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ABSTRACT

Shiryayev, Oleg. Ph.D., Department of Mechanical and Materials Engineering, Wright
State University, 2008. Improved Structural Health Monitoring Using Random Decrement
Signatures

Detection of structural damage phenomena such as cracks, delaminations, or loose fas-

teners is important because it increases safety and may allow significant reduction in oper-

ational costs. Many structural health monitoring techniques are based on detecting changes

in vibration features obtained from the measured response. The technique presented in this

work is based on the random decrement signatures calculated from the random response.

No knowledge of input signal is required. Random decrement signatures have been used

for damage detection purposes in the past. The significance of this work is that it explores

the possibility of identifying the type of damage and focuses on detection of opening and

closing cracks. Statistical features of the signatures are used to detect the presence of non-

linearity that often occurs due to onset of damage.

A numerical study was performed where simulated measurements were obtained from

a finite element model of a frame containing a damaged member. The results of this numer-

ical study showed that the new technique is able to detect crack type damage in a complex

structure. It was able to highlight the damaged spar, but it was not able to precisely locate

the damaged member in the spar. The results suggest that reliability of damage detection

depends on the amount of noise in the measurements.

Experimental validation was performed using a cantilever beam experiment. The dam-

aged beam used in the experiment contained a real fatigue crack instead of saw cuts that
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are often used to simulate damage. The technique was shown to be able to detect dam-

age when excitation level was greater than 1.0g RMS. The exact location of damage is not

always detected reliably, as sometimes a segment of the structure adjacent to the actual

damaged segment is indicated. The advantage of the new technique is that it is model-free

and could be used on structures excited by ambient forces that are difficult or sometimes

impossible to measure.
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Chapter 1

Introduction

In this chapter, common structural health monitoring (SHM) methods are discussed. The

majority of SHM methods are based on detecting changes in the dynamics of the structure

based on its vibration features. Those features are often used in conjunction with numerical

models of structures to identify and locate the damage. Many methods for modal parameter

estimation require knowledge of both input and output signals. However, in many situa-

tions measurement of system inputs are difficult to obtain, e.g. for structures with ambient

excitation: buildings, bridges, or aircraft. This brings up the motivation for the use of the

random decrement technique. A short description of the technique is provided.

1.1 Overview of structural health monitoring

Aerospace, civil, and other types of structures degrade during their service life. Degrada-

tion is usually comprised of cracking, delamination, or fastener loosening. Timely identi-

fication of structural damage is crucial for safety reasons. A multitude of vibration-based

1



approaches were developed over the past years. Worden and Dulieu-Barton [1] presented

a hierarchical classification for SHM methods listed below. In this classification each con-

secutive level implies inclusion of the previous one.

1. Detection: the method provides a numerical indication that the damage has occurred.

2. Localization: the method provides information about a possible location of the dam-

age.

3. Classification: the method provides information about the type of damage.

4. Assessment: the method is capable of estimating the severity of the damage.

5. Prediction: the method includes a capability to estimate the remaining useful life of

the structure.

Development and practical implementation of accurate and efficient SHM methods

involves a number of issues depending on particular applications. Those include and are not

limited to selection of physical quantities to be measured, features used for SHM, quantity

of sensors and their location, data processing, and robustness of the method to fluctuations

in environmental conditions. This section provides a general overview of structural health

monitoring and lists a variety of different approaches.

Doebling et al. [2, 3] provide an extensive literature review on damage identification

based on modal properties. Also, another report by a group of authors [4] contains an

extensive review of SHM related literature that was published in the period since 1996

until 2001. Carden and Fanning [5] presented a more recent literature review in 2004.
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Detection of damage is commonly based on modal features such as resonant frequencies,

damping ratios, and mode shapes. Since modal features are relatively sensitive to changes

in the structure, detection functionality is usually the simplest one to implement.

• Modal-based methods

It is observed that changes in natural frequencies can indicate a presence of damage.

However, obtaining information about the location of damage by tracking changes in

the natural frequencies is not trivial. Dilena and Morassi [6] presented a method for

estimation of damage location based changes of resonant and anti-resonant frequen-

cies for discrete dynamic systems. SHM methods that consider changes in the mode

shapes or mode shape curvature can also provide information about the location of

damage. Usually, measurements of higher modes are required to obtain information

about the location of the damage.

As an example of recent work, Bodeux and Golinval [7] fitted ARMAV time series

models to identify the natural frequencies of a lab structure and detect the damage

based on the changes in natural frequencies. Kim et al. [8] derived and compared

methods for detection and location of damage in beam structures based on identified

natural frequencies and mode shapes. Comparison of the methods was performed on

FEM simulation data. The authors concluded that mode shape based method allowed

for more accurate determination of damage location.

Humar, Bagchi, and Xu [9] performed a study on reliability and accuracy of several

modal-based SHM approaches through numerical studies. Models of three different

structures were considered: a three-story shear frame, a bridge girder, and a space
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truss. The following methods were included in the study: 1) Mode Shape Curvature

Method [10], 2) Method Based on Changes in Flexibility Matrix [11], 3) Method

Based on Change in Uniform Flexibility Shape Curvature, 4) Damage Index Method

[12], 5) Method Based on Modal Residual Vector (e.g. [13]), and 6) Matrix Updating

Methods. The authors indicated some drawbacks of those methods and concluded

that they could fail to detect the damage under certain conditions. According to the

authors, the Damage Index Method based on comparison of modal strain energy in

the baseline and damaged states was the most promising. Errors in identification

of damage were mostly attributed to the limited number of available measurement

locations and errors in the measurements due to noise.

In order to be efficient and accurate, SHM procedures should be robust to operational

and environmental fluctuations. Catbas, Brown, and Atkan [14] reported difficulties

in modal parameter estimation of a bridge due to temperature variations. The changes

in modal properties due to environmental fluctuations were as large as those caused

by the controlled damage applied to the bridge. A literature review from Los Alamos

National Laboratory [4] refers to a number of papers that investigate the effects of

environmental changes on vibration signals of structures under investigation. Sohn et

al. [15] indicate that the first natural frequency of the Alamosa Canyon Bridge varies

as much as 5% due to temperature variation during a 24 hour period. The authors

proposed the use of a linear filter to model the changes in the frequencies during the

day.

• Methods based on matrix updating techniques
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Matrix updating methods are another class of SHM techniques. These methods are

based on computing perturbations to the baseline matrices using the measurement

data. Essentially, the methods are formulated as optimization problems based on the

equations of motion, baseline model matrices, and measured data. The differences

between algorithms can be in formulation of the objective function, constraints, or

numerical implementation of optimization algorithm.

Some SHM methods are concerned with monitoring changes in dynamically mea-

sured flexibility or stiffness matrices. The unity check is applied to verify the pseu-

doinverse relationship between the measured flexibility matrix and baseline struc-

tural stiffness matrix. Changes in the stiffness matrix were computed and correlated

with the location of damage by Bedewi and Yang [16]. Similarly to stiffness matri-

ces, mass and damping matrices can also be computed and used for SHM purposes.

Siringoringo and Fujino [17] developed a method capable of detecting and locating

loosened bolts in clamped steel plates with a lap joint. The method is based on com-

puting the changes in the mass and stiffness matrices based on the changes in the

state space system matrices obtained using the ERA technique [18].

• Neural networks based methods

Neural networks were found to be very useful for mapping purposes in various engi-

neering fields. Depending on the architecture and the size of the network it is possible

to train the network to be able to represent extremely complex nonlinear mappings.

Doebling et al. [2] describe a number of papers that utilized neural networks in de-

tection, location, and estimation of the extent of the damage. In general, the methods
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are able to detect the damage, but they are not very accurate for finding the location

and estimation of damage severity.

Another disadvantage of neural network based methods is that the many of them re-

quire a priori knowledge of the system model to generate training data from different

damage scenarios. For large systems, the overall number of possible damage scenar-

ios is usually also rather large, which results in large training data sets. Large training

data sets are known to cause convergence problems and could lead to low accuracy

of identification.

Recently Worden [19] proposed an SHM method based on novelty detection using

neural nets that does not require a system model. The author reported successful

results from numerical studies on a 3-DOF spring-mass-damper system. The dam-

age was considered as a reduction in one of the spring elements. Transmissibility

function computed between two masses served as the input vector to the neural net-

work. The method was able to detect stiffness changes on the order of a few percent

depending on the amount of noise present in the data.

Masri et al. [20] trained the network to map the input to the response of a nonlinear

system in the reference state, while the damage indicator was based on the differ-

ence between the measured states and the states predicted by the network. Zapico,

Worden, and Molina [21] used neural nets to detect and locate the damage in the two

storey steel frame. The authors report that the network was only able to detect and

locate the damage at the floor level, while it was not possible to locate stiffness degra-

dation at the ends of individual longitudinal beams. Yeung and Smith [22] developed
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a neural network based method to detect damage and tested it using simulation data

from an FEM bridge model. Manson, Worden, and Allman [23, 24, 25] reported suc-

cessful application of neural network based method for health monitoring of aircraft

wing structures. Crupi, Guglielmino, and Milazzo [26] applied neural networks for

detection of damage in rotating machinery.

• Nonlinear dynamics for structural health monitoring

A vast majority of the methods reviewed by Doebling et al. [2] are based on the

assumption of linearity of the studied structures and damage that occurs. However,

not all real-world damage scenarios are a matter of linear stiffness reduction. In many

cases structural changes are such that they result in nonlinear responses. For example,

cracked beams are often modeled as structures with bilinear stiffness characteristics.

Therefore, an ideal SHM solution should be capable of dealing with both linear and

nonlinear types of damage effects.

Recently, some research efforts are directed into exploiting nonlinear dynamics ap-

proaches and phenomena for SHM. Hunter [27] applied canonical variate analysis

(CVA), which is essentially an ARMA based time series approach, to characterize a

system with bilinear stiffness characteristics. Linear models were identified for dif-

ferent response regions. The authors were able to detect changes in the identified

natural frequencies and mode shapes based on the obtained models. Epureanu and

Yin [28] developed a technique based on detecting changes in the probability den-

sity functions of sampled attractors and applied it to a nonlinear aeroelastic system.

