
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2013

A Semantics-Based Approach to Machine Perception A Semantics-Based Approach to Machine Perception

Cory Andrew Henson
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
Henson, Cory Andrew, "A Semantics-Based Approach to Machine Perception" (2013). Browse all Theses
and Dissertations. 1154.
https://corescholar.libraries.wright.edu/etd_all/1154

This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It
has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1154?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

A Semantics-based Approach to Machine Perception

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

By

CORY ANDREW HENSON

B.A., University of Georgia, 2005

2013

Wright State University

COPYRIGHT BY

Cory Henson

2013

WRIGHT STATE UNIVERSITY

GRADUATE SCHOOL

December 14, 2013

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY

SUPERVISION BY Cory Andrew Henson ENTITLED A Semantics-based Approach to

Machine Perception BE ACCEPTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy.

Amit P. Sheth, Ph.D.

Dissertation Director

Arthur A. Goshtasby, Ph.D.

Director, Computer Science Ph.D. Program

R. William Ayres, Ph.D.

Interim Dean, Graduate School

Committee on Final Examination

Amit P. Sheth, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

Payam Barnaghi, Ph.D.

Satya S. Sahoo, Ph.D.

John Gallagher, Ph.D.

Abstract

Henson, Cory Andrew. Ph.D., Computer Science and Engineering Ph.D. Program, Wright State
University, 2013. A Semantics-based Approach to Machine Perception.

Machine perception can be formalized using semantic web technologies in order to derive

abstractions from sensor data using background knowledge on the Web, and efficiently executed

on resource-constrained devices.

Advances in sensing technology hold the promise to revolutionize our ability to observe and

understand the world around us. Yet the gap between observation and understanding is vast. As

sensors are becoming more advanced and cost-effective, the result is an avalanche of data of high

volume, velocity, and of varied type, leading to the problem of too much data and not enough

knowledge (i.e., insights leading to actions). Current estimates predict over 50 billion sensors

connected to the Web by 2020.
1
 While the challenge of data deluge is formidable, a resolution has

profound implications. The ability to translate low-level data into high-level abstractions closer to

human understanding and decision-making has the potential to disrupt data-driven

interdisciplinary sciences, such as environmental science, healthcare, and bioinformatics, as well

as enable other emerging technologies, such as the Internet of Things.

The ability to make sense of sensory input is called perception; and while people are able to

perceive their environment almost instantaneously, and seemingly without effort, machines

1
 http://share.cisco.com/internet-of-things.html

http://share.cisco.com/internet-of-things.html

continue to struggle with the task. Machine perception is a hard problem in computer science,

with many fundamental issues that are yet to be adequately addressed, including: (a) annotation

of sensor data, (b) interpretation of sensor data, and (c) efficient implementation and execution.

This dissertation presents a semantics-based machine perception framework to address these

issues.

The tangible primary contributions created to support the thesis of this dissertation include the

development of a Semantic Sensor Observation Service (SemSOS) for accessing and querying

sensor data on the Web, an ontology of perception (Intellego) that provides a formal semantics of

machine perception and reasoning framework for the interpretation of sensor data, and efficient

algorithms for the machine perception inference tasks to enable interpretation of sensor data on

resource-constrained devices, such as smart phones. Each of these contributions has been

prototyped, evaluated, and applied towards solving real-world problems in multiple domains

including weather and healthcare.

vi
	

Table of Contents

1. Introduction ..1
1.1. Contributions .. 2
1.2. Chapter Overview .. 4

2. Semantic Sensor Web ..7
2.1. Background .. 8

2.1.1. Sensor Web Enablement .. 8
2.1.2. SWE Sensor Observation Service ... 9
2.1.3. Semantic Web ... 11

2.2. Semantic Sensor Observation Service ... 13
2.2.1. Observations and Measurements Ontology ... 14
2.2.2. Spatial, Temporal, and Thematic Ontologies .. 18
2.2.3. Semantic Annotation of SWE .. 19
2.2.4. Rule Based Reasoning ... 20
2.2.5. SemSOS Implementation .. 24

2.2.5.1. 52North SOS ... 25
2.2.5.2. SemSOS Extensions to 52North .. 26
2.2.5.3. Example SemSOS Query Processing .. 27

2.3. Linked Sensor Data .. 30
2.4. Semantic Sensor Network Ontology ... 35
2.5. Concluding Remarks .. 38

3. Semantic Perception ...40
3.1. Cognitive Models of Perception ... 42
3.2. Ontology of Perception – Set Theory ... 45

3.2.1. Semantics of Perception: Concepts and Relations .. 47
3.2.2. Semantics of Perception: Processes .. 49

3.2.2.1. Observation Process ... 50
3.2.2.2. Perception Process .. 51
3.2.2.3. Perception Cycle ... 52

3.2.3. Evaluation .. 58
3.2.3.1. Focus Evaluation .. 58

3.2.3.1.1. Background Knowledge for Focus Evaluation ... 60
3.2.3.1.2. Implementation ... 61
3.2.3.1.3. Experiment Setup .. 64
3.2.3.1.4. Experiment 1: No Focus (brute force approach) ... 65
3.2.3.1.5. Experiment 2: With Focus .. 67
3.2.3.1.6. Experiment 3: With Optimized Focus .. 70

