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Abstract 

 

Henson, Cory Andrew. Ph.D., Computer Science and Engineering Ph.D. Program, Wright State 
University, 2013. A Semantics-based Approach to Machine Perception. 
 
 
 

Machine perception can be formalized using semantic web technologies in order to derive 

abstractions from sensor data using background knowledge on the Web, and efficiently executed 

on resource-constrained devices. 

 

Advances in sensing technology hold the promise to revolutionize our ability to observe and 

understand the world around us. Yet the gap between observation and understanding is vast. As 

sensors are becoming more advanced and cost-effective, the result is an avalanche of data of high 

volume, velocity, and of varied type, leading to the problem of too much data and not enough 

knowledge (i.e., insights leading to actions). Current estimates predict over 50 billion sensors 

connected to the Web by 2020.
1
 While the challenge of data deluge is formidable, a resolution has 

profound implications. The ability to translate low-level data into high-level abstractions closer to 

human understanding and decision-making has the potential to disrupt data-driven 

interdisciplinary sciences, such as environmental science, healthcare, and bioinformatics, as well 

as enable other emerging technologies, such as the Internet of Things. 

 

The ability to make sense of sensory input is called perception; and while people are able to 

perceive their environment almost instantaneously, and seemingly without effort, machines 

                                                                 
1
 http://share.cisco.com/internet-of-things.html 

http://share.cisco.com/internet-of-things.html


continue to struggle with the task. Machine perception is a hard problem in computer science, 

with many fundamental issues that are yet to be adequately addressed, including: (a) annotation 

of sensor data, (b) interpretation of sensor data, and (c) efficient implementation and execution.  

This dissertation presents a semantics-based machine perception framework to address these 

issues. 

 

The tangible primary contributions created to support the thesis of this dissertation include the 

development of a Semantic Sensor Observation Service (SemSOS) for accessing and querying 

sensor data on the Web, an ontology of perception (Intellego) that provides a formal semantics of 

machine perception and reasoning framework for the interpretation of sensor data, and efficient 

algorithms for the machine perception inference tasks to enable interpretation of sensor data on 

resource-constrained devices, such as smart phones. Each of these contributions has been 

prototyped, evaluated, and applied towards solving real-world problems in multiple domains 

including weather and healthcare. 
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1. Introduction 

 

Machine perception can be formalized using semantic web technologies in order to derive 

abstractions from sensor data using background knowledge on the Web, and efficiently executed 

on resource-constrained devices. 

 

Machine perception is the systematic automation of computing machines to sense and interpret 

the contents of their environment. The automation of this task is a hard problem in computer 

science, with many fundamental issues that are yet to be adequately addressed, including: (a) 

annotation of sensor data, (b) interpretation of sensor data, and (c) efficient implementation and 

execution. The goal of this dissertation is to present a semantics-based machine perception 

framework, which demonstrates the validity of the thesis stated above. Toward this end, the 

chapters of this dissertation will discuss the technologies and methodologies of this framework 

for semantically annotating, querying, and interpreting sensor data. More concretely, the goals are 

as follows: 

 

1. Develop techniques for semantically annotating sensor descriptions and sensor observation 

data on the Web to enable advanced integration, query, and inference. This goal is discussed 

in Chapter 2: Semantic Sensor Web. 

2. Develop techniques for interpreting semantically annotated sensor observation data to derive 

actionable intelligence and situational awareness (i.e., high-level abstractions), using 

background knowledge on the Web. This goal is discussed in Chapter 3: Semantic 

Perception. 
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3. Develop techniques to enable the efficient and scalable interpretation of semantically 

annotated sensor observation data on resource-constrained devices. This goal is discussed in 

Chapter 4: Intelligence at the Edge. 

4. Develop a prototype application to demonstrate the utility of the semantics-based machine 

perception framework in a real-world scenario. This goal is discussed in Chapter 5: 

Knowledge-enabled Healthcare. 

 

1.1. Contributions 

 

The tangible primary contributions created to support the thesis of this dissertation are discussed 

next. 

 

Semantic Sensor Observation Service (SemSOS) – Sensor Observation Service (SOS) is a Web 

service specification defined by the Open Geospatial Consortium (OGC) Sensor Web Enablement 

(SWE) group in order to standardize the way sensors and sensor data are discovered and accessed 

on the Web. This standard goes a long way in providing interoperability between repositories of 

heterogeneous sensor data and applications that use this data. Many of these applications, 

however, are ill equipped at handling raw sensor data as provided by SOS and require actionable 

knowledge of the environment in order to be practically useful. There are two approaches to deal 

with this obstacle, make the applications smarter or make the data smarter. To better enable 

sharing, integration, and interpretation of the data across different applications, we propose the 

latter option and accomplish this by leveraging semantic technologies in order to provide and 

apply more meaningful representation of sensor data. More specifically, we are modeling the 

domain of sensors and sensor observations in a suite of ontologies, adding semantic annotations 

to the sensor data (that is offered by the Web Service), using the ontology models to reason over 

sensor observations, and extending an open source SOS implementation with our semantic 
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knowledge base. This semantically enabled SOS, or SemSOS, provides the ability to query high-

level knowledge of the environment as well as low-level raw sensor data. 

 

Ontology of Perception (Intellego) – Today, many sensor networks and their applications 

employ a brute force approach to collecting and analyzing sensor data. Such an approach often 

wastes valuable energy and computational resources by unnecessarily tasking sensors and 

generating observations of minimal use. People, on the other hand, have evolved sophisticated 

mechanisms to efficiently perceive their environment. One such mechanism includes the use of 

background knowledge to determine what aspects of the environment to focus our attention. In 

this dissertation, we develop an ontology of perception, IntellegO, that may be used to more 

efficiently convert observations into perceptions. IntellegO is derived from cognitive theory and 

provides a formal semantics of machine perception. We then present an implementation that 

iteratively and efficiently processes low level, heterogeneous sensor data into higher-level 

abstractions through use of the perception ontology and domain specific background knowledge. 

The abstractions thus computed transform raw, low level data into contextually relevant and 

actionable knowledge. As a demonstration of this capability, we evaluate IntellegO by collecting 

and analyzing observations of weather conditions on the Web, and show significant resource 

savings in the generation and storage of perceptual knowledge. 

 

Efficient Algorithms for Perceptual Inference – A primary challenge of machine perception is 

to define efficient computational methods to derive high-level knowledge from low-level sensor 

observation data. Emerging solutions are using Semantic Web ontologies for expressive 

representation of concepts in the domain of sensing and perception, which enable advanced 

integration and interpretation of heterogeneous sensor data. The computational complexity of the 

Web Ontology Language (OWL), however, seriously limits its applicability and use within 

resource-constrained environments, such as mobile devices. To overcome this issue, we employ 
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OWL to formally define the inference tasks needed for machine perception - explanation and 

discrimination - and then provide efficient algorithms for these tasks, using bit-vector encodings 

and operations. The applicability of our approach to machine perception is evaluated on a smart-

phone mobile device, demonstrating dramatic improvements in both efficiency and scale. 

 

Knowledge-enabled Healthcare – Knowledge-enabled Healthcare, or kHealth, is a platform that 

integrates data from passive and active sensing (including both machine and human sensors) with 

background knowledge from domain ontologies, semantic reasoning, and mobile computing 

environments to help people make decisions to improve health, fitness, and wellbeing. kHealth is 

a real-world application that utilizes technology founded in this dissertation – i.e., the semantic 

annotation of sensor data (Semantic Sensor Web), interpretation of sensor data (Semantic 

Perception), and efficient algorithms for interpreting sensor data on resource-constrained devices 

(Intelligence at the Edge) – to enable advanced healthcare applications. Currently, the application 

of kHealth towards the management of several disorders, including chronic heart disease and 

asthma, is being investigated in collaboration with clinicians. 

 

1.2. Chapter Overview 

 

The dissertation is organized as follows: Chapter 2, Semantic Sensor Web, discusses the 

technologies for the representation, annotation, query, and inference of sensor data on the Web. 

The chapter begins with background on the technologies and standards developed and utilized by 

the Open Geospatial Consortium’s Sensor Web Enablement and the World Wide Web 

Consortium’s Semantic Web. Next, the development of a semantic sensor observation service is 

discussed, which allows for the annotation and query of sensor descriptions and sensor 

observation data on the Web. Finally, the Semantic Sensor Network Ontology, developed by the 

W3C Incubator Group on Semantic Sensor Networks (SSN-XG), is introduced. 
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Chapter 3, Semantic Perception, discusses a methodology for interpreting sensor data. The 

chapter begins with a discussion of cognitive models of perception, which form the basis of a 

model of perception used to interpret the sensor data. Next, an ontology of perception, Intellego, 

is discussed which provides a formal semantics of machine perception. More specifically, the 

concepts and inference tasks are formalized in set-theoretic notation. Several of the inference 

tasks of Intellego are then formalized in the Web Ontology Language, which allows improved 

integration with background knowledge on the Web. 

 

Chapter 4, Intelligence at the Edge, discusses the development of efficient and scalable 

algorithms that provide the ability to interpret semantically annotated sensor data on resource-

constrained devices. The chapter begins with a description of the method of translating data from 

a high-level semantic representation to a low-level bit-vector representation, and vice-versa. Next, 

bit-vector algorithms for the primary perceptual inference tasks – explanation and discrimination 

– are discussed. These algorithms are evaluated on a mobile device, showing orders-of-magnitude 

in both efficiency and scalability. 

 

Chapter 5, Knowledge-enabled Healthcare, discusses the application of the technologies and 

methodologies described the previous chapters for improving health, fitness, and wellbeing. This 

chapter begins with a motivating scenario in the domain of cardiology. Next, an application is 

discussed that uses both passive and active sensing, from both machine and human sensors, to 

monitor a persons physiology in order to determine the persons health condition. This application 

is developed with the aim of helping to reduce hospital readmissions of patients with Acute 

Decompensated Heart Failure. 
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Finally, Chapter 6 concludes with a summary of the research work presented in the dissertation 

and final remarks. 
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2.  Semantic Sensor Web 

 

In March 2008, heavy rainstorms across the Midwestern region of the US caused many rivers to 

breach their banks. Residents of Valley Park, a small town along the Meramec River, Missouri, 

had to decide whether to rely on a newly constructed levee or abandon their homes for higher 

ground [Salter08]. Although the levee held, many chose the latter option and fled their homes; it 

was a chaotic situation that might have been avoided through access to better situational 

knowledge regarding the current water pressure and the levee’s structural integrity. Pressure 

sensors embedded in the levee could have provided accurate real-time information that allowed 

residents to make informed decisions about the safety of the levee, their homes, and themselves. 

This scenario demonstrates the increasingly critical role of sensors that collect and distribute 

observations of our world in our everyday lives. 

 

In recent years, sensors have been increasingly adopted by a diverse array of disciplines, such as 

meteorology for weather forecasting and wildfire detection (www.met.utah.edu/mesowest/), civic 

planning for traffic management (www.buckeyetraffic.org/), satellite imaging for earth and space 

observation (http://vast.uah.edu/), medical sciences for patient care using biometric sensors 

(www.liebertonline.com/doi/abs/10.1089/109350703322682531), and homeland security for 

radiation and biochemical detection at ports (www.msnbc.msn.com/id/8092280). Sensors are thus 

distributed across the globe, leading to an avalanche of data about our environment. The rapid 

development and deployment of sensor technology involves many different types of sensors, both 

remote and in situ, with diverse capabilities such as range, modality, and maneuverability. Today, 

it is possible to use sensor networks to detect and identify a multitude of observations, from 
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simple phenomena to complex events and situations. The lack of integration and communication 

between these networks, however, often isolates important data streams and intensifies the 

existing problem of too much data and not enough knowledge. With a view to addressing this 

problem, this chapter discusses a Semantic Sensor Web (SSW) in which sensor data is annotated 

with semantic metadata to increase interoperability as well as provide contextual information 

essential for situational knowledge.  

 

2.1. Background 

 

Semantic Sensor Web is reliant on two sets of standardizations, (1) the Sensor Web Enablement 

languages and service interface specifications defined by the Open Geospatial Consortium 

(OGC), and (2) the Semantic Web languages defined by the World Wide Web Consortium 

(W3C). 

 

2.1.1. Sensor Web Enablement 

 

“The Sensor Web is a special type of Web-centric information infrastructure for collecting, 

modeling, storing, retrieving, sharing, manipulating, analyzing, and visualizing information about 

sensors and sensor observations of phenomena [Gross99].” The OGC, an international 

consortium of industry, academic, and government organizations tasked with developing open 

geospatial standards, describes the sensor Web as sensor networks and sensor data, accessible 

though the Web, which are discoverable and accessible through standard protocols and 

application program interfaces [Botts08]. The Sensor Web has vast significance for applications 

using sensor technologies to attain actionable situation awareness. Lack of standardization, 

however, is the primary barrier to realizing a progressive sensor Web. 
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The Open Geospatial Consortium recently established the Sensor Web Enablement as a suite of 

specifications related to sensors, sensor data models, and sensor Web services that will enable 

sensors to be accessible and controllable via the Web [Sheth08]. The core suite of language and 

service interface specifications (depicted in Figure 2.1) includes: Observations and Measurements 

(O&M), Sensor Model Language (SensorML), Transducer Model Language (TML), Sensor 

Observation Service (SOS), Sensor Planning Service (SPS), Sensor Alert Service (SAS), and 

Web Notification Service (WNS). For more information about these languages and service 

interface specifications, see [Botts08]. 

 

 

Figure 2.1. OGC Sensor Web Enablement Services. 

 

2.1.2. SWE Sensor Observation Service 

 

The Sensor Observation Service (SOS) is an OGC-SWE standard that defines a web service 

interface for providing “access to observations from sensors and sensor systems in a standard way 

that is consistent for all sensor systems including remote, in-situ, fixed and mobile sensors 

[SOS].” SOS groups observations made by related sensor systems into Observation Offerings. An 

Observation Offering is a logical collection of sensors and sensor systems that, generally, are 

located in proximity to one another and sample their environment at shared intervals. Observation 
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Offerings are characterized by the following parameters: sensor, time, sensed phenomena, and 

location [SOS]. 

 

SOS defines four service profiles: core, transactional, enhanced, and entire (which includes all 

functions from the previous three). For a standards compliant SOS service, only support for the 

core profile is mandatory, while all other profiles are optional. The core and enhanced profiles 

provide support for consumers of sensor data. A consumer client of sensor data requires methods 

for obtaining information about the service itself and requesting observations, sensor descriptions, 

features, etc. over some spatial and temporal context. This information is useful in applications 

such as visualization, data fusion, and situation awareness. The transactional profile supports 

publishers of sensor data. Such publisher clients are responsible for acting as intermediaries 

between sensor networks generating observations and the SOS service where it inserts sensor 

descriptions and observations. The core profile includes three operations: GetCapabilites, 

DescribeSensor, and GetObservation. The GetCapabilites function provides a means to request a 

description of the service. This description includes information such as service identification 

(service name, keywords, etc.), provider, and most importantly, metadata that allows for the 

discovery of the capabilities of the service. The capability description includes metadata about all 

supported functions of the service (including valid values and ranges for query parameters), 

filtering capabilities (logical operators that may be supplied with query parameters), and a full list 

of all Observation Offerings (including the aforementioned parameters: sensor systems, time, 

phenomenon, location, etc.) defined within the service. DescribeSensor allows the client to 

request information about a sensor. DescribeSensor is parameterized by the ID of the senor and 

returns a SensorML or TransducerML document describing the sensor and its capabilities. The 

GetObservation function is the heart of the SOS, allowing the client to request observation data 

generated by a sensor or sensor system contained in a specified Observation Offering. 

GetObservation supports a multitude of parameters and filters, which give the client the ability to 
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query over the sensor, time, location, phenomena, features, and measurement values of the 

observations. The response from GetObservation is encoded in O&M. The transactional profile of 

SOS includes functions that allow a client to insert new sensors and observations, and is 

composed of two functions: RegisterSensor and InsertObservation. RegisterSensor allows a client 

to insert a new sensor into an SOS service, including the sensor’s capabilities as described in a 

SensorML or TransducerML document. InsertObservation allows a client to insert a new 

observation into an SOS service. The new observation is provided to the SOS encoded as an 

O&M document. The enhanced profile provides an assortment of less-frequently needed 

functions. GetObservationById returns an O&M observation based on the ID of the observation. 

GetResult provides a means for a client to obtain sensor data on a frequent basis using less 

bandwidth, by using a template O&M document from a previous call to GetObservation. 

GetFeatureOfInterest returns a description of a feature of interest for which GetCapabilities 

advertised the ID. GetFeatureOfInterestTime describes the valid time periods for a feature. 

DescribeFeatureType yields an XML schema for a feature. DescribeObservationType returns the 

XML schema for an observation generated for a type of phenomenon. DescribeResultModel 

yields an XML schema that can further describe the format of results returned by the SOS and 

referenced in GetCapabilities. 

 

2.1.3. Semantic Web 

 

The Semantic Web, as described by the W3C Semantic Web Activity, is an evolving extension of 

the World Wide Web in which the semantics, or meaning, of information on the Web is formally 

defined [SWActivity]. Formal definitions are captured in ontologies, making it possible for 

machines to interpret and relate data content more effectively. The principal technologies of the 

Semantic Web include the Resource Description Framework (RDF) [RDF] data representation 

model, and the ontology representation languages RDF Schema (RDF-S) [RDFS] and Web 
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Ontology Language (OWL) [OWL]. In addition to these representation languages, an RDF query 

language called SPARQL [SPARQL] is now a W3C recommendation and the common method of 

querying ontological data. Many rule languages and rule engines are now capable of reasoning 

with Semantic Web data, including SWRL (Semantic Web Rule Language), RIF (Rule 

Interchange Format), and the general-purpose rule engine for the Jena Semantic Web Framework 

[Jena]. 

 

An ontology is a formal model that defines concepts and their relations in a standard language, 

commonly described as a “specification of a conceptualization [Gruber93].” In practice, the 

Semantic Web defines several ontology languages, RDF, RDF-S, and OWL. The Resource 

Description Format (RDF) is a graph-based language that allows data within a domain to be 

linked through named relationships. An RDF graph is encoded as a set of subject-predicate-object 

triples which resemble the subject, verb, and object of a sentence. The subject and object are 

nodes in the graph and the predicate is a directional named link between the subject and object.  

 

“This simple triple structure turns out to be a natural way to describe a large majority of 

the data processed by machines. The subjects, verbs and objects are each identified by a 

Universal Resource Identifier (URI)—an address just like that used for Web pages. Thus, 

anyone can define a new concept, or a new verb, by defining a URI for it on the Web 

[Shadbolt08].”  

 

RDF-S, or RDF Schema, adds the ability to define hierarchies of concepts to RDF. The Web 

Ontology Language (OWL) is built on top of RDF and adds a logical formalism to the language. 

OWL is based on a tractable subset of First Order Logic called Description Logic. The logical 

formalism provided by OWL, in combination with rule engines, is what allows inference over 

semantically annotated sensor observations.  
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2.2. Semantic Sensor Observation Service 

 

What are the possible benefits of integrating the Sensor Web with the Semantic Web? Much can 

be said in answer to this question, including a more expressive graph-based representation that 

models relationships as first class objects, the use of Uniform Resource Identifier’s that allows all 

concepts to be independently accessible throughout the Web, and a triple-pattern encoding 

scheme that provides for simplified integration of heterogeneous datasets 

[Sheth08][Thirunarayan09b]. While these are all important elements of the Semantic Web, in this 

section we will focus on the need for inference on sensor data enabled by semantic modeling and 

what advantages this provides to standard SOS.  

 

Reasoning is a useful tool for providing meaning to sensor data and presenting insight into an 

observed environment. The quantified nature of sensor data, however, is not well suited for 

logical inference. In order to reason over sensor observations the data must first be annotated with 

meaningful concepts that can be manipulated with an inference engine. These concepts are 

defined in an ontology that provides the logical framework for further inference. In the Semantic 

Web, the Web Ontology Language (OWL) fulfills this role of a meta-language for ontology 

development.  

 

This collection of annotations and inferences within an ontology make up a knowledge base. The 

knowledge in this knowledge base can be accessed through a standard SOS request, making the 

sensor data useful for a wide range of applications that lack the facility to handle raw sensor data 

but are able to deal with high-level knowledge. On the other hand, supposing an application does 

have the capability to handle raw sensor data, the lack of a service providing a shared semantics 

of sensor observations, obligates the client to independently translate the raw sensor data into 
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useful high-level knowledge. This approach may lead to interpretations of data that are exclusive 

to a single client application and incompatible with applications that may otherwise make use of 

such knowledge. By committing to the interpretation described within an ontology, applications 

may benefit from a shared semantics of sensor data, thus leading to improved interoperability. 

This configuration of a Sensor Observation Service that provides access to ontological knowledge 

of sensor observations is termed Semantic SOS, or SemSOS. Figure 2.2 shows an implemented 

architecture of SemSOS. 

 

 

Figure 2.1. High-level View of SemSOS Architecture 

 

2.2.1. Observations and Measurements Ontology 

 

Observations and Measurements (O&M) is an OGC-SWE standard that defines an XML Schema 

for describing observations and features. Within this standard, an observation (om:Observation) 

is defined as an “act of observing a property or phenomenon, with the goal of producing an 

estimate of the value of the property,” and a feature (om:Feature) is defined as an “abstraction of 

real world phenomenon [O&M].” (Note: om is used as a namespace for Observations and 

Measurements and will be placed, with a colon, before concepts defined in the O&M schema.  

All defined concepts are italicized).  The major properties of an observation include feature of 
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interest (om:featureOfInterest), observed property (om:observedProperty), sampling time 

(om:samplingTime), result (om:result), and procedure (om:procedure). Often these properties can 

be complex entities that may be defined in an external document.  For example, 

om:FeatureOfInterest could refer to any real-world entity such as a coverage region, vehicle, or 

weather-storm, and om:Procedure often refers to a sensor or system of sensors defined within a 

SensorML document.  Therefore, these properties are better described as relationships of an 

observation.  In order to encode relationships in XML, the OGC-SWE often make use of XLink, 

XML Linking Language, a markup language that annotates XML documents by inserting 

elements to “create and describe links between resources [XLink].” 

 

While XLink allows XML documents to break free of the standard tree-model and define 

relationships between entities, the triple-pattern approach of RDF provides a far more natural and 

useful approach to encoding relationships.  In RDF and OWL, relationships are considered first-

class objects that have many benefits over XLink, such as the ability to assign a URI to a 

relationship, to classify relationships into hierarchies (RDF-S and OWL), and place constraints on 

relationships (OWL). For these reasons, we have developed an encoding of the Observations and 

Measurements language in OWL.  In this ontology, we have defined the previous relations, and 

more, in a form that may be queried and reasoned over effectively in order to derive actionable 

knowledge of the environment from sensor observations. (Note that the ontology captures a 

subset of concepts in O&M. A few notable exemptions currently include concepts related to 

coverage and sampling feature). The translation between O&M in OWL and O&M in XML is 

straightforward and thus allows SemSOS to remain SOS compliant.  (Throughout this chapter, we 

will refer to O&M in OWL as O&M-OWL and refer to O&M in XML as O&M-XML). Figure 

2.3 shows a diagram of the major concepts and relations in O&M-OWL.  
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Figure 2.2. Subset of Major Concepts and Relations in O&M-OWL 

 

The following description of relationships in O&M-OWL includes a running example of an 

observation from the domain of weather (concepts from weather ontology contain namespace 

“w”), encoded as a set of RDF triples. (Each line represents a triple, with the first term 

representing the subject, the second representing the predicate, the third representing the object, 

and ending with a period). 

 

om:obs_1  rdf:type  om:Observation . 

   

om:featureOfInterest is a “representation of the observation target, being the real-world object 

regarding which the observation is made [O&M].” Example includes a blizzard feature. 

 

om:obs_1  om:featureOfInterest  om:blizzard_1 . 

om:blizzard_1  rdf:type  w:Blizzard . 

w:Blizzard  rdfs:subClassOf  om:Feature . 
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om:observedProperty “identifies or describes the phenomenon for which the observation result 

provides an estimate of its value. It must be a property associated with the type of the feature of 

interest [O&M].” Example includes a temperature observed property. 

 

om:obs_1  om:observedProperty  w:temperature . 

w:temperature  rdf:type  om:Property . 

  

om:samplingTime is the “time that the result applies to the feature-of-interest [O&M],” or, in 

other words, it is the time when the phenomenon was measured in the real-world. Example 

includes a single instant sampling time at 5:00 am on Jan. 26, 2009. 

 

om:obs_1  om:samplingTime  om:time_1 . 

om:time_1  rdf:type  owl-time:Instant . 

om:time_1  owl-time:date-time  “20090126T05:00:00” . 

 

om:observationLocation is the location of an observation event; usually associated with the 

location of the sensor when an observation occurred (i.e., om:samplingTime). Example includes a 

single point observation location with latitude, longitude, and elevation coordinates. 

 

om:obs_1  om:observationLocation  om:location_1 . 

om:location_1  rdf:type  gml:Point . 

om:location_1  gml:latitude  “41.1915” . 

om:location_1  gml:longitude  “-111.8351” . 

om:location_1  gml:elevation  “6562.0” . 
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om:result is an “estimate of the value of some property generated by a known procedure 

[O&M].”  Example includes a temperature measurement result of 37 degrees Fahrenheit. 