Adams and Nataraju [29], and Brown and Adams [30] proposed the use of nonlinear
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low order state space models for damage variables in order to facilitate prognosis of

the state of the structure.

Nichols et al. [31, 32] investigated the use of attractor dimension as a feature for

SHM. Moniz et al. [33] and Todd et al. [34] monitored the changes in the attractor

formed from exciting the system by the output of a Lorenz oscillator. The assumption

is that the system in a healthy state is a linear filter, while changes in the system (being

linear or not) would cause the changes in the attractor.

Chen et al. [35] studied degradation of reinforced concrete beams and discovered

that their dynamic behavior was close to that of a Duffing oscillator with softening

stiffness. The authors developed a damage indicator based on the difference between

the resonant frequencies obtained from dynamic tests with increasing and deceasing

excitation frequency. Wang, Ren, and Qiao [36] defined a damage indicator based on

coherence function that is sensitive to the onset of nonlinearity. The authors success-

fully detected damage in a steel frame.

• Smart materials in structural health monitoring

It should also be noted that some recent works in the SHM field utilized smart mate-

rials for sensing and actuation. Mickens et al. [37] utilized PZT patches for sensing

and excitation and compared the measured FRFs to distinguish between the healthy

and damaged states. Park et al. [38] also used PZT patches in their work. They

investigated an approach where an ARX model is fitted to predict the impedance

measurements in the healthy state, while the difference between the predicted and

the measured values would indicate the damage. In many practical situations the use
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of PZT or other smart materials allows one to monitor and actuate remote areas that

are difficult to access otherwise. Park et al. [39] proposed the use of piezoelectric sen-

sors for SHM of structures subjected to high temperatures. Variations in impedance

measurements due to controlled damage were observed to be significant with respect

to the baseline data, making the proposed method quite appealing.

A number of publications describe SHM techniques based on propagation of ultra-

sonic waves excited by piezoelectric actuators. Those methods are typically aimed

for detection of small localized defects. Mal et al. [40] used damage correlation fac-

tor based on system response vectors to identify delamination damage in a composite

plate. Rizzo and di Scalea [41] used guided ultrasonic waves to detect notch defects

in the cable strands used in civil structures. The damage indicator was defined as the

ratio of the feature from reflected signal to the feature of direct signal. The results

indicated that statistical features obtained from wavelet coefficients are more effec-

tive than those extracted from time or frequency domain features. Interested reader

can find a large number of articles describing methods based on ultrasonic waves in

relevant literature.

• Other approaches

Besides the various publications and methodologies mentioned above, numerous

other approaches were developed. Sawyer and Rao [42] proposed the use of fuzzy

logic theory in SHM. Fuzzy rules for detection and location of damage were devel-

oped based on results of FEM simulations. The authors demonstrated application

of their technique on a numerical model of a cracked beam. Sampaio, Maia, and
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Silva [43] proposed the use of the curvature of the FRF itself as a feature for damage

detection. The authors tested the new method using the data from the simulation of

a 10-DOF lumped mass system and experimental data from I-40 bridge across Rio

Grande in Albuquerque, NM, USA.

Ismail, Razak, and Rahman [44] developed another technique based on changes in

curve-fitted mode shapes to detect and locate the damage in reinforced concrete

beams. Maia et al. [45] compared the mode shape based methods and FRF based

methods. The authors report that curvature based methods generally perform better,

although they are more susceptible to false alarms.

Sohn et al. [46] applied extreme value statistics to the novelty index obtained from

neural network outputs. Novelty-based damage detection requires assigning a certain

threshold value for the index to be the decision boundary for damage detection. In or-

der to improve the accuracy of damage detection, extreme value statistics are applied.

Sohn and Law [47] applied Bayesian framework for SHM based on the Ritz vectors,

arguing better detection results than with the direct use of modal vectors. However, in

order to implement this approach, a database of failure scenarios has to be available.

Castro, Garcia-Hernandez, and Gallebo [48] utilized features obtained from wavelet

transform of displacement signal to detect and locate the damage in rods. Also, Reda

Taha et al. [49] provided an overview of the usage of wavelet transform and features

based on it for structural health monitoring.

There have been some attempts to develop techniques that would allow real-time

health monitoring of structures. Vanlanduit, Verboven, and Guillaume [50] proposed
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a technique for on-line monitoring of system poles and demonstrated it on a beam

with a propagating fatigue crack. Yang, Lei, Lin, and Huang [51] applied empirical

mode decomposition technique and Hilbert-Huang transform to detect damage events

that occurred during the data acquisition process. The authors used simulated data

from a numerical model of a building structure. The technique was able to detect the

time instants when the damage event occurred by monitoring changes in the natural

frequencies.

All vibration based SHM methods can be divided into two general classes: those that

require a numerical model of the structure under investigation, and those that do not require

having such a model. For example, many matrix updating methods are developed with the

assumption that an FEM model of the structure is available. Implementation of such a

technique will typically require tuning of the model in order for it to be able to replicate

the response of the structure in the healthy state. Obviously, for simplicity reasons, it

is advantageous to have an SHM method that does not require a numerical model of the

system or extensive a priori knowledge about the system. On the other hand, it is practically

impossible to develop a method capable of level 3 and higher identification without any

information about the system.

Another family of SHM techniques is based on the use of Random Decrement (RD)

signatures. The concept of the RD technique was introduced by Henry Cole in early 1970s

[52, 53, 54]. He was trying to develop a reliable method for estimation of damping in the

aerospace structures subject to ambient excitation [55], which was based on autocorrelation

functions. The new technique proposed by Cole was based on time averaging of the ran-
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dom response. The resulting randomdec signatures are very sensitive to the changes in the

structure, so Cole proposed their use for damage detection. In particular, he noted visible

differences between the baseline signatures and the signatures from the structure with loose

bolts. Also, he documented significant changes in the RD signatures during a wind tunnel

test of a wing model prior to its failure.

Among the advantages of using RD signatures for SHM is that no input measurements

are necessary. The technique proposed by Cole was also applied for damage detection of

civil structures. More detailed description of SHM techniques based on RD method is

given in Chapter 2. The techniques using RD method that were developed up to date

can detect, and some of them can also indicate, a likely location of damage if the system

model is available. However, no research was done attempting to detect and locate the

damage based on the changes in RD signatures without using an analytical system model

of some sort. The proposed method will not require a numerical model of the system

or generation of extensive databases of damage scenarios. Identification of damage and

its location is proposed to be based on certain statistical features of the signatures. The

randomdec technique is introduced next.

1.2 The concept of the Random Decrement technique

The concept of RD technique is relatively simple and it is not very difficult to implement

this technique numerically. Following the reasoning of Cole, the random decrement func-

tion D̂XX(τ) can be estimated as the average of the time segments x(ti+τ) of the response,
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and the starting point for each segment is when the displacement reaches a certain value

x(ti) = a0, shown in equation (1.1)

D̂XX(τ) =
1

N

N∑
i=1

{x(ti + τ)|x(ti) = a0} (1.1)

In this equation, the estimate of the RD function D̂XX is a function of time variable

τ = t − ti, which represents the time past the triggering time ti, N is the number of

triggering points, and x(ti) = a0 is referred to as the triggering condition. However, in

reality the measurements are only available in discrete form, hence the probability of re-

sponse measurements taking an exact value x(ti) = a0 is near zero. To avoid this problem,

a level crossing triggering condition is implemented. This defines the triggering point to be

the measurement point at which the displacement becomes larger or smaller than a certain

value. In a more general form, equation (1.1) can be rewritten as shown below

D̂XX(τ) = E(x(ti + τ)|TG
X(t)) (1.2)

where TX(t) is the triggering condition. The choice of the triggering condition for the RD

technique is left to the user. A formally sound definition of the triggering conditions is due

to J. C. Asmussen [56], who proposed it as

TG
X(t) = {a1 6 X(t) < a2, b1 6 Ẋ(t) < b2} (1.3)

It is important to note that the RD function defined by equation (1.2) is referred to as

the auto RD function. This is denoted by subscript XX , which implies that only single

channel measurement is considered. In late 1970s Ibrahim [57] introduced a concept of

cross RD functions, which allowed application of the RD technique for identification of

mode shapes. Using a general triggering condition, the estimate of the cross RD function
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is defined as

D̂XY (τ) =
1

N

N∑
i=1

{y(ti + τ)|TG
X(t)} = E(y(ti + τ)|TG

X(t)) (1.4)

To illustrate the RD technique, displacement data from a linear single degree of freedom

(SDOF) system excited by white noise is considered. In Figure 1.1, the level crossing

triggering condition is chosen to be TX(t) = {x(ti) = 1.5σx}. The subfigures indicate the

averaging process, and the estimated RD function. In the case shown, the time history is

very short and there are only 6 triggering points used in the estimation process. In order to

obtain reasonable estimates many more response segments have to be used in the averaging

process. Besides the number of sampled segments used in the estimation, there are other

factors that affect the accuracy of estimated RD function. In his dissertation Asmussen [56]

provides theoretical details about estimation of random decrement functions.

A few words have to be said about the applications of the RD technique. The origi-

nal application of the technique as proposed by Cole was damage detection and damping

estimation in aerospace structures excited by ambient forces. The technique has later been

used for modal parameter estimation and linear system identification in cases where input

measurements were not available and it was reasonable to assume random Gaussian inputs.

Cho et al. [58] used the technique to estimate damping in industrial towers and chimneys.

Asmussen [56, 59, 60] applied the technique for modal analysis of bridges subject to ran-

dom excitation from the traffic. The technique was also applied for damage detection in

offshore structures [61, 62]. Chapter 2 contains more details concerning application of the

technique for health monitoring of structures.
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Figure 1.1: Displacement measurement data from SDOF system. Triggering points are
designated with “o” marks. Estimated RD function – dashed line, picked response segment
– solid line.