3.2.3.2. Expressivity Evaluation .. 72
3.2.3.2.1. Background Knowledge for Expressivity Evaluation ... 73

3.2.3.2.1.1. Encoding of Rules in SWRL .. 74
3.2.3.2.1.2. Additional of Rules in FOL .. 75

3.2.3.2.2. Expressivity Comparison .. 77
3.2.3.2.2.1. Comparison 1: Degrading gracefully with incomplete information 77

vii
	

3.2.3.2.2.2. Comparison 2: Minimizing explanations based on new information 78
3.2.3.3. Storage Requirements and Scalability Evaluation .. 80

3.3. Ontology of Perception – OWL .. 84
3.3.1. Abduction in OWL .. 85

3.3.1.1. Parsimonious Covering Theory ... 86
3.3.1.2. Translating PCT into OWL ... 87

3.3.2. Discussion of Terminology ... 90
3.3.3. Semantics of Explanation in OWL .. 92

3.3.3.1. Observed Property ... 93
3.3.3.2. Explanatory Feature ... 94

3.3.4. Semantics of Discrimination in OWL ... 96
3.3.4.1. Expected Property ... 97
3.3.4.2. Not Applicable Property .. 98
3.3.4.3. Discriminating Property .. 98

3.4. Related Work .. 100
3.5. Concluding Remarks ... 102

4. Intelligence at the Edge ..104
4.1. Lifting and Lowering of Semantic Data ... 107
4.2. Efficient Bit Vector Algorithm for Explanation ... 109
4.3. Efficient Bit Vector Algorithm for Discrimination ... 111
4.4. Evaluation of Bit Vector Algorithms .. 114
4.5. Related Work .. 117
4.6. Concluding Remarks ... 118

5. Knowledge-enabled Healthcare ...120
5.1. Motivation for Knowledge-enabled Healthcare .. 121
5.2. kHealth Application .. 123

5.2.1. Domain Knowledge Base .. 124
5.2.2. Passive Sensing ... 125
5.2.3. Active Sensing ... 126
5.2.4. Application Walkthrough .. 127

5.3. Related Work .. 130
5.4. Evaluation ... 133
5.5. Concluding Remarks ... 139

6. Conclusion ...140
6.1. Summary ... 141
6.2. Final Remarks ... 143

Bibliography ..144
	

viii
	

List of Figures

2.1. OGC Sensor Web Enablement Services ... 9
2.2. High-level view of SemSOS Architecture .. 14
2.3. Subset of Major Concepts and Relations in O&M-OWL ... 16
2.4. 52North SOS Architecture, extended with an ontological knowledge base .. 25
2.5. Example SOS query .. 28
2.6. Example SPARQL query .. 28
2.7. Example SPARQL query results ... 29
2.8. Example SOS response ... 30
2.9. Relationships between sensor datasets and Linked Data ... 33
2.10. Concepts and relations linking sensors (or processes) described in LinkedSensorData to features

described in GeoNames ... 34
2.11. Example discovery query on LinkedSensorData ... 35
2.12. Overview of the Semantic Sensor Network ontology classes and properties 36
2.13. (a) Graphical representation of environmental knowledge in the SSN ontology, with mappings to

DOLCE Ultra Lite (prefix dul). (b) Graphical representation of an example environmental
knowledgebase in cardiology, taking the shape of a bipartite graph. This knowledgebase is derived
from collaboration with cardiologists at ezDI (http://www.ezdi.us/) .. 37

	

3.1. A red apple ... 40
3.2. Neisser's Perception Cycle .. 43
3.3. Set of inheres-in relations ... 48
3.4. Example of how qualities, quality-types, entities, percepts, and perceptual-theories are related. The

green color and round shape qualities have been detected and can be explained by the apple entity.
Rudolph’s (“the red-nosed reindeer”) nose is not a member of the perceptual theory since it cannot
explain a set of percepts containing the green color quality .. 49

3.5. Is this a cup, or two human faces? ... 52
3.6. Architecture of the perception-cycle .. 53
3.7. Background knowledge in the domain of weather. The graph shows how qualities and quality-types

are related through the has-type relationship, and how qualities and entities are related through the
inheres-in relationship .. 61

3.8. Architecture of an implementation of IntellegO .. 62
3.9. Percepts generated by observers within 400 miles of a known blizzard. The horizontal axis represents

the different orderings of observable qualities; p represents precipitation, w represents wind-speed,
and t represents temperature ... 68

