets. Then we

could employ same SDT-Miner algorithm to mine a high quality decision tree shared by

multiple datasets.

Secondly, It is not enough to mine only one shared decision tree. Indeed, one shared

decision tree may give only a limited view on the pattern similarities shared by the given

datasets. In order to give users multiple diversified view on the pattern similarities shared

by the datasets, we will extend our method to mine a small set of multiple diversified high

quality decision trees. The tree set satisfies these properties: (a) each tree in the set (1) has

highly similar data distributions and (2) has high classification accuracy in the datasets, and
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(b) different trees in the set are highly different from each other.

In the end, we will try to develop new methods to mine other forms of shared models,

including correlation/association patterns, graph-like interaction patterns, hidden Markov

models, clusterings, and so on.
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