1.3 Overview of this work

Chapter 2 discusses previous applications of RD technique for structural health monitoring

and introduces the new health monitoring approach based on RD signatures. A study of a

5 DOF system is presented to describe the procedures used to obtain the features that are

utilized for detection, location, and classification of the different types of nonlinearities.

Chapters 3 and 4 present application of the new technique to the data from the finite element

model of a wing-like frame structure. In that study, the damage was considered in the form
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of an opening and closing crack in one of the structural members. Chapter 5 reports the

results from application of the new method to experimental data from a cantilever beam. In

this experiment the damage was in the form of a fatigue crack. Conclusions are presented

in Chapter 6.
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Chapter 2

Structural Health Monitoring Using

Randomdec Signatures

2.1 Overview of previous work

Randomdec signatures change shape if a crack or some other flaw has developed and this

fact can be utilized for damage detection. The baseline RD signature of the system is first

estimated by averaging a sufficiently large number of RD signatures during the operation

of the system in a reference healthy state. A region is defined about the baseline signature

based on desired the confidence level to reject false alarms. If current signatures start to

fall out of the specified baseline region, the decision is made that the damage has occurred.

This approach was used by Cole [54].

A different approach was applied for health monitoring of the offshore structures by

Yang et al. [61]. They considered the damage indicator to be the mean square deviation of
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the current signature from the baseline signature expressed as

MSD =
1

N

N∑
i=1

[D1(τi)−D2(τi)]
2 (2.1)

whereD1(τi) andD2(τi) are the data points from two signatures from the same time lag τi,

and the total number of points in the signature is N . The authors found that the magnitude

of the damage metric increased substantially in cases when damage was present in the

structure. This damage metric is suitable for detection of damage, but it does not allow to

locate the damage.

Tsai, Yang, and Chen [62] used the RD technique to identify damage in a scaled model

of an offshore platform. Damage was in the form of a saw cut to one of the structural mem-

bers. Natural frequencies and damping ratios were obtained by curve-fitting autoregressive

models to the RD signatures obtained from several accelerometers. The damage was iden-

tified by monitoring changes in the modal properties. The authors correlated significant

changes in the phase of the highest identified mode with the location of the damage. Hence,

the technique proposed by Tsai et al. can be categorized as level 2.

Bedewi and Yang [63, 16] proposed an SHM technique that relies on a system iden-

tification method, which was developed by the same group of authors. The technique uses

RD signatures to estimate the mass, stiffness, and damping matrices of the system under

the assumption of linearity. The damage in the structure was introduced by a through cut in

one of the members. The authors found that with the onset of damage, diagonal elements

of the stiffness matrix do not change much, but off-diagonal elements undergo significant

changes allowing one to identify the location of the damage.

The RD technique was also applied to monitor damage in ship structures by Zubaydi,
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Haddara, and Swamidas [64]. The authors compared the RD signature to the free response

obtained from a finite element model of a stiffened plate representing part of the ship’s

hull. The damage was considered to be in the from of saw cuts of different lengths. It was

demonstrated that the signature changed significantly depending on the cut length. In their

later work [65] the authors created a finite element model of the ship’s side shell and trained

a neural network to obtain a damage indicating function. This approach allowed detection

and location of damage.

Li et al. [66] studied the RD signatures obtained from a fiber reinforced composite

beam. The authors considered the damage to be in the form of localized delamination. It

was found that the frequency of the fundamental mode decreases while its damping ratio

increases with an increase of delamination length. The authors proposed generation of a

database of signatures for the system using known failure scenarios. Then, use a pattern

recognition technique such as neural networks to identify and classify the damage. How-

ever, they reported significant differences between the experimental signatures and those

obtained from the numerical model. The main drawback of this approach is that it re-

quires building very accurate numerical model of the structure. But building an accurate

model is a great challenge due to complexities involved in accurate modeling of damp-

ing mechanisms, vibration exciters, instrumentation attached to the structure, and accurate

representation of boundary conditions.

To summarize the above, some of SHM methods utilize RD signatures themselves as

damage indicators, while others utilize them as a tool for updating the model of the system

and then use the changes in the model as features for damage detection. Another benefit
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of using RD signatures is that excitation measurements are not necessary in order to obtain

them. As of now, Randomdec-based SHM methods can achieve level 2 damage identifi-

cation. The main goal of this work is to develop a basis for an RD-based SHM method

that will allow detection and location of damage based on changes in statistics and will not

require having a numerical model of the structure. Instead, for determining the location

of the damage, connectivity between the DOFs will be considered. The description of the

proposed methodology along with the results of preliminary investigations are presented

next.

2.2 Proposed Approach

The proposed method relies on detection and classification of novelty in the RD signatures,

and does not require identification of a system model. A schematic of the steps in the

procedure is presented in Figure 2.1. The details of the procedure follow.

First, measurement data is obtained and RD signatures are calculated using the aver-

aging process. In the feature extraction stage difference signatures ∆Dxy(τ) are obtained.

These are simply the difference between the signatures of the neighboring DOFs,

∆Dij
xy(τ) = Di

xy(τ)−Dj
xy(τ) (2.2)

where superscripts i and j denote the indices of the neighboring DOFs. Several statistics

are calculated from the difference signatures. Those statistics are then compared to the

baseline values obtained from the system in the healthy state and a decision is made whether

the stiffness change is present and where it is located.
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Baseline data for the system 
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Figure 2.1: Flow chart for structural health monitoring procedure.

In order to characterize linear stiffness degradation, it is convenient to use energy

based reasoning. Consider that the system in both healthy and damaged states is supplied

the same amount of energy: 1
2
khX

2
h = 1

2
kdX

2
d , where subscripts h and d indicate healthy

and damaged states of the system. Since it is common to collect acceleration measurements

in testing, and acceleration is correlated with displacement, the ratio of the stiffnesses can

be written in terms of the accelerations as

kd

kh

∝ Ẍ2
h

Ẍ2
d

(2.3)

Instead of dealing with squared acceleration, we utilize standard deviations of the differ-

ence signatures since these quantities are related to the variance and therefore energy of

the signal. It is proposed that the feature that can quantify linear stiffness degradation is
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expressed as the ratio of standard deviation (STD) values of the respective signatures:

STD ratio =
STD(∆Dxy(τ))healthy

STD(∆Dxy(τ))damaged

∼ kd

kh

(2.4)

The other two tests performed in this study were concerned with comparing the means and

the skewness of the signatures with respect to the baseline signatures. The difference of the

means criterion is defined mathematically as

Difference of the means = mean(∆Dxy(τ))healthy −mean(∆Dxy(τ))damaged (2.5)

The skewness difference criterion is defined as the ratio of the third ccentral moment and

the cube of the sample standard deviation.

Difference of the skewness = Skewness(∆Dxy(τ))healthy − Skewness(∆Dxy(τ))damaged

(2.6)

where the skewness is obtained as

Skewness =
E(x− µ)3

σ3
(2.7)

Both of those criteria were chosen based on the sense that nonlinear changes in the system

would change the distribution of the response and therefore affect those statistics of the

signatures. Results from numerical studies are presented next.

2.3 Numerical Study of a 5 DOF System

The study was performed using a 5 DOF system shown in Figure 2.2. In the healthy state

the system was considered to be linear and the parameters were set to be mi = 1 kg,
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m1 m2 m3 m4 m5

k1 k2 k3 k4 k5

c1 c2 c3 c4 c5

X1 X2 X3 X4 X5

F(t)

Figure 2.2: 5 DOF system.

ci = 1.9 N/m·s, and ki = 17550 N/m, i = 1...5. The above values were selected to

generate a system with light damping, which is typical for aerospace structures. The modal

parameters for the system in the healthy state are summarized in Table 2.1.

Mode 1 2 3 4 5

Natural frequency, Hz 6.0012 17.5174 27.6145 35.4744 40.4604

Damping ratio, ζ , ·10−3 2.0411 5.9579 9.3921 12.0654 13.7612

Table 2.1: Modal parameters for a 5 DOF system in healthy state.

Excitation to the system was applied at DOF X5 in the form of Gaussian white noise

with a variance of σ2
F = 20000 N2. Acceleration measurements were used since they are

commonly obtained in testing. Matlab [67] was used to integrate the equations of motion

for the system. Simulations were performed using the Runge-Kutta 4th−5th order method,

and the length of random vibration time histories collected was 1000 seconds in all cases.

The sampling rate was fixed at 0.002 seconds.
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Level crossing triggering condition on DOFX1 was used to obtain RD signatures. The

triggering level was set at 1.5σẍ1 . To establish baseline signatures, 30 data sets from the

healthy system were obtained. The signatures obtained from each data set were averaged

to obtain the baseline healthy signatures. This step is necessary since RD signatures have

certain variability and the averaged signature would prevent an outlier being considered as

a baseline signature.

Three types of stiffness changes were considered in the study: linear stiffness degra-

dation, bilinear stiffness, and trilinear stiffness characteristic.

• Linear stiffness degradation (Figure 2.3(a)), kd = βkh, 0 < β < 1.

• Bilinear stiffness (Figure 2.3(b)), kd = βkh, where


0 < β < 1, x > 0

β = 1, x < 0

• Trilinear stiffness (Figure 2.3(c)), kd = βkh, where


0 < β < 1, |x| 6 dlim

β = 1, |x| > dlim

where kd and kh are the stiffnesses of the damaged and the healthy spring elements, and β

is the reduction coefficient. In the case of linear stiffness degradation, the stiffness of the

spring is reduced throughout the entire range of displacements as shown in Figure 2.3(a).

The bilinear stiffness characteristic as shown in Figure 2.3(b) is usually used to model

structures with opening and closing cracks. Trilinear stiffness characteristic depicted in

Figure 2.3(c) can be used to model slipping type behavior which can be found in jointed

structures with loosened fasteners.
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(c) Trilinear stiffness characteristic.

Figure 2.3: Spring stiffness characteristics. Solid - healthy state, dashed - damaged state.