3.10. Decision tree representing the optimal sequential ordering of quality-types 71
3.11. Example background knowledge used within the expressivity evaluation of IntellegO (Section

3.2.3.2) .. 74
3.12. Storage requirements for several common dataset configurations; based on statistics gathered from the

experiment discussed in Section 3.2.3.1. .. 82
3.13. Graphical representation of an example knowledgebase in cardiology, taking the shape of a bipartite

graph .. 92
	

4.1. (a) Example environmental knowledgebase in the domain of cardiology, from Figure 3.13,

represented as a bit matrix. Index tables are used for lifting and lowering environmental knowledge
between a semantic representation and a bit vector representation. (b) Index table for properties. (c)
Index table for features .. 108

ix
	

4.2. Evaluation results: (a) Explanation (OWL) with O(n3) growth, (b) Explanation (bit vector) with O(n)
growth, (c) Discrimination (OWL) with O(n3) growth, and (d) Discrimination (bit vector) with O(n)
growth ... 115

5.1. Diagram shows the interactions between the patient, clinician, sensors, and mobile device 123
5.2. Active sensing through a chat dialog ... 127
5.3. Screenshot of the main interface screen of the kHealth application .. 128
5.4. Screenshot of the (a) observations screen and (b) abstractions screen of the kHealth application 129
5.5. Screenshot of the (a) dialog screen and (b) manual screen of the kHealth application 130
5.6. WANDA B. Architecture .. 131
5.7. Questionnaire items of the Heart Failure Somatic Awareness Scale (HFSAS) 131

x
	

List of Tables

3.1. Quick reference guide to the terminology of IntellegO .. 46
3.2. Required definitions for formalizing processes in IntellegO .. 50
3.3. Required definitions for evaluating IntellegO .. 60
3.4. The total number of percepts generated during all the executions of the perception cycle during

experiment 1 (for different sets of observers) ... 66
3.5. Shows the percentage of different perceptual-theories generated during the execution of the

perception-cycle (for different sets of observers) ... 66
3.6. Shows the percentage of percepts generated during the execution of the perception cycle (for different

sets of observers and orderings of quality-types) ... 69
3.7. Excerpt from the representative training dataset ... 71
3.8. Shows the percentage of percepts generated during the execution of the perception cycle (for different

sets of observers and orderings of quality types) .. 72
3.9. Qualitative comparison of logic frameworks to express the desired capabilities of perception;

including the ability to degrade gracefully with incomplete information and the ability to minimize
explanations with additional information ... 73

3.10. Translating PCT to OWL ... 88
3.11. Quick summary of equivalent terms used within the different frameworks/formalizations discussed in

this chapter. Ontologies formalized in OWL use namespace prefixes (SSN uses ssn, and the OWL
encoding of Intellego uses io) .. 91

	

4.1. Quick summary of data structures used by the bit vector algorithms (note: |x| represents the number of

members of x) .. 106
	

5.1. Comparison of kHealth with WANDA .. 132

xi

Acknowledgement

Of primary importance, I would like to acknowledge the giants. Their shoulders on which we

stand have afforded an inspirational view. My journey through graduate school has consisted of

scanning a horizon that only a few have the pleasure to enjoy; it has been an extraordinary

experience.

During this journey, I have been lucky enough to have two guides that have not only steered my

research, but more importantly, taught me to think and to be. First, I would like to thank my

advisor, Amit Sheth, for his guidance and vision. Professor Sheth has taught me to look, to see, to

envision a future that could be. His ability to not only peer into the future, but to push the present

to meet that vision is truly inspirational. I will continue to strive for such clarity and strength. I

would also like to thank my (unofficial) advisor, T.K. Prasad, for teaching me that quality

research exists at the point where vision and reality intersect, and that true understanding

manifests in simple terms. Professor Prasad has the ability to explain even the most complex

subjects in the simplest of phrases. It is a rare and powerful gift. I will continue to chip away at

the complexity of the world until I too can see its simplicity.

I would also like to express my gratitude to the rest of my dissertation committee: Satya Sahoo,

Payam Barnaghi, and John Gallager. I have benefitted greatly from many interactions with them

and appreciate their continual support and encouragement. Dr. Satya Sahoo has played many

different roles in my life, beginning as my boss, then my colleague, my roommate, and finally as

my dissertation committee member. But always he will be my friend. Dr. Payam Barnaghi

xii

introduced me to the wonderful world of Internet of Things. I enjoy this idea so much that I have

decided to base by career around the idea (so far). For this, I will always be grateful.

I would like to acknowledge the role played by the Air Force Research Lab (AFRL) and the

Defense Intelligence Agency (DIA). Representing the AFRL, Bill McQuay, Juan Carbonell, and

Kenny Littlejohn engaged in a leap of faith by supporting my research from the very beginning.