 

om:obs_1  om:result  om:result_1 . 

om:result_1  rdf:type  om:ResultData . 

om:result_1  om:value  “37” . 

om:result_1  om:uom  w:Fahrenheit . 

 

om:procedure is a “description of a process used to generate the result. It must be suitable for the 

observed property [O&M].” Note that in this schema a sensor is defined as a type of process, 

along with other methods, algorithms, instruments, or systems of these. Example includes a 

temperature sensor as the procedure. 

 

om:obs_1  om:procedure  om:sensor_1 . 

om:sensor_1  rdf:type  w:TemperatureSensor . 

w:TemperatureSensor  rdfs:subClassOf  om:Sensor . 

om:Sensor  rdfs:subClassOf  om:Process . 

 

2.2.2. Spatial, Temporal, and Thematic Ontologies 

 

From Figure 2.3, you will notice concepts related to om:Observation such as om:Location, 

om:Time, and om:Feature.  While these concepts are defined in O&M-OWL, they are also 

extended with more expressive descriptions from existing schemas, in the case of om:Location 

and om:Time, and from a domain specific ontology, in the case of om:Feature.  Locations within 

O&M-OWL are described using concepts from GML, or Geography Markup Language [GML]. 

In particular, we re-use common concepts such as gml:Point, gml:Polygon, and gml:coordinates. 
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Time within O&M-OWL is described using concepts from OWL-Time [OWLTime]. OWL-Time, 

a W3C recommended ontology based on temporal calculus, provides descriptions of temporal 

concepts such as owl-time:instant and owl-time:interval, which supports defining interval queries 

such as ‘within’, ‘contains’, and ‘overlaps’. The logical framework provided by OWL-Time for 

reasoning over time intervals could be very useful when dealing with observations that require 

complex temporal models.  For example, om:TimeSeriesObservation is defined as a 

om:CompoundObservation “whose sampling time is the period encompassing all the member 

times” such that all “member observations have the same feature of interest, the same observed 

property, and different sampling times [O&M].” The concept of om:Feature within O&M 

encompasses all real-world entities and thus can be best described through domain-specific 

thematic ontologies.  For example, for use in the domain of weather, om:Feature is extended with 

a weather ontology describing concepts such as w:SnowStorm,  w:Blizzard, and w:SnowFlurry. 

 

2.2.3. Semantic Annotation of SWE 

 

While encoding sensor data in OWL is useful for advanced analysis and reasoning, the SOS 

specification requires observation data to be encoded in XML for several operations. The 

InsertObservation operation takes an O&M-XML document as input and adds the observations to 

the storage facility. Similarly, the GetObservation operation returns an O&M-XML document as 

response to the query. As previously stated, translating from O&M-XML to O&M-OWL, and 

vice-versa, is straightforward. However, it is often useful to also embed semantic terminology 

defined in an ontology model into an XML document. This technique is called semantic 

annotation and is used for greater semantic interoperability of data encoded in XML, which 

provides only syntactic interoperability. Ontology terms are embedded in XML documents 

through model references, or URIs of concepts defined in an ontology. The OGC-SWE standards 

already provide several mechanisms to reference concepts that are external to the document.  
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Such concepts are either defined in another XML document and accessed through an XLink 

element or defined in a registry and accessed through the swe:definition attribute. Using either 

mechanism, we can embed a model reference that will provide more meaningful description and 

thus enhanced semantic interoperability. Semantically annotated O&M and SML are called 

O&M-S and SML-S, respectively. This technique is also applied within the GetCapabilities 

operation in order to embed high-level om:Feature concepts that may otherwise be unavailable in 

an SOS GetCapabilities response. This is necessary to inform a SemSOS client of the precise 

description of concepts that may be used to query the knowledgebase. 

 

2.2.4. Rule Based Reasoning 

 

To derive additional knowledge from semantically annotated sensor observations, it may be 

necessary to define and use rules. To demonstrate rule-based reasoning over sensor observation 

data, in this section we use the general purpose rule engine from the Jena Semantic Web 

Framework [Jena]. Such rules deduce new ontological assertions from known instances and class 

descriptions. This section provides an example of inference through rules in SemSOS. In the 

weather domain, if a group of sensors provides observations regarding wind speed, visibility, and 

precipitation, then by using inference rules we can specify existing weather events in the 

environment, such as a blizzard. The following rule states that if wind speeds are high 

(HighWinds), visibility is low (LowVisibility), and it is snowing (Snowfall), then there is a 

blizzard event (Blizzard) [NOAA].  

 

Blizzard  HighWinds & LowVisibility & Snowfall 

 

Each of these conditions described above is associated with a single time and location, derived 

from the time and location of the corresponding observations. Subsequently, the Blizzard 
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condition is associated with the same time and location as the component weather conditions.  

The terms HighWinds and LowVisibility are also derived through rules. 

 

HighWinds  WindSpeed >= 35 MPH 

LowVisibility  Visibility <= ¼ mile 

 

Within O&M-OWL, we begin with a quantified observation (om:Observation) and data result 

(om:ResultData) and translate this into additional qualified knowledge that can also be used 

within a reasoning engine.  For example, the following set of RDF triples represents data about a 

wind speed observation. 

 

om:windspeed_1  rdf:type  w:WindSpeedObservation . 

om:windspeed_1  om:samplingTime  om:time_1 . 

om:windspeed_1  om:observationLocation  om:location_1 . 

om:windspeed_1  om:result  om:result_1 . 

om:result_1  om:value  “37” . 

om:result_1  om:uom  w:MPH . 

 

From this set of RDF triples we can infer that observation w:windspeed_1 can also be defined as 

an instance of class w:HighWindSpeedObservation. This new assertion is added to the original set 

of RDF triples (new triple in bold). 

 

om:windspeed_1  rdf:type  w:WindSpeedObservation . 

om:windspeed_1  om:samplingTime  om:time_1 . 

om:windspeed_1  om:observationLocation  om:location_1 . 

om:windspeed_1  om:result  om:result_1 . 
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om:result_1  om:value  “37” . 

om:result_1  om:uom  w:MPH . 

om:windspeed_1  rdf:type  w:HighWindSpeedObservation . 

 

The rule used to generate this new knowledge, titled HighWindSpeedObservationRule, is 

specified below (in the Jena rule syntax [Jena]). 

 

[HighWindSpeedObservationRule: 

 (?w_obs  rdf:type  w:WindSpeedObservation) 

 (?w_obs  om:samplingTime  ?time) 

     (?w_obs  om:observationLocation  ?location) 

 (?w_obs  om:result  ?result) 

 (?result  om:uom  w:MPH) 

 (?result  om:value  ?value) 

 greaterThan(?value  35) 

(?w_obs  rdf:type  w:HighWindSpeedObservation)] 

 

A low visibility observation (w:LowVisibilityObservation) is deduced similarly, and together with 

a snowfall precipitation observation (w:SnowfallObservation) we can infer a blizzard event 

(w:Blizzard) at the same time and location.  The rule used to generate this new knowledge is titled 

BlizzardObservationRule. 

 

[BlizzardObservationRule: 

 (?w_obs  rdf:type  w:HighWindSpeedObservation) 

 (?w_obs  om:samplingTime  ?time) 

 (?w_obs  om:observationLocation  ?location) 
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 (?v_obs  rdf:type  w:LowVisibilityObservation) 

 (?v_obs  om:samplingTime  ?time) 

 (?v_obs  om:observationLocation  ?location) 

 (?p_obs  rdf:type  w:SnowfallObservation) 

 (?p_obs  om:samplingTime  ?time) 

 (?p_obs  om:observationLocation  ?location) 

 makeTemp(?blizzard) 

(?blizzard  rdf:type  w:Blizzard) 

 (?blizzard  om:eventTime  ?time) 

 (?blizzard  om:eventLocation  ?location) 

 (?w_obs  om:featureOfInterest  ?blizzard) 

 (?v_obs  om:featureOfInterest  ?blizzard) 

 (?p_obs  om:featureOfInterest  ?blizzard)] 

 

Note that the makeTemp(?blizzard) function in the body of the rule generates a new instance in 

the knowledge base. Subsequently, we then supply this instance of om:Blizzard with relations in 

the head of the rule. In this example, such relations include rdf:type, om:eventTime, 

om:eventLocation, and om:featureOfInterest.  The final set of RDF triples is shown below 

(ellipses used to truncate set of triples, and new triples in bold). 

 

om:windspeed_1  rdf:type  w:WindSpeedObservation . 

om:windspeed_1  om:samplingTime  om:time_1 . 

om:windspeed_1  om:observationLocation  om:location_1 . 

… 

om:windspeed_1  rdf:type  w:HighWindSpeedObservation . 

om:visibility_1  rdf:type  w:VisibilityObservation . 
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… 

om:visibility_1  rdf:type  w:LowVisibilityObservation . 

om:precipitation_1  rdf:type  w:SnowfallObservation . 

… 

om:blizzard_1  rdf:type  w:Blizzard . 

om:blizzard_1  om:samplingTime  om:time_1 . 

om:blizzard_1  om:observationLocation  om:location_1 . 

om:windspeed_1  om:featureOfInterest  om:blizzard_1 . 

om:visibility_1  om:featureOfInterest  om:blizzard_1 . 

om:precipitation_1  om:featureOfInterest  om:blizzard_1. 

 

In this manner, we can infer features within the environment, of a particular type, at a specific 

time and place, and then generate om:featureOfInterest relations between the original 

observations and the new features.  These new om:featureOfInterest relationships can be used to 

query for high-level feature concepts in SemSOS. 

 

2.2.5. SemSOS Implementation 

 

In order to validate the framework discussed above, we have constructed a prototype of SemSOS.  

Our SemSOS extends the open source implementation of SOS from 52North [52North] with an 

ontological knowledge base in order to provide inference over sensor data and queries of high-

level features. For this prototype, the sensor observation data used to populate our ontologies was 

collected from MesoWest, a repository of weather data at the University of Utah [MesoWest]. 

MesoWest continually collects data from over 20,000 sensor systems within North America, and 

stores archives since 2002. 
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2.3.5.1. 52North SOS 

 

52North’s SOS implementation is designed to be highly modular, and adaptable to arbitrary 

suitable sensor data sources, transport protocols, etc. The larger enclosed box in Figure 2.4 shows 

the high-level architecture of the 52North SOS. 

 

 

Figure 2.3. 52North SOS Architecture, extended with an ontological knowledge base. 

 

The Visualization Layer shown in Figure 2.4 is not part of the SOS itself, but rather corresponds 

to external clients that interact with the SOS. These can be either publishers or consumers of 

sensor data, and may also be other web services. The Presentation Layer of 52North’s 

architecture defines the SOS’s interface to the outside world. The default implementation has a 

Servlet interface that accepts requests and communicates responses via HTTP. If another 

transport mechanism or protocol is required, this level can be replaced without affecting the other 

layers of the SOS. The next level is the Business Layer, which receives requests from the 

Presentation Layer, handles them as appropriate, and returns a response. The Business Layer 
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contains the logic for decoding requests and encoding responses. The main entry-point from the 

Presentation Layer is the RequestOperator object, which validates incoming requests, determines 

the type of request, and dispatches accordingly. Each operation supported by the SOS 

(GetCapabilities, GetObservation, etc.) is embodied by a Listener object which handles the 

corresponding incoming request (resp. GetCapabilitiesListener, GetObservationListener, etc.). 

The Listener objects may be configured externally during deployment of the service. The 

individual Listeners handle high-level translation of the request into an internal format which is 

then used to query the respective object in the Data Layer and compose the response. The final 

layer of the 52North architecture is the Data Layer. The Data Layer is an abstraction of a sensor 

data source through Data Access Objects (DAO). Each DAO represents a particular interface to 

the sensor data from the point of view of one of the SOS’s operations. For each Listener object in 

the Business Logic Layer, there is a corresponding DAO object in the Data Layer. The DAO 

objects are used by their respective Listener objects to obtain the data pertaining to a query. The 

abstraction provided by the DAOs and the Data Layer is what allows the 52North’s SOS 

implementation to be so easily adapted to new sources of sensor data. For each operation that 

must be supported, all that is required is a new DAO that works with the data source. The default 

implementation shipped with 52North uses a PostGIS database with a custom database schema to 

store observation data, while sensor descriptions are stored on the file system in XML files (using 

SensorML or TransducerML). 

 

2.2.5.2. SemSOS Extensions to 52North 

 

The box surrounding the bottom third of Figure 2.4 denotes the extensions made to 52North’s 

SOS in order to implement SemSOS. The modular nature of the 52North implementation allowed 

us to leave the request routing, encoding/decoding, and similar details in place, while replacing 

the data access implementation with our own. The DAOs for all three operations specified in the 
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SOS core profile (GetCapabilities, GetObservation, and DescribeSensor) were replaced with 

implementations that support data access to an O&M-OWL knowledge base. Specifically, 

SemSOS uses the Jena Semantic Web Framework [Jena] to store and access the O&M-OWL 

ontology. The stored ontology is then accessed via SPARQL queries that are generated from the 

incoming SOS query parameters [SPARQL]. In producing the SPARQL queries, the syntactic 

form of the SOS query parameters (such as date, time, magnitude, etc.) are transformed into 

appropriate formats for semantic querying over O&M-OWL. Likewise, query filters (such as 

location, comparison operators, etc.) must be transformed into SPARQL-style filters and 

relational operations. Evaluating a SPARQL query results in a set of triples representing an RDF 

graph, with data annotated in O&M-OWL. This graph is then transformed into the internal 

52North result structure and returned to the Business Logic Layer. Here, the previous translation 

to convert SOS queries into SPARQL must be performed in reverse. O&M-OWL concepts 

instantiated within a set of RDF triples are translated into O&M-XML. The results of SemSOS 

client queries are thus valid SOS results. SemSOS also provides richer semantic interoperability 

for clients that are semantically-aware through semantic annotation of the O&M-XML result 

document. This is achieved by using model references, or URIs of concepts defined in an 

ontology, as identifiers within O&M-XML.  

 

2.2.5.3. Example SemSOS Query Processing 

 

The first step the SemSOS DAOs must take in serving an SOS request is to translate the incoming 

SOS query into a SPARQL query which may be run against the knowledge base. Figure 2.5 

shows an example SOS query asking for all observations that (1) are generated by procedures 

(sensors) that are part of offering (sensor constellation) ‘BRAU1’, (2) fall within the time span of 

2003-04-03T20:00:00-05 to 2003-04-04T02:00:00-05 (a six-hour interval), and (3) correspond to 

one of four specific observed properties: air temperature, precipitation, wind speed, wind gust. 
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Figure 2.4. Example SOS query. 

 

The SOS query is then transformed into the SPARQL query depicted in Figure 2.6, which 

expresses the same constraints as the original, but in the language of O&M-OWL. Note that the 

event time specification in the SOS query becomes a SPARQL filter, as do the observed property 

specifications. Other SOS query relational operations and filters, such as location or feature of 

interest, are handled similarly. 

 

 

Figure 2.5. Example SPARQL query. 

 

< Get Observat ion xm lns= .. . service= "SOS" version= "1.0 .0"

srsNam e= "urn:ogc:def:crs:EPSG:4326">

< offer ing> BRAU1< /offer ing>

< event Tim e>

< ogc:TM _During>

< ogc:Propert yNam e> urn:ogc:dat a:t im e:iso8601< /ogc:Propert yNam e>

< gm l:Tim ePeriod>

< gm l:beginPosit ion> 2003 -04 -03T20:00 :00 -05< /gm l:beginPosit ion>

< gm l:endPosit ion> 2003 -04 -04T0 2:00 :00 -05< /gm l:endPosit ion>

< /gm l:Tim ePeriod>

< /ogc:TM _During>

< /event Tim e>

< observedPropert y> ht t p://.. . /w eather.ow l# _AirTemperature< /observedPropert y>

< observedPropert y> ht t p://.. . /w eather.ow l# _Precipit at ion< /observedPropert y>

< observedPropert y> ht t p://.. . /w eather.ow l# _W indSpeed< /observedPropert y>

< observedPropert y> ht t p://.. . /w eather.ow l# _W indGust < /observedPropert y>

< responseForm at > t ext /xm l;subt ype= & quot ;om /1 .0 .0& quot ;< /responseForm at >

< /Get Observat ion>

SELECT DISTINCT ?offering ?offeringID ?proc ?obs ?phen ?resultDataType ?floatValue 

?intValue ?booleanValue ?date ?foi ?foiType ?loc ?locType ?lat ?long ?elevation 

WHERE {

?offering rdf:type observation:System .

?offering observation:ID "BRAU1" .

?offering observation:ID ?offeringID .

?offering observation:systemComponentProcess ?proc .

?proc observation:generatedObservation ?obs .

?obs observation:instFeatureOfInterest ?foi .

?obs observation:featureOfInterest ?foiType .

?obs observation:samplingTime ?inst .

?inst xsd:datetime ?date .

?obs observation:observedProperty ?phen .

?obs observation:result ?result .

?result rdf:type ?resultDataType .

{

{?result observation:floatValue ?floatValue . }

UNION {?result observation:intValue ?intValue . }

UNION {?result observation:booleanValue ?booleanValue . }

}

?obs observation:observationLocation ?loc .

?loc rdf:type ?locType .

?loc observation:latitude ?lat .

?loc observation:longitude ?long .

?loc observation:elevation ?elevation .

FILTER(?phen=<http://.../weather.owl#_AirTemperature> 

|| ?phen=<http://.../weather.owl#_Precipitation>

||  ?phen =<http://.../weather.owl#_WindSpeed>

||  ?phen=<http://.../weather.owl#_WindGust>  ) .

FILTER ( ?date > "2003-04-03T20:00:00"^^xsd:dateTime

&& ?date < "2003-04-04T02:00:00"^^xsd:dateTime ) .

} 
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Figure 2.6. Example SPARQL query results. 

 

The table in Figure 2.7 displays one row of the result from the SPARQL query in Figure 2.6. The 

row contains information pertaining to a single air temperature reading generated by a sensor that 

is a member of the offering specified in the original SOS query. The result value of the reading is 

present (?floatValue), along with the location (?loc, ?locType, ?lat, ?long, ?elevation) and a 

related feature of interest (?foi, ?foiType), in this case an instance of freezing rain. The full result 

of the SPARQL query contains many more rows including observations from the same sensor at 

different times, and observations from other sensors contained in the same offering, which may 

have observed different phenomena and relate to different features. The result of the SPARQL 

query is then used to construct an SOS response document, as shown in Figure 2.8. 

 

?offering <http://.../observation.owl#system_BRAU1> 

?offeringID BRAU1

?proc <http://.../observation.owl#TemperatureSensor_46> 

?obs <http://.../observation.owl#observation_BRAU1_2003_04_04_01_00_00_AIRTEMPERATURE> 

?phen <http://.../weather.owl#_AirTemperature> 

?resultDataType <http://.../observation.owl#MeasureData>

?floatValue 2.0

?date 2003-04-04T01:00:00

?foi <http://.../weather.owl#FreezingRain_562> 

?foiType <http://.../weather.owl#_FreezingRain> 

?loc <http://.../observation.owl#point_BRAU1> 

?locType <http://.../observation.owl#Point> 

?lat 40.8844

?long -110.8292

?elevation 8536.0
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Figure 2.7. Example SOS response. 

 

2.3. Linked Sensor Data 

 

Beyond the Semantic Web languages and technologies discussed above, significant recent 

progress in the realization of the vision of Semantic Web is the emergence of Linked Data 

[Bizer09]. Linked Data is a large and growing collection of interlinked public datasets, encoded 

in RDF, and spanning many diverse domains such as life sciences, nature, science, geography, 

and entertainment. In the sensors domain, sources of geospatial information such as GeoNames 

(http://www.geonames.org/) and LinkedGeoData (http://linkedgeodata.org/) are of particular 

<om:ObservationCollection …>

<gml:boundedBy>
<gml:Envelope>

<gml:lowerCorner>-110.8292007446289 40.8843994140625</gml:lowerCorner>
<gml:upperCorner>-110.8292007446289 40.8843994140625</gml:upperCorner>

</gml:Envelope>
</gml:boundedBy>

<om:member>
<om:Observation>

<om:samplingTime>
<gml:TimePeriod xsi:type="gml:TimePeriodType">

<gml:beginPosition>2003-04-03T20:00:00-05:00</gml:beginPosition>
<gml:endPosition>2003-04-03T20:00:00-05:00</gml:endPosition>

</gml:TimePeriod>
</om:samplingTime>

<om:procedure xlink:href="http://.../observation.owl#TemperatureSensor_46"/>
<om:observedProperty>

<swe:CompositePhenomenon gml:id="cpid0" dimension="2">
<gml:name>resultComponents</gml:name>

<swe:component xlink:href="urn:ogc:data:time:iso8601"/>
<swe:component xlink:href="http://.../weather.owl#_AirTemperature"/>

</swe:CompositePhenomenon>
</om:observedProperty>

<om:featureOfInterest>
<gml:FeatureCollection>

<gml:featureMember>
<sa:SamplingPoint gml:id="FreezingRain_562">

<gml:name>FreezingRain_562</gml:name>
<sa:position>

<gml:Point>
<gml:pos srsName="urn:ogc:def:crs:EPSG:4326">

-110.8292007446289 40.8843994140625</gml:pos>
</gml:Point>

</sa:position>
</sa:SamplingPoint>

</gml:featureMember>
</gml:FeatureCollection>

</om:featureOfInterest>
<om:result>

<swe:DataArray>
<swe:elementCount>

<swe:Count><swe:value>1</swe:value></swe:Count>
</swe:elementCount>

<swe:elementType name="Components">
<swe:SimpleDataRecord>

<swe:field name="Time">
<swe:Time definition="urn:ogc:data:time:iso8601"/>

</swe:field>
<swe:field name="feature">

<swe:Text definition="urn:ogc:data:feature"/>
</swe:field>

<swe:field name="weather.owl#_AirTemperature">
<swe:Quantity definition="http://.../weather.owl#_AirTemperature">

<swe:uom code="http://.../observation.owl#fahrenheit"/>
</swe:Quantity>

</swe:field>
</swe:SimpleDataRecord>

</swe:elementType>
<swe:encoding>

<swe:TextBlock decimalSeparator="." tokenSeparator="," blockSeparator="@@"/>
</swe:encoding>

<swe:values>2003-04-03T20:00:00-05,FreezingRain_562,2.0@@</swe:values>
</swe:DataArray>

</om:result>
</om:Observation>

</om:member>
</om:ObservationCollection>

http://www.geonames.org/
http://linkedgeodata.org/
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importance. The GeoNames geographical dataset contains over eight million geographical names 

and consists of 7 million unique features including 2.6 million populated places and 2.8 million 

alternate names. 

 

Using the sensor model outlined above (Section 2.2.1), we have generated several sensor datasets 

and made them available as Linked Data [Patni10][Pschorr10]. The datasets contain sensor 

descriptions and observations collected from weather stations within the United States. These 

datasets provide links to GeoNames in order to support location-based sensor discovery. 

 

Linked Data as a Sensor Registry – An ideal mechanism for sensor discovery on the Sensor 

Web should include facilities for expressive query against semantically meaningful user criteria, 

simple procedures for the inclusion of new sensors and observations, and the ability to extend and 

build upon existing data. These requirements are all fulfilled by Linked Data, while they highlight 

weaknesses of traditional service registries. As such, we position Linked Data as an alternative to 

more conventional registry approaches. 

 

A registry for sensors can expect to have new sensors added occasionally, but must assume 

additional observation data will be added on a continuous basis. A traditional centralized registry 

system does not scale to the amount of sensor and observational data that we can expect sensor 

systems to generate. Linked Data, however, presents a decentralized approach to publishing 

sensor data by creating relations to existing data and providing dereferenceable URIs.  

 

Extending existing data sets with new relationships is great advantage of using Linked Data as a 

registry for sensor information. Sensor datasets can make use of temporal, spatial, and thematic 

concepts published elsewhere in Linked Data. Just as important, however, sensors and 

observations created by one publisher may be extended by another simply by the generation of 
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new relationships referencing the existing facts. The open and decentralized nature of Linked 

Data allows rich interaction between sensor and thematic data that is often absent or prohibitively 

complex given conventional, insular registries. 

 

Sensor Descriptions on Linked Data – Using the model presented in Section 2.2.1, we have 

generated a dataset of sensor descriptions called LinkedSensorData. This dataset is derived from 

data collected by MesoWest, a project within the Department of Meteorology at the University of 

Utah [MesoWest]. MesoWest continually collects data from over 20,000 weather stations 

phenomena within North America. On average, there are about five sensors per weather station 

measuring phenomena such as temperature, visibility, precipitation, pressure, wind speed, 

humidity, etc. In addition to location attributes such as latitude, longitude, and elevation, 

LinkedSensorData also contains links to locations in GeoNames. This dataset is now published as 

Linked Data. 