First, we consider a case when spring element k5 is damaged. This case would indi-

cate a scenario when stiffness change occurs very close to the location of excitation and

therefore should be detected most easily. In this case, for each of the three damage scenar-

ios 3 levels of damage was considered, corresponding to β = 0.9, 0.7, and 0.5. Then, we

consider cases when other spring elements are damaged to test the ability of the method

to identify location of damage. In those cases, stiffness reduction coefficient was set to be

β = 0.5.

25



2.3.1 Case when spring element 5 is damaged

Spring element 5 is chosen to assess the ability of the proposed method to detect stiffness

changes in a situation when the damage site is located near the excitation source. Typically,

changes in the dynamics of the structure are more pronounced when damage is located near

the source of excitation. In such case the damage should be easily detectable, which would

illustrate the performance of the method in an “ideal” situation.

Linear stiffness degradation

Figure 2.4 illustrates result from applying the STD ratio test to the data from a system with

linear stiffness reduction. It is clear that the STD ratio criterion was able to successfully

detect, locate, and even quantify the stiffness degradation in spring element 5 connecting

DOFs 4 and 5. It must also be noted that due to the changes in the system, the criterion

values for other DOFs vary significantly from their baseline conditions. Nevertheless, the

largest variation is observed for the difference signatures between 4th and 5th DOFs.

Figure 2.5 depicts the values of the mean difference and the skewness criteria for the

system with linear stiffness degradation. The skewness criterion shows a noticeable change

for the difference signatures of DOFs 3-4 (spring element 4). The mean difference crite-

rion does not show any significant changes for any of the difference signatures. Note that

changes in the skewness criterion are significantly larger than those in the mean criterion.
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(b) Damaged system, β = 0.9.
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(c) Damaged system, β = 0.7.
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(d) Damaged system, β = 0.5.

Figure 2.4: Values of the STD ratio criterion for a system with various levels of linear
stiffness degradation in spring element 5.
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(a) Skewness test results.
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(b) Difference of the means test results.

Figure 2.5: Difference of the means and the skewness tests for the system with linear
stiffness degradation in spring element 5.
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(b) Skewness test results.
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(c) Difference of the means test results.

Figure 2.6: Test results for the system with bilinear stiffness spring element 5.

Bilinear stiffness

From Figure 2.6 one may infer that the STD ratio test for the system with bilinear stiffness

indicates increased stiffness at most DOFs. This conclusion may be drawn from the fact

that the STD ratio was found to be greater than unity for the respective spring elements

(see equation 2.4). It is not possible to locate the damage based on that test. The skewness

test indicates significant changes at 1st and 5th DOFs. The mean difference test indicates

significant change at the difference signatures between DOFs 4 and 5, allowing to locate

the damage.
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(c) Difference of the means test results.

Figure 2.7: Test results for the system with trilinear stiffness spring element 5.

Trilinear stiffness

From Figure 2.7, one can conclude that the STD ratio test indicates an increase of stiffness

between DOFs 4 and 5, and a decrease between DOFs 4 and 3. The skewness test shows

significant changes in the difference signatures between DOFs 5 and 4, and DOF 1 with

respect to fixed reference. The most noticeable changes are shown by the test for difference

of the means. As Figure 2.7(c) indicates, the means of the difference signatures between

DOFs 5 and 4, and DOFs 4 and 3 have changed very significantly, while the means of the

rest of the difference signatures did not change. Hence, one can conclude that the test for
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the difference of the means is useful for identifying this type of stiffness change.

2.3.2 Cases with damage at spring elements 4, 3, 2, and 1

The ability of the proposed features to identify damage at other locations was studied by

changing the characteristics of the other spring elements. In all cases the level of damage

was considered to be β = 0.5 and excitation was kept at the same level as before and

applied at mass 5.

Figure 2.8 contains the results of the STD tests for system with linear stiffness reduc-

tion at various DOFs. One can observe that for cases when the damage is located at DOFs

2, 3, and 4, the STD ratio criterion that has the largest change from unity corresponds to

the difference signature of the damaged spring element. For the case when damage is lo-

cated at spring element 1, it is not possible to draw a conclusion about the location of the

stiffness change. It is speculated that the reason for this result is that excitation is applied

at mass 5 away from the damaged element, so the damage has a relatively small effect on

the system’s response.

Figures 2.9 and 2.10 contain results of the difference of the means tests for systems

with bilinear and trilinear stiffness elements in different locations. Clearly, in all cases the

largest change is indicated for the difference signature that corresponds to the damaged

spring element. Note that the for the cases with trilinear stiffness, the magnitude of the

change indicated by the difference of the means test is significantly larger.

Figure 2.11 illustrates the results of the difference of the skewnesses test results for the
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Figure 2.8: STD ratio test results for system with linear stiffness degradation.

case with bilinear stiffness degradation. Based on the results of this test it is not possible to

identify the location of damage. Similar conclusion could be drawn from the results of the

skewnesses tests from cases with other types of nonlinearities. Therefore, this test may not

be very useful for identification of the location of the damage.

2.4 Summary and General Comments

Results of this preliminary investigation indicate that both the STD ratio test and the differ-

ence of the means test are useful for detecting and locating the damage. However, the test
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Figure 2.9: Difference of the means test results for system with bilinear stiffness degrada-
tion.

on the skewness statistic appears to be ineffective. Also, the results indicate that sensitivity

of the tests decreases if the nonlinear spring element is located further away from the exci-

tation source. In the case when input excitation is distributed across all DOFs it is expected

that it will be easier to observe changes in dynamics, which will make damage detection

more reliable. Although RD signatures were previously utilized for detection of damage,

the significance of the idea presented here is that different statistical tests can be designed

to target different types of damage. Hence, in the future it may be possible to create a

complex RD-based SHM approach that will allow to detect different types of damage.
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Figure 2.10: Difference of the means test results for system with trilinear stiffness degra-
dation.

The following chapters of this dissertation are focused on identification of opening

and closing cracks. Detailed studies encompassing detection of several different types of

damage that were considered in this chapter would require a rather large amount of time

and effort, greatly exceeding that suitable for a single dissertation.

Cracks are common precursors of fatigue failures. Detection of fatigue cracks has

been given ample attention in the literature. For example, most of the works cited earlier in

this chapter that utilized Randomdec signatures for SHM purposes considered the damage

to be in the form of the crack.[62, 63, 16, 64] Also, a large number of other methods were
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Figure 2.11: Difference of the skewnesses test results for system with bilinear stiffness
degradation.

developed for crack detection [68, 36, 69, 70, 45, 47, 71, 72, 73, 74, 75, 76, 77, 78, 79]. In

most of these works [68, 36, 69, 70, 45, 47, 71, 72, 73, 74, 75, 76] the crack is considered

to be open and is usually introduced as a saw cut in the experiment.

This approach may not be very realistic. Real fatigue cracks introduce local flexibility

into a structural member, but they are not always equivalent to saw cuts. Depending on

the static load on the structure and the level of excitation, the cracks can remain always

open, always closed, or they can open and close during vibration cycle. Considering fa-

tigue cracks as open cracks and representing them as saw cuts in experiments essentially
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assumes a reduction in structural stiffness, which remains a linear characteristic. Linearity

assumption is usually made to stay away from the difficulty of dealing with nonlinearity

introduced by opening and closing cracks.

Chondros, Dimarogonas, and Yao [80] showed both analytically and experimentally

that changes in the natural frequencies for a cantilever beam with a breathing crack are

much smaller than these for a beam with an open crack. Hence, SHM methods that carry

the assumption of linearity are more suitable for detection of open cracks and are inherently

less sensitive to the breathing cracks. Several works considered nonlinear characteristics

that arise due to breathing cracks for damage detection [81, 78, 82, 83, 79, 77, 84]. How-

ever, randomdec signatures have not yet been utilized for detection of damage based on the

onset of nonlinearity due to a breathing crack.

The primary contribution of this work is the detailed study on the detection of breath-

ing cracks using randomdec signatures based on the onset of bilinear stiffness characteris-

tic. The study of a 5 DOF system involved simple connectivity between DOFs, while real

structures have a much more complex geometry. The proposed SHM methodology is first

studied using a more complex system such as a space frame in the next two chapters. This

study is performed on acceleration data from an FE model. The technique is then applied

to the experimental data from a cantilever beam that contains a fatigue crack. Experimental

results are presented in Chapter 5.
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Chapter 3

Finite Element Model

3.1 FE Model

The technique of Chapter 2 is applied to the data obtained from the finite element model

of a frame-like structure developed in Abaqus [85]. Figure 3.1 illustrates the geometry

of the structure. The structure contains four longitudinal members fixed at the far end

and five cross members. Each longitudinal member is represented by five beam elements

employing quadratic formulation with rectangular hollow cross section (Figure 3.2(b)).

Each cross member is represented by three quadratic beam elements with solid rectangular

cross section (Figure 3.2(a)).

Structural members are assumed to be made of 7075-T6 aluminum, with the following

properties: ρ = 2810 kg/m3, E = 72 GPa, ν = 0.33, G = 26.9 GPa. The explicit

central difference time integration scheme is used to calculate the dynamic response of the

structure in ABAQUS. Preliminary analysis in ABAQUS estimated the stable time step

to be ≈ 3.8 · 10−7 sec. To ensure accuracy of direct integration a time step of 2 · 10−8
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Figure 3.1: 3-D frame structure.
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Figure 3.2: Cross sections of structural members (not to scale).

sec. is used in the FEM simulation. Presumed unknown band-limited Gaussian excitation

is applied at node 10, shown in Figure 3.1(b). The signal is obtained by generating a

Gaussian distributed vector and passing it through a low-pass digital filter. The filter was

designed such that higher modes above 100 Hz will not contribute much to the response.

Acceleration response in the Z-direction was recorded with a sampling interval of

0.0019 seconds. Sensor locations were defined at the nodes of two longitudinal members

labeled “spar 1” and “spar 2” in Figure 3.1(b). Hence, 5 sensors were considered on each

spar dividing the corresponding spar into 5 segments marked 1 through 5 in Figure 3.1(b).