Their support and encouragement gave me the confidence to persist in exploring our research

vision. Representing the DIA, Tammy Countryman and Robin de la Vega provided me with an

opportunity to see how my research could be effectively used for the betterment of our country.

Tammy opened the door for this opportunity through an internship at the National MASINT

Office (NMO) and Robin laid out the welcome mat by offering a research staff position at

Riverside Research. While I have decided to shift my focus away from government sponsored

research, I will always remember the lessons learned.

I owe a great debt to the rotating cast and crew making up the Semantic Sensor Web team. In

particular, I would like to thank Pramod Anantharam, Sujan Perera, Harshal Patni, and Josh

Pschorr. I have learned many invaluable lessons from each of them through the years, and am

continually amazed at their inventiveness, hard work, and dedication. I’m sure they will be

supremely successful in their future research and careers. For the remaining members of

Kno.e.sis, I would like to thank them for their inspiration and friendship. I could not imagine

traveling along the path to graduation with a better group of people.

Last, but certainly not least, I would like to thank my friends and family. My parents, Pat and Carl

Henson, are the hardest working and most selfless people I know. They have always believed that

I have the potential for success and provided enduring love and encouragement that will never be

forgotten. To make them proud is the highest honor of my life.

xiii

Dedicated to

My grandmother, Dot

1

1. Introduction

Machine perception can be formalized using semantic web technologies in order to derive

abstractions from sensor data using background knowledge on the Web, and efficiently executed

on resource-constrained devices.

Machine perception is the systematic automation of computing machines to sense and interpret

the contents of their environment. The automation of this task is a hard problem in computer

science, with many fundamental issues that are yet to be adequately addressed, including: (a)

annotation of sensor data, (b) interpretation of sensor data, and (c) efficient implementation and

execution. The goal of this dissertation is to present a semantics-based machine perception

framework, which demonstrates the validity of the thesis stated above. Toward this end, the

chapters of this dissertation will discuss the technologies and methodologies of this framework

for semantically annotating, querying, and interpreting sensor data. More concretely, the goals are

as follows:

1. Develop techniques for semantically annotating sensor descriptions and sensor observation

data on the Web to enable advanced integration, query, and inference. This goal is discussed

in Chapter 2: Semantic Sensor Web.

2. Develop techniques for interpreting semantically annotated sensor observation data to derive

actionable intelligence and situational awareness (i.e., high-level abstractions), using

background knowledge on the Web. This goal is discussed in Chapter 3: Semantic

Perception.

2

3. Develop techniques to enable the efficient and scalable interpretation of semantically

annotated sensor observation data on resource-constrained devices. This goal is discussed in

Chapter 4: Intelligence at the Edge.

4. Develop a prototype application to demonstrate the utility of the semantics-based machine

perception framework in a real-world scenario. This goal is discussed in Chapter 5:

Knowledge-enabled Healthcare.

1.1. Contributions

The tangible primary contributions created to support the thesis of this dissertation are discussed

next.

Semantic Sensor Observation Service (SemSOS) – Sensor Observation Service (SOS) is a Web

service specification defined by the Open Geospatial Consortium (OGC) Sensor Web Enablement

(SWE) group in order to standardize the way sensors and sensor data are discovered and accessed

on the Web. This standard goes a long way in providing interoperability between repositories of

heterogeneous sensor data and applications that use this data. Many of these applications,

however, are ill equipped at handling raw sensor data as provided by SOS and require actionable

knowledge of the environment in order to be practically useful. There are two approaches to deal

with this obstacle, make the applications smarter or make the data smarter. To better enable

sharing, integration, and interpretation of the data across different applications, we propose the

latter option and accomplish this by leveraging semantic technologies in order to provide and

apply more meaningful representation of sensor data. More specifically, we are modeling the

domain of sensors and sensor observations in a suite of ontologies, adding semantic annotations

to the sensor data (that is offered by the Web Service), using the ontology models to reason over

sensor observations, and extending an open source SOS implementation with our semantic

3

knowledge base. This semantically enabled SOS, or SemSOS, provides the ability to query high-

level knowledge of the environment as well as low-level raw sensor data.

Ontology of Perception (Intellego) – Today, many sensor networks and their applications

employ a brute force approach to collecting and analyzing sensor data. Such an approach often

wastes valuable energy and computational resources by unnecessarily tasking sensors and

generating observations of minimal use. People, on the other hand, have evolved sophisticated

mechanisms to efficiently perceive their environment. One such mechanism includes the use of

background knowledge to determine what aspects of the environment to focus our attention. In

this dissertation, we develop an ontology of perception, IntellegO, that may be used to more

efficiently convert observations into perceptions. IntellegO is derived from cognitive theory and

provides a formal semantics of machine perception. We then present an implementation that

iteratively and efficiently processes low level, heterogeneous sensor data into higher-level

abstractions through use of the perception ontology and domain specific background knowledge.