 

Sensor Observations on Linked Data – Another dataset, called LinkedObservationData, has 

been generated that contains expressive descriptions of sensor observation data. This dataset is 

also based on data collected by MesoWest. The observations include measurements of 

phenomena such as temperature, visibility, precipitation, pressure, wind speed, humidity, etc. The 

dataset consists of observations made within the United States during the time periods in which 

several major storms were active (e.g. Hurricane Katrina). These observations were generated by 

the weather stations described in our sensor descriptions dataset, which they reference. Table 2.1 

describes the storms, date ranges, and size of the LinkedObservationData dataset that currently 

contains over one billion RDF triples and is now published as Linked Data. 
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Table 2.1. LinkedObservationData statistics 

Name Storm 

Type 

Date Number of 

Triples 

Number of 

Observations 

Bill Hurricane Aug. 17-22, 2009 231,021,108 21,272,790 

Gustav Hurricane Aug. 25-32, 2008 258,378,511 23,792,818 

Bertha Hurricane July 6-17, 2008 278,235,734 25,762,568 

Wilma Hurricane Oct. 17-23, 2005 171,854,686 15,797,852 

Katrina Hurricane Aug. 23-30, 2005 203,386,049 18,832,041 

Charley Hurricane Aug. 9-15, 2004 101,956,760 9,333,676 

 Blizzard April 1-6, 2003 111,357,227 10,237,791 

 

Sensor Locations on Linked Data – Once sensor data is encoded in RDF and published as 

Linked Data, the next step is to leverage the vast spatial information already present on Linked 

Data. GeoNames provides the type of spatial data necessary not only to relate user-friendly 

location names to coordinate information, but also to associate contextual information such as 

region containment and distance from location. Fig. 2.9 shows the overall structure of the datasets 

and the relationships between them, including links to GeoNames. 

 

 

Figure 2.9. Relationships between sensor datasets on Linked Data 

 

For each sensor in our knowledge base, we use the findNearby
1
 service provided by GeoNames to 

determine the geographically closest named location, or feature, within the GeoNames dataset. 

This location is then linked with a sensor through the ‘near’ relationship. This relationship 

                                                           
1 http://www.geonames.org/export/web-services.html#findNearby 
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describes not only the location of the sensor, but also contextual information regarding the 

sensor’s distance from the location. 

 

GeoNames classifies locations according to containment (e.g. Wright State University is within 

the city of Dayton) as well as feature classes and codes (e.g. the feature class of Wright State 

University is a spot, building or farm and its feature code is school). This provides an extensive 

source of semantic spatial information that allows us to construct an intuitive mechanism for 

finding sensor data by region. In addition to feature hierarchy, each GeoNames location provides 

a nearbyFeature relationship that links to a set of locations that are near the original location. The 

nearbyFeature relationship provides another way to find locations near a sensor. 

 

In order to encode these relations between a sensor and the nearest GeoNames location, sensors 

are annotated with a link to LocatedNearRel. The LocatedNearRel concept encodes information 

about the ‘near’ relationship that holds between a sensor and a named location. More specifically, 

it contains the closest GeoNames location and its distance from the sensor. The structure is 

illustrated in Figure 2.10. 

 

 

Figure. 2.10. Concepts and relations linking sensors (or processes) described in 

LinkedSensorData to features described in GeoNames 

 

Sensor Discovery Query over Linked Data – With sensor and observation data published with 

relationships to spatial datasets on Linked Data, discovery simply becomes a matter of querying 

RDF data. In our implementation, we perform SPARQL queries over a cached version of the 
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relevant portions of Linked Data, particularly named locations in GeoNames and sensor 

descriptions in LinkedSensorData described above. Currently, we support discovery of sensors 

based on GeoNames locations through two basic operations:  

 Find the named location closest to a given sensor 

 Find all sensors near a given named location 

 

Figure 2.11 shows an example query asking the following question: Find sensors near Wright 

State University that can tell me about temperature and precipitation. The results from this query 

will include sensors near the specified location and the associated distance between the sensor 

and location. 

 

 

Figure 2.11. Example discovery query of LinkedSensorData 

 

2.4. Semantic Sensor Network Ontology 

 

The O&M-OWL ontology described above served as inspiration for the Semantic Sensor 

Network (SSN) ontology [Lefort11][Compton12] developed by the W3C Semantic Sensor 

Network Incubator Group [SSN-XG]. This group included over 40 researchers from 16 

organizations. My role in this group consisted of leading the development of a semantic 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX geonames:<http://www.geonames.org/ontology#> 

PREFIX om-owl:<http://knoesis.wright.edu/ssw/sensor-observations.owl#> 
PREFIX weather: <http://knoesis.wright.edu/ssw/weather.owl#> 

 

SELECT DISTINCT ?sensor ?dist 
WHERE { 

    ?sensor rdf:type om-owl:System . 

    ?sensor om-owl:hasLocatedNearRel ?near .  
    ?sensor om-owl:parameter weather:AirTemperature . 

    ?sensor om-owl:parameter weather:Precipitation . 

    ?near om-owl:distance ?dist .  
    ?near om-owl:hasLocation ?location .  

    ?location geonames:name “Wright State University” .  

};  

 



36 

 

annotation framework (for annotating SWE documents), contributing to the design and 

development of the ontology, and acting as editor of the final report. The SSN ontology is 

currently being used for improved management of sensor data on the Web, involving annotation, 

integration, publishing, and search [Gray11][Calbimonte11][Pfisterer11]. The ontology defines 

concepts for representing sensors, sensor observations, and knowledge of the environment. Figure 

2.9 provides an overview of the primary classes and properties of the SSN ontology. 

 

 

Figure 2.12.  Overview of the Semantic Sensor Network ontology classes and properties. 

 

The SSN ontology serves as a foundation to formalize the semantics of perception. In particular, 

the representation of observations and environmental knowledge are employed. An observation 

(ssn:Observation) is defined as a situation that describes an observed feature, an observed 

property, the sensor used, and a value resulting from the observation (note: prefix ssn is used to 

denote concepts from the SSN ontology).  A feature (ssn:FeatureOfInterest; for conciseness, 

ssn:Feature will be used throughout the paper) is an object or event in an environment, and a 
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property (ssn:Property) is an observable attribute of a feature. For example, in cardiology, 

elevated blood pressure is a property of the feature Hyperthyroidism. To determine that blood 

pressure is elevated requires some pre-processing; however, this is outside the scope of this work. 

An observation is related to its observed property through the ssn:observedProperty relation. 

 

Knowledge of the environment plays a key role in perception [Neisser76][Gregory97]. Therefore, 

the ability to leverage shared knowledge is a key enabler of semantics-based machine perception. 

In SSN, knowledge of the environment is represented as a relation (ssn:isPropertyOf) between a 

property and a feature. To enable integration with other ontological knowledge on the Web, this 

environmental knowledge design pattern is aligned with concepts in the DOLCE Ultra Lite 

ontology
2
. Figure 2.10(a) provides a graphical representation of environmental knowledge in 

SSN, with mappings to DOLCE. An environmental knowledgebase, storing facts about many 

features and their observable properties, takes the shape of a bipartite graph. Figure 2.10(b) shows 

an example knowledge base with concepts from cardiology. 

 

 

Figure 2.13.  (a) Graphical representation of environmental knowledge in the SSN ontology, with 

mappings to DOLCE Ultra Lite (prefix dul). (b) Graphical representation of an example 

                                                           
2
 http://www.loa-cnr.it/ontologies/DUL.owl  

http://www.loa-cnr.it/ontologies/DUL.owl
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environmental knowledgebase in cardiology, taking the shape of a bipartite graph. This 

knowledgebase is derived from collaboration with cardiologists at ezDI (http://www.ezdi.us/). 

 

2.5. Concluding Remarks 

 

A synthesis of the Sensor Web Enablement standards defined by the OGC and the Semantic Web 

languages defined by the W3C provides a platform for integration and reasoning over sensor 

observations in order to attain shared knowledge of an environment. This platform is broadly 

termed the Semantic Sensor Web [Sheth08], of which SemSOS is a principal component. In the 

preceding chapter we have described how this is accomplished by modeling the domain of 

sensors and sensor observations in a suite of ontologies, adding semantic annotations to the 

sensor data, using the ontology models to reason over sensor observations, and extending an open 

source SOS implementation with our semantic knowledge base.  

 

In 1999, Neil Gross expressed a vision of the future in which sensors were ubiquitous and 

engrained in the fabric of our environment: 

 

“In the next century, planet earth will don an electronic skin. It will use the Internet as a 

scaffold to support and transmit its sensations. This skin is already being stitched together. 

It consists of millions of embedded electronic measuring devices: thermostats, pressure 

gauges, pollution detectors, cameras, microphones, glucose sensors, EKGs, 

electroencephalographs. These will probe and monitor cities and endangered species, the 

atmosphere, our ships, highways and fleets of trucks, our conversations, our bodies--even 

our dreams [Gross99].” 

 

http://www.ezdi.us/
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I share this vision and wish to provide meaning to this new world, which is the subject of the next 

chapter. 
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3.  Semantic Perception 

 

Look at the image in Figure 3.1. How quickly were you able to realize the identity of the depicted 

object? The activity you just engaged in is called perception; and while people are able to 

perceive their environment almost instantaneously, and seemingly without effort, machines 

continue to struggle with the task. In the present chapter, we investigate how people are able to 

perceive the world so effectively and show how an approximation of this process can be 

formalized to better enable machines to perceive. 

 

 

Figure 3.1. A red apple. 

 

The study of perception likely began in ancient Greece when Plato first pondered the meaning of 

shadows dancing on a wall.
1
 The Greek word for perception, intellego, stems from the Latin 

intellegere: inter ("between") and lego ("to choose or gather") [Norwich91]. To the ancient 

Greeks, to perceive was to choose from among alternative explanations which account for our 

observations. Thus, to perceive an apple is to choose from among a range of possibilities, 

including an apple, orange, or ball. These acts of observation and perception provide the building 

                                                           
1  Plato’s Cave, http://en.wikipedia.org/wiki/Allegory_of_the_Cave (accessed May, 2011) 
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blocks for all human knowledge [Locke1960]; they are the processes from which all ideas are 

born; and the sole bond connecting ourselves to the world around us. Now, with the advent of 

sensor networks
2
 capable of observation, this world may be directly accessible to machines. 

Missing from this vision, however, is the ability of machines to glean semantics from 

observation; to apprehend entities from detected qualities; to perceive. The systematic automation 

of this ability is the focus of machine perception – the ability of computing machines to sense and 

interpret the contents of their environment [Nevatia82]. Despite early successes within narrow 

domains (e.g., facial recognition [Zhao03]), however, a general solution remains elusive. This 

state of affairs is the result of difficult research challenges, such as the ability to effectively model 

the process of perception, to provide an appropriate interpretation of observational data with 

incomplete information, and to efficiently interpret the growing stream of observational data. The 

issue of effectively modeling the process of perception is often investigated within specific 

application areas, such as machine vision [Aloimonos88][Diamant07]. While much progress has 

been achieved, this approach also results in a fractured assortment of models and algorithms that 

are effective for narrowly defined problems, such as interpreting sensor data of a single modality. 

Integrating and interpreting sensor data of multiple modalities for a wide range of applications, 

however, requires a more encompassing approach. In an attempt to deal with the latter issue, of 

efficiently interpreting the growing stream of observational data, there is much research within 

the sensors community to mitigate the effects of observational data overload. Many such efforts 

concentrate on developing effective schedules and sampling rates for sensor observations 

[Gürgen06].   Interval-based sampling often generates data (through brute-force collection) that is 

unnecessary for understanding the environment. Another technique for collecting sensor data, 

called event-based sampling [Pawlowski08][Pawlowski09], generates observation records only 

after a particular event is detected (e.g., temperature drops below a certain threshold). 

                                                           
2 A sensor network is a group of specialized measuring devices (i.e., sensors) with a communications infrastructure intended to 

monitor and record conditions within an environment. 
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Unfortunately, this provides limited additional benefits towards effective analysis of (often 

incomplete) data. The dichotomic need for reduced information overload and complete 

information for effective analysis can be addressed through an understanding, and modeling, of 

the techniques employed by human perception. More specifically, the techniques employed by 

human perception, such as the ability to focus attention and seek out additional information from 

our environment, holds the key to simultaneously minimizing the amount of information needed 

for perception and enabling graceful degradation of perception with incomplete information.  

 

Such challenges are addressed through the development of an ontology of perception, IntellegO. 

This ontology is derived from well-established cognitive theories of perception and establishes a 

formal semantics for machine perception. 

 

3.1. Cognitive Models of Perception 

 

What are perceptions and how are they formed? What can be perceived? How do perceptions 

relate to reality? In order to bestow onto a machine the ability to glean semantics from 

observation, such questions require explicit, implementable, answers. As perceptual beings, 

people are constantly inundated with sensory input; yet we are able to make sense out of our 

environment with relative ease. We have a remarkable aptitude for comprehending the world 

around us; for subconsciously analyzing sensory input and apprehending mental conceptions with 

efficiency and precision. For centuries, thinkers have endeavored to understand the mechanisms 

underlying this phenomenon, and through such investigation have advanced complex theories of 

perception within the fields of philosophy, psychology, physiology, cognitive science, and 

machine vision. One idea that has emerged from such investigations includes the ability to utilize 

background knowledge to determine what aspects of the environment to focus our attention 
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[Bajcsy88][Gregory68][Gregory97][Neisser76], which enables a perceiver to efficiently make 

sense of the environment.  

 

 

Figure 3.2. Neisser's Perception Cycle 

 

In the late 1970’s, the idea of perception as a cyclical process began to take form. The most 

famous expression of this idea was proposed by Ulric Neisser in 1976 [Neisser76]. Neisser's 

Perception Cycle is divided into three stages: (1) sampling (or observing) the environment, (2) 

modifying our knowledge (schema) of the environment, based on our newly acquired 

observations, and (3) directing our attention for further exploration. Figure 3.2 shows a graphical 

representation of Neisser’s Perception Cycle. In contemporary research, this general model is 

called Active Perception [Bajcsy88]. The idea of perception as an active, cyclical process laid the 

ground work for our current understanding of human perception. Shortly after, from the early 

1980’s and into the late 1990’s, Richard Gregory’s theories of perception began to take shape and 

were continually refined through investigations into the nature of illusions [Gregory97]. From 

this work, he showed that the perception cycle iteratively generates and tests hypotheses that 

explain our observations. As we progress through these tests, by focused attention on our 

environment, the number of distinct explanatory hypotheses invariably diminishes, leading to 

more precise, unambiguous hypotheses. In addition, Gregory was able to demonstrate that the 
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hypothesize and test cycle is driven by a-priori background knowledge. In other words, our 

perception of the world is highly dependent on our knowledge of the world. More recently, the 

term top-down processing has been used to describe the ability to map observations onto 

background knowledge in order to fill in the gaps of this knowledge. This phenomenon has been 

widely studied within the fields of biological/human vision [Cavanagh99][Gregory97] and 

machine vision [Aloimonos88][Diamant07]. Meanwhile, in the early 1990’s, another unusual 

model of perception emerged from the field of mathematics. At this time, James Gibson’s ideas 

on perception gained influence; in particular, the idea that physical stimuli carry information 

about the world, and our sensory organs have evolved to intercept, extract, and decode this 

information [Gibson66]. From this general idea, Peter Norwich was able to extrapolate the 

conjecture that the stimulus information intercepted by our senses could be measured and 

understood using Claude Shannon’s Information Theory [Shannon48]. This is the basis for the 

Entropy Theory of Perception which uses mathematical models of entropy and information-gain 

to determine the informational value of different observations [Norwich91]. 

 

Inspired by these theories, this work provides an explicit formalization of perception that may be 

understood and systematically executed by machines. The formalization is based on three core 

ideas: 

 

1. Perception is an active, cyclical process of exploration and interpretation (Nessier). 

2. The perception cycle is driven by background knowledge in order to generate and test 

hypotheses (Gregory). 
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3. In order to effectively test hypotheses, some observations are more informative than others 

(Norwich).
3
 

 

Below, these ideas are synthesized and perception is viewed as an efficient, cyclical process of 

actively seeking and detecting those qualities that carry information most useful for testing and 

evaluating hypothesis. 

 

3.2. Ontology of Perception – Set Theory 

 

Over the years, cognitive theories of perception have been proposed, evaluated, revised, and 

evolved within an impressive body of research. This research presents a valuable stepping-stone 

towards the goal of machine perception, to embody this unique human ability within a 

computational system. In this section, the aim is to explicitly define the information processes 

involved in perception that will serve as an ontological account of knowledge production. The 

ontology of perception, or IntellegO, attempts to formally model perception in a way that is 

independent of any particular implementation technology and of suitable generality to encompass 

both machine perception and human perception.
4
 A formal semantics

5
 of perception can be 

defined by providing high-level interpretation of low-level observational data, which may be 

derived through computational means. This ontology is a novel research contribution towards the 

goal of machine perception. 

                                                           
3 To our knowledge, Norwich never actually made this connection between his ideas of measuring the informational value of 

observations and Gregory’s ideas of testing hypotheses. This connection stems from our own imagination, and plays a critical role 

within the ontology of perception.  

4 We are NOT claiming to represent the full spectrum of human perception, but have tried to include ideas from cognitive theory of 

perception that may be useful for machine perception. 

5 Formal semantics is a rigorous, systematic, and unambiguous description of the meaning of some conceptualization, described in 

purely symbolic terms; and often embodied within a set of logical axioms and entailments rules. 
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To communicate the semantics of perception, we must define an appropriate terminology. In the 

text below, we will describe several concepts, relations, and processes. The concepts and relations 

include entity, quality, quality-type, percept, observer, perceiver, focus, perceptual-theory, 

inheres-in, and has-type. These concepts and relations are described in Section 3.2.1. The 

processes include observation-process, perception-process, and perception-cycle. These 

processes, along with several sub-processes, are formally defined in Section 3.2.2. Table 3.1 

provides a quick reference guide. 

 

Table 3.1. Quick reference guide to the terminology of IntellegO. 

Term Description Example 

entity An object or event in the world apple 

quality An inherent property of an entity red 

quality-type A category (or class) of qualities color 

percept A quality that has been detected red 

observer An agent that executes the observation-process sensor 

perceiver An agent that executes the perception-process computer 

focus A quality-type whose detection may reduce the 

perceptual-theory 

color 

perceptual-theory A set of entities that each explains a set of 

percepts 

{apple, nose} 

inheres-in A relation between a quality and an entity red inheres-in apple 

has-type A relation between a quality and a quality-type red has-type color 
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observation-process An act of detecting a quality and generating a 

percept 

observation-process(red)  

red 

perception-process An act of inferring a perceptual-theory from a 

set of percepts 

perception-process(red) 

{apple, nose} 

perception-cycle An act of minimizing a perceptual-theory by 

focusing attention 

perception-cycle(…) 

 {apple} 

 

3.2.1. Semantics of Perception: Concepts and Relations 

 

Imagine again that you are looking at the red apple depicted in Figure 3.1. The apple is an entity 

and red is a quality. The red quality is an inherent property of the apple entity. An entity is an 

object or event in the world; a quality is an inherent property of an entity; and inheres-in is a 

relation between a quality and an entity. Figure 3.3 illustrates an abstract set of inheres-in 

relations. A quality-type is a named category, or class, of qualities; such as color. A quality must 

have one-and-only-one quality-type; has-type is a relation between a quality and a quality-type. 

Different qualities associated with the same quality-type (through the has-type relation) are 

mutually exclusive. For example, red and green are mutually exclusive for the quality-type color. 

The background knowledge needed for perception, termed perceptual-BK, is composed of a set of 

has-type relations between qualities and quality-types, and a set of inheres-in relations between 

qualities and entities. 
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Figure 3.3. Set of inheres-in relations. 

 

An observer is an agent that detects a quality. In this case, the observer is a human eye detecting 

the color red; however, the role of observer can be played by mechanical agents (e.g., sensors), 

biological agents (e.g., human eyes), or social agents (e.g., micro-blogs [Sheth09]). Upon 

detecting the color red, the mind brings forth an experience of redness embodied within an 

experience of an apple (of appleness). These mental experiences are referred to as qualia. While 

there is a clear distinction between a quality, or entity, and its associated qualia, we will make no 

such distinction in IntellegO.
6
 A percept is a quality that has been detected by an observer. A 

perceiver is an agent that generates explanations for a set of percepts; for example, an apple may 

explain the red percept. In this case the perceiver is a human mind; however, the role of perceiver 

can be played by mechanical agents or biological agents [Goldstine64]. An explanation of a set of 

percepts is a set of entities, termed a perceptual-theory. Specifically, each entity in the 

perceptual-theory accounts for (explains) all the percepts. In order to refine or minimize a 

perceptual-theory, a perceiver may provide instructions to an observer to detect a particular 

quality-type. The phrase “detect a particular quality-type” should be interpreted as the detection 

of a member quality. When this occurs, the quality-type is termed focus. This ability to refine a 

                                                           
6 While such a distinction may more accurately reflect, or approximate, human perception, in the authors’ opinion it would also 

complicate IntellegO without adding sufficient utility. 
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perceptual-theory by employing focus is the key to efficient perception and will be further 

discussed in Section 3.2.2.3. Figure 3.4 provides an example of how qualities, quality-types, 

entities, percepts, and perceptual-theories are related. 

 

 

Figure 3.4. Example of how qualities, quality-types, entities, percepts, and perceptual-theories 

are related. The green color and round shape qualities have been detected and can be explained by 

the apple entity. Rudolph’s (“the red-nosed reindeer”) nose is not a member of the perceptual-

theory since it cannot explain a set of percepts containing the green color quality. 

 

3.2.2. Semantics of Perception: Processes 

 

The three primary processes of IntellegO are: observation-process, perception-process, and 

perception-cycle. These processes are formally specified in set-theoretic notation. We have 

chosen to formalize the semantics of IntellegO in this manner because set-theory provides a 

notation that is unambiguous, well-established, and suitably expressive. Before these processes 

are defined, Table 3.2 provides a few required preliminary definitions. 
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Table 3.2. Required definitions for formalizing processes in IntellegO. 

Term Description 

perceptual-BK =  

⟨Q, E, I, QT, T⟩ 
Background knowledge about qualities, entities, and their relationships 

Q Set of all qualities 

E Set of all entities 

I ⊆ (Q × E) Set of all inheres-in relations between qualities and entities 

QT Set of all quality-types 

T ⊆ (Q × QT) Set of all has-type relations between qualities and quality-types 

P ⊆ Q Set of all percepts  

 

3.2.2.1. Observation Process 

 

While looking at the image in Figure 3.1, your eye detects the color red and generates an abstract 

representation in your mind.
7
 This is an example of an observation-process. Given a quality-type 

as input, observation-process returns a detected quality, termed a percept. The observation-

process represents an interface between an agent and the outside world. While we can define the 

input and output parameters of this process, the method in which a quality is detected is highly 

application dependent. For example, in many application scenarios the observation-process would 

activate a transducer which interacts with some physical stimuli, and this interaction is then 

interpreted as the detection of some quality in the world [Kuhn09]. For this reason, only the input 

and output parameters of observation-process are fully specified. 

 

 

                                                           
7 Of course, this is an over simplification of the human visualization process, but is useful here for illustration purposes. 
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Definition: observation-process (QT → Q) 

observation-process(qt) = p, where (p ∈ Q) ⋀ (qt ∈ QT) ⋀  

((p, qt) ∈ T) ⋀ “p is detected” 

 

A set of qualities is considered valid if the set contains at most one quality associated with each 

quality-type. This validity check reflects real-world constraints on a set of percepts and the nature 

of the background knowledge.   

 

Definition: valid (Q → Boolean) 

valid(ps) ⇒ (ps ⊆ Q) ⋀ (∀ p1, p2 ∈ ps : (p1 ≠ p2) ⇒  

(∃ qt1, qt2 ∈ QT : ((p1, qt1) ∈ T) ⋀ ((p2, qt2) ∈ T) ⋀ 

(qt1 ≠ qt2)) 

 

3.2.2.2. Perception Process 

 

Again, while looking at the image in Figure 3.1, after detecting the color red, your mind attempts 

to explain the red color and generates an abstract representation of this explanation in your mind. 

An entity explains a set of qualities if the set of qualities are valid and each quality is an inherent 

property of the entity.  

 

Definition: explains (E × Powerset(Q) → Boolean) 

explains(e, ps) ⇔ (e ∈ E) ⋀ (ps ⊆ Q) ⋀ valid(ps) ⋀  

(∀ p ∈ ps : (p,e) ∈ I) 
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The process of generating explanations for a set of qualities is called the perception-process. The 

perception-process takes a set of qualities as input and yields a set of entities capable of 

explanation; that is, each entity in the set explains the set of qualities. The set of entities generated 

by a perception-process is called the perceptual-theory. In practice, the perception-process should 

attempt to explain only a set of percepts. 

 

Definition: perception-process (Powerset(Q) → Powerset(E)) 

perception-process(ps) = { e ∈ E | explains(e, ps) } 

 

3.2.2.3. Perception Cycle 

 

The perception-process generates a perceptual-theory containing entities that explain a set of 

percepts. Notice that the perceptual-theory can contain multiple entities. This is not an ideal 

situation. When you look at Figure 3.1, you should perceive an apple, not an apple and/or 

Rudolph’s nose. There are examples of human perception, however, where this type of ambiguity 

prevails. Consider the image in Figure 3.5: does this image depict a cup, or two human faces?  

 

 

Figure 3.5. Is this a cup, or two human faces? 