Figure 3.3 illustrates the PSD of obtained excitation signal and the corresponding response

in the Z-direction.
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Figure 3.3: PSD of the band-limited excitation signal and the response of the structure.

3.2 Damage modeling

The damage was assumed to be in the form of the crack in one of the longitudinal members.

The behavior of cracked structural members is often nonlinear [86] and can be modeled

using bilinear stiffness characteristics [87]. The nonlinear beam behavior in ABAQUS can

be implemented by generating a user defined dependency between the bending moment

and the curvature. Besides the nonlinear bending behavior, nonlinearities for other loading

types such as axial or torsional loading are implemented in a similar manner.

A 3-dimensional model of a cracked structural member was created in ABAQUS to

generate nonlinear loading vs. displacement relationships for different types of loading.

This detailed model represents a part of the structural member represented by a single beam

element being 0.6 m long. The model of the cracked member consists of two identical parts

joined together along the cross-sectional interface. Figure 3.4 illustrates these two joined

parts. The upper half of the cross-section is free to open and close depending on the applied

load, and surfaces undergo contact interaction. Nodes belonging to both parts on surfaces
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in the lower half of the cross-section are constrained to undergo identical displacements.

This scenario represents a crack that is 50 % deep.

Normal interaction between contacting surfaces in the model was defined to allow ar-

bitrary pressure to be transmitted between them after they come into contact (“hard” contact

definition), while both contacting bodies may deform at the contact interface. Interaction

in the direction tangential to contact surfaces can be defined in ABAQUS by assigning

friction properties such as static and kinematic coefficients of friction. For this study we

used “rough” contact definition. It implies that no slip occurs after the contact (equiva-

lent of assigning an infinitely large friction coefficient). This is done under the assumption

that in the case of an aluminum structural member surfaces on both sides of the crack will

be rough, and numerous asperities will prevent noticeable slippage. Detailed modeling of

surface asperities and their interaction during the contact is beyond the scope of this work.

Crack location
(side view)

Contact interaction / crack surface

Constrained meshes

Z

Y

Figure 3.4: Schematic of the cracked section.

Nonlinear loading curves for the damaged member were created for all loading types:

axial, torsional, and bending in both planes. For bending loading the nonlinear dependency
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Figure 3.5: Load-deflection curves for the damaged member, crack 50% deep.

is represented by tabulated values of the applied bending moment versus the corresponding

curvature of the beam. Similarly, for other loading types tables of strain vs. axial force and

twist angle vs. torque were obtained (see Figure 3.5).

For two bending cases, the model represented a beam pinned at both ends. The bend-

ing moment was created by applying stresses on the surfaces at the ends of the beam. The
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curvature was obtained by using equation (3.1)

k =
d2y
dx2

[1 + ( dy
dx

)2]3/2
(3.1)

where derivatives of deflection were calculated using 4th order central differences formulas,

which utilize displacements of 5 points uniformly spaced along the neutral axis of the beam.

For the tensile loading case the model represented a cantilever beam with a tensile or

compressive stress applied on the surface at the free end. The strain in this case was calcu-

lated using corresponding displacement at the free end. For the case of torsional loading, a

model with a cantilever beam was used. Twisting moment was created by applying surface

tractions of equal magnitudes in opposite directions at the upper and lower halves of the

surface at the free end of the beam. The twist angle was calculated by considering in-plane

displacements of points on the end surface.

In order to investigate sensitivity of the technique with respect to the severity of the

crack, it was decided to consider a case with the crack 25% deep. Load-deflection curves

for this case were obtained in the same manner as for the case with a crack 50% deep. The

curves representing a crack 25% deep are shown in Figure 3.6. Nonlinearity in this case

appears to be noticeably weaker than in the case with the crack 50% deep.

For the case with the crack 50% deep, first the damaged element was assumed to be

between nodes 12 and 5; then, the damaged element was assumed to be between the nodes

5 and 8. For the case with the crack 25% deep, only the case with the damaged element

between nodes 12 and 5 was considered (see Figure 3.1(b)).
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Figure 3.6: Load-deflection curves for the damaged member, crack 25% deep.

3.3 Validation

In order to validate the modeling approach utilizing load-deflection curves, another set of

curves were obtained that represented an undamaged beam. The purpose of this validation

study is not to validate nonlinear load curves, but to ensure that the procedure for obtaining

these curves provides reasonably accurate representation of the structural member. In this

study we compare displacements predicted by the Abaqus default B32 element with those
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predicted by the B32 element utilizing load-deflection curves representing an undamaged

structural member.

The study was done using a model of a cantilever beam with 4 different load types

as shown in Figure 3.7. The beam is 0.6 m long (equivalent to the length of a single

longitudinal segment in the frame model) and was represented by a single element. Loads

were applied at the free end of the beam. For each load type the magnitude of the load

varied from 0 to 50 units (N · m for moments and N for axial force) with an increment

of 10 units. Figure 3.8 contains plots of displacements predicted by the model versus

load magnitude. One can observe that the largest relative difference is in the case for the

torsional load. This difference is approximately 3.6%, which is acceptable.

Load case B32 default element B32 quasi-linear

element

Relative

Difference, %

Displacement in 2-direction

due to bending moment M1

3.5378 · 10−3 3.4809 · 10−3 1.61

Displacement in 1-direction

due to bending moment M2

1.3028 · 10−3 1.2708 · 10−3 2.46

Angular displacement due to

twisting moment T3

14.949 · 10−3 14.414 · 10−3 3.56

Axial displacement due to

tensile force F3

890.32 · 10−9 889.23 · 10−9 0.12

Table 3.1: Displacements for B32 default element and B32 quasi-linear element, load mag-
nitude 50 units.

44



1

2

3

M1

(a) Bending about 1-axis.

1

2

3

M2

(b) Bending about 2-axis.

1

2

3

F3

(c) Axial extension loading.

1

2

3

T

(d) Torsional loading.

Figure 3.7: Load cases for the validation study.
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Figure 3.8: Displacements obtained in the validation study.

Details of the finite element model of a 3-D frame structure with a damaged structural

member were presented. The damage was considered in the form of an opening and closing

crack. The procedure for calculation of the load-strain curves for the damaged member was

described and validated against the data from a regular B32 element in Abaqus. Application

of the method to the simulation data obtained from the model is presented in the next

Chapter.
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Chapter 4

Application of the Technique to the FEM

Simulation Data

4.1 Damage Detection Procedure

The technique that was introduced in Chapter 2 relies on the results of statistical tests to

detect and locate nonlinear changes in the structure. In this study, we consider damage to

only be in a form of an opening and closing crack, which introduces bilinear stiffness char-

acteristic. Therefore, we consider the change in the means of the Randomdec signatures to

identify this damage.

Figure 4.1 shows the outline of the procedure used in this study. Note that it is dif-

ferent from Figure 2.1. First, the measurement data is recorded, zero-meaned, and one

calculates the differences between the responses of the neighboring sensors according to

DOF connectivity. Those differences represent the dynamic behavior of the segments of

the structural members. For example, the difference between responses at nodes 15 and 18
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Figure 4.1: Outline of the SHM procedure.

on spar 2 would correspond to segment 2 of spar 2 (see Figure 3.1). Then, RD signatures

are calculated from the obtained response differences for both the system in the healthy

state (to obtain baseline signatures) and the system in the current state (damaged or not).

Absolute value of difference of the means (DMS) is then used as the indicator of damage.

DMSi = |mean(D̂i
XXbaseline(τ))−mean(D̂i

XXcurrent(τ))| (4.1)

In practice, one can only record a limited length time history of random response of the

system and the signatures calculated from the system in the healthy state will differ slightly

from each other due to randomness of excitation. To increase reliability of detection, the
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baseline RD signatures are calculated by averaging RD signatures obtained from several

realizations of random response. Figure 4.2(a) illustrates the process for calculation of

baseline signatures and Figure 4.2(b) describes the feature extraction step of the procedure.

In this work, we utilized 20 random response realizations from the system in the healthy

state (each 30 seconds long) and 5 realizations for each case of damage.

4.2 Results and Discussion

4.2.1 Cases with crack 50% deep

First, the damaged element was in segment 4 (between nodes 12 and 5) on spar 2; then

the damaged element was in segment 5 (between nodes 5 and 8) on spar 2 (see Figure

3.1(b)). In both cases the triggering level for obtaining RD signatures was set for 1.5 of the

standard deviation of the response. We applied the technique to the signatures of 2.5 and

3.5 seconds long. In addition to cases with noiseless data, cases were run using response

data containing 10% Gaussian noise with 5% bias. “10% noise” implies that the ratio of the

standard deviation of noise to the that of the original signal is 0.1; and “5% bias” implies

that the bias in the noise added to the data is approximately 5% of standard deviation of the

original signal. The amount of bias did not vary with time.

Figures 4.3 and 4.4 contains damage detection results for the case with damage at

segment 4 of spar 2. Black bars indicate the absolute difference of the means for the data

obtained from the structure with a damaged element. RD signatures for the system in

the healthy state also differ from the baseline RD signature and the average results from
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Figure 4.2: Data processing steps in the proposed SHM procedure.
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Figure 4.3: Diagnosis results for case 1: damage in segment 4 of spar 2, noiseless data.
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(a) 10% noise with 5% bias, signature length 2.5 s.
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Figure 4.4: Diagnosis results for case 1: damage in segment 4 of spar 2, 10% noise with
5% bias.

equation (4.1) for the signatures of the healthy system are represented by gray bars. The

standard deviation of the DMS values calculated from signatures representing the system

in the healthy state is represented by white bars.

From results shown in Figure 4.3 one can observe that for the case without noise,

significant differences are found for all segments of spar 2 when signatures 2.5 seconds

long were used. Also, when signatures 3.5 seconds long were used, significant differences
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are found in all segments of spar 2. Although the test did not allow pinpointing of the

exact location of the damaged element, it indicated significant change in the vicinity of the

damaged element. Diagnostics for spar 1 indicated differences that are comparable to those

from the system in healthy state, thus one can conclude that this spar is not damaged.