The abstractions thus computed transform raw, low level data into contextually relevant and

actionable knowledge. As a demonstration of this capability, we evaluate IntellegO by collecting

and analyzing observations of weather conditions on the Web, and show significant resource

savings in the generation and storage of perceptual knowledge.

Efficient Algorithms for Perceptual Inference – A primary challenge of machine perception is

to define efficient computational methods to derive high-level knowledge from low-level sensor

observation data. Emerging solutions are using Semantic Web ontologies for expressive

representation of concepts in the domain of sensing and perception, which enable advanced

integration and interpretation of heterogeneous sensor data. The computational complexity of the

Web Ontology Language (OWL), however, seriously limits its applicability and use within

resource-constrained environments, such as mobile devices. To overcome this issue, we employ

4

OWL to formally define the inference tasks needed for machine perception - explanation and

discrimination - and then provide efficient algorithms for these tasks, using bit-vector encodings

and operations. The applicability of our approach to machine perception is evaluated on a smart-

phone mobile device, demonstrating dramatic improvements in both efficiency and scale.

Knowledge-enabled Healthcare – Knowledge-enabled Healthcare, or kHealth, is a platform that

integrates data from passive and active sensing (including both machine and human sensors) with

background knowledge from domain ontologies, semantic reasoning, and mobile computing

environments to help people make decisions to improve health, fitness, and wellbeing. kHealth is

a real-world application that utilizes technology founded in this dissertation – i.e., the semantic

annotation of sensor data (Semantic Sensor Web), interpretation of sensor data (Semantic

Perception), and efficient algorithms for interpreting sensor data on resource-constrained devices

(Intelligence at the Edge) – to enable advanced healthcare applications. Currently, the application

of kHealth towards the management of several disorders, including chronic heart disease and

asthma, is being investigated in collaboration with clinicians.

1.2. Chapter Overview

The dissertation is organized as follows: Chapter 2, Semantic Sensor Web, discusses the

technologies for the representation, annotation, query, and inference of sensor data on the Web.

The chapter begins with background on the technologies and standards developed and utilized by

the Open Geospatial Consortium’s Sensor Web Enablement and the World Wide Web

Consortium’s Semantic Web. Next, the development of a semantic sensor observation service is

discussed, which allows for the annotation and query of sensor descriptions and sensor

observation data on the Web. Finally, the Semantic Sensor Network Ontology, developed by the

W3C Incubator Group on Semantic Sensor Networks (SSN-XG), is introduced.

5

Chapter 3, Semantic Perception, discusses a methodology for interpreting sensor data. The

chapter begins with a discussion of cognitive models of perception, which form the basis of a

model of perception used to interpret the sensor data. Next, an ontology of perception, Intellego,

is discussed which provides a formal semantics of machine perception. More specifically, the

concepts and inference tasks are formalized in set-theoretic notation. Several of the inference

tasks of Intellego are then formalized in the Web Ontology Language, which allows improved

integration with background knowledge on the Web.

Chapter 4, Intelligence at the Edge, discusses the development of efficient and scalable

algorithms that provide the ability to interpret semantically annotated sensor data on resource-

constrained devices. The chapter begins with a description of the method of translating data from

a high-level semantic representation to a low-level bit-vector representation, and vice-versa. Next,

bit-vector algorithms for the primary perceptual inference tasks – explanation and discrimination

– are discussed. These algorithms are evaluated on a mobile device, showing orders-of-magnitude

in both efficiency and scalability.

Chapter 5, Knowledge-enabled Healthcare, discusses the application of the technologies and

methodologies described the previous chapters for improving health, fitness, and wellbeing. This

chapter begins with a motivating scenario in the domain of cardiology. Next, an application is

discussed that uses both passive and active sensing, from both machine and human sensors, to

monitor a persons physiology in order to determine the persons health condition. This application

is developed with the aim of helping to reduce hospital readmissions of patients with Acute

Decompensated Heart Failure.

6

Finally, Chapter 6 concludes with a summary of the research work presented in the dissertation

and final remarks.

7

2. Semantic Sensor Web

In March 2008, heavy rainstorms across the Midwestern region of the US caused many rivers to

breach their banks. Residents of Valley Park, a small town along the Meramec River, Missouri,

had to decide whether to rely on a newly constructed levee or abandon their homes for higher

ground [Salter08]. Although the levee held, many chose the latter option and fled their homes; it

was a chaotic situation that might have been avoided through access to better situational

knowledge regarding the current water pressure and the levee’s structural integrity. Pressure

sensors embedded in the levee could have provided accurate real-time information that allowed

residents to make informed decisions about the safety of the levee, their homes, and themselves.