 

While such ambiguity may not always be ideal, the ability of the perceptual-theory to contain 

multiple explanatory entities is also what enables handling of incomplete or missing information 
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(i.e., enables graceful degradation). For example, now (with incomplete information) we say that 

the image in Figure 3.5 depicts either a cup or two human faces; our perceptual-theory is {cup, 

two human faces}. However, if we were to subsequently detect eyes and/or ears, then (with 

additional disambiguating information) our perceptual-theory is refined to {two human faces}. 

The study of perceptual illusions has provided significant insights into the nature of perception 

[Gregory68][Gregory97]. Notwithstanding such cases, in general, we would like the resulting 

perceptual-theory to contain as few entities as possible – ideally, with the goal of reaching exactly 

one. This is because, in general, specificity improves action-ability. For example, the perceptual-

theory resulting from Figure 3.1 is {apple} rather than the ambiguous {apple, Rudolph’s nose}. 

The size of a perceptual-theory can often be reduced (i.e., concepts can be removed/filtered out) 

through the detection of new qualities, which must subsequently be explained. This cyclical 

process of observation and perception is called the perception-cycle. The perception-cycle is a 

process that relates the observation-process and perception-process; or, rather, relates observers 

and perceivers. An observer communicates percepts to a perceiver, representing qualities that 

have been detected, and the perceiver communicates focus to the observer, representing quality-

types that should be detected. Figure 3.6 provides a graphical representation of the perception-

cycle. 

 

 

Figure 3.6. Architecture of the perception-cycle. 
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Within the perception-cycle, as new qualities are detected and the set of percepts grows, the size 

of the perceptual-theory shrinks. Thus, perception is an anti-monotonic process (that is, if f is a 

function that maps a set of percepts to a set of explanatory entities (i.e., perception-process), and 

x, y are sets of percepts, then ((x ⊆ y)  (f(x)⊇ f(y))) [Gries99]. The anti-monotonic nature of the 

perception-cycle does not permit a straightforward formalization in first-order logic using 

standard deductive inference.  

 

In order to optimize the perception-cycle, the observation-process should detect only those 

qualities that are capable of reducing the perceptual-theory. For example, if a perceptual-theory 

contains the entities apple and Rudolph’s nose, detecting shape is probably of little use – i.e., 

cannot help discriminate between an apple and Rudolph’s nose – since you can probably expect 

both to be round(ish). In order to clarify which qualities enable the reduction of the perceptual-

theory, we will define four types of qualities: expected, unknown, extraneous, and discriminating. 

A quality is expected with respect to a set of entities if it is an inherent property of every entity in 

the set. Thus, if it were detected, it would be explained by every entity in the set. By definition, 

all percepts are expected. For example, given the perceptual-theory {apple, Rudolph's nose}, then 

the quality round-shape would be expected since both an apple and Rudolph's nose are round. 

 

Definition: expected (Q × Powerset(E) → Boolean) 

expected(q, es) ⇔ (q ∈ Q) ⋀ (es ⊆ E) ⋀ ¬empty(es) ⋀  

(∀e ∈ es : (q,e) ∈ I) 

 

A quality is unknown with respect to a set of entities if it is not an inherent property of any entity 

in the set. Thus, if it were detected, it would not be explained by any entity in the set. By 

definition, no percepts are unknown. For example, given the perceptual-theory {apple, Rudolph's 
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nose}, then the quality square-shape would be unknown since neither an apple nor Rudolph's 

nose are square. 

 

Definition: unknown (Q × Powerset(E) → Boolean) 

unknown(q, es) ⇔ (q ∈ Q) ⋀ (es ⊆ E) ⋀ ¬empty(es) ⋀  

(∀e ∈ es :(q,e) ∉ I) 

 

A quality is extraneous with respect to a set of entities if it is either an inherent property of every 

entity in the set (expected), or is not an inherent property of any entity in the set (unknown). 

Thus, if it were detected, it would either be explained by all entities in the set or explained by no 

entities in the set. In either case, detection would not help to reduce the perceptual-theory. For 

example, given the perceptual-theory {apple, Rudolph's nose}, then the quality round-shape and 

the quality square-shape would both be extraneous (for different reasons). 

 

Definition: extraneous (Q × Powerset(E) → Boolean) 

extraneous(q, es) ⇔  expected(q, es) ⋁ unknown(q, es) 

 

A quality is discriminating with respect to a set of entities if its detection could potentially be 

used to reduce the size of the perceptual-theory.  The set of discriminating qualities and the set of 

extraneous qualities are disjoint. Note that the set of discriminating qualities is not required to be 

a valid set. For example, for the perceptual-theory {apple, Rudolph's nose}, the quality green-

color would be discriminating since an apple can be green while Rudolph's nose cannot. 

 

Definition: discriminating (Q × Powerset(E) → Boolean) 

discriminating(q, es) ⇔  ¬extraneous(q, es) 
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A perceptual-theory is minimum if it cannot be reduced through further observation. In other 

words, there are no qualities whose detection may discriminate between entities in the perceptual-

theory. 

 

Definition: minimum (Powerset(E) → Boolean) 

minimum(es) ⇔ (∀q ∈ Q : extraneous(q, es)) 

 

With this terminology, we can now define a more specific goal of the perception-cycle: to 

generate a minimum perceptual-theory for a set of percepts. In order to achieve this goal 

efficiently, only those qualities capable of discriminating between entities in the perceptual-

theory should be detected. To ensure only discriminating qualities are detected, a perceiver may 

provide instructions to (task) an observer to detect a particular quality-type, termed focus. This 

ability to refine a perceptual-theory by employing focus is the key to efficient perception. Focus 

is sent to an observation-process capable of detecting the represented quality-type. Given a set of 

entities (i.e., perceptual-theory), the focus-candidates process returns a set of quality-types which, 

when detected, can lead to reducing the perceptual-theory.  

 

Definition: focus-candidates (Powerset(E) → Powerset(QT)) 

focus-candidates(es) = { qt ∈ QT | (∃q ∈ Q : (q ∉ P) ⋀ 

discriminating(q, es) ⋀ ((q, qt) ∈ T)) } 

 

If there are several quality-types capable of reducing the perceptual-theory – i.e., several focus 

candidates – only one (at-a-time) may be designated as focus. The choose process takes a set of 

quality-types as input and returns a quality-type to observe. The method in which a single quality-
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type may be chosen from a set of quality-types is highly application dependent. For this reason, 

only the input and output parameters of the choose process are fully specified. In the next section, 

we evaluate several different implementations of the choose process.  

 

Definition: choose (Powerset(QT) → QT) 

choose(qts) = qt, where (qts ⊆ QT) ⋀ (qt ∈ qts) ⋀  

“one qt is chosen” 

 

The perception-cycle generates the minimum perceptual-theory. The process begins with the set 

of all known entities and an empty set of percepts, and repeatedly seeks suitable observations to 

better assess the situation. The resultant set of entities is progressively refined, to eventually 

obtain the minimum perceptual-theory. This perceptual-theory represents the best possible 

explanation(s) admissible by the given background knowledge (perceptual-BK). The perception-

cycle algorithm proceeds as follows: (1) begin with a perceptual-theory and a set of percepts; (2) 

if the perceptual-theory is minimum then return; otherwise (3) generate and send focus to an 

observation-process and add the detected quality to the set of percepts; and finally, (4) update the 

perceptual-theory by removing those entities which cannot explain the updated set of percepts, 

and recursively continue the perception-cycle.   

 

Definition: perception-cycle (Powerset(E) × Powerset(P) → Powerset(E)) 

Algorithm 

input: es ⊆ E, ps ⊆ P 

if minimum(es) then return es 

else let aux = ps ⋃ {observation-process(choose( 

focus-candidates(es)))}  

      in perception-cycle(perception-process(aux), aux) 



58 

 

 

Function Call 

initialize: es = E, ps = {}  // {} is the empty set 

perception-cycle(es, ps) 

 

3.2.3. Evaluation 

 

In the following section, we provide three evaluations of IntellegO. In Section 3.2.3.1, we 

evaluate the sensing resources required for generating perceptual-theories, and show how focus, 

determined by the perception-cycle, can lead to improved efficiency. In Section 3.2.3.2, we 

evaluate the expressivity of IntellegO along two dimensions: (1) the ability to degrade gracefully 

with incomplete information, and (2) the ability to minimize explanations based on new 

information. IntellegO’s capacity to embody these abilities is compared with current approaches, 

such as SWRL and first-order logic. In Section 3.2.3.3, we evaluate the resources required for 

storing sensor observations and perceptual-theories, and show that, for some applications, the 

generation and storing of perceptual-theories instead of raw observations can lead to significant – 

an order of magnitude – storage savings. 

 

3.2.3.1. Focus Evaluation 

 

The ability to focus attention enables a perceiver to more efficiently make sense of their 

environment. To better automate this process, IntellegO formalizes this ability. Specifically, we 

have implemented a prototype of IntellegO to run three experiments that demonstrate a 

realization of the perception-cycle and test the influence of focus on the interpretation of sensor 

data. Our metric of evaluation, used to compare the results of these experiments, includes the 

number of times the observation-process was executed in order to generate a minimum 
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perceptual-theory. The number of times the observation-process is executed can also be 

represented by the size of the set of percepts to be explained (since each execution of the 

observation-process generates one percept). In the first experiment, we disable the focus ability of 

IntellegO and use background knowledge as discussed in Section 3.2.3.1.1. This is analogous to 

executing a brute force approach and serves as a base-line for comparison against subsequent 

experiments. This approach, however, is unfortunately the common modus operandi for 

collecting and interpreting data from sensor networks. In the second experiment, we enable the 

ability to focus and use the same background knowledge as the first experiment. In the third 

experiment, we enable the ability to focus and attempt to select an optimal focus using an 

enhanced background knowledge represented as a decision tree.  

 

Claim – The use of focus within the perception-cycle generates a perceptual-theory more 

efficiently (i.e., generates a smaller set of percepts) than the naïve brute force approach.  

 

Proof Sketch – Focus-candidates by definition discriminate between entities that can potentially 

serve as a viable explanation. Thus, observing a quality-type designated as focus is guaranteed to 

reduce viable explanations. On the other hand, observing quality-types other than the focus-

candidates is of no consequence because either those values are already known (expected) or they 

are not relevant (unknown) given the current set of viable explanations. Thus, observing quality-

types that are not focus-candidates requires wasteful computation and delays the determination of 

the minimum set of explanations.  

 

Table 3.3 provides definitions used for the following experiments. The domain of interest is 

weather. 
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Table 3.3. Required definitions for evaluating IntellegO. 

Term Description 

perceptual-BK =  

⟨Q, E, I, QT, T⟩ 

Background knowledge about qualities, entities, and their relationships 

(see Figure 3.7) 

Q 

Set of all qualities = {freezing-temperature, not-freezing-temperature, 

snow-precipitation, rain-precipitation, no-precipitation, high-wind-speed, 

low-wind-speed} 

E Set of all entities = {blizzard, flurry, rain-storm, rain-shower, clear} 

I ⊆ (Q × E) Set of all inheres-in relations (see Figure 9) 

QT Set of all quality-types = {temperature, precipitation, wind-speed} 

T ⊆ (Q × QT) Set of all has-type relations (see Figure 9) 

P ⊆ Q Set of all percepts (generated during execution of the perception-cycle) 

 

3.2.3.1.1. Background Knowledge for Focus Evaluation 

 

The background knowledge, or perceptual-BK, utilized by these experiments is encoded as a 

graph representing the relationships between qualities and their types, and between qualities and 

the entities in which they inhere-in. The domain of interest is weather; therefore, the background 

knowledge contains weather related entities, such as blizzard, flurry, rain-storm, rain-shower, and 

clear. Weather related inherent qualities of these entities include freezing-temperature, not-

freezing-temperature, snow-precipitation, rain-precipitation, no-precipitation, high-wind-speed, 

and low-wind-speed. The quality-types include temperature, precipitation, and wind-speed. 

Figure 3.7 illustrates the background knowledge related to weather.  The concepts originated 
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from the National Oceanic and Atmospheric Association (NOAA)
8
 and are encoded in an 

ontology of weather.  

 

 

Figure 3.7. Background knowledge in the domain of weather. The graph shows how qualities and 

quality-types are related through the has-type relationship, and how qualities and entities are 

related through the inheres-in relationship. 

 

The development of background knowledge is often a difficult challenge. In many domains, the 

relationships between qualities and entities are unclear, resulting in representations that may be 

imprecise and/or incomplete. While we acknowledge the difficulty, the development of such 

domain specific knowledge is out of the scope of this work. For examples of recent work in this 

area, see [Punuru07][Suchanek09][Thomas08].  

 

3.2.3.1.2. Implementation 

 

Before describing the experiments, we describe our implementation of IntellegO. The 

implementation is written in Java and conforms to the specification formalized in Section 3.2. 

Figure 3.8 shows an architecture diagram. 

 

                                                           
8 NOAA, http://www.noaa.gov/ 
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Figure 3.8. Architecture of an implementation of IntellegO. 

 

The implementation of IntellegO respects the specification given in Section 3.2. However, two 

processes – observation-process and choose – were only partially defined; only the inputs and 

outputs were defined. The choose process is implemented differently for each experiment below, 

so the details will be described separately for each experiment. Note that the focus-candidates 

process returns a set of quality-types as an ordered sequence (the rationale for this decision is 

discussed in the experiment sections). 

 

The implementation of the observation-process is highly dependent on the way in which sensor 

data is accessed. For example, the observation-process could be designed to task sensors in an 

environment and measure qualities in the world. For the evaluation presented in this paper, 

however, the sensor data has already been collected, encoded in RDF, and made accessible on the 

Web. Therefore, the observation-process, as implemented here, generates and executes a 

SPARQL [Prud’hommeaux08] query against the sensor data on LOD. SPARQL (SPARQL 

Protocol and RDF Query Language) is a W3C recommended language for querying RDF data. A 

set of Java libraries for managing Semantic Web data, Jena/ARQ [Carroll04], is used to build and 

execute the query.  
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The observation-process receives focus as input. In order to utilize this focus to generate an 

appropriate SPARQL query, in this implementation we also annotate focus with additional 

metadata, such as a time-interval and an observer (i.e., weather station). For example, given focus 

of quality-type temperature, time-interval 2003-04-01T02:00:00 to 2003-04-01T03:59:59, and 

observer System_SB1, the observation-process will generate the following SPARQL query to 

detect the quality freezing-temperature.  

 

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> 

prefix lsd: <http://knoesis.wright.edu/ssw#> 

prefix weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#> 

prefix time: <http://www.w3.org/2006/time#> 

 

ASK { 

?observation ssn:observedProperty ?qualitytype . 

   ?qualitytype rdf:type weather:temperature . 

    ?observation ssn:observedBy lsd:System_SB1 . 

    ?observation ssn:observationSamplingTime ?time . 

    ?time time:inXSDDateTime ?datetime . 

    ?observation ssn:observationResult ?result . 

    ?result ssn:hasValue ?value . 

    ?result weather:uom weather:Fahrenheit . 

    FILTER(?value <= 32.0)  

    FILTER(?datetime >= “2003-04-01T02:00:00”^^xsd:datetime) 

    FILTER(?datetime <= “2003-04-01T03:59:59”^^xsd:datetime) 

} 
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If the above ASK query returns true then the percept freezing-temperature is returned, otherwise 

the percept not-freezing-temperature is returned. The percept returned is an URI for the detected 

quality. SPARQL queries for the remaining quality-types are generated and executed in a similar 

manner. The above query is executed against the LinkedSensorData dataset [Patni10].  

 

3.2.3.1.3. Experiment Setup 

 

Between April 1
st
 and April 6

th
 of 2003, a major blizzard hit the state of Nevada. Environmental 

data within the surrounding area was collected by weather-stations, encoded as RDF, and made 

accessible on the Web as Linked Data. For every two hour interval and for each observer within a 

400 mile radius of the blizzard, we execute the perception-cycle and generate a perceptual-theory. 

For each execution of the perception-cycle, the observer is a weather-station and the resulting 

perceptual-theory contains member entities representing the weather event occurring at that time 

and location (of the weather station). After each execution, the resultant perceptual-theory is 

checked for correctness and the total number of percepts, in the set of percepts, is counted. 

 

During the execution of the perception-cycle, two variables affect the size of the set of percepts: 

(1) the order in which quality-types are detected, and (2) the weather conditions surrounding the 

weather-station at the time of observation. The first issue is addressed by the way a quality-type is 

chosen to be observed by the choose process. In order to address the second issue, we evaluate a 

variety of weather conditions by executing the perception-cycle with observers at various 

distances from the blizzard. More specifically, we execute the perception-cycle with observers 

within a distance of 25 miles (17 observers), 50 miles (70 observers), 100 miles (170 observers), 

200 miles (373 observers), and 400 miles (516 observers).  
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Given a particular time-interval and observer, in addition to the weather background knowledge 

described in Section 3.2.3.1.1., the minimum perceptual-theory generated by the perception-cycle 

should always be the same, despite the order in which quality-types are detected. The order only 

affects how efficiently the perceptual-theory is generated. Thus, precision and recall statistics do 

not make sense in this evaluation and will not be shown. In these experiments the minimum 

perceptual-theory always contains either zero or one entity [note that this is a product of how the 

specific qualities and entities are related within the weather background knowledge and not a 

general rule]. As such, the resulting perceptual-theory will be labeled with a single term 

representing the single member entity that explains the set of percepts (e.g., blizzard). If the 

perceptual-theory contains no member entities (representing the empty set) then the perceptual-

theory is labeled as unclassified.  

 

To allow validation, repeatability, and further experimentation, we have stored the data generated 

by these experiments as RDF, accessible at: http://wiki.knoesis.org/index.php/Intellego.  

 

3.2.3.1.4. Experiment 1: No Focus (brute force approach) 

 

An experiment to test the naïve brute force approach was conducted by executing the perception-

cycle as described in Section 3.2.2.3., with one major retraction: the ability to check for 

discriminating qualities and generate focus was disabled. The set of quality-types to choose from 

is given as an ordered sequence: {temperature, precipitation, wind-speed}. The choose process 

simply returns the first quality-type in this ordered sequence. Since, in this scenario, all quality-

types must be detected, the order of detection is irrelevant and the number of percepts generated 

for each execution of the perception-cycle remains constant. For this experiment, we executed the 

perception-cycle 37,152 times; once for each combination of time interval (72) and observer 
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(516). Each execution generated a set of percepts. Table 3.4 shows the total number of percepts 

generated for each set of observers. 

 

Table 3.4. The total number of percepts generated during all the executions of the perception-

cycle during experiment 1 (for different sets of observers). 

25 miles 

(17 observers) 

50 miles 

(70 observers) 

100 miles 

(170 observers) 

200 miles 

(373 observers) 

400 miles 

(516 observers) 

3672 15,120 36,720 80,568 111,456 

 

Table 3.5 shows the types of perceptual-theories that resulted from the execution of the 

perception-cycle for the different sets of observers. From this table, we can see that the clear 

condition is by far the most common while blizzard and unclassified rarely occur. There is a 

minor trend towards a decreasing percentage of blizzard, flurry, and unclassified theories, and an 

increasing percentage of clear theories, as the distance from the blizzard increases. This trend 

seems reasonable, since as you move farther away from the blizzard, the weather is more likely to 

be clear.  

 

Table 3.5. Shows the percentage of different perceptual-theories generated during the execution 

of the perception-cycle (for different sets of observers). 

distance 

(# observers) 

blizzard flurry 

rain-

storm 

rain-

shower 

clear unclassified 

25 miles (17) 1.77% 22.21% 0% 17.65% 58.36% 3.5% 

50 miles (70) 0.5% 17.19% 0.44% 14.04% 67.8% 1.7% 

100 miles (170) 0.25% 14.08% 0.95% 14.83% 69.86% 1.2% 

200 miles (373) 0.11% 9.64% 2.25% 20.5% 67.48% 0.9% 
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400 miles (516) 0.09% 9.11% 2.41% 21.58% 66.81% 0.85% 

 

3.2.3.1.5. Experiment 2: With Focus 

 

The choose process for this experiment is the same as in the first experiment. This time, however, 

the ability to generate focus is enabled and thus the focus-candidates process returns an ordered 

sequence of only those quality-types that may discriminate between entities in the perceptual-

theory. Under these conditions, the ordering in the ordered sequence of quality-types affects the 

number of percepts generated.  

 

Consider the following illustrative examples. Suppose we have a perceptual-theory {blizzard, 

flurry, rain-shower}. First, consider the ordered sequence of quality-types {precipitation, wind-

speed}. The choose process will pick precipitation as focus. Now suppose snow-precipitation is 

detected, resulting in an updated perceptual-theory {blizzard, flurry}. This perceptual-theory is 

not minimum, so the perception-cycle will continue. The next ordered sequence of quality-types 

is now {wind-speed}, so the choose process will pick wind-speed as focus. If we suppose that 

high-wind-speed is detected, the resulting perceptual-theory is {blizzard}. This is a minimum 

perceptual-theory, so the perception-cycle terminates. In total, two percepts were generated, 

snow-precipitation and high-wind-speed. Now consider the case where the ordered sequence of 

quality-types has been changed to {wind-speed, precipitation}. The choose process will pick 

wind-speed as focus. Again suppose high-wind-speed is detected, resulting in an updated 

perceptual-theory {blizzard}. This perceptual-theory is minimum, so the perception-cycle 

terminates. In this case, only one percept was generated, high-wind-speed. 

 

Since we do not know a-priori which ordered sequence of quality-types will produce the optimal 

result, we test each possible sequential order. Given the three quality-types in the background 
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knowledge – temperature (t), precipitation (p), and wind-speed (w) – there are six possible 

orderings. Thus, for this experiment, we executed the perception-cycle 222,912 times; once for 

each time interval (72), observer (516), and permutation of quality-types (6). As expected, the 

perceptual-theories generated during the execution of the perception-cycle, as shown in Table 3.5, 

were found to be identical in this experiment. Figure 3.9 shows the results of executing the 

perception-cycle for the 516 weather-stations within a radius of 400 miles of the blizzard, for 

each time interval, and for each ordering of quality-types.  

 

 

Figure 3.9. Percepts generated by observers within 400 miles of a known blizzard. The horizontal 

axis represents the different orderings of observable qualities; p represents precipitation, w 

represents wind-speed, and t represents temperature. 

 

For each ordering of quality-types, 37,152 perceptual-theories were generated from 111,456 

potential quality-type detections. However, in many cases the number of percepts is far less than 

the number of quality-types that could potentially be detected. For example, with two of the 

orderings (p-t-w and p-w-t) the ratio is less than 48%; this accounts for a significant reduction in 

the number of percepts needed to generate the minimum perceptual-theory. On the other hand, 

with two of the orderings (w-t-p and t-w-p) the ratio is 100%; all of the quality-types were 

detected resulting in the maximum number of percepts.   Looking at Figure 3.9, we see that the 

two orderings with the best results (p-w-t and p-t-w) both begin with precipitation; and the two 
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orderings with the worst results (w-t-p and t-w-p) both place precipitation last in the order. This 

may inform us that a precipitation percept is proficient in discriminating between entities in the 

perceptual-theory. From the weather background knowledge in Figure 3.7 this can be more 

clearly seen by noticing that the no-precipitation quality only inheres-in the entity clear. This 

means that a no-precipitation percept is only explained by the entity clear; if this quality is 

detected then the minimum perceptual-theory is found. Therefore, detecting the precipitation 

quality-type early is an efficient approach. This experiment clearly shows that the order in which 

quality-types are evaluated and detected dramatically affects the efficiency of the perception-

cycle.  

 

The statistics of the remaining executions of the perceptual-cycle – for each set of observers 

within a radius of 25, 50, 100, 200, and 400 miles – are shown in Table 3.6. You may notice that 

the percentage of percepts remains fairly stable across the different sets of observers. There is a 

minor trend towards a decreasing percentage of percepts as the distance from the blizzard 

increases. This trend can be explained by noticing that complex weather conditions (e.g., 

blizzard) may require more percepts to explain than more simple weather conditions (e.g., clear).  

 

Table 3.6. Shows the percentage of percepts generated during the execution of the perception-

cycle (for different sets of observers and orderings of quality-types). 

distance (# observers) p-t-w p-w-t t-p-w t-w-p w-p-t w-t-p 

25 miles (17) 55.58% 56.67% 80.09% 100% 75.49% 100% 

50 miles (70) 50.25% 50.82% 77.21% 100% 73.03% 100% 

100 miles (170) 48.38% 48.80% 76.58% 100% 71.80% 100% 

200 miles (373) 47.60% 47.92% 77.40% 100% 70.20% 100% 

400 miles (516) 47.62% 47.90% 77.63% 100% 69.98% 100% 
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3.2.3.1.6. Experiment 3: With Optimized Focus 

 

The previous experiment showed that while focus is useful for efficient perception, these gains in 

efficiency are dependent on knowing the optimal sequential ordering of quality-types to focus 

attention. Since the number of possible sequential orderings grows exponentially with the total 

number of quality-types (O(n!), where n = # of quality-types), such an approach to arriving at the 

optimal order may not be suitable for Web-scale data. One possible solution to the scalability 

issue would be to learn the optimal ordering of quality-types by analyzing a representative 

training dataset. For this approach, we used the standard decision-tree algorithm (C4.5 

[Mitchell97]). Starting with a representative training dataset that has been annotated with correct 

classifications, a decision-tree representation capable of efficient classification is generated. This 

algorithm is able to compute the optimal ordering of quality-types in polynomial-time with 

respect to the total number of quality-types (O(n
3
 * max(v)

n
, where n = # of quality-types and v = 

# of discrete qualities for a quality-type). The polynomial-time complexity of this algorithm is a 

drastic improvement over the exponential-time complexity of the technique employed in the 

second experiment (Section 3.2.3.1.5.).   