For the cases with noise added to the measurement data, the average differences cal-

culated for the system in the healthy state are noticeably larger than those from noiseless

data, which can reduce reliability of detection. From results in the cases with 10% noise

and signatures 2.5 seconds long, one can conclude that significant change is again in all

segments of spar 2. Similarly, for the case with signatures 3.5 seconds long, significant

change is observed in all segments of spar 2. As in the case with no noise added to the

measurements, values calculated for spar 1 are comparable to those from the system in the

baseline state. From results shown in Figures 4.3 and 4.4 it is difficult to draw conclusions

about the effect of the length of the RD signatures on damage detection.
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Figure 4.5: Diagnosis results for case 2: damage in segment 5 of spar 2, noiseless data.

Figures 4.5 and 4.6 illustrate results for the case when damage is located in segment

5 of spar 2. Results obtained for case with noiseless data suggest that significant changes
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Figure 4.6: Diagnosis results for case 2: damage in segment 5 of spar 2, 10% noise with
5% bias.

occurred in all segments of spar 2 with the largest values obtained for segments 2, 3, and 4.

For the cases when 10% noise was added, diagnostic results indicate the presence of

damage in segments 1, 2, 3, and 4 of spar 2 (in both cases with signatures 2.5 and 3.5

seconds long). Although the technique did not indicate the exact location of damaged

segment, it was able to indicate onset of nonlinearity in the vicinity of the actual damage.

Also, it was observed that noise added to the measurement data blurs the changes in the

response due to damage.

4.2.2 Cases with the crack 25% deep

Figure 4.7 contains results after applying the technique to noiseless data from a model with

quarter cross-section crack in segment 4 of spar 2 (see Figure 3.1). The results indicate that

significant changes are detected in spar 2, whereas spar 1 remains healthy. Most significant

changes are indicated in segments 2, 3, and 5, but not segment 4. As in the previous cases,
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the test did not indicate the precise location of the cracked member, but at least indicated

the damaged spar.
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(a) No noise, signature length 2.5 s.
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Figure 4.7: Diagnosis results for the case with the crack 25% deep: damage in segment 4
of spar 2, noiseless data.

Figure 4.8 contains results after applying the technique to acceleration data with 10%

noise with 5% bias. The results indicate that there are no statistically significant changes.

For both spars the magnitude of the damage metric is within 2 standard deviations of its

mean value for the system in the healthy state. Figure 4.9 contains results for the same case

of damage, but only 5% noise is added. Significant changes are detected in segment 2 of

spar 2 allowing detection of the damaged spar.

In order to compare the results for the crack 25% and 50% of cross-section deep, one

needs to examine Figures 4.3 and 4.7. For the signatures 2.5 seconds long, the maximum

magnitude of the damage metric occurs in segment 3 of spar 2 for the crack 50% deep,

while for the crack 25% deep it occurs in segment 2 of spar 2. For the crack 50% deep

the maximum magnitude of the damage metric is ≈ 4.6, while for the crack 25% deep it is

≈ 2.0 (2.3 times smaller). For signatures 3.5 seconds long, the maximum magnitude of the
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(a) Noisy data, signature length 2.5 s.
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(b) Noisy data, signature length 3.5 s.

Figure 4.8: Diagnosis results for the case with the crack 25% deep: damage in segment 4
of spar 2, data with 10% noise.
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Figure 4.9: Diagnosis results for the case with the crack 25% deep: damage in segment 4
of spar 2, data with 5% noise.

damage metric is ≈ 2.9 for a crack 50% deep, and ≈ 1.7 for a crack 25% deep (1.7 times

smaller). Thus, the magnitude of the damage metric increases with increasing crack depth.

Also, shorter signatures produce higher magnitudes of the damage metric.
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4.2.3 Results obtained under low excitation

Virtually all real world systems are nonlinear to some degree, however observation of non-

linear features in their responses often depends on excitation levels. At lower excitation

levels nonlinearities are not as easily detected. This study investigates the capability of the

method using simulated measurement data from a much lower excitation level. Excitation

level was reduced from σF = 100 N to 10 N. The damage was considered to be a crack

50% of cross-section deep located in segment 4 of spar 2.
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Figure 4.10: Diagnosis results for the case with low excitation: damage in segment 4 of
spar 2, noiseless data.

Figure 4.10 illustrates results for the case with noiseless data. The results indicate that

there is a very significant change in the damage metric for segment 2 of spar 2, but the

changes in spar 1 are not nearly as significant. Figure 4.11 presents the results for the case

with 10% noise with 5% bias added. From these results one can conclude that changes in

the damage metric are comparable to those for the system in the healthy state. Presence

of large amount of noise in the measurements did not allow detection of damage. Figure

4.12 illustrates results obtained with the noise reduced to 5% instead of 10%. In this case
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(a) 10% noise with 5% bias, signature length 2.5 s.

1 2 3 4 5
0

0.05

0.1

Spar segment

D
am

ag
e 

m
et

ric
, s

pa
r 

1

1 2 3 4 5
0

0.05

0.1

Spar segment

D
am

ag
e 

m
et

ric
, s

pa
r 

2

 

 

DMS for the damaged beam
Average DMS for the healthy beam
σ of DMS for the healthy beam

Damaged
spar

(b) 10% noise with 5% bias, signature length 3.5 s.

Figure 4.11: Diagnosis results for the case with low excitation: damage in segment 4 of
spar 2, 10% noise with 5% bias.

a significant change in the damage metric is indicated for segment 2 of spar 2. Therefore,

for instances when excitation levels are low or cracks are relatively small reliability of

detection will depend on the amount of noise present in the measurements.
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Figure 4.12: Diagnosis results for the case with low excitation: damage in segment 4 of
spar 2, data with 5% noise, signature length 3.5 s.

An additional investigation was performed to test susceptibility of the the method to

produce false alarms when excitation level of the baseline data was different from that of

the current data. In all cases noiseless data from undamaged system deep was used. First,
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baseline data was considered from simulations using low excitation levels (σF = 10 N).

The corresponding test data was taken from the previous study with σF = 100 N. Then,

data from simulations with σF = 100 N was considered for baseline signatures, and the

test data came from simulations with σF = 10 N.
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(a) Results with the baseline data from low excitation
level.
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(b) Results with the baseline data from high excita-
tion level.

Figure 4.13: Diagnosis results for the cases with baseline and test data obtained from dif-
ferent excitation levels. All data came from the system in the healthy state.

From Figure 4.13 one can observe that in both cases the method resulted in significant

changes in the damage metric for most segments of both spars, although test date from

the system in the healthy state was used. This indicates that the method is susceptible to

false alarms when excitation levels of the baseline data and the test data are significantly

different (in this case the difference is actually rather large, σhigh
F /σlow

F = 10). In practice,

for structures excited by ambient forces it is reasonable to assume variation of excitation

levels in time. For example, some days may have stronger winds than others. To reduce

the likelihood of false alarms due to excitation levels, both baseline and test data should be

collected across a wide range of excitation conditions.
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4.2.4 Effects of randomdec signature parameters on damage detection

It is of interest to study the reliability of damage detection with respect to the length of the

randomdec signatures and the triggering level that was used to calculate them. Previous

studies were done using a single triggering level (1.5σẍ) and only two different signature

lengths were considered - 2.5 and 3.5 seconds. The mean value of the signature fluctuates

depending on its time length. Shorter randomdec signatures may not contain a large enough

number of time samples, thus its mean value can vary significantly. This can potentially

cause false alarms, which is not desirable. Also, it is not clear how the triggering level

affects the mean values of the signatures and damage detection.

In this study we considered 5 triggering levels in the range [0, 2]σẍ with an increment

of 0.5σẍ. For each triggering level, randomdec signatures of five time lengths were con-

sidered: 0.5, 1.5, 2.5, 3.5, and 4.5 seconds. Hence, a total of 25 cases were considered.

Noiseless acceleration data for the case with the crack 50% deep in segment 4 of spar 2

was used.

Figure 4.14 illustrates absolute values of the DMS criterion obtained in this study.

Plots in the left column represent the values of the DMS criterion obtained for spar 1. The

right column represents spar 2. Absolute values of the DMS criterion obtained for shorter

signatures (0.5, 1.0 seconds long) for most segments are larger than these obtained from

longer signatures. Also, for cases with higher triggering level, absolute values of the DMS

criterion tend to increase.

Figure 4.15 shows the relative magnitude of the DMS criterion with respect to the
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standard deviation of the damage criterion for the system in the healthy state. For the

signatures 0.5 seconds long, there is a significant change in the DMS criterion for segment

2 of spar 1, which represents a false detection. Note that for longer RD signatures and

higher triggering levels the relative magnitude of the damage metric is close to 1 for the

undamaged spar, but reaches the values of that are almost two orders of magnitude higher

for most segments of spar 2. This results in the conclusion that reliability of detection

increases with the signature length and higher triggering levels.
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Figure 4.14: Absolute values of the DMS criterion obtained across the range of triggering
levels and signature lengths.
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Figure 4.15: Relative values of the DMS criterion obtained across the range of triggering
levels and signature lengths.
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Chapter 5

Experimental Validation

5.1 Experiment setup

The experiment is designed to validate the ability of the technique to detect a breathing

crack in a cantilever beam. The beam is made of 2024-T351 aluminum. Figure 5.1 shows

the schematic of the experiment. The beam is 30 inches long with solid rectangular 1×1/2

in. cross-section. The specimen is mounted on the Unholtz-Dickie S032 shaker using a

clamp machined out of 7075 aluminum. High rigidity and low weight are desired charac-

teristics for vibration fixtures because they allow to minimize the dynamic effects of the

fixture on the test results. Heavy fixtures and specimen may significantly limit shaker per-

formance. The clamp was designed to provide durability, high rigidity, and reduced weight.

Acceleration measurements were obtained using five PCB 352C22 miniature accelerom-

eters placed along the beam. Figure 5.1(b) illustrates sensor locations. Data were recorded

using LabView BNC-2120 adapter with PCI-6024E DAQ card with a sampling rate set

at 10100 Hz. This sampling rate was chosen because the DAQ card does not have anti-
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(a) Beam segments.