This scenario demonstrates the increasingly critical role of sensors that collect and distribute

observations of our world in our everyday lives.

In recent years, sensors have been increasingly adopted by a diverse array of disciplines, such as

meteorology for weather forecasting and wildfire detection (www.met.utah.edu/mesowest/), civic

planning for traffic management (www.buckeyetraffic.org/), satellite imaging for earth and space

observation (http://vast.uah.edu/), medical sciences for patient care using biometric sensors

(www.liebertonline.com/doi/abs/10.1089/109350703322682531), and homeland security for

radiation and biochemical detection at ports (www.msnbc.msn.com/id/8092280). Sensors are thus

distributed across the globe, leading to an avalanche of data about our environment. The rapid

development and deployment of sensor technology involves many different types of sensors, both

remote and in situ, with diverse capabilities such as range, modality, and maneuverability. Today,

it is possible to use sensor networks to detect and identify a multitude of observations, from

8

simple phenomena to complex events and situations. The lack of integration and communication

between these networks, however, often isolates important data streams and intensifies the

existing problem of too much data and not enough knowledge. With a view to addressing this

problem, this chapter discusses a Semantic Sensor Web (SSW) in which sensor data is annotated

with semantic metadata to increase interoperability as well as provide contextual information

essential for situational knowledge.

2.1. Background

Semantic Sensor Web is reliant on two sets of standardizations, (1) the Sensor Web Enablement

languages and service interface specifications defined by the Open Geospatial Consortium

(OGC), and (2) the Semantic Web languages defined by the World Wide Web Consortium

(W3C).

2.1.1. Sensor Web Enablement

“The Sensor Web is a special type of Web-centric information infrastructure for collecting,

modeling, storing, retrieving, sharing, manipulating, analyzing, and visualizing information about

sensors and sensor observations of phenomena [Gross99].” The OGC, an international

consortium of industry, academic, and government organizations tasked with developing open

geospatial standards, describes the sensor Web as sensor networks and sensor data, accessible

though the Web, which are discoverable and accessible through standard protocols and

application program interfaces [Botts08]. The Sensor Web has vast significance for applications

using sensor technologies to attain actionable situation awareness. Lack of standardization,

however, is the primary barrier to realizing a progressive sensor Web.

9

The Open Geospatial Consortium recently established the Sensor Web Enablement as a suite of

specifications related to sensors, sensor data models, and sensor Web services that will enable

sensors to be accessible and controllable via the Web [Sheth08]. The core suite of language and

service interface specifications (depicted in Figure 2.1) includes: Observations and Measurements

(O&M), Sensor Model Language (SensorML), Transducer Model Language (TML), Sensor

Observation Service (SOS), Sensor Planning Service (SPS), Sensor Alert Service (SAS), and

Web Notification Service (WNS). For more information about these languages and service

interface specifications, see [Botts08].

Figure 2.1. OGC Sensor Web Enablement Services.

2.1.2. SWE Sensor Observation Service

The Sensor Observation Service (SOS) is an OGC-SWE standard that defines a web service

interface for providing “access to observations from sensors and sensor systems in a standard way

that is consistent for all sensor systems including remote, in-situ, fixed and mobile sensors

[SOS].” SOS groups observations made by related sensor systems into Observation Offerings. An

Observation Offering is a logical collection of sensors and sensor systems that, generally, are

located in proximity to one another and sample their environment at shared intervals. Observation

10

Offerings are characterized by the following parameters: sensor, time, sensed phenomena, and

location [SOS].

SOS defines four service profiles: core, transactional, enhanced, and entire (which includes all

functions from the previous three). For a standards compliant SOS service, only support for the

core profile is mandatory, while all other profiles are optional. The core and enhanced profiles

provide support for consumers of sensor data. A consumer client of sensor data requires methods

for obtaining information about the service itself and requesting observations, sensor descriptions,

features, etc. over some spatial and temporal context. This information is useful in applications

such as visualization, data fusion, and situation awareness. The transactional profile supports

publishers of sensor data. Such publisher clients are responsible for acting as intermediaries

between sensor networks generating observations and the SOS service where it inserts sensor

descriptions and observations. The core profile includes three operations: GetCapabilites,

DescribeSensor, and GetObservation. The GetCapabilites function provides a means to request a

description of the service. This description includes information such as service identification

(service name, keywords, etc.), provider, and most importantly, metadata that allows for the

discovery of the capabilities of the service. The capability description includes metadata about all

supported functions of the service (including valid values and ranges for query parameters),

filtering capabilities (logical operators that may be supplied with query parameters), and a full list

of all Observation Offerings (including the aforementioned parameters: sensor systems, time,

phenomenon, location, etc.) defined within the service. DescribeSensor allows the client to

request information about a sensor. DescribeSensor is parameterized by the ID of the senor and

returns a SensorML or TransducerML document describing the sensor and its capabilities. The

GetObservation function is the heart of the SOS, allowing the client to request observation data

generated by a sensor or sensor system contained in a specified Observation Offering.