 

In the third experiment, we executed the C4.5 decision-tree algorithm over a training dataset 

which includes a representative sample of quality detections within 400 miles of the blizzard in 

Nevada. An excerpt of the training dataset is shown in Table 3.7, and the resulting decision-tree is 

shown in Figure 3.10. The choose process for this experiment is more complex than in the first or 

second experiment. Instead of simply returning the first quality-type in the sequence, the choose 

process returns the quality-type represented by the current node in the decision-tree, which has 
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the highest informational value (i.e., highest information-gain)
9
. The quality-type represented by 

this node, therefore, is the optimal choice for focusing attention. As noted in Section 3.1, Peter 

Norwich first used Information Theory to quantify the informational value of observations; he 

called this the Entropy Theory of Perception [Norwich91]. This experiment goes (slightly) further 

and orders the observable quality-types based on their informational value and encodes this order 

in a decision tree data-structure.  

 

Table 3.7. Excerpt from the representative training dataset. 

 

 

 

Figure 3.10. Decision tree representing the optimal sequential ordering of quality-types. 

 

The optimal ordering of quality-types, shown in Figure 3.10, begins with precipitation – at the 

root of the tree – followed by wind-speed. This is consistent with the previous optimal orderings 

found in Section 3.2.3.1.5 (i.e., p-w-t). Notice, however, that temperature is not represented 

                                                           
9 The C4.5 decision-tree algorithm is based on Claude Shannon’s Information Theory [Shannon48], and the current node in the tree 
corresponds to the attribute from the training dataset with the highest information-gain [Mitchell97]. 
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within the decision-tree. This omission is the result of a discovery by the decision-tree algorithm 

that temperature is always extraneous.   

 

For this experiment, we executed the perception-cycle 37,152 times; once for each combination 

of time interval (72) and observer (516). Table 3.8 shows the number and percentage of percepts 

generated for each set of observers. The results show an average 50% reduction in the number of 

percepts needed to generate a minimum perceptual-theory; these results mirror those found in 

Section 3.2.3.1.5 for the sequential ordering of quality-types {precipitation, wind-speed, 

temperature}. 

 

Table 3.8. Shows the percentage of percepts generated during the execution of the perception 

cycle (for different sets of observers and orderings of quality types). 

distance (# observers) # of percepts % of percepts 

25 miles (17) 2081 56.67% 

50 miles (70) 7684 50.82% 

100 miles (170) 17921 48.80% 

200 miles (373) 38613 47.92% 

400 miles (516) 53395 47.90% 

 

3.2.3.2. Expressivity Evaluation 

 

In our design and representation of perception, we emphasize two important capabilities: (1) the 

ability to degrade gracefully with incomplete information, and (2) the ability to minimize 

explanations based on new information. Current solutions to the perception problem often encode 

the background knowledge within first-order logic (FOL). In particular, Ricquebourg 
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[Ricquebourg07], Keßler [Keßler09], and Sheth [Sheth08] and have all used the Semantic Web 

Rule Language (SWRL) [Horrocks04] to encode such background knowledge and infer 

explanations. SWRL is a restricted fragment of FOL (see [Horrocks04] for additional details). 

Calder [Calder10] and Henson [Henson09] have also used the Jena Rule Engine for this task. In 

the following section, we compare IntellegO with SWRL and first-order logic; and summarize 

our results in Table 3.9. While IntellegO is expressive enough to achieve both capabilities, SWRL 

achieves neither, and FOL can degrade gracefully with incomplete information, but cannot 

minimize explanations. The ability to minimize explanations is an anti-monotonic process; and 

therefore, it is not surprising that the monotonic FOL and the more restrictive SWRL cannot 

express such a process.  

 

Table 3.9. Qualitative comparison of logic frameworks to express the desired capabilities of 

perception; including the ability to degrade gracefully with incomplete information and the ability 

to minimize explanations with additional information. 

 

Graceful 

Degradation 

Minimize 

Explanations 

IntellegO Yes Yes 

SWRL - - 

FOL Yes - 

 

3.2.3.2.1. Background Knowledge for Expressivity Evaluation 

 

To compare the expressivity of existing approaches, we will provide an example scenario based 

on the background knowledge represented in Figure 3.11 and show how each approach behaves.  
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Figure 3.11. Example background knowledge used within the expressivity evaluation of 

IntellegO (Section 3.2.3.2). 

 

3.2.3.2.1.1. Encoding of Rules in SWRL 

 

A straightforward encoding of Figure 3.11 in SWRL, based on the SSN ontology, is shown 

below. In this encoding, each entity is defined as a rule, as demonstrated by 

[Keßler09][Ricquebourg07][Sheth08]. For each rule, we assume that a generic entity individual 

has been created and added to the knowledge base for each spatial-temporal context. For 

simplicity, all spatial-temporal and value constraints are removed, since they complicate the rules 

without differentiating the approach (note that in a real-world application, such constraints must 

be added).  

 

Blizzard Rule 

ssn:isQualityOf(high-wind-speed, ?e) ⋀  

ssn:isQualityOf(freezing-temperature, ?e) ⋀  

ssn:isQualityOf(snow-precipitation, ?e)  

→ blizzard(?e)  
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Flurry Rule 

ssn:isQualityOf(low-wind-speed, ?e) ⋀  

ssn:isQualityOf(freezing-temperature, ?e) ⋀  

ssn:isQualityOf(snow-precipitation, ?e)  

→ flurry(?e)  

 

Winter Wind Storm Rule 

ssn:isQualityOf(high-wind-speed, ?e) ⋀  

ssn:isQualityOf(freezing-temperature, ?e) ⋀  

→ winter-wind-storm(?e)  

 

In order to satisfy the entity rules defined above, each of the ssn:isQualityOf predicates in the 

antecedent must be satisfied. This is achieved if a corresponding observation is found in the 

knowledge base, as defined in the following rule: 

 

Observation Rule 

ssn:observedProperty(?o,?q) ⋀ ssn:featureOfInterest(?o,?e)  

→ ssn:isQualityOf(?q, ?e) 

 

3.2.3.2.1.2. Additional Rules in FOL 

 

First-order logic (FOL), in general, is more expressive than SWRL. In particular, FOL provides 

the disjunction (⋁) and negation (¬) operator – which are not permissible in SWRL [Mei04] – 

that may be utilized to infer more complex explanations. In addition to the SWRL rules defined 

above, the following FOL rules can be added in order to guarantee that a set of observed qualities 
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(i.e., percepts) are mutually exclusive and collectively exhaustive for each quality-type. These 

rules also require the introduction of the has-type relation from IntellegO, which explicitly relates 

qualities to quality-types. The mutually exclusive criterion says that at most one quality, per 

quality-type, may be detected for each entity.  

 

Mutually Exclusive Rule 

ssn:isQualityOf(?q, ?e) ⋀ io:has-type(?q, ?t)  

→ [∀?q’ ∈ Q : (?q’ ≠ ?q) ⋀ io:has-type(?q’, ?t) → 

¬ssn:isQualityOf(?q’, ?e)] 

 

The collectively exhaustive criterion says that at least one quality, per quality-type, must be 

detected for each entity. This criterion may not be generally true and is not defined in IntellegO; 

but is necessary to infer suitable explanations with FOL.  

 

Collectively Exhaustive Rule 

∀?e ∈ E, ∀?t ∈ QT :[∃ ?q ∈ Q : ssn:isQualityOf(?q, ?e) ⋀  

io:has-type(?q, ?t)] 

 

With the addition of these two rules, and given a set of observations, FOL is able to generate an 

explanation as a disjunction of entities. As seen in the comparisons below, this enables 

satisfactory results in relation to the ability to degrade gracefully with incomplete information. 
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3.2.3.2.2. Expressivity Comparison 

 

Given the background knowledge described above, the following scenarios will provide 

additional facts to the knowledge base. Each will then show the inference results from IntellegO, 

a SWRL inference engine, and a FOL inference engine.  

 

3.2.3.2.2.1. Comparison 1: The ability to degrade gracefully with incomplete information 

 

Given observations for freezing-temperature and snow-precipitation, in addition to the 

background knowledge above, the expected perceptual-theory would be {blizzard, flurry}. That 

is, blizzard is an explanation, and flurry is an explanation. Notice that freezing-temperature and 

snow-precipitation do not completely describe either blizzard or flurry, but they both provide 

evidence for blizzard, and they both provide evidence for flurry.  

 

Facts in knowledge base   

ssn:Entity(e) 

ssn:Observation(o1) 

ssn:observedProperty(o1, snow-precipitation) 

ssn:featureOfInterest(o1, e) 

ssn:Observation(o2) 

ssn:observedProperty(o2, freezing-temperature) 

ssn:featureOfInterest(o2, e) 

 

Given the above facts in the knowledge base resulting from observations, in addition to the rules 

in Section 3.2.3.2.1.1 and Section 3.2.3.2.1.2, the following results:  
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Resulting explanations (i.e., perceptual-theory) 

IntellegO: {blizzard, flurry} 

SWRL:     

FOL:   blizzard(e) ⋁ flurry(e)  

  

From this example, IntellegO provides blizzard as an explanation, and flurry as an explanation, 

for the set of observations. SWRL, on the other hand, does not provide any explanation. FOL 

provides blizzard ⋁ flurry as the explanation. This result occurs by virtue of the fact that high-

wind-speed and low-wind-speed are the only two qualities of quality-type wind-speed. This 

knowledge thus allows FOL to derive meaningful partial information. We can see that both 

IntellegO and FOL allow explanations to degrade gracefully with incomplete information, while 

SWRL does not.  

 

3.2.3.2.2.2. Comparison 2: The ability to minimize explanations based on new information 

 

In the initial situation, we are given observations for high-wind-speed and freezing-temperature.  

 

Initial situation 

Facts in knowledge base 

ssn:Entity(e) 

ssn:Observation(o1) 

ssn:observedProperty(o1, high-wind-speed) 

ssn:featureOfInterest(o1, e) 

ssn:Observation(o2) 

ssn:observedProperty(o2, freezing-temperature) 

ssn:featureOfInterest(o2, e) 
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Given the above facts in the knowledge base resulting from observations, in addition to the rules 

in Section 3.2.3.2.1.1 and Section  3.2.3.2.1.2, the following results:  

 

Resulting explanations (i.e., perceptual-theory) 

IntellegO:  {winter-wind-storm, blizzard}  

SWRL:  winter-wind-storm(e)   

FOL:  winter-wind-storm(e) 

 

Now suppose that the precipitation quality-type is detected and an additional snow-precipitation 

observation is added to the knowledge base. Given observations for high-wind-speed, freezing-

temperature, and snow-precipitation, in addition to the background knowledge above, the 

expected perceptual-theory would be {blizzard}.  

 

Updated situation with new observation 

Facts in knowledge base 

ssn:Entity(e) 

ssn:Observation(o1) 

ssn:observedProperty(o1, high-wind-speed) 

ssn:featureOfInterest(o1, e) 

ssn:Observation(o2) 

ssn:observedProperty(o2, freezing-temperature) 

ssn:featureOfInterest(o2, e) 

ssn:Observation(o3) 

ssn:observedProperty(o3, snow-precipitation) 

ssn:featureOfInterest(o3, e) 



80 

 

 

Given the above facts in the knowledge base resulting from observations, in addition to the rules 

in Section 3.2.3.2.1.1 and Section  3.2.3.2.1.2, the following results:  

 

Resulting explanations (i.e., perceptual-theory) 

IntellegO:  {blizzard} 

SWRL:  winter-wind-storm(e), blizzard(e)  

FOL:   winter-wind-storm(e) ⋀ blizzard(e)  

 

From this example, IntellegO provides blizzard as the only explanation for the set of 

observations, while SWRL and FOL provide winter-wind-storm and blizzard as explanations. 

With IntellegO, as more information (i.e., observations) is provided, the set of explanations is 

reduced to improve specificity. With SWRL and FOL, on the other hand, as more information is 

provided, the set of explanations can grow only larger. We can see that IntellegO has the ability 

to minimize explanations based on new information in an intuitively satisfactory way, while both 

SWRL and FOL are unable to do so due to their monotonicity.  

 

3.2.3.3. Storage Requirements and Scalability Evaluation 

 

In the digital age, information is being generated at an extraordinary pace. It has even been 

suggested that more data has been created in the last three years than in the past 40,000. Around 

2008, this rate of expansion surpassed the generation rate of storage capacity, leading to a future 

where we can no longer store all the sensor data being generated [Higginbotham10]. With this 

future ahead, the efficient representation and interpretation of sensor data at scale has become an 

important area of research.  
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A single flight from New York to Los Angeles on a twin-engine Boeing 737 generates around 

240 terabytes of data; and, on any given day, there are around 28,537 such commercial flights in 

the United States [Higginbotham10]. But how much of this sensor data is actually useful for 

decision-making and needs to be stored for later retrieval? The pilot may need to understand the 

general condition of the plane and the external environment during flight; the ground crew may 

need to know the speed, location and trajectory of the aircraft; and the mechanic may need to 

know of any anomalous behavior detected during the flight. Much of this knowledge must be 

derived from the low-level observational data, but only the high-level inferences may be required 

for actual decision-making (with possible inspection or analysis of a very small minority of the 

raw data). 

 

As another example, consider a weather alert service which represents, stores, and alerts people 

of the type of current weather conditions. In this case, all the low-level observations can be 

discarded while only the perceptual-theories need to be stored. If the weather alert service only 

generates alerts for severe weather conditions, then perceptual-theories representing “irrelevant” 

weather conditions, such as clear, can also be discarded; such information is unnecessary for the 

task of alerting people of severe weather. 

 

We evaluate the resources required for storing sensor observations and perceptual-theories, and 

show that for some applications the generation of perceptual-theories can lead to significant 

storage savings. For this evaluation, we will count the number of records that are generated and 

stored for different dataset storage configurations. A record could represent an observable quality, 

percept, or perceptual-theory. The statistics used in the following five data storage configurations 

are summarized in Figure 3.12.   
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Figure 3.12. Storage requirements for several common dataset configurations; based on statistics 

gathered from the experiment discussed in Section 3.2.3.1. 

 

 All observable qualities are stored,  

 All perceptual-theories are stored,  

 All observable qualities and all perceptual-theories are stored,  

 Only relevant perceptual-theories are stored, and 

 Only relevant perceptual-theories and relevant percepts are stored. 

 

All observable qualities are stored – Within this dataset configuration, percepts for all possible 

observable qualities are generated and stored. From the experiment in Section 3.2.3.1, this 

configuration generates 111,456 records. 

 

All perceptual-theories are stored – This dataset configuration generates and stores perceptual-

theories for all weather conditions (within some spatial-temporal context). From the experiment 

in Section 3.2.3.1, this configuration generates 37,152 records. The ratio of records generated for 

(1) all observable qualities versus (2) all perceptual-theories is around 3:1. Thus, if only 

perceptual-theories are required for an application then the storage requirements result in 66% 

savings. 
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All observable qualities and all perceptual-theories are stored – This configuration represents 

the situation from our experiment in Section 3.2.3.1.4 that executed a brute force approach to 

observe all qualities and generate all percepts and perceptual-theories. During this experiment, 

111,456 percept records and 37,152 perceptual-theory records are generated and stored, totaling 

148,608 records.  

 

Only relevant perceptual-theories are stored – Within this configuration, perceptual-theories 

for only relevant (severe) weather conditions (within some spatial-temporal context) are defined 

and stored. From the experiment in Section 3.2.3.1, we can define a relevant perceptual-theory as 

any perceptual-theory representing a blizzard, flurry, rain-storm, or rain-shower condition. 

12,331 records are generated with this configuration. The ratio of records generated for (1) all 

observable qualities versus (4) only relevant perceptual-theories is around 9:1. The ratio of 

records generated for (3) all observable qualities and all perceptual-theories versus (4) only 

relevant perceptual-theories is around 12:1. These represent over an order of magnitude storage 

savings.  

 

Only relevant perceptual-theories and relevant percepts are stored – It may also be important 

to store the percepts associated with the relevant perceptual-theories. Such information may be 

useful for validation, additional analysis, or simply allowing for further investigation. For 

example, suppose the severe weather alert service described above also allowed the user to access 

the observation records that were used to determine the severe weather condition (e.g., to see just 

how fast the wind is blowing). From the experiment in Section 3.2.3.1, this configuration 

generates 36,993 records. The ratio of records generated for (3) all observable qualities and all 

perceptual-theories versus (5) only relevant perceptual-theories and relevant percepts is 

around 4:1.  
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This evaluation illustrates the benefits that come from the ability to abstract away from the details 

of low-level sensory input and generate high-level explanations. While the application scenarios 

may vary, and the definition of relevance is highly dependent on the domain of interest and 

application, such examples clearly show the benefits, from generating perceptual-theories with 

IntellegO. 

 

3.3. Ontology of Perception – OWL  

 

Emerging solutions to the challenge of machine perception are using ontologies to provide 

expressive representation of concepts in the domain of sensing and perception, which enable 

advanced integration and interpretation of heterogeneous sensor data on the Web. As discussed in 

Section 2, the W3C Semantic Sensor Network Incubator Group [SSN-XG] has recently 

developed the Semantic Sensor Network (SSN) ontology [Lefort11][Compton12] that enables 

expressive representation of sensors, sensor observations, and knowledge of the environment. The 

SSN ontology is encoded in the Web Ontology Language (OWL) and has begun to achieve broad 

adoption within the sensors community [Gray11][Calbimonte11][Pfisterer08]. Such work is 

leading to a realization of a Semantic Sensor Web. 

 

OWL provides an ideal solution for defining an expressive representation and formal semantics 

of concepts in a domain. As such, the SSN ontology serves as a foundation for defining the 

semantics of machine perception in OWL. In this section, we present a formal definition of two 

primary inference tasks, in OWL, that are generally applicable to machine perception – 

explanation and discrimination – as an extension of the SSN ontology. A complete representation 

of IntellegO, including the perception cycle, is not provided since such an encoding is beyond the 

expressivity of OWL. 
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3.3.1. Abduction in OWL  

 

Abduction is often described as inference to the best explanation. Given some background 

knowledge and a set of observations, an abductive reasoner will compute a set of best 

explanations. In general, abduction is formalized as Σ ⋀ Δ ⊧ Γ where background knowledge Σ 

and observations Γ are given, and explanations Δ (also called abducibles) are to be computed (⊧ 

refers to the first-order logic consequence relation). One highly popular abductive reasoning 

framework is the Parsimonious Covering Theory (PCT) [Reggia87]. PCT has predominantly been 

used in the domain of medical disease diagnosis. Reasoning in PCT is executed by algorithms 

that support a hypothesize-and-test inference process, and is driven by background knowledge 

modeled as a bipartite graph causally linking disorders to manifestations. The basic premise of 

PCT is that diagnostic reasoning can be divided into two parts: coverage and parsimony. The 

coverage criterion describes how to generate a set of explanations such that each given 

observation is caused by a disorder in the explanation (an observation is a manifestation that has 

been observed). In complicated domains, such as medical disease diagnosis, the number and size 

of explanations may grow to be large. In order to reduce to a more reasonable size, the parsimony 

criterion describes how to choose which explanations are best. Many different parsimony criteria 

have been advanced, including minimum cardinality criterion, subset minimality (irredundancy) 

criterion, etc. [Reggia87]. The single disorder assumption is a simple, yet effective, parsimony 

criterion that has also proved popular in the past; it states that explanations may contain only a 

single disorder.  

 

While OWL [Hitzler09] may not have been designed for abductive reasoning, the integration of 

OWL and abduction has been explored [Elsenbroich06]; however previous approaches have 

required modification of OWL syntax and/or an OWL inference engine [Peraldi09]. In this 
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section, we will demonstrate that OWL does provide some of the expressivity needed to 

approximate diagnostic reasoning – without extension of its syntax or semantics – by outlining a 

suitable encoding of PCT in OWL-DL. We caution the reader, however, that the OWL 

representation discussed does not explicitly implement PCT, but only approximates PCT, since 

OWL inference does not support a hypothesize-and-test inference 

 

3.3.1.1. Parsimonious Covering Theory (PCT) 

 

PCT is an abductive logic framework that provides a formal model of diagnostic reasoning that 

represents knowledge as a network of binary relations. The goal of PCT is to account for 

observed symptoms (qualities) with plausible explanatory hypotheses (entities). PCT has 

predominantly been used in medical disease diagnosis. Reasoning in PCT uses a hypothesize-

and-test inference process and is driven by background knowledge modeled as a bipartite graph 

relating entities to qualities. 

 

PCT divides diagnostic reasoning into two parts: coverage and parsimony. The coverage criterion 

describes how to generate a set of explanations such that each observation is accounted for by an 

entity in the explanation (where an observation is a quality that has been observed). To reduce the 

set of explanations to a reasonable size, the parsimony criterion describes how to select the best 

explanations. Researchers have advanced many different parsimony criteria: minimum cardinality 

criterion, subset minimality (irredundancy) criterion, and so on [Reggia87]. The single-entity 

assumption is a simple yet effective parsimony criterion that has proved popular for medical 

disease diagnosis. It states that explanations may contain only a single entity. 

 

Consider the process of abduction in which background knowledge Σ = Q, E, C, observations Γ 

are given, and explanations Δ are to be inferred. Specifically, an abduction problem P (in PCT) is 
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a 4-tuple Q, E, C, Γ, in which Q is a finite set of qualities, E is a finite set of entities, C : E  

Powerset(Q) is the causation function that maps an entity to the corresponding set of qualities it 

causes, and Γ  Q is the set of observations. For any entity e ∈ E and quality q ∈ Q, effects(q) = 

C(e) and causes(q) = {e | q ∈ C(e)}. effects(E) = ⋃            ∈ . The set EI ⊆ E is said to be a 

cover of QJ ⊆ Q if QJ ⊆ effects(EI). A set Δ  E is an explanation of Γ for a problem E, Q, C, Γ 

if and only if Δ covers Γ and satisfies a given parsimony criterion. A cover EI of QJ is said to be 

minimal if its cardinality is smallest among all covers of QJ. A cover EI of QJ is said to be 

irredundant if none of its proper subsets is also a cover of MJ [Reggia87].  

 

Thus, an explanation is a cover if, for each observation, there is a causal relationship within the 

background knowledge from an entity contained in the explanation to the observed quality. (We 

are implicitly using the one-to-one correspondence between a function over E  Powerset(Q) 

and its equivalent rendering as a relation over E  Q.) An explanation is parsimonious (the best) 

if it contains only a single entity. Thus, an explanation is a parsimonious cover if it contains only 

a single entity that explains all observations. 

 

3.3.1.2. Translating PCT into OWL 

 

Using RDF and OWL to represent information on the Web — and employing OWL reasoners to 

infer new information — is gaining support. For this reason, and given the increasing number of 

observations on the Web, it makes sense to explore using these languages to model the perception 

process. However, OWL isn’t designed for representing abductive inference. So, existing OWL 

ontologies have limited ability to formalize perceptions and derive explanations. Nevertheless, 

OWL does provide some of the expressivity required to derive explanations from observations, 

and we have developed a suitable encoding of PCT in OWL. Translating PCT into OWL lets us 
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use sensor data in standard Semantic Sensor Web format by adapting OWL reasoning to perform 

the needed abductive inference.  

 

Researchers have explored integrating OWL with abductive reasoning [Elsenbroich06]. However, 

this integration would require modifying OWL syntax and/or modifying an OWL inference 

engine. Here, we demonstrate that OWL provides some of the expressivity needed to derive 

explanations — without extending its syntax or semantics — by outlining a suitable encoding of 

PCT in OWL [Henson11a]. Note, however, that the OWL representation discussed only 

approximates PCT, because OWL inference doesn’t support a hypothesize-and-test inference 

process. 

 

The task of representing PCT in OWL involves encoding the background knowledge Σ and the 

set of observations Γ in an OWL ontology such that an OWL reasoner can compute explanations 

Δ that satisfy both the coverage and parsimony criteria. This translation is summarized in Table 

3.11.  

 

Table 3.10. Translating PCT to OWL. 

 PCT OWL 

1 E for all e  E assert Entity(e) 

2 Q for all q  Q assert Quality(q) 

3 C for all  q  C(e) assert causes(e,q) 

4 Γ Explanation ≡ causes.{q1} ⊓ … ⊓ causes.{qn}, where  qi  Γ   

5 Δ for each Δ = {e}, Explanation(e) holds 
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To translate the set of entities E, we create a class Entity, and for all e  E, we create an 

individual instance of type Entity by asserting Entity(e). To translate the set of qualities Q, we 

create a class Quality, and for all q  Q, we create an individual instance of type Quality by 

asserting Quality(q). Finally, to translate the set of causes relation instances C, we create an 

object property causes; and, for all entities in the domain of C and for each q  C(e), we create a 

causes fact by asserting causes(e, q).  