(b) Beam geometry.

Figure 5.1: Cantilever beam experiment.
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aliasing filters and, as a result, it is necessary to employ very high sampling rate. Agilent

33120A function generator provided white noise excitation signal. The signal was passed

to the shaker amplifier through the Ithaca low-pass filter filter with a corner frequency of

1000 Hz. This was done to avoid excitation of higher modes and internal resonances in the

shaker and the clamp.

Figure 5.2(a) shows the power spectrum density of the signal output from the Ithaca

filter that is inputted into the shaker amplifier. Figure 5.2(b) illustrates the power spec-

trum density of acceleration measured on the clamp. One can notice the shaker armature

resonance at around 3000 Hz.
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(a) PSD of the signal supplied to the shaker amplifier.
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(b) PSD of acceleration measured on the clamp.

Figure 5.2: PSD of excitation signal.

The damaged specimen was produced by growing a crack from a very sharp notch

made on the top surface of the beam at the axial location that corresponds to segment 3

in Figure 5.1(a). A similar size notch was produced in the baseline specimen, but with a

dull cutter to avoid creating a sharp stress concentrator. Sonntag SF-1-U fatigue testing

machine with a bending fixture was used to grow a crack in the damaged specimen (Figure

5.3). The crack produced in the beam is located between two black lines (Figure 5.4) with

65



a penny coin serving as a dimensional reference. Clearly, the crack is very thin and difficult

to see with the naked eye on an unpolished surface.

Figure 5.3: Beam specimen mounted in a 4-point bending system.

Figure 5.4: Crack in the damaged specimen.

Figure 5.5 shows the plots of the power spectrum density for the healthy and the

damaged beams. The resonant frequencies of lower modes are very similar, but a visible

difference can be observed for the fifth bending mode at approximately 1200 Hz. Fig-
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ures 5.6-5.10 illustrate the changes in the resonant frequencies for the first 5 modes with

respect to the excitation levels. Frequency values shown in these figures were obtained

by averaging the values obtained from 10 response time histories recorded at each excita-

tion level. Error bars indicate the standard deviation of the resonant frequencies at each

excitation level. Relative percent differences were calculated with respect to the resonant

frequencies of the healthy beam. One can obsereve that in general the resonant frequencies

of the cracked beam are smaller than those of the healthy beam. The difference is more

pronounced in higher modes and increases with excitation level.

The average relative difference for the first mode frequency across the range of ex-

citation levels is approximately 0.5%. Also, one can note that the average values for the

first mode frequency of the cracked beam are within the standard deviation from the value

obtained for the healthy beam. Relative difference in the frequency of the second mode

is about 2% and the average values for healthy and cracked beams are further than one

standard deviation apart indicating a significant difference. For the 3rd and 5th modes the

average relative differences are approximately 1.6% and 2.6% respectively, and in both

cases the differences are statistically significant. The 4th mode appears to be the least af-

fected as the average relative difference in the frequency of the healthy and the cracked

beams is approximately 0.2%, and the difference becomes statistically significant only at

higher excitation levels (1.75g and 2.45g RMS).
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Figure 5.5: PSD of the healthy and damaged beams (1.75g rms).
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Figure 5.6: First resonant frequency.
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Figure 5.7: Second resonant frequency.
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Figure 5.8: Third resonant frequency.
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Figure 5.9: Fourth resonant frequency.
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Figure 5.10: Fifth resonant frequency.
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5.2 Damage Detection Results

First, the damaged beam was mounted with the notch and the crack facing upwards. In

this study, four excitation levels were considered because detection of nonlinearities is

expected to be dependent on excitation levels. The lowest excitation level corresponded to

≈ 0.31g RMS at the clamp, and remaining cases corresponded to 1.0g, 1.75g, and 2.45g

RMS measured at the clamp. First, the baseline specimen was mounted on the shaker and

acceleration data was recorded at all four excitation levels. Then the damaged specimen

was mounted and the data was recorded for similar excitation levels. Ten 20-second long

acceleration data histories from healthy and damaged specimens were recorded at each

excitation level. It must be noted that each 20-second data set was recorded at a random

time interval from end of the previous data set, ranging from approximately 1 to 5 minutes.

The damage detection procedure was applied as described in Section 4.1. From re-

sults of Chapter 4, it was decided to keep the triggering levels high (1.5σ and 3.0σ of

measured response) and use signatures of 2.0 and 2.5 seconds long. Figure 5.11 illustrates

2.5 seconds long signatures for segment 4 of the healthy and damaged beams. Clearly, after

approximately 2 seconds, minor variation of the mean value with time is observed.

Figures 5.12-5.15 show the results of applying the damage detection technique to ex-

perimental data. Similar to results shown in Chapter 4, the black bars indicate the absolute

difference of the means for the data obtained from the damaged beam. Average values

of the DMS criterion for the healthy beam are represented by gray bars. The standard

deviation of the DMS values calculated from signatures representing the healthy beam

is represented by white bars. From experience and engineering judgement, a significant
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(a) Baseline RD signature and its running mean.
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(b) RD signature and its running mean from the cracked beam.

Figure 5.11: Baseline RD signatures and their running means shown to illustrate bias,
1.75g.
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(a) Triggering level 1.5σ, signature length 2.0 s.
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(b) Triggering level 1.5σ, signature length 2.5 s.
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(c) Triggering level 3.0σ, signature length 2.0 s.
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(d) Triggering level 3.0σ, signature length 2.5 s.

Figure 5.12: Detection results for 0.31g excitation level.

change in the damage metric that indicates the presence of damage is when the difference

between the absolute value of the DMS criterion (black bar) and the average DMS value

for the healthy system (grey bar) is greater than approximately 1.5-2 standard deviations of

the DMS value for the healthy system.

From Figures 5.12 and 5.13 one can observe that the DMS criterion obtained for the

damaged beam is not significantly larger than the average values and the standard deviation

of that for the intact beam. In all cases shown in these figures the absolute value of the
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(a) Triggering level 1.5σ, signature length 2.0 s.
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(b) Triggering level 1.5σ, signature length 2.5 s.
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(c) Triggering level 3.0σ, signature length 2.0 s.

1 2 3 4 5
0

1

2

3

4

5

6
x 10

−3

Beam segment

D
am

ag
e 

m
et

ric

 

 

DMS for the damaged beam

Average DMS for the healthy beam

σ of DMS for the healthy beam

(d) Triggering level 3.0σ, signature length 2.5 s.

Figure 5.13: Detection results for 1.0g excitation level.

DMS criterion is either smaller than the average value for the healthy system, or larger

than that by an amount smaller than 1 standard deviation of the DMS value for the healthy

system.

From Figure 5.14 for cases with triggering level set at 3.0σ one can observe that the

DMS values for segments 2 and 3 are significantly larger than the average value represent-

ing the beam in the healthy state. Hence, the method was able to detect nonlinearity due to

the crack at the 1.75g excitation level.
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(a) Triggering level 1.5σ, signature length 2.0 s.

1 2 3 4 5
0

1

2

3

4

5

6
x 10

−3

Beam segment

D
am

ag
e 

m
et

ric

 

 

DMS for the damaged beam
Average DMS for the healthy beam
σ of DMS for the healthy beam

(b) Triggering level 1.5σ, signature length 2.5 s.
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(c) Triggering level 3.0σ, signature length 2.0 s.

1 2 3 4 5
0

1

2

3

4

5

6
x 10

−3

Beam segment

D
am

ag
e 

m
et

ric

 

 DMS for the damaged beam

Average DMS for the healthy beam

σ of DMS for the healthy beam

(d) Triggering level 3.0σ, signature length 2.5 s.

Figure 5.14: Detection results for 1.75g excitation level.

Figure 5.15 contains results calculated for the case with 2.45g excitation level. Clearly,

for both 1.5σ and 3.0σ triggering level cases shown in Figures 5.15(a) and 5.15(b) the

method failed to detect nonlinearity due to the crack. This is a counter-intuitive result

because the excitation level is higher and hence the nonlinearity should be easier to observe

in the response.

Recall that the experimental data at each excitation level was obtained as ten sets

of 20-second long time histories. Closer examination of the data obtained at the 2.45g
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(a) Triggering level 1.5σ, signature length 2.5 s.
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(b) Triggering level 3.0σ, signature length 2.5 s.
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(c) Triggering level 3.0σ, signature length 2.5 s., 6
segments.

Figure 5.15: Detection results for 2.45g excitation level.

excitation level showed that if six out of ten 20-second long segments were used, then the

method is able to detect the damage (see Figure 5.15(c)). There are two possible causes for

this result.

1. In several recorded data segments the crack did not behave as an opening and closing

crack. This may have occurred due to the roughness of the crack surfaces. In this

case the beam response would remain almost linear and the DMS criterion will be

close to the values corresponding to the intact beam.
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2. Significant low frequency transients with the periods comparable to the length of the

recorded data segments were present in the data recorded from the healthy beam.

Although the recorded data is zero-meaned before calculating RD signatures, these

transients distort the signatures and their statistics so that they look more like the

ones from the damaged beam. This also increases the variation observed in DMS

criterion for the healthy beam. Note the average value of the DMS criterion for

segment 3 of the baseline beam in Figure 5.15(b) is higher than that for the same

segment in Figure 5.15(c).

The second reason is supported by the finding that false alarms are produced when

four 20-second long data segments obtained from the healthy beam were used as the test

data. Figure 5.16 illustrates false alarms obtained in two cases. One possible explanation

for the existence of these transients is that accelerometers and cables are affected by the

strong electromagnetic field produced near the shaker. In fact, the signals recorded using

these accelerometers were observed to be affected by electromagnetic fields during previ-

ous projects in the lab unrelated to this dissertation.

Another set of experiments was performed with the beam rotated, so that the notch

with the crack was facing the ground. In this case the static loading due to gravity acted

against the crack opening. Only three excitation levels were considered: 1.0g, 1.75g, and

2.45 g. As in the previous study, ten 20-second long data segments were collected for

each excitation level. Signatures that are 2.0 and 2.5 seconds long were considered for the

triggering level of 3.0σ.