GetObservation supports a multitude of parameters and filters, which give the client the ability to

11

query over the sensor, time, location, phenomena, features, and measurement values of the

observations. The response from GetObservation is encoded in O&M. The transactional profile of

SOS includes functions that allow a client to insert new sensors and observations, and is

composed of two functions: RegisterSensor and InsertObservation. RegisterSensor allows a client

to insert a new sensor into an SOS service, including the sensor’s capabilities as described in a

SensorML or TransducerML document. InsertObservation allows a client to insert a new

observation into an SOS service. The new observation is provided to the SOS encoded as an

O&M document. The enhanced profile provides an assortment of less-frequently needed

functions. GetObservationById returns an O&M observation based on the ID of the observation.

GetResult provides a means for a client to obtain sensor data on a frequent basis using less

bandwidth, by using a template O&M document from a previous call to GetObservation.

GetFeatureOfInterest returns a description of a feature of interest for which GetCapabilities

advertised the ID. GetFeatureOfInterestTime describes the valid time periods for a feature.

DescribeFeatureType yields an XML schema for a feature. DescribeObservationType returns the

XML schema for an observation generated for a type of phenomenon. DescribeResultModel

yields an XML schema that can further describe the format of results returned by the SOS and

referenced in GetCapabilities.

2.1.3. Semantic Web

The Semantic Web, as described by the W3C Semantic Web Activity, is an evolving extension of

the World Wide Web in which the semantics, or meaning, of information on the Web is formally

defined [SWActivity]. Formal definitions are captured in ontologies, making it possible for

machines to interpret and relate data content more effectively. The principal technologies of the

Semantic Web include the Resource Description Framework (RDF) [RDF] data representation

model, and the ontology representation languages RDF Schema (RDF-S) [RDFS] and Web

12

Ontology Language (OWL) [OWL]. In addition to these representation languages, an RDF query

language called SPARQL [SPARQL] is now a W3C recommendation and the common method of

querying ontological data. Many rule languages and rule engines are now capable of reasoning

with Semantic Web data, including SWRL (Semantic Web Rule Language), RIF (Rule

Interchange Format), and the general-purpose rule engine for the Jena Semantic Web Framework

[Jena].

An ontology is a formal model that defines concepts and their relations in a standard language,

commonly described as a “specification of a conceptualization [Gruber93].” In practice, the

Semantic Web defines several ontology languages, RDF, RDF-S, and OWL. The Resource

Description Format (RDF) is a graph-based language that allows data within a domain to be

linked through named relationships. An RDF graph is encoded as a set of subject-predicate-object

triples which resemble the subject, verb, and object of a sentence. The subject and object are

nodes in the graph and the predicate is a directional named link between the subject and object.

“This simple triple structure turns out to be a natural way to describe a large majority of

the data processed by machines. The subjects, verbs and objects are each identified by a

Universal Resource Identifier (URI)—an address just like that used for Web pages. Thus,

anyone can define a new concept, or a new verb, by defining a URI for it on the Web

[Shadbolt08].”

RDF-S, or RDF Schema, adds the ability to define hierarchies of concepts to RDF. The Web

Ontology Language (OWL) is built on top of RDF and adds a logical formalism to the language.

OWL is based on a tractable subset of First Order Logic called Description Logic. The logical

formalism provided by OWL, in combination with rule engines, is what allows inference over

semantically annotated sensor observations.

13

2.2. Semantic Sensor Observation Service

What are the possible benefits of integrating the Sensor Web with the Semantic Web? Much can

be said in answer to this question, including a more expressive graph-based representation that

models relationships as first class objects, the use of Uniform Resource Identifier’s that allows all

concepts to be independently accessible throughout the Web, and a triple-pattern encoding

scheme that provides for simplified integration of heterogeneous datasets

[Sheth08][Thirunarayan09b]. While these are all important elements of the Semantic Web, in this

section we will focus on the need for inference on sensor data enabled by semantic modeling and

what advantages this provides to standard SOS.

Reasoning is a useful tool for providing meaning to sensor data and presenting insight into an

observed environment. The quantified nature of sensor data, however, is not well suited for

logical inference. In order to reason over sensor observations the data must first be annotated with

meaningful concepts that can be manipulated with an inference engine. These concepts are

defined in an ontology that provides the logical framework for further inference. In the Semantic

Web, the Web Ontology Language (OWL) fulfills this role of a meta-language for ontology

development.

This collection of annotations and inferences within an ontology make up a knowledge base. The

knowledge in this knowledge base can be accessed through a standard SOS request, making the

sensor data useful for a wide range of applications that lack the facility to handle raw sensor data

but are able to deal with high-level knowledge. On the other hand, supposing an application does

have the capability to handle raw sensor data, the lack of a service providing a shared semantics

of sensor observations, obligates the client to independently translate the raw sensor data into

14

useful high-level knowledge. This approach may lead to interpretations of data that are exclusive

to a single client application and incompatible with applications that may otherwise make use of

such knowledge. By committing to the interpretation described within an ontology, applications

may benefit from a shared semantics of sensor data, thus leading to improved interoperability.

This configuration of a Sensor Observation Service that provides access to ontological knowledge

of sensor observations is termed Semantic SOS, or SemSOS. Figure 2.2 shows an implemented

architecture of SemSOS.

Figure 2.1. High-level View of SemSOS Architecture

2.2.1. Observations and Measurements Ontology

Observations and Measurements (O&M) is an OGC-SWE standard that defines an XML Schema

for describing observations and features. Within this standard, an observation (om:Observation)

is defined as an “act of observing a property or phenomenon, with the goal of producing an

estimate of the value of the property,” and a feature (om:Feature) is defined as an “abstraction of

real world phenomenon [O&M].” (Note: om is used as a namespace for Observations and

Measurements and will be placed, with a colon, before concepts defined in the O&M schema.

All defined concepts are italicized). The major properties of an observation include feature of

15

interest (om:featureOfInterest), observed property (om:observedProperty), sampling time

(om:samplingTime), result (om:result), and procedure (om:procedure). Often these properties can

be complex entities that may be defined in an external document. For example,

om:FeatureOfInterest could refer to any real-world entity such as a coverage region, vehicle, or

weather-storm, and om:Procedure often refers to a sensor or system of sensors defined within a

SensorML document. Therefore, these properties are better described as relationships of an

observation. In order to encode relationships in XML, the OGC-SWE often make use of XLink,

XML Linking Language, a markup language that annotates XML documents by inserting

elements to “create and describe links between resources [XLink].”

While XLink allows XML documents to break free of the standard tree-model and define

relationships between entities, the triple-pattern approach of RDF provides a far more natural and

useful approach to encoding relationships. In RDF and OWL, relationships are considered first-

class objects that have many benefits over XLink, such as the ability to assign a URI to a

relationship, to classify relationships into hierarchies (RDF-S and OWL), and place constraints on

relationships (OWL). For these reasons, we have developed an encoding of the Observations and

Measurements language in OWL. In this ontology, we have defined the previous relations, and

more, in a form that may be queried and reasoned over effectively in order to derive actionable

knowledge of the environment from sensor observations. (Note that the ontology captures a

subset of concepts in O&M. A few notable exemptions currently include concepts related to

coverage and sampling feature). The translation between O&M in OWL and O&M in XML is

straightforward and thus allows SemSOS to remain SOS compliant. (Throughout this chapter, we

will refer to O&M in OWL as O&M-OWL and refer to O&M in XML as O&M-XML). Figure

2.3 shows a diagram of the major concepts and relations in O&M-OWL.

16

Figure 2.2. Subset of Major Concepts and Relations in O&M-OWL

The following description of relationships in O&M-OWL includes a running example of an

observation from the domain of weather (concepts from weather ontology contain namespace

“w”), encoded as a set of RDF triples. (Each line represents a triple, with the first term

representing the subject, the second representing the predicate, the third representing the object,

and ending with a period).

om:obs_1 rdf:type om:Observation .

om:featureOfInterest is a “representation of the observation target, being the real-world object

regarding which the observation is made [O&M].” Example includes a blizzard feature.

om:obs_1 om:featureOfInterest om:blizzard_1 .

om:blizzard_1 rdf:type w:Blizzard .

w:Blizzard rdfs:subClassOf om:Feature .

17

om:observedProperty “identifies or describes the phenomenon for which the observation result

provides an estimate of its value. It must be a property associated with the type of the feature of

interest [O&M].” Example includes a temperature observed property.

om:obs_1 om:observedProperty w:temperature .

w:temperature rdf:type om:Property .

om:samplingTime is the “time that the result applies to the feature-of-interest [O&M],” or, in

other words, it is the time when the phenomenon was measured in the real-world. Example

includes a single instant sampling time at 5:00 am on Jan. 26, 2009.

om:obs_1 om:samplingTime om:time_1 .

om:time_1 rdf:type owl-time:Instant .

om:time_1 owl-time:date-time “20090126T05:00:00” .

om:observationLocation is the location of an observation event; usually associated with the

location of the sensor when an observation occurred (i.e., om:samplingTime). Example includes a

single point observation location with latitude, longitude, and elevation coordinates.

om:obs_1 om:observationLocation om:location_1 .

om:location_1 rdf:