 

To translate the set of observations Γ into OWL, we first select an observation q
1
  Γ and create 

an existentially quantified property restriction for the causes relation, causes.{q
1
}. For each 

additional observation q
i
  Γ (i = 2, ..., n), we create an additional existentially quantified 

property restriction for the causes relation and conjoin it to the previous restriction: causes.{q
1
} 

⊓ … ⊓ causes.{q
n
}. Finally, we create a class Explanation and define it to be equivalent to the 

conjunction of restrictions, Explanation ≡ causes.{q
1
} ⊓ … ⊓ causes.{q

n
}. To generate 

explanations Δ, we execute a query for all individual instances of type Explanation as 

Explanation(?x). Explanation(e) is a result of this query if and only if {e} is a parsimonious 

cover. The resulting knowledge base lies in the tractable EL profile of OWL 2. 

 

Theorem. Given a PCT problem P = E, Q, C, Γ and its translation o(P) into OWL, Δ = {e} is a 

PCT explanation if and only if Explanation(e) is deduced by an OWL-DL reasoner — that is, if 

and only if o(P) ⊧ Explanation(e). 

 

Proof. () If {e} is a parsimonious cover of Γ = {q
1
, …, q

n
}, then, by definition, Γ  C(e). By 

construction of causes in o(P), f : causes.{q
1
} ⊓ … ⊓ causes.{q

n
}. Hence, by definition of 

Explanation, o(P) ⊧ Explanation(e) holds. 
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() To justify our claim that this OWL representation approximates PCT, we verify that all 

query results satisfy both the coverage and parsimony criteria. To satisfy the coverage criterion, 

each binding of ?x for the query Explanation(?x) must be an entity that explains all the 

observations in Γ. This follows from the definition of Explanation ≡ causes.{q
1
} ⊓ … ⊓ 

causes.{q
n
}. That is, Explanation(e) implies causes(e, q

1
) ⊓ … ⊓ causes(e, q

n
). To satisfy the 

parsimony criterion, each binding of ?x must be a single entity. This follows since each entity that 

binds to ?x is a single individual. This completes the proof.  

 

If we want to generalize the definition of Explanation to allow for covers with multiple disorders, 

then the parsimony criterion cannot easily be expressed in OWL, since it would require 

minimization of the extension of a predicate. Simulation by using multiple queries may be an 

option, by incrementally generating cover candidates and checking whether each constitutes an 

explanation. This seems hardly efficient, though, and also unsatisfactory because the parsimony 

criterion itself is not modeled.
10

 

 

3.3.2. Discussion of Terminology  

 

In order to encode important fragments of the ontology of perception, Intellego, into OWL 

(Intellego—OWL), as an extension of the SSN ontology, several terminological adjustments will 

be made. Table 3.10 provides a quick summary of equivalent terms from Intellego—Set Theory, 

PCT, SSN, and Intellego—OWL.  

 

                                                           
10

 In a circumscriptive version of OWL [Grimm09][Bonatti09] it could easily be modeled. 
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Table 3.11. Quick summary of equivalent terms used within the different 

frameworks/formalizations discussed in this chapter. Ontologies formalized in OWL use 

namespace prefixes (SSN uses ssn, and the OWL encoding of Intellego uses io). 

IntellegO –  

Set Theory 

PCT SSN IntellegO –  

OWL 

entity Entity (E) ssn:Feature ssn:Feature 

quality Quality (Q) ssn:Property ssn:Property 

inheres-in causes (C)  

(*inverse of inheres-in) 

ssn:isPropertyOf ssn:isPropertyOf 

percept Observation (Γ) ssn:Observation  

ssn:observedProperty 

io:ObservedProperty 

perceptual-

theory 

Explanation (Δ)  io:ExplanatoryFeature 

expected   io:ExpectedProperty 

unknown   io:NotApplicableProperty 

extraneous    

discriminating   io:DiscriminatingProperty 

focus-candidate    

 

Throughout the remainder of Section 3.3, the Intellego—OWL terminology will be used. Also, 

examples used throughout this section will utilize the knowledge base represented in Figure 3.13. 
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Figure 3.13. Graphical representation of an example knowledgebase in cardiology, taking the 

shape of a bipartite graph. 

 

3.3.3. Semantics of Explanation in OWL  

 

In this section, explanation is encoded in OWL, as an extension of the SSN ontology. Explanation 

is the act of accounting for sensory observations; often referred to as hypothesis building 

[Gregory97][Shanahan05]. More specifically, explanation takes a set of observed properties as 

input and yields the set of features that explain the observed properties. A feature is said to 

explain an observed property if the property is related to the feature through an ssn:isPropertyOf 

relation. A feature is said to explain a set of observed properties if the feature explains each 

property in the set. Example: Given the knowledge base in Figure 3.13, Hyperthyroidism explains 

the observed properties elevated blood pressure, clammy skin, and palpitations. 

 

Explanation is used to derive knowledge of the features in an environment from observation of 

their properties. Since several features may be capable of explaining a given set of observed 

properties, explanation is most accurately defined as an abductive process (i.e., inference to the 

best explanation) [Shanahan05]. Example: the observed properties, elevated blood pressure and 

palpitations, are explained by the features Hypertension and Hyperthyroidism (discussed further 
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below). As discussed above, while OWL has not been specifically designed for abductive 

inference, it does provide some of the expressivity needed to derive explanations.  

 

The formalization of explanation in OWL consists of two steps: (1) derive the set of observed 

properties from a set of observations, and (2) utilize the set of observed properties to derive a set 

of explanatory features. 

 

3.3.3.1. Observed Property 

 

The SSN ontology defines an observation as a situation that describes an observed feature, an 

observed property, a sensor, the method of sensing used, and a value for the observed property. 

Currently, however, an SSN observation can’t directly yield explanations. To accomplish this, we 

must translate the SSN observations to OWL as discussed in Section 3.3.1.2.  

 

An observed property is a property that has been observed. Note that observations of a property, 

such as elevated blood pressure, also contain information about the spatiotemporal context, 

measured value, unit of measure, etc., so the observed properties need to be “extracted” from the 

observations. To derive the set of observed properties (instances), first create a class 

ObservedProperty. For each observation o in ssn:Observation create an existentially quantified 

property restriction for the ssn:observedProperty
—

 relation, and disjoin them as follows (note: x
—

 

represents the inverse of relation x):   

 

Definition 1: ObservedProperty  

ObservedProperty ≡ ssn:observedProperty—.{o1} ⊔ … ⊔ 

ssn:observedProperty—.{on} 
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Example: Assume the properties elevated blood pressure and palpitations have been observed, 

and encoded in RDF (conformant with SSN): 

 

ssn:Observation(o1),  

ssn:observedProperty(o1, elevated blood pressure) 

ssn:Observation(o2),  

ssn:observedProperty(o2, palpitations) 

 

Given these observations, the following ObservedProperty class is constructed: 

 

ObservedProperty ≡ ssn:observedProperty—.{elevated blood 

pressure} ⊔ ssn:observedProperty—.{palpitations} 

 

Executing the query ObservedProperty(?x) can infer the properties, elevated blood pressure and 

palpitations, as individuals of type ObservedProperty: 

  

ObservedProperty(elevated blood pressure)  

ObservedProperty(palpitations) 

 

3.3.2.2. Explanatory Feature 

 

An explanatory feature is a feature that explains the set of observed properties. To derive the set 

of explanatory features, create a class ExplantoryFeature, and for each observed property p in 

ObservedProperty create an existentially quantified property restriction for the ssn:isPropertyOf
—

 

relation, and conjoin them as follows:   
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Definition 2: ExplanatoryFeature  

ExplanatoryFeature ≡ ssn:isPropertyOf—.{p1} ⊓ … ⊓ 

ssn:isPropertyOf—.{pn}  

 

Recall (from Section 3.3.1) that the set of observations Γ = {q
1
 … q

n
}, when translated to OWL, 

are encoded as Explanation ≡ causes.{q
1
} ⊓ … ⊓ causes.{q

n
}. When extending the SSN 

ontology with explanation, the ssn:isPropertyOf
—

 relation is interpreted to be equivalent to causes 

in PCT. 

 

To derive the set of all explanatory features, construct the ObservedProperty class and execute the 

query ObservedProperty(?x) with an OWL reasoner. Then, construct the ExplanatoryFeature 

class and execute the query ExplanatoryFeature(?y).  

 

Example: As above, assume the properties elevated blood pressure and palpitations have been 

observed: 

 

ObservedProperty(elevated blood pressure)  

ObservedProperty(palpitations) 

 

Given these observations, the following ExplanatoryFeature class is constructed: 

 

ExplanatoryFeature ≡ ssn:isPropertyOf—.{elevated blood 

pressure} ⊓ ssn:isPropertyOf—.{palpitations} 
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Given the knowledge base in Figure 3.13, executing the query ExplanatoryFeature(?y) can infer 

the features, Hypertension and Hyperthyroidism, as explanations: 

  

ExplanatoryFeature(Hypertension)  

ExplanatoryFeature(Hyperthyroidism) 

 

This encoding of explanation in OWL (see DEF 2) provides an accurate simulation of abductive 

reasoning in the Parsimonious Covering Theory [Reggia87], with the single-entity (as discussed 

in Section 3.3.1.1) [Henson11][Henson12]. The Description Logic expressivity of the explanation 

task is ALCOI
11,12

, with ExpTime-complete complexity [Tobies01]. 

 

3.3.4. Semantics of Discrimination in OWL 

 

Although the result give above is valid (that is, both Hypertension and Hyperthyroidism are 

explanations – i.e., parsimonious covers), we might not be satisfied and might want to 

distinguish, or discriminate, between these two explanations. In this section discrimination (or 

focus) is encoded in OWL, as an extension of the SSN ontology. As discussed previously, 

Discrimination is the act of deciding how to narrow down the multitude of explanatory features 

through further observation. The innate human ability to focus attention on aspects of the 

environment that are essential for effective situation-awareness stems from the act of 

discrimination [Neisser76][Gregory97][Bajcsy88]. Discrimination takes a set of features as input 

and yields a set of properties. A property is said to discriminate between a set of features if its 

presence can reduce the set of explanatory features. Example: Given the knowledge base in 

                                                           
11

 Using DL constructs: ⊓, ⊔,, {a}, R— 
12

 http://www.cs.man.ac.uk/~ezolin/dl/ 

http://www.cs.man.ac.uk/~ezolin/dl/
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Figure 3.13, the property clammy skin discriminates between the features, Hypertension and 

Hyperthyroidism (discussed further below). 

 

The ability to identify discriminating properties can significantly improve the efficiency of 

machine perception [Henson11c]. Such knowledge can then be used to task sensors capable of 

observing those properties. 

 

To formalize discrimination in OWL, we will define three types of properties: expected property, 

not-applicable property, and discriminating property. 

 

3.3.4.1. Expected Property 

 

A property is expected with respect to (w.r.t.) a set of features if it is a property of every feature in 

the set. Thus, if it were to be observed, every feature in the set would explain the observed 

property. Example: the property elevated blood pressure is expected w.r.t. the features, 

Hypertension, Hyperthyroidism, and Pulmonary Edema. To derive the set of expected properties, 

create a class ExpectedProperty, and for each explanatory feature f in ExplanatoryFeature, create 

an existentially quantified property restriction for the ssn:isPropertyOf relation, and conjoin them 

as follows:   

 

Definition 3: ExpectedProperty  

ExpectedProperty ≡ ssn:isPropertyOf.{f1} ⊓ … ⊓ 

ssn:isPropertyOf.{fn} 
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3.3.4.2. Not Applicable Property 

 

A property is not-applicable w.r.t. a set of features if it is not a property of any feature in the set. 

Thus, if it were to be observed, no feature in the set would explain the observed property. 

Example: the property clammy skin is not-applicable w.r.t. the features, Hypertension and 

Pulmonary Edema. To derive the set of not-applicable properties, create a class 

NotApplicableProperty, and for each explanatory feature f in ExplanatoryFeature, create a 

negated existentially quantified property restriction for the ssn:isPropertyOf relation, and conjoin 

them as follows: 

 

Definition 4: NotApplicableProperty  

NotApplicableProperty ≡ ¬ssn:isPropertyOf.{f1} ⊓ … ⊓ 

¬ssn:isPropertyOf.{fn} 

 

3.3.4.3. Discriminating Property 

 

A property is discriminating w.r.t. a set of features if it is neither expected nor not-applicable. 

Observing a discriminating property would help to reduce the number of explanatory features. 

Example: As stated above, the property clammy skin is discriminating w.r.t. the features, 

Hypertension and Hyperthyroidism, as it would be explained by Hyperthyroidism, but not by 

Hypertension. To derive the set of discriminating properties, create a class, 

DiscriminatingProperty, which is equivalent to the conjunction of the negated ExpectedProperty 

class and the negated NotApplicableProperty class. 
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Definition 5: DiscriminatingProperty  

DiscriminatingProperty ≡  ¬ExpectedProperty ⊓ 

¬NotApplicableProperty 

 

To derive the set of all discriminating properties, construct the ExpectedProperty and 

NotApplicableProperty classes, and execute the query DiscriminatingProperty(?x).  

 

Example: Given the explanatory features from the previous example, Hypertension and 

Hyperthyroidism, the following classes are constructed: 

 

ExpectedProperty ≡ ssn:isPropertyOf.{Hypertension} ⊓ 

ssn:isPropertyOf.{Hyperthyroidism} 

 

NotApplicableProperty ≡ ¬ssn:isPropertyOf.{Hypertension} ⊓ 

¬ssn:isPropertyOf.{Hyperthyroidism} 

 

Given the KB in Figure 3-13, executing the query DiscriminatingProperty(?x) can infer the 

property clammy skin as discriminating:  

 

DiscriminatingProperty(clammy skin) 

 

To choose between Hypertension and Hyperthyroidism, task a sensor to measure galvanic skin 

response (i.e., for clammy skin). The Description Logic expressivity of the discrimination task is 

ALCO
13

, with PSpace-complete complexity [Tobies01]. 

                                                           
13

 using DL constructs: ⊓,  ∃, {a}, ¬C 
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3.4. Related Work 

 

In addition to the SSN ontology, there have been several other attempts to develop an ontology 

for sensors and sensor observations [Compton09]. Kuhn [Kuhn09] and Stasch [Stasch09] have 

developed an ontology for describing sensors and sensor observations in Haskell. Similar to 

IntellegO, this ontology attempts to represent the process of observation in a way that is 

independent of any particular implementation technology (e.g., machine sensor, human eye). The 

Perception, Cognition and Communication (PCC) Ontology defines a set of classes and relations 

that provide terminology to describe "what we believe exists, what we experience, what we think 

and what we communicate [Anandavala10]." PCC shares many concepts with the ontology of 

perception described in this paper. However, we have been unable to find any use-case, 

application, or evaluation for this ontology. Even the Gene Ontology (GO) contains 

representation for sensory perception [SensoryPerception10]. However, perception in GO is 

defined as a neurophysiological process and is similar to what we describe as the observation-

process. Devaraju et al. [Devaraju10] have developed an approach for representing the 

relationship between observed qualities and the geo-processes that influence those observations. 

This approach is aligned with the DOLCE foundational ontology [Borgo09] and has been used to 

represent relations between qualities and entities in the domain of hydrology. This ontology has 

been used primarily for the integration of sensor data, and there is no attempt to show how to 

perform inference over observed qualities. Scheider et al. [Scheider10] have developed a general 

theory for grounding entities and qualities to observation processes, based on ideas from language 

semantics.  

 

In addition to the development of related ontologies, there have been several efforts to reason 

over observational data, encoded as RDF, in order to infer entities in the world. In 2008, Sheth 
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[Sheth08] suggested using the Semantic Web Rule Language (SWRL) to reason over sensor data. 

Since this time, First-Order Logic (FOL) rules are often employed to derive knowledge of the 

features in the environment [Keßler09][Scheider10][Devaraju11].  Keßler [Keßler09] has further 

developed this idea and provides a suitable investigation of the use of SWRL for reasoning over 

sensor data. Ricquebourg [Ricquebourg07] has utilized SWRL to infer context and determine 

proper actions (i.e., turn on/off lights) within a smart home environment which contains sensors. 

Calder [Calder10] has used the Jena Semantic Web Toolkit [Carroll04] to define rules to detect 

anomalous events (such as winter weather and algal blooms). Taylor et al. [Taylor11] have used 

Complex Event Processing to derive knowledge of events from observation data encoded in SSN. 

These approaches all define first-order logic (deductive) rules to infer entities from qualities. As 

discussed in this paper, however, such an approach is limited in its ability to represent the anti-

monotonic, abductive nature of perception, to handle incomplete information, and to minimize 

explanations based on new information. In particular, such approaches cannot model perception 

as a cyclical process that actively seeks out and detects those qualities which carry information 

most useful for explanation. In addition, as we have shown, several inference tasks useful for 

machine perception do not require the full expressivity of FOL; they are expressible in OWL, a 

decidable fragment of FOL. 

 

Reggia and Peng [Reggia86] have discussed techniques for abductive reasoning (called 

Parsimonious Covering Theory) that is similar to the approach taken in this paper; however, they 

were mainly interested in inferring medical diseases from symptoms. Perhaps the closest related 

work is by Shanahan [Shanahan05], who formalized an abductive account of perception using 

Event Calculus. More specifically, he characterized perception as follows:  

 

“Given a stream of low-level sensor data, represented by the conjunction Γ of a set of 

observation sentences, the task of perception is to find one or more explanations of Γ in 
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the form of a consistent logical description Δ of hypothesized objects, such that, Σ  Δ  

Γ, where Σ is a background theory describing the environment [Shanahan05].” 

 

Thirunarayan [Thirunarayan09] explored how a logic programming-based abductive reasoning 

framework can benefit the formalization and interpretation of sensor data to garner situation 

awareness. Although there are several related efforts, the research discussed in this paper is first 

of its kind to present and evaluate an approach that is grounded in well-established cognitive 

theories of perception and also applicable for sensor applications on the Web. 

 

The integration of Web languages, such as OWL, with abductive reasoning has been explored 

[Elsenbroich06]. However, previous efforts have required modification of OWL syntax and/or 

inference engine [Peraldi09]. We demonstrated that, under the single-feature assumption, 

abductive consequences can be computed using standard OWL reasoners. 

 

3.5. Concluding Remarks 

 

Sensors are quickly becoming ubiquitous and are now collecting data about our environment at an 

extraordinary pace. In this paper, we have demonstrated substantial benefits to be gained in 

processing sensor data by automating an approximation of how people perceive their environment 

efficiently. Specifically, this ability is afforded by background knowledge and the cyclical nature 

of observation and perception processes. While one can take different positions on the 

philosophical (or technical) foundations of perception, it is clear that a careful ontological 

specification makes these positions explicit and testable. The ontology described in this chapter 

establishes a formal semantics for machine perception; and provides a solution to difficult 

challenges, such as the ability to effectively model the process of perception, to provide an 

appropriate interpretation of observational data with incomplete information, and to efficiently 
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interpret and store the growing stream of observational data. This approach has been evaluated on 

a large, open, real-world dataset of weather observations. Three evaluations were provided to 

demonstrate (1) how focus can lead to improved efficiency in generating and processing sensor 

observations, (2) how the expressivity of Intellego compares to existing solutions, and (3) how 

perception can lead to significant storage savings. In the future, such results can be exploited to 

enable significant savings of energy and computational resources. If current trends in sensor 

capabilities continue, the predicted data requirements will be in excess of a yottabyte (1024 

Bytes) by 2015 [Mitre08]. Besides the obvious issues of data management, knowing how to 

effectively make sense of sensor data – that will largely be flowing through the Web – represents 

a significant challenge. This research is an early and modest step in understanding and addressing 

this challenge. 

 

The next chapter will discuss not only how to make sense of sensor data, but also how to do so 

efficiently on resource-constrained devices, such as mobile phones. 
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4.  Intelligence at the Edge 

 

In recent years, we have seen dramatic advances and adoption of sensor technologies to monitor 

all aspects of our environment; and increasingly, these sensors are embedded within mobile 

devices. There are currently over 4 billion mobile devices in operation around the world; and an 

estimated 25% (and growing) of those are smart devices
1
. Many of these devices are equipped 

with sensors, such as cameras, GPS, RFID, and accelerometers. Other types of external sensors 

are also directly accessible to mobile devices through either physical attachments or wireless 

communication protocols, such as Bluetooth. Mobile applications that may utilize this sensor data 

for deriving context and/or situation awareness abound. Consider a mobile device that’s capable 

of communicating with on-body sensors measuring body temperature, heart rate, blood pressure, 

and galvanic-skin response. The data generated by these sensors may be analyzed to determine a 

person’s health condition and recommend subsequent action. The value of such applications such 

as these is obvious, yet difficult challenges remain. 

 

The act of observation performed by heterogeneous sensors creates an avalanche of data that must 

be integrated and interpreted in order to provide knowledge of the situation. This process is 

commonly referred to as perception, and while people have evolved sophisticated mechanisms to 

efficiently perceive their environment – such as the use of a-priori knowledge of the environment 

[Neisser76][Gregory97] – machines continue to struggle with the task. The primary challenge of 

machine perception is to define efficient computational methods to derive high-level knowledge 

                                                           
1
 http://www.digitalbuzzblog.com/2011-mobile-statistics-stats-facts-marketing-infographic/ 

http://www.digitalbuzzblog.com/2011-mobile-statistics-stats-facts-marketing-infographic/
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from low-level sensor observation data. From the scenario above, the high-level knowledge of a 

person’s health condition is derived from low-level observation data from on-body sensors. 

 

Given the ubiquity of mobile devices and the proliferation of sensors capable of communicating 

with them, mobile devices serve as an appropriate platform for executing machine perception. 

Despite the popularity of cloud-based solutions, many applications may still require local 

processing, e.g., for privacy concerns, or the need for independence from network connectivity in 

critical healthcare applications. The computational complexity of OWL, however, seriously limits 

its applicability and use within resource-constrained environments, such as mobile devices 

[Ali09]. 

 

To overcome this issue, we develop encodings and algorithms for the efficient execution of the 

inference tasks needed for machine perception: explanation and discrimination. Explanation is the 

task of accounting for sensory observations; often referred to as hypothesis building 

[Gregory97][Shanahan05]. Discrimination is the task of deciding how to narrow down the 

multitude of explanations through further observation [Neisser76][Gregory97]. The efficient 

algorithms devised for explanation and discrimination use bit vector operations, leveraging 

environmental knowledge encoded within a two-dimensional bit matrix.  

 

To preserve the ability to share and integrate with knowledge on the Web, lifting and lowering 

mappings between the semantic representations and the bit vector representations are provided. 

Using these mappings, knowledge of the environment encoded in RDF (and shared on the Web, 

i.e., as Linked Data) may be utilized by lowering the knowledge to a bit matrix representation. On 

the other hand, knowledge derived by the bit vector algorithms may be shared on the Web (i.e., as 

Linked Data), by lifting to an RDF representation. 
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In this chapter, two novel contributions towards efficient machine perception in resource-

constrained environments are presented:  

 

1. Lifting and lowering mappings to enable the translation of knowledge between the high-level 

semantic representations and low-level bit-vector representations, and  

2. Efficient algorithms for these inference tasks, using bit vector operations. 

 

The applicability of this approach to machine perception is evaluated on a smart-phone mobile 

device, demonstrating dramatic improvements in both efficiency and scale. Note that this work 

does not support reasoning for all of OWL, but supports what is needed for machine perception, 

which is useful in a variety of applications. Table 4.1 summarizes the data structures used by our 

algorithms. 

 

Table 4.1. Quick summary of data structures used by the bit vector algorithms 

(note: |x| represents the number of members of x). 

Name Description About (type, size) 

KBBM Environmental knowledge Bit matrix of size |ssn:Property| x |ssn:Feature| 

OBSVBV Observed properties Bit vector of size |ssn:Property| 

EXPLBV Explanatory features Bit vector of size |ssn:Feature| 

DISCBV Discriminating properties Bit vector of size |ssn:Property| 

 

The lifting and lowering mappings are provided in Section 4.1. The efficient bit vector algorithms 

for explanation and discrimination are discussed in Sections 4.2 and 4.2, respectively. This 

approach is evaluated in Section 4.3, followed by related work in Section 4.4.  
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4.1. Lifting and Lowering of Semantic Data 

 

To preserve the ability to share and integrate with knowledge on the Web, lifting and lowering 

mappings between the semantic representations and bit vector representations are provided. Using 

these mappings, knowledge of the environment encoded in RDF, as well as observed properties 

encoded in RDF, may be utilized by lowering them to a bit vector representation. Knowledge 

derived by the bit vector algorithms, including observed properties, explanatory features, and 

discriminating properties, may be shared on the Web, by lifting them to an RDF representation. 

 

Environmental knowledge: An environmental knowledgebase is represented as a bit matrix 

KBBM, with rows representing properties and columns representing features. KBBM[i][j] is set to 1 

(true) iff the property pi is a property of feature fj. To lower an SSN KB encoded in RDF: for all 

properties pi in ssn:Property, create a corresponding row in KBBM, and for all features fj in 

ssn:Feature, create a corresponding column. Set KBBM[i][j] to 1 iff there exists a 

ssn:isPropertyOf(pi,fj) relation. Figure 4.1(a) shows an example knowledge base, from Figure 

3.13, which has been automatically lowered to a bit matrix representation. Index tables are also 

created to map between the URI’s for concepts in the semantic representation to their 

corresponding index positions in the bit vector representation. Figures 4.1(b) and 4.1(c) show 

example index tables for properties and features.  
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Figure 4.1. (a) Example environmental  knowledgebase in the domain of cardiology, from Figure 

3.13, represented as a bit matrix. Index tables are used for lifting and lowering environmental 

knowledge between a semantic representation and a bit vector representation. (b) Index table for 

properties. (c) Index table for features. 

 

Observed properties: Observed properties are represented as a bit vector OBSVBV, where 

OBSVBV[i] is set to 1 iff property pi has been observed. To lower observed properties encoded in 

RDF: for each property pi in ssn:Property, OBSVBV[i] is set to 1 iff ObservedProperty(pi). To lift 

observed properties encoded in OBSVBV: for each index position i in OBSVBV, assert 

ObservedProperty(pi) iff OBSVBV[i] is set to 1. To generate a corresponding observation o, create 

an individual o of type ssn:Observation, ssn:Observation(o), and assert 

ssn:observedProperty(o,pi). 

 

Explanatory features: Explanatory features are represented as a bit vector EXPLBV. EXPLBV[j] 

is set to 1 iff the feature fj explains the set of observed properties represented in OBSVBV (that is, 

it explains all properties in OBSVBV that are set to 1). To lift explanatory features encoded in 
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EXPLBV: for each index position j in EXPLBV, assert ExplanatoryFeature(fj) iff EXPLBV[j] is set 

to 1. 

 

Discriminating properties: Discriminating properties are represented as a bit vector DISCBV 

where DISCBV[i] is set to 1 iff the property pi discriminates between the set of explanatory 

features represented in EXPLBV. To lift discriminating properties encoded in DISCBV: for each 

index position i in DISCBV, assert DiscriminatingProperty(pi) iff DISCBV[i] is set to 1. 

 

4.2. Efficient Bit Vector Algorithm for Explanation  

 

The strategy employed for efficient implementation of the explanation task relies on the use of 

the bit vector AND operation to discover and dismiss those features that cannot explain the set of 

observed properties (see Algorithm 1). It begins by considering all the features as potentially 

explanatory, and iteratively dismisses those features that cannot explain an observed property, 

eventually converging to the set of all explanatory features that can account for all the observed 

properties. Note that the input OBSVBV can be set either directly by the system collecting the 

sensor data or by translating observed properties encoded in RDF. 

 

 



110 

 

 

We will now sketch the correctness of the explanation algorithm w.r.t. the OWL specification. 

For each index position in EXPLBV that is set to 1, the corresponding feature explains all the 

observed properties. (See note about indices
2
).  

 

Theorem 1: Given an environmental knowledgebase KB (i.e., KBBM), the following two 

statements are equivalent: 

 

S1: The set of m observed properties {pk1, …, pkm},  i.e., ObservedProperty(pk1) ⊓ … ⊓ 

ObservedProperty(pkm), is explained by the feature fe, implies ExplanatoryFeature(fe). 

S2: The Hoare triple3 holds:   { i  {1, …, m}: OBSVBV[ki] = 1 }  

                           Algorithm 1: Explanation                   

                           { EXPLBV[e] = 1 }. 

 

Proof (S1  S2): The ObservedProperty assertions are captured by the proper initialization of 

OBSVBV, as stated in the precondition. Given (i) S1, (ii) the single-feature assumption, (iii) 

the definition: ExplanatoryFeature ≡ ∃ssn:isPropertyOf
—

.{pk1} ⊓ … ⊓ ∃ssn:isPropertyOf
—

.{pkm}, and (iv) the fact that ExplanatoryFeature(fe) is provable, it follows that i  {1, …, 

m}: ssn:isPropertyOf(pki,fe) is in KB. By our encoding, i  {1, …, m}: KBBM[ki][e] = 1. 

Using lines 5-7, the fact that EXPLBV[e] is initialized to 1 and is updated only for i  {1, …, 

m} where OBSVBV[ki] = 1, we get the final value of EXPLBV[e] = KBBM[k1][e] AND … 

AND KBBM[km][e] = 1 (true). 

                                                           
2  Note that property pki has property index ki and feature fej has feature index ej. So ki ranges over 0 to |ssn:Property|-1 and e/ej range 
over 0 to |ssn:Feature|-1. i and j are merely indices into the enumeration of observed properties and their explanatory features, 

respectively. Thus, i ranges over 1 to |ssn:Property| and j ranges over 1 to |ssn:Feature|. (In practice, initially i is small and j is large, 

and through each cycle of explanation and discrimination, i increases while j diminishes.) 
3  {P} S {Q} where P is the pre-condition, S is the program, and Q is the post-condition. 
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(S2  S1): Given that {i  {1, …, m}: OBSVBV[ki] = 1} and {EXPLBV[e] = 1} (pre and post 

conditions), it follows that i  {1, …, m}: KBBM[ki][e] = 1 must hold. According to our 

encoding, this requires that i  {1, …, m}: ssn:isPropertyOf(pki,e) holds. Using the 

definition of ExplanatoryFeature, it follows that ExplanatoryFeature(e) is derivable  (that is, 

fe explains all the observed properties {pk1, …, pkm}).   

 

Theorem 2: The explanation algorithm (Algorithm 1) computes all and only those features that 

can explain all the observed properties. 

 

Proof: The result follows by applying Theorem 1 to all explanatory features. Q.E.D. 

 

4.3. Efficient Bit Vector Algorithm for Discrimination  

 

The strategy employed for efficient implementation of the discrimination task relies on the use of 

the bit vector AND operation to discover and indirectly assemble those properties that 

discriminate between a set of explanatory features (see Algorithm 2). The discriminating 

properties are those that are determined to be neither expected nor not-applicable. 
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In the discrimination algorithm, both the discriminating properties bit vector DISCBV and the zero 

bit vector ZEROBV, are initialized to zero. For a not-yet-observed property at index ki, the bit 

vector PEXPLBV can represent one of three situations: (i) PEXPLBV = EXPLBV holds and the ki
th
 

property is expected; (ii) PEXPLBV = ZEROBV holds and the ki
th
 property is not-applicable; or 

(iii) the ki
th
 property discriminates between the explanatory features (and partitions the set). 

Eventually, DISCBV represents all those properties that are each capable of partitioning the set of 

explanatory features in EXPLBV. Thus, observing any one of these will narrow down the set of 

explanatory features. 

 

We will now sketch the correctness of the discrimination algorithm w.r.t. the OWL specification. 

Each explanatory feature explains all the observed properties. Lemma 1 shows that this is 

equivalent to all the observed properties being expected properties of the explanatory features.  

 

Lemma 1:  If m observed properties {pk1, …, pkm}, i.e., ObservedProperty(pk1) ⊓ … ⊓ 

ObservedProperty(pkm), are explained by n features {fe1, …, fen}, i.e., ExplanatoryFeature(fe1) 

⊓ … ⊓ ExplanatoryFeature(fen), then the following holds: i: 1 ≤ i ≤ m:  

ObservedProperty(pki)  ExpectedProperty(pki). 

 

Proof Sketch: The result is obvious from the definition: ExplanatoryFeature ≡ 

∃ssn:isPropertyOf
—

.{pk1} ⊓ … ⊓ ∃ssn:isPropertyOf
—

.{pkm}. So, i, j: 1 ≤ i ≤ m /\ 1 ≤ j ≤ n: 

ssn:isPropertyOf(pki,fej). ExpectedProperty ≡ ∃ssn:isPropertyOf.{fe1} ⊓ … ⊓ 

∃ssn:isPropertyOf.{fen}. 
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Lemma 2 restates the assertion (from Lemma 1) that observed properties are also expected 

properties of explanatory features, in terms of the bit vector encoding. 

 

Lemma 2: The initial values of EXPLBV and OBSVBV satisfy the assertion: ki: (OBSVBV[ki] = 

1)  [e: (EXPLBV[e] = 1)  (KBBM[ki][e]) = 1)]. And hence, i: (OBSVBV[ki] = 1)  

[e: (EXPLBV[e] /\ KBBM[ki][e]) = EXPLBV[e])]. 

 

Proof Sketch: The claim follows from Lemma 1 and the bit vector encoding. 

 

Lemma 3 generalizes Lemma 2 to elucidate an efficient means to determine when a not-yet-

observed property is expected, w.r.t. a set of explanatory features. 

 

Lemma 3:  Given property ki (pki) has not-yet been observed, i.e., OBSVBV[ki] = 0, 

ExpectedProperty(pki)  iff    e: (EXPLBV[e] /\ KBBM[ki][e]) = EXPLBV[e]. 

 

Lemma 4 demonstrates an efficient means to determine when a not-yet-observed property is not-

applicable, w.r.t. a set of explanatory features. 

 

Lemma 4:  For explanatory features EXPLBV {fe | EXPLBV[e] = 1}, NotApplicableProperty(pki) 

iff  e:  (EXPLBV[e] /\ KBBM[ki][e]) = ZEROBV[e]. 

 

Proof Sketch: The result follows from: (i) the definition of NotApplicableProperty w.r.t. the set 

of explanatory features: NotApplicableProperty(pki) iff ki, e: ExplanatoryFeature(fe)  

¬∃ssn:isPropertyOf(pki,fe); (ii) [e: ExplanatoryFeature(fe) iff EXPLBV[e] = 1]; and (iii) ki, 

e: [¬∃ssn:isPropertyOf(pki,fe)  KBBM[ki][e] = 0].  
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Theorem 3: The discrimination algorithm (Algorithm 2) computes all and only those properties 

that can discriminate between the explanatory features. 

 

Proof: A not-yet-observed property is discriminating if it is neither expected nor not-applicable. 

The result follows from the definition of discriminating property, Lemma 3, and Lemma 4. 

Q.E.D. 

 

4.4. Evaluation of Bit Vector Algorithms 

 

To evaluate our approach, we compare two implementations of the explanation and 

discrimination inference tasks. The first utilizes an OWL reasoner, and the second utilizes the bit 

vector algorithms. Both implementations are coded in Java, compiled to a Dalvik
4
 executable, and 

run on a Dalvik virtual machine within Google’s Android
5
 operating system for mobile devices. 

The OWL implementation uses Androjena
6
, a port of the Jena Semantic Web Framework for 

Android OS. The mobile device used during the evaluation is a Samsung Infuse
7
, with a 1.2 GHz 

processor, 16GB storage capacity, 512MB of internal memory, and running version 2.3.6 of the 

Android OS. 

 

To test the efficiency of the two approaches, we timed and averaged 10 executions of each 

inference task. To test the scalability, we varied the size of the knowledge base along two 

dimensions – varying the number of properties and features. In the OWL approach, as the number 

of observed properties increase, the ExplanatoryFeature class (DEF 2) grows more complex (with 

                                                           
4
 http://code.google.com/p/dalvik/  

5
 http://www.android.com/  

6
 http://code.google.com/p/androjena/  

7
 http://www.samsung.com/us/mobile/cell-phones/SGH-I997ZKAATT  

http://code.google.com/p/dalvik/
http://www.android.com/
http://code.google.com/p/androjena/
http://www.samsung.com/us/mobile/cell-phones/SGH-I997ZKAATT
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more conjoined clauses in the complex class definition). As the number of features increase, the 

ExpectedProperty class (DEF 3) and NotApplicableProperty class (DEF 4) grows more complex. 

In the bit vector approach, as the number of properties increase, the number of rows in KBBM 

grows. As the number of features increase, the number of columns grows. 

 

To evaluate worst-case complexity, the set of relations between properties and features in the 

knowledge base form a complete bi-partite graph
8
. In addition, for the explanation evaluations, 

every property is initialized as an observed property; for the discrimination evaluations, every 

feature is initialized as an explanatory feature. This creates the worst-case scenario in which 

every feature is capable of explaining every property, every property needs to be explained, and 

every feature needs to be discriminated between. The results of this evaluation are shown in 

Figure 4.2. 

 

 

Figure 4.2. Evaluation results: (a) Explanation (OWL) with O(n
3
) growth, (b) Explanation (bit 

vector) with O(n) growth, (c) Discrimination (OWL) with O(n
3
) growth, and (d) Discrimination 

(bit vector) with O(n) growth. 

                                                           
8 http://en.wikipedia.org/wiki/Complete_bipartite_graph (accessed: June 8, 2012) 

http://en.wikipedia.org/wiki/Complete_bipartite_graph
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Result of OWL evaluations: The results from the OWL implementations of explanation and 

discrimination are shown in Figures 4.2(a) and 4.2(c), respectively. With a knowledge base of 14 

properties and 5 features, and 14 observed properties to be explained, explanation took 688.58 

seconds to complete (11.48 min); discrimination took 2758.07 seconds (45.97 min). With 5 

properties and 14 features, and 5 observed properties, explanation took 1036.23 seconds to 

complete (17.27 min); discrimination took 2643.53 seconds (44.06 min). In each of these 

experiments, the mobile device runs out of memory if the number of properties or features 

exceeds 14. The results of varying both properties and features show greater than cubic growth-

rate (O(n
3
) or worse). For explanation, the effect of features dominates; for discrimination, we are 

unable to discern any significant difference in computation time between an increase in the 

number of properties vs. features. 

 

Result of bit vector evaluations: The results from the bit vector implementations of explanation 

and discrimination are shown in Figures 4.2(b) and 4.2(d), respectively. With a knowledge base 

of 10,000 properties and 1,000 features, and 10,000 observed properties to be explained, 

explanation took 0.0125 seconds to complete; discrimination took 0.1796 seconds. With 1,000 

properties and 10,000 features, and 1,000 observed properties, explanation took 0.002 seconds to 

complete; discrimination took 0.0898 seconds. The results of varying both properties and features 

show linear growth-rate (O(n)); and the effect of properties dominates. 

 

Discussion of results: The evaluation demonstrates orders of magnitude improvement in both 

efficiency and scalability. The inference tasks implemented using an OWL reasoner both show 

greater than cubic growth-rate (O(n
3
) or worse), and take many minutes to complete with a small 

number of observed properties (up to 14) and small knowledge base (up to 19 concepts; 

#properties + #features). While we acknowledge the possibility that Androjena may have 
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shortcomings (such as an inefficient reasoner and obligation to compute all consequences), our 

results are in line with Ali et al. [10] that also found OWL inference on resource-constrained 

devices to be infeasible. On the other hand, the bit vector implementations show linear growth-

rate (O(n)), and take milliseconds to complete with a large number of observed properties (up to 

10,000) and large knowledge base (up to 11,000 concepts).  

 

Consider the mobile application in which a person’s health condition is derived   from on-body 

sensors. A person’s condition must be determined quickly, i.e., within seconds (at the maximum), 

so that decisive steps can be taken when a serious health problem is detected. Also, for the 

application to detect a wide range of disorders (i.e., features) from a wide range of observed 

symptoms (i.e., properties) the knowledge base should be of adequate size and scope. In practice, 

an application may not require a knowledge base of 11,000 concepts; however, many applications 

would require more than 19 concepts. 

 

The comparison between the two approaches is dramatic, showing asymptotic order of magnitude 

improvement; with running times reduced from minutes to milliseconds, and problem size 

increased from 10’s to 1000’s. For the explanation and discrimination inference tasks executed on 

a resource-constrained mobile device, the evaluation highlights both the limitations of OWL 

reasoning and the efficacy of specialized algorithms utilizing bit vector operations. 

 

4.5. Related Work 

 

While OWL is decidable, the computational complexity still limits its practical use within 

resource-constrained environments. A recent W3C Member Submission [HDT11] proposes a 

general-purpose RDF binary format for efficient representation, exchange, and query of semantic 

data; however, OWL inference is not supported. Several approaches to implementing OWL 
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inference on resource-constrained devices include [Ali09][Seitz11][Preuveneers08][Motik12]. 

Preuveneers et al. [Preuveneers08] have presented a compact ontology encoding scheme using 

prime numbers that is capable of class-subsumption. Ali et al. [Ali09] have developed Micro-

OWL, an inference engine for resource-constrained devices implementing a subset of OWL 

constructs, but it is not expressive enough for our inference tasks. McGlothlin et al. 

[McGlothlin10] serialize RDF datasets and materialize data inferred through OWL reasoning 

using bit vectors. For the inference tasks needed for machine perception, however, it is not 

scalable. Since we cannot predict which observed properties require explanation, this approach 

would generate and materialize an ExplanatoryFeature class for all possible (exponentially many) 

combinations of observable properties. In contrast, we have deployed specially tailored linear 

algorithms that compute explanation and discrimination efficiently.  

 

4.6. Concluding Remarks 

 

This chapter has demonstrated an approach to machine perception on resource-constrained 

devices that is simple, effective, and scalable. In particular, two novel contributions were 

presented: (1) lifting and lowering mappings to enable the translation of knowledge between the 

high-level semantic representations and low-level bit-vector representations, and (2) efficient 

algorithms for these inference tasks, using bit vector operations. The bit vector encodings and 

algorithms yield significant and necessary computational enhancements – including asymptotic 

order of magnitude improvement, with running times reduced from minutes to milliseconds, and 

problem size increased from 10’s to 1000’s. The approach is prototyped and evaluated on a 

mobile device, with promising applications of contemporary relevance (e.g., 

healthcare/cardiology).  
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In the future, this approach could be extended to encompass more expressive definitions of 

explanation (beyond the single-feature assumption), rank explanatory features based on 

likelihood and/or severity, and rank discriminating properties based on their ability to reduce the 

number of explanatory features. In addition, the approach could be extended to incorporate 

stream reasoning through (i) periodic sampling and updating of observations, and (ii) explaining 

observations within a time window. 

 

As the number and ubiquity of sensors and mobile devices continue to grow, the need for 

computational methods to analyze the avalanche of heterogeneous sensor data and derive 

situation awareness will grow. Efficient and scalable approaches to semantics-based machine 

perception will be indispensable. 

 

The next chapter will discuss the utility of the semantics-based machine perception framework in 

a real-world scenario. In particular, it will describe the development of a mobile app intended to 

help reduce hospital readmission rates for patients with congestive heart failure. This is 

accomplished through the creation of a cardiology knowledgebase and use of the explanation and 

discrimination inference tasks to recognize a person’s health condition and suggest subsequent 

actions.  
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5.  Knowledge-enabled Healthcare 

 

Knowledge-enabled Healthcare, or kHealth, is a platform that integrates data from passive and 

active sensing (including both machine and human sensors) with background knowledge from 

domain ontologies, semantic reasoning, and mobile computing environments to help people make 

decisions to improve health, fitness, and wellbeing. kHealth brings together the technologies 

discussed in previous chapters to enable advanced healthcare applications, including Semantic 

Sensor Web (Chapter 2), Semantic Perception (Chapter 3), and Intelligence at the Edge (Chapter 

4).  

 

Sensors and mobile computing devices are increasingly being used to monitor and manage 

personal health [Pantelopoulos10][QS12b]. Low-cost (sub-$100), unobtrusive on-body sensors 

can passively track health-related signals such as heart rate, temperature, galvanic skin response, 

and activity level. Mobile computing devices and applications can wirelessly collect the sensor 

data, process the data, and interact with the user. Quantified Self [QS12a], a growing group of 

individuals using low-cost sensors and mobile apps to track health metrics and share their 

experiences, exemplifies the trend. This technology has been successful in monitoring and 

managing simple conditions, i.e., those that can be monitored using a single sensor. The 

monitoring of complex conditions, such as chronic heart failure, however, involves multiple 

sensors of different modalities. The data from even a few multimodal sensors can quickly become 

too complex and confusing for a patient and too time-consuming for a clinician. What is needed 

is a process to convert the low-level data to high-level knowledge useful for understanding 

health-related concepts that are relevant to decision-making. To address this challenge, we utilize 
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a semantics-based approach to machine perception to convert data to knowledge through the 

integration of heterogeneous data and application of perceptual inference. This is now possible 

through the convergence of multiple technologies, including inexpensive and unobtrusive health 

sensors, mobile computing platforms, and maturing semantic technologies [Sheth11].  

 

The approach presented above is embodied in an application that integrates data from passive 

sensors (i.e., on-body sensors), active sensors (i.e., sensors available at home—weight scale, 

blood pressure monitor, etc.—and personal observation), and health-related background 

knowledge. This heterogeneous data is integrated and utilized to generate explanations of the 

low-level physiological data, resulting in high-level knowledge useful for decision-making. The 

integration of heterogeneous sensor data utilizes Semantic Web technologies, in general, and 

recent developments in the Semantic Sensor Web (SSW) (Chapter 2), in particular. The 

application of perceptual inference utilizes recent developments in an ontology of perception 

(Chapter 3) and efficient algorithms for inference on resource-constrained devices (Chapter 4).  

 

The hypothesis is that semantic integration and perception are effective methods for enabling 

users and clinicians to find clinically relevant knowledge from multimodal sensing.  

 

5.1. Motivation for Knowledge-enabled Healthcare 

 

Hospital readmission of patients suffering from chronic conditions, such as heart failure, is a 

growing concern, affecting up to 24.8% of patients [HHS11] and costing $17.4 billion per year 

[Jencks11]. Heart failure is a chronic disease that affects more than 5 million people in the United 

States, and more than 550,000 new cases are diagnosed each year [Gheorghiade09]. It accounts 

for nearly 1.2 million hospitalizations a year as the primary diagnosis [AHA08] and from 2.4 to 

3.6 million as a primary or secondary diagnosis [Fang08]. With an aging population, the 
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incidence and prevalence of heart failure is expected to increase. The estimated cost of heart 

failure in the US for 2008 is $34.8 billion [AHA07]. Approximately 50% of patients are 

readmitted within 6 months after the index case of heart failure [Butler08] and 70% of 

readmissions are related to worsening of the previously diagnosed heart failure [Gheorghiade05]. 

The average rate of readmission within 30 days of discharge for heart failure is 24.8% [HHS11]. 

Because of the seriousness of this problem, 30-day post-discharge heart failure readmission rates 

are now being considered as major quality measures for hospitals. In fact, in 2010 President 

Obama signed into law a new healthcare reform bill that included financial penalties for hospitals 

with high numbers of preventable readmissions [PPACA10]. 

 

A major unresolved challenge is the inability to adequately predict worsening heart failure using 

either patient self-monitoring or remote telemonitoring of symptoms and daily weight 

[Abraham11a][Goldberg03][Fonarow04]. Current solutions to this problem employ traditional 

intervention strategies, such as checkup within 7 days, use of in-body sensors requiring additional 

surgery at significant expense [Abraham11b], and/or remote-monitoring and telemedicine 

(sensors/equipment are often very (prohibitively) expensive). The degree of additional 

commitment (time and money) required from both the patient and the health professionals have 

impeded adoption of these solutions. 

 

Case Study / Example: In the following scenario, John has been hospitalized over the past five 

days for Acute Decompensated Heart Failure (ADHF). Unfortunately, patients discharged post-

ADHF are frequently readmitted due to poor adherence to both the prescribed medications and 

low sodium diet. To reduce the risk of readmission over the next 30 days post-discharge, he will 

be supplied with remote monitoring sensors and a mobile app to help monitor his health. These 

sensors can measure heart rate, breathing rate, skin temperature, movement, galvanic skin 

response, electrocardiogram (ECG), weight, blood pressure, and pulse oximetry (SpO2). By 
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monitoring his physiological status through these sensors, the possible deterioration of John’s 

health can be detected, prior to reaching the point of readmission. 

 

After returning home, John ignores dietary restrictions and misses his medications. This results in 

rapid weight gain due to fluid retention. John begins to have a noticeable increase in respiratory 

rate and a decrease in oxygen saturation (SpO2). With health-related background knowledge, 

Intellego can turn these collected data into high-level explanations, and alert both John and a 

clinician. A clinician reviews John’s data from the sensors and proactively contacts him in order 

to determine that poor adherence is the cause of this deterioration, and advises him accordingly. 

John increases his dietary and medication adherence, preventing a readmission to the hospital. 

These interactions are shown in Figure 5.1.  

 

 

 

 

5.2. kHealth Application 

 

The activity of observing symptoms and diagnosing a patient’s condition is a perceptual act, 

routinely performed by a clinician. Now, with the advent of sensors, machines also have the 

Figure 5.1. Diagram shows the interactions between the patient, 

clinician, sensors, and mobile device. 
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ability to measure physiological signals and observe symptoms. Given this ability, many systems 

simply provide access to raw data, through Internet or mobile access, leading to a deluge of 

incomprehensible data. What these systems lack, and the clinicians possess, is the ability to 

effectively glean semantics from observation, to apprehend entities from detected qualities—in 

short, to perceive.  

 

This section will discuss a practical health application, which uses sensor, mobile, and semantic 

technologies. In particular, the application leverages semantic perception to convert health-related 

sensor data to knowledge through the integration of heterogeneous data and application of 

perceptual inference. The integration of heterogeneous sensor data will utilize Semantic Web 

technologies, in general, and Semantic Sensor Web technologies, in particular. The application of 

perceptual inference will utilize the ontology of perception, Intellego.  

 

To test the solutions to the challenges of semantic perception in healthcare, a semantics-enhanced 

sensor and mobile health application is implemented. This application is capable of observing a 

patient’s symptoms, semantically annotating the data, analyzing the data using medical domain 

knowledge encoded in a clinical cardiology ontology, and providing relevant and useful 

information to aid the patient and clinician in decision-making. The application is developed for 

the Android mobile operating system.
1
  

 

5.2.1. Domain Knowledge Base 

 

A cardiology knowledge base was built by extracting knowledge from different sources available 

on the Web. The knowledge base is expressed using the Resource Description Framework (RDF). 

The primary source of cardiology knowledge is the Unified Medical Language System (UMLS) 

                                                           
1 http://www.android.com/ 

http://www.android.com/
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[Bodenreider04]. UMLS is a comprehensive ontology of biomedical concepts designed and 

maintained by the U.S. National Library of Medicine. All disorders and symptoms in the 

knowledge base were extracted from UMLS. While UMLS provides the hierarchical relations 

between terms, it does not provide causal relations between symptoms and disorders. However, 

using the cardiology-related symptoms and disorders from UMLS, these causal relations were 

extracted from Healthline.com. Healthline.com (http://www.healthline.com/) is a website that 

provides access to vast amounts of health-related information. Finally, this knowledge base was 

vetted by domain experts at ezDI (http://www.ezDI.us) [Perera12]. The resulting cardiology 

knowledge base used by the kHealth application contains 173 disorders, 284 symptoms, and 1944 

causal relations between disorders and symptoms. 

 

Sensors will measure the physiological signals of the user and – using a Bluetooth wireless 

connection – transmit the measurement data to the application, running on the mobile device. 

Two types of sensing are utilized, including both passive sensing and active sensing.  

 

5.2.2. Passive Sensing 

 

With passive sensing, low-cost, unobtrusive, on-body sensors continuously monitor the patient. 

These sensors are aptly referenced as “wear-em-and-forget-em” data tracking devices, and their 

use requires very little commitment from the user; they must simply wear the sensors, carry the 

mobile computing device (i.e., smart phone), and in some cases charge them (sensors and mobile 

devices). Such passive sensors include: heart-rate sensor, accelerometer, temperature sensor, and 

galvanic skin response sensor. We have been prototyping with an accelerometer (http://fitbit.com) 

and a heart-rate monitor (http://www.zephyr-technology.com/consumer-hxm). The data from the 

sensors is automatically transferred to the mobile device through a Bluetooth wireless connection. 

The heterogeneous data from the different sensors is then semantically annotated with concepts 

http://www.healthline.com/
http://www.ezdi.us/
http://fitbit.com/
http://www.zephyr-technology.com/consumer-hxm
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from the SSN ontology and cardiology knowledge base. The low-level semantically annotated 

observations are then converted to useful and actionable knowledge (i.e., 

explanations/abstractions).  

 

As an example, suppose that a patient is wearing a heart-rate sensor and a galvanic skin response 

sensor, resulting in the observations of tachycardia and clammy skin. Given these observed 

symptoms and the cardiology background knowledge, the kHealth app may generate a set of 

explanations including panic disorder, hypoglycemia, hyperthyroidism, myocardial infarction, 

and septic shock. The user and/or clinician may then surmise that, given the users recent history 

of heart disease, this set of explanations is troubling, resulting in follow up treatment. 

 

5.2.3. Active Sensing  

 

Active sensing requires further participation and commitment by the user. The goal is to collect 

information from additional (active) sensors available to the user (e.g., weight scale) and 

observations made by the users themselves (e.g., feeling chest pain). This additional information 

is then used to minimize the set of explanations (generated during the passive sensing phase). The 

types of sensors used in this phase include: blood pressure monitor and weight scale.  

 

Contemporary services such as WebMD.com and HealthLine.com request that patients enter their 

symptoms into a Web form so that the system can provide additional information about potential 

causes. A better approach, as exemplified in this application, is to utilize the derived explanations 

from the passive sensing phase, together with the background knowledge and the focus 

functionality of Intellego, to generate and ask relevant and targeted questions about the symptoms 

of the user. Such questions may require access to sensors available to the user at home (e.g., 

blood pressure monitor), or the questions may only be answerable by the user themselves (e.g., 
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“Are you experiencing chest pain?”). This question-and-answer interaction between the 

application and user proceeds in the form of a common chat dialog (Figure 5.2) to efficiently 

minimize the set of explanations.  

 

 

Figure 5.2. Active sensing through a chat dialog. 

 

Continuing the previous example, recall the tachycardia and clammy skin observations from the 

passive sensing phase, resulting in a set of explanations, including panic disorder, hypoglycemia, 

hyperthyroidism, myocardial infarction, and septic shock. To minimize this set of explanations, 

the application seeks informative observations (by asking questions) regarding lightheadedness, 

trouble breathing, and low blood pressure (since the patient has access to a blood pressure 

monitor). With these additional observations, the App updates the explanations to include 

hypoglycemia and hyperthyroidism. 

 

5.2.3. Application Walkthrough 

 

As discussed above, kHealth is a knowledge-enabled (semantic) application development 

framework with the ability to create advanced healthcare applications. This section provides a 

brief walkthrough and screenshots of an implemented kHealth application for Android devices. 

The main interface screen provides links to the various screens of the application (see Figure 5.3).  
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Figure 5.3. Screenshot of the main interface screen of the kHealth application 

 

Below is a quick overview of the functionality:  

 Observations screen shows current observed symptoms, from both passive and active 

sensing. 

 Manual screen allows the user to manually enter their symptoms. 

 Dialog screen asks the user questions about their symptoms. 

 Alerts screen provides a log of observed precarious symptoms. 

 Sensors screen provides access to the various sensors available to the application. 

 Abstractions screen shows current explanations (i.e., disorders that explain the current set 

of observed symptoms). 

 

In the observations screen, observation measurements and detected symptoms are shown (see 

Figure 5.4(a)). Machine observation measurements, e.g., heart rate, can be seen in real time. Also, 

symptoms detected by the user, and entered through either the manual screen or dialog screen, are 
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also provided. The abstractions screen shows the disorders that explain (or account for) the 

observed symptoms (see Figure 5.4(b)). 

 

 

Figure 5.4. Screenshot of the (a) observations screen and (b) abstractions screen of the kHealth 

application. 

 

In order to narrow down the set of explanatory disorders, the application will ask the user specific 

questions through a dialog screen (see Figure 5.5(a)). The questions are based on discriminating 

symptoms (i.e., symptoms that can discriminate between multiple explanatory disorders). The 

user may also enter their symptoms manual, through the manual screen, if they prefer (see Figure 

5.5(b)). 
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Figure 5.5. Screenshot of the (a) dialog screen and (b) manual screen of the kHealth application. 

 

5.3. Related Work 

 

The most similar related technology to kHealth is a technology called WANDA B – Weight and 

Activity with Blood Pressure Monitoring System – developed by the University of California - 

Los Angeles (UCLA) Wireless Health Institute in conjunction with the UCLA Nursing School. 

WANDA B. is a wireless health technology that uses sensors and wireless communication with a 

smart phone to remotely monitor patients with cardiovascular disorders [Suh11]. Figure 5.6 

shows the architecture of WANDA B. 
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Figure 5.6. WANDA B. Architecture 

 

Similar to the kHealth application discussed in this section, WANDA B. also engages in active 

sensing by asking questions of the user through SMS (Short Message Service) messaging. Each 

day the user is using the application, WANDA asks the user 12 questions derived from the Heart 

Failure Somatic Awareness Scale (HFSAS). HFSAS tracks 12 metrics, or symptoms, that are 

indicative of Congestive Heart Failure, including shortness of breath, swollen feat, chest pains, 

and elevated heart rate [Suh11]. Figure 5.7 shows the questionnaire items of the HFSAS. 

 

 

Figure 5.7. Questionnaire items of the Heart Failure Somatic Awareness Scale (HFSAS) 
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Previous telemedicine approaches, such as WANDA B., have often focused on alerts based on a 

single parameter threshold. To date, studies utilizing single diagnostic parameters such as intra-

thoracic impedance monitoring have been disappointing and, in the only intervention trial yet 

performed, resulted in an increase in heart failure hospitalizations [Veldhuisen11]. Our 

hypothesis is that kHealth provides an improvement over current state-of-the-art technologies. A 

comparison with the closest effort with similar objectives, the WANDA project, is given in Table 

5.1.   

 

Table 5.1. Comparison of kHealth with WANDA. 

 kHealth WANDA 

Architecture Uses local computation on mobile 

devices. 

Sends all sensor data to a remote 

server at a clinic. 

Technology: Device Mobile Device: Android 

smartphone to collect sensor 

observations, compute results, and 

display information. 

Passive Sensors:  Heart Rate 

Monitor. 

Active Sensors: Weight Scale, 

Blood Pressure Monitor, Citizen 

Sensor (users observing their own 

symptoms) 

Mobile Device: Android 

smartphone to collect sensor 

observations and display 

information. 

Web Server: sends observations to 

web server to compute results 

Active Sensors: Weight Scale, 

Blood Pressure Monitor, Heart Rate 

Monitor, Activity Monitor, Citizen 

Sensor (limited to symptoms within 

the Heart Failure Somatic 
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Awareness Scale (HFSAS)). 

Technology: 

Computation 

Abductive inference to explain 

symptoms (utilizing bipartite graph 

relating symptoms to disorders). 

Active Perception by asking 

targeted questions to users. 

 

For each observed symptom, 

determine if the measured value 

crosses some threshold (utilizing 

domain knowledge in the form of 

thresholds for each symptom value). 

Advancing the  

Four P’s of 

Healthcare: 

Personalization, 

Prevention, 

Participation, and 

Prediction 

Personalization: Limited to sensing 

parameter thresholds based on 

population level information. 

Participation: Provides focused 

questioning, and proactive 

engagement. 

Prediction: Provides an explanation 

of observed symptoms, which may 

predict further symptoms. 

Prevention: Provides explanation of 

symptoms that can be used to derive 

actions and treatment. 

Personalization: Limited to sensing 

parameter thresholds based on 

population level information. 

Participation: Limited to asking 

standard questions (e.g., HFSAS). 

Prediction: Prediction of 

readmission using machine learning 

techniques. 

Prevention: Limited since machine 

learning techniques are black box 

(i.e., do not provide reason for 

prediction). 

 

5.4. Evaluation 

 

In order to demonstrate the value of our approach – a semantics-based approach for machine 

perception – in the domain of healthcare, an evaluation has been conducted that focuses on the 
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discrimination operation of Intellego. In particular, the evaluation focuses on the ability to 

discriminate between sets of potential disorders using (1) a restricted set of symptoms (12 used by 

HFSAS/WANDA), and (2) a more comprehensive set of symptoms (284 used by kHealth).  

 

This evaluation will demonstrate that the knowledge base and methodology used by WANDA is 

too limited to effectively derive a minimum set of explanations and determine the specific 

condition of the user. On the other hand, the use of Intellego to determine observable properties 

(i.e., symptoms) that can discriminate between multiple explanations enables the ability to ask 

questions of the user from a larger set of possible symptoms. The use of a knowledge base with a 

larger set of symptoms, and the ability to determine which symptoms are important, improves the 

ability of the health application to determine the condition of the user. 

 

For this evaluation, 496 electronic medical records were used, provided by ezDI 

(http://www.ezDI.us). These records provided grounding for the evaluation by specifying the 

correct diagnosis of a patient. This evaluation is composed of two steps: (1) extracting a 

diagnosed disorder from an EMR record, and (2) discriminate between the multiple possible 

disorders and derive the minimum set of disorders, preferably the diagnosed disorder extracted 

from the EMR (see Algorithm 5.1 below). 

 

Algorithm 5.1: Generate potential disorders – The task of this algorithm is to find the set of 

disorders that the patient could have had, before the medical professional minimized the set of 

hypotheses and produced a diagnosis. In other words, determine all the possible disorders that the 

doctor had to consider and dismiss in order to determine the current disorder and place it within 

the diagnosis in the EMR. To accomplish this, prior disorders are extracted from the EMR (Dprior); 

there is a section of the EMR dedicated to prior disorders.  

 

http://www.ezdi.us/
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[1] Then using knowledge in the cardiology knowledge base, the set of all symptoms that could 

be caused by one of these prior disorders are found (Sprior).  

[2] Next, for the diagnosed disorder, the set of symptoms that could be caused by this disorder 

are found (Snew).  

[3] The set of symptoms that the new disorder shares with the prior disorders are found (Scommon). 

This set of common symptoms represents the observable symptoms that a medical 

professional would need to consider while discriminating between multiple potential 

explanations. More specifically, these are the symptoms that are capable of discriminating 

between disorders the patient has (dnew and Dprior) and the disorders the patient does not have. 

[4] Finally, the set of disorders that explain at least one of the common symptoms are found 

(Dposs). This set of disorders represents the set of disorders that the patient could have had, 

before being diagnosed by the medical professional. In other words, disorders that the doctor 

considered and dismissed during the visit. 

 

Input 

 Dprior: set of previously diagnosed disorders, extracted from EMR (based on prior visits) 

 dnew: newly diagnosed disorder, extracted from EMR (based on current visit) 

 

Procedure 

[1] Sprior := causes(Dprior) // union of all symptoms caused by a prior disorder 

[2] Snew := causes(dnew)    // union of all symptoms of new disorder (dnew) 

[3] Scommon := intersection(Sprior,Snew) // intersection of symptoms that this 

// new disorder and prior disorders have in common 

[4] Dposs := causedBy(Scommon)  // disorders that cause a common symptom 

 

Algorithm 5.1: Discriminate between potential disorders – The task of this algorithm is to 

minimize the set of potential disorders and derive the diagnosed disorder extracted from the 

EMR. This task will use the discrimination operator, given a set of potential disorders to 

discriminate between, a set of observable symptoms, and a knowledge base encoding the causal 

relations between symptoms and disorders. More specifically, the algorithm will minimize the set 
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of potential disorders (all known cardiology-related disorders defined within the cardiology 

knowledge base) by discriminating them with the diagnosed disorder.  

 

[1] First, a copy of the set of possible disorders to be minimized is created (Dmin). 

[2] Next, the algorithm will iterate through each member of the set of possible disorders (di). 

[3] For each disorder in the set of potential disorders, the set of observable symptoms capable of 

discriminating between this potential disorder (di) and the actually diagnosed disorder (dnew) 

are found (Sdisc). 

[4] If the set of discriminating symptoms is empty then the minimum set of potential disorders 

has been found (Dmin is minimal).  

[5] Otherwise, find the set of potential disorders that are causally related to any of the 

discriminating symptoms (Dmin).  

[6] If the set of filtered potential disorders is of size 1 or less then the minimum set has been 

found (Dmin is minimal).  

 

Continue to iterate through this process until the set of potential disorders is minimum; i.e., the 

set contains only one disorder (the diagnosed disorder) or there are still discriminating symptoms. 

As discussed in the results section below, the number of times this process executes measures 

efficiency, and the number of members in the minimum set of potential disorders measures 

specificity. 

 

Input 

 Dposs: set of disorders to discriminate between (generated by Algorithm 5.1) 

 Sobs: set of all observable symptoms, which are accessible by the algorithm 

 dnew: newly diagnosed disorder, extracted from EMR (based on current visit) 

 

Procedure 

[1] Dmin == Dposs   // create copy of set of possible disorders 
[2] for each di in Dposs 

[3] Sdisc := discriminator(dnew,di,Sobs) // find discriminators between 



137 

 

      // a disorder the patient could have (Di) and the disorder  

     // the patient does have (dnew) from the set of observable  

// symptoms (Sobs) 

[4]  if size(Sdisc) == 0 then break // set of potential disorders is minimum  

[5]  Dmin := causedBy(Sdisc)  // set of disorders that cause a discriminating symptom 

[6]  if size(Dmin) <= 1 then break // set of potential disorders is minimum 

 

Experiment – To compare the ability of the two competing approaches to discriminate between 

disorders, two experiments were run. The first experiment evaluated the ability of the 12 

symptoms from HFSAS to discriminate between potential disorders. The second experiment 

evaluated the ability of the symptoms defined in the cardology knowledge base (Section 5.2.1) to 

discriminate between potential disorders. The set of potential disorders (from the cardiology 

knowledge base) is the same for both experiments. The difference between the two experiments 

lies in the set of observable symptoms available to help discriminate between the potential 

disorders (Sobs in Algorithm 5.1). Particularly, in the first experiment the set of observable 

symptoms (Sobs) is composed of the 12 symptoms of HFSAS (see Section 5.3). In the second 

experiment, the set of observable symptoms (Sobs) is composed of the 284 symptoms from the 

cardiology knowledge base (see Section 5.2.1). 

 

Experiment results – For this evaluation, 496 electronic medical records (EMRs) were used, 

selected at random from 3172 EMR records provided by ezDI. There were an average of 3.2 

diagnosed disorders extracted from each EMR. The cardiology knowledge base (from Section 

5.2.1) provided 173 potential disorders.  

 

Result from experiment #1: The first experiment tested the ability of the 12 symptoms from the 

HFSAS to discriminate between potential disorders. This required an average of 7.45 cycles (i.e., 

executions of the discrimination operator) to find the minimum set of explanations. In this case, 

"minimum set" means that the set of explanations cannot be further reduced by observing any 

new symptom. In addition, the minimum set of explanations contained 11.95 disorders, on 
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average. The minimum set of explanations converged to include only the one correct explanation, 

i.e., the disorder within the EMR diagnosis, 20% of the time. 

 

Result from experiment #2: The second experiment tested the ability of the 284 symptoms defined 

in the cardiology knowledge base (Section 5.2.1) to discriminate between potential disorders. 

This required an average of 7.28 cycles (i.e., executions of the discrimination operator) to find the 

minimum set of explanations. 25% of the chosen discriminators were from the set of 12 HFSAS 

symptoms, 75% were not included in the set of 12 HFSAS symptoms. The minimum set of 

explanations contained 1 disorder, on average. In other words, the minimum set of explanations 

converged to include only the one correct explanation, i.e., the disorder within the EMR 

diagnosis, each time. 

 

These two experiments clearly demonstrate that the ability to observe and analyze a larger set of 

symptoms (as used by kHealth) produces more efficient and more precise results as compared to 

the use of a more restricted set of symptoms (as used by HFSAS/WANDA). More specifically, 

the minimum set of explanations can be generated quicker (i.e., using less cycles) given the larger 

set of known symptoms from the cardiology knowledge base (~7.28 cycles) vs. the smaller set of 

symptoms from HFSAS (~7.45 cycles). In addition, even though the minimum set is generated 

more efficiently, the resulting set is also more specific using the larger set of known symptoms (1 

disorder in minimum set of explanations) vs. the smaller set of symptoms from HFSAS (~11.95 

disorders in the minimum set of explanations). Therefore, the approach utilized by kHealth is 

shown to be both more efficient and specific than HFSAS/WANDA for discriminating between 

potential disorders. 
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5.5. Concluding Remarks 

 

A semantics-based approach to machine perception is not only novel, but also demonstrably 

effective and practical. Knowledge-enabled Healthcare (kHealth) is the result of the use of the 

techniques and methodologies presented in this dissertation in the healthcare domain. In 

collaboration with cardiology domain scientists at Ohio State University, Wexner Medical 

Center, a mobile application has been developed to help people improve their cardiovascular 

fitness. Currently the app is being used by patients at the OSU Wexner Medical Center in a pre-

clinical usability trial with the aim of reducing preventable hospital readmissions of patients with 

Acute Decompensated Heart Failure. Hopefully, in the near future, such research may be further 

utilized to empower patients with low-cost, easy-to-use technologies to increase their 

participation in their own healthcare and health decision-making in order to improve their health, 

fitness, and wellbeing. 
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6.  Conclusion 

 

Machine perception is still a hard problem in computer science with many issues to be addressed. 

This dissertation addressed the question of whether machine perception could be formalized using 

semantic web technologies in order to derive abstractions from sensor data using background 

knowledge on the Web, and efficiently executed on resource-constrained devices. The particular 

issues addressed include the semantic annotation of sensor data, the interpretation of sensor data, 

and the efficient and scalable execution on resource-constrained devices. The chapters of this 

dissertation demonstrated the techniques employed to address these issues, as well as real world 

use-cases demonstrating the value of the approach towards solving real problems. More 

concretely, the addressed issues include: 

 

1. Develop techniques for semantically annotating sensor descriptions and sensor observation 

data on the Web to enable advanced integration, query, and inference (Chapter 2: Semantic 

Sensor Web). 

2. Develop techniques for interpreting semantically annotated sensor observation data to derive 

actionable intelligence and situational awareness (i.e., high-level abstractions), using 

background knowledge on the Web (Chapter 3: Semantic Perception). 

3. Develop techniques to enable the efficient and scalable interpretation of semantically 

annotated sensor observation data on resource-constrained devices (Chapter 4: Intelligence at 

the Edge). 

4. Develop a prototype application to demonstrate the utility of the semantics-based machine 

perception framework in a real-world scenario (Chapter 5: Knowledge-enabled Healthcare). 
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6.1. Summary 

 

The semantic annotation of sensor data was addressed in Chapter 2: Semantic Sensor Web. This 

chapter demonstrated techniques for semantically annotating sensor descriptions and sensor 

observation data on the Web to enable advanced integration, query, and inference. This was 

accomplished by marrying the Web-based sensor description languages defined by the Open 

Geospatial Consortium’s Sensor Web Enablement (SWE) and the Web-based ontology languages 

defined by the World Wide Web Consortium. The primary contributions of this chapter included 

(1) an ontology for representing sensor descriptions and sensor observation data, the Semantic 

Sensor Network (SSN) ontology (2) a framework for semantically annotating sensor descriptions 

and sensor observation data encoded SWE’s XML based languages and service descriptions, and 

(3) a semantic sensor observation service (SemSOS) that utilizes the SSN ontology and the 

semantic annotation framework to enable better integration, query, and inference capabilities over 

sensor data in comparison with the sensor observation service (SOS) defined by SWE. 

 

The interpretation of sensor data was addressed in Chapter 3: Semantic Perception. This chapter 

demonstrated techniques for interpreting semantically annotated sensor observation data to derive 

actionable intelligence and situational awareness (i.e., high-level abstractions), using background 

knowledge on the Web. The primary contribution of this chapter included an ontology of 

perception, Intellego, which is derived from cognitive models of perception and provides a formal 

semantics of machine perception. This ontology is first encoded in set-theoretic notation to 

provide a formal representation of the concepts and processes involved in perception. Particular 

aspects of the ontology – i.e., explanation and discrimination – are then encoded in the Web 

Ontology Language to enable better integration with data and knowledge on the Web. 
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The ability to interpret sensor data efficiently, and at scale, on resource-constrained devices, such 

as smart phones, was addressed in Chapter 4: Intelligence at the Edge. In Chapter 3 the 

explanation and discrimination operators of Intellego were encoded in OWL to enable better 

integration with data and knowledge on the Web. The computational complexity of the Web 

Ontology Language (OWL), however, seriously limits its applicability and use within resource-

constrained environments, such as mobile devices. To address this issue, this chapter 

demonstrated techniques to enable the efficient and scalable interpretation of semantically 

annotated sensor observation data on resource-constrained devices. More specifically, the primary 

contributions of this chapter included efficient algorithms for the explanation and discrimination 

operators of Intellego, using bit-vector encodings and operations. 

 

The ability of the approach presented in this dissertation to help address a real-world problem was 

addressed in Chapter 5: Knowledge-enabled Healthcare. This chapter demonstrated a prototype 

application to show the utility of the semantics-based machine perception framework to help 

people make decisions to improve health, fitness, and wellbeing. The primary contribution of this 

chapter is a semantics-based platform called kHealth, Knowledge-enabled Healthcare, which 

integrates data from passive and active sensing with background knowledge from domain 

ontologies, semantic reasoning, and mobile computing environments. kHealth utilizes technology 

discussed within this dissertation – i.e., the semantic annotation of sensor data (Semantic Sensor 

Web), interpretation of sensor data (Semantic Perception), and efficient algorithms for 

interpreting sensor data on resource-constrained devices (Intelligence at the Edge) – to enable 

advanced healthcare applications. Currently, the application of kHealth towards the management 

of several disorders, including chronic heart disease and asthma, is being investigated in 

collaboration with clinicians. 

 

 



143 

 

6.2. Final Remarks 

 

Sensors are quickly becoming ubiquitous and are now collecting data about our environment at an 

extraordinary pace. This dissertation has demonstrated the substantial benefits to be gained in 

processing sensor data by semantically annotating the data and automating an approximation of 

how people perceive their environment efficiently. Specifically, this ability is afforded by 

background knowledge and the cyclical nature of observation and perception processes. While 

one can take different positions on the philosophical (or technical) foundations of perception, it is 

clear that a careful ontological specification makes these positions explicit and testable. The 

approach described in this work establishes a formal semantics for machine perception; and 

provides a solution to difficult challenges, such as the ability to effectively model the process of 

perception, to provide an appropriate interpretation of observational data with incomplete 

information, and to efficiently interpret the growing stream of observational data on resource-

constrained devices.  

 

As the number and ubiquity of sensors and mobile devices continue to grow, the need for 

computational methods to analyze the avalanche of heterogeneous sensor data and derive 

situation awareness will grow. Efficient and scalable approaches to semantics-based machine 

perception will be indispensable. This research represents a thoughtful and earnest step towards 

understanding and addressing this challenge. 
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