Figure 5.17 contains results for the case with 1.0g excitation level. Clearly, the method
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(a) False alarm case 1. Triggering level 3.0σ, signa-
ture length 2.5 s.
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(b) False alarm case 2. Triggering level 3.0σ, signa-
ture length 2.5 s.

Figure 5.16: False alarms at the 2.45g excitation level.

failed to detect damage in that case. Figures 5.18 and 5.19 contain results obtained from

1.75g and 2.45g excitation cases. For both of these cases, the method fails to detect damage

when all ten 20-second long data segments are used for damage detection. However, the

method does indicate the presence of damage if 7 out 10 segments are utilized in the case

with 1.75g excitation level, or if 4 out of 10 segments are utilized in the case with 2.45g

excitation level. In Figure 5.18(c) a significant change is indicated for beam segment 3,

that is indeed the segment containing the crack. In Figure 5.19(c) a significant change is

indicated for beam segment 4, which is adjacent to the actual damaged segment.

Inability of the method to consistently detect damage is attributed to the two issues

described earlier. Also, in this study the crack was facing down, so gravity acted against

the crack opening, which may increase the likelihood of the beam behaving as a linear one,

without a breathing crack.

Figure 5.20 shows the plots of the maximum damage metric and the corresponding
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(a) Triggering level 3.0σ, signature length 2.0 s.
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(b) Triggering level 3.0σ, signature length 2.5 s.

Figure 5.17: Detection results for 1.0g excitation level, crack facing ground.
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(a) Triggering level 3.0σ, signature length 2.0 s.
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(b) Triggering level 3.0σ, signature length 2.5 s.
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(c) Triggering level 3.0σ, signature length 2.5 s., 7
segments.

Figure 5.18: Detection results for 1.75g excitation level, crack facing ground.
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(a) Triggering level 3.0σ, signature length 2.0 s.
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(b) Triggering level 3.0σ, signature length 2.5 s.
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(c) Triggering level 3.0σ, signature length 2.5 s., 4
segments.

Figure 5.19: Detection results for 2.45g excitation level, crack facing ground.

average DMS value for the healthy beam with respect to excitation level. Only the data

when damage was detected (except 1.0g cases) is considered to examine the changes in the

damage metric with respect to excitation levels. The general trend is that the absolute value

of the damage metric increases with excitation level. The DMS values obtained for 1.75g

and 2.45g cases when the crack was facing upwards are higher than those for the cases

when crack was facing downwards.

In the summary, it can be stated that the method is able to detect the crack in the beam
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(a) Crack facing upward.
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(b) Crack facing downward.

Figure 5.20: Dependence of damage metric on excitation level.

if the excitation level is high enough so that nonlinearity due to the crack will significantly

affect the response. In this experimental study the method allowed to detect damage when

excitation level was higher than 1.0g RMS. Location of damage is not always detected re-

liably, as sometimes a segment of the structure adjacent to the actual damaged segment is

indicated. This correlates with the results from the study using FEM data in the previous

chapter. The biggest drawback of the method is that it does not seem to perform consis-

tently because the changes in dynamics due to nonlinearity are rather small and could be

overshadowed by the transients in the sensors and data acquisition system.
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Chapter 6

Summary and Conclusions

Development of the new structural health monitoring technique was presented in this work.

The technique is based on detection of changes in statistics of random decrement signa-

tures calculated from the measured response. Feature extraction includes obtaining differ-

ence signatures, which are simply the difference between the signatures of the neighboring

DOFs. Utilization of difference signatures helps to make the judgement about spatial lo-

cation of damage because they are supposed to represent a structural segment between the

two measurement locations. Statistics representing the system in the current state are calcu-

lated from the difference signatures. Those statistics are then compared to the baseline data

obtained from the system in the healthy state and a decision is made whether the stiffness

change is present and where it is located.

Random decrement signatures have been utilized for damage detection in the past.

The main contributions of this work to the field of structural health monitoring are listed

below.
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• This work investigates the use of randomdec signatures to detect the presence of

nonlinearities in the response due to damage. This may allow to identify the type

of damage by utilizing different statistics calculated from the signatures. This is an

improvement over the previous SHM methods that utilized randomdec signatures

because previous work did not consider nonlinear effects and identification of the

type of damage.

• Statistical feature of randomdec signatures geared towards detection of bilinear type

stiffness characteristic associated with opening and closing cracks was studied using

simulation data from the FE model as well as the experimental data from a cantilever

beam with a real fatigue crack.

The proposed technique and discriminating features are model-free. This is an impor-

tant advantage because creating a faithful model of a realistic structure is usually a rather

challenging task. In addition, since it’s based on randomdec signatures it only requires

output measurements and could be used on a structure excited by ambient forces that are

difficult to measure.

The technique has its disadvantages as well. First, it is assumed that levels of random

excitation remain constant during the service life of the structure. In reality, there may be

significant variation in excitation levels. Also, the technique relies on detection of changes

due to onset of nonlinear response, but it is well known that if excitation levels are small,

then nonlinearity will not significantly affect the response. In such situations small amounts

of damage will be difficult, if not impossible to detect.
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Initial numerical study was performed on a hypothetical 5 DOF spring-mass-damper

system. The damage was introduced by linear or nonlinear stiffness changes. Results

showed that the standard deviation ratio test and the difference of the means test are useful

for detecting and locating the damage in this hypothetical system. However, the test on the

skewness statistic appeared to be ineffective because the damage did not have a significant

effect the symmetry of the response distributions. The results also indicated that sensitivity

of damage detection tests decreases if damaged spring element is located further away from

excitation source.

The main focus of this dissertation is generation and evaluation of a new method

for detection of damage due to opening and closing cracks. This type of damage usually

results in a bilinear stiffness characteristic. Test on the difference of the means of the

randomdec signatures is useful for detection of this type of damage. A numerical study

was performed where simulated measurements were obtained from a finite element model

of a frame containing a damaged member. In this study the damaged structural member

possessed nonlinear stiffness characteristics. These characteristics were obtained using a

detailed 3-dimensional model of the corresponding structural segment with a crack.

The results of that study showed that the new technique is able to detect crack type

damage in a complex structure. It was able to highlight the damaged spar, but it was not

able to precisely locate the damaged member in the spar. The results suggest that reliability

of damage detection depends on the amount of noise in the measurements. If measurement

data contains extremely large amounts of noise, it obscures the changes in the randomdec

signatures due to onset of nonlinearity.
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An additional case was considered in the study with the FE model where a smaller

crack (25% cross-section deep) existed. The results indicate that the magnitude of the

damage metric obtained in the damaged spar correlates with severity of the crack. Clearly,

small amount of damage is more difficult to detect in the presence of noise in the measure-

ments. Also, a case with much smaller excitation magnitude was considered for a crack

that is 50% of cross-section deep. As expected, in this case reliability of detection also was

shown to depend on the amount of noise present in the data.

The data from FE model simulation was also used to study the reliability of damage

detection with respect to the length of the randomdec signatures and the triggering level

that was used to calculate them. The results indicate that one needs to use long enough

signatures so that their running mean does not fluctuate by a large amount. In this numerical

study, randomdec signatures that were 3.5 seconds long were long enough so that their

running mean did not vary much. In practice, to determine the desired randomdec signature

length one needs to compare the running means of the signatures of different time lengths.

If variation in the running mean does not reduce during the last 30% of the signature, then

this can be considered an appropriate signature length. Also, the results suggest that higher

triggering levels should be used since the absolute value of the damage metric tends to

increase with the triggering level.

Experimental validation was performed using a cantilever beam experiment. The dam-

aged beam used in the experiment contained a real fatigue crack instead of saw cuts that

are often used to simulate damage. The technique was shown to be able to detect damage

if excitation level is large enough for the nonlinearity to noticeably affect the response. For
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the tested cantilever beam the technique was able to detect the damage at 1.75g and 2.45g

RMS excitation levels. Location of damage is not always detected reliably, as sometimes a

segment of the structure adjacent to the actual damaged segment is indicated.

Besides the dependency on excitation level, it was observed that the detection of non-

linearity due to the crack can be obstructed by the low frequency transients in the sensors’

signals and data acquisition system. Also, the behavior of the crack in the damaged beam

may be time dependent in the sense that it behaves as a breathing crack only during certain

periods of time, while the rest of time it may remain closed due static load and surface as-

perities. Clearly, those issues make practical implementation of the method more difficult.

Detection of breathing fatigue cracks still remains a challenging task.

An ideal SHM solution should be effective with respect to various types of anomalies

that can cause both linear and nonlinear changes in dynamics. In addition, a comprehensive

SHM solution should allow one to locate and classify the type of damage. The method for

detection of breathing fatigue cracks studied in this work can be a part of the comprehensive

SHM solution for a structure where not only it is important to detect the damage, but it is

also desirable to identify the type of damage.

This technique is suitable for application in a structure subjected to strong random

excitations that on average do not vary much over long periods of time and where the

fault is expected to produce a strong and easily observable bilinear type nonlinearity. The

study on the data from numerical simulations showed that false alarms are triggered when

excitation levels of baseline and test data were an order of magnitude different. Ideally,

one will collect large amounts of data for calculation of both baseline and test signatures.
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These data should include time periods with both weak and strong excitations to reduce the

likelihood of false alarms.

It is desirable to test the method in an experiment where sensors are less susceptible

to the effects strong electromagnetic fields that may cause such issues as transients in the

signals. Ideally, this can be a structure subject to ambient excitation. More sensitive statis-

tical tests need to be developed to allow easier detection of nonlinearities. Another possible

direction to achieve this goal is to attempt to utilize multiple different features for detection

of damage instead of just one. The feature for detection of opening and closing cracks that

was studied in this work can be a part of a comprehensive SHM solution. SHM solution uti-

lizing several features may also allow detection of the type of damage. However, this will

probably require significant amounts of empirical information about particular structure at

hand in order to develop the damage classification algorithm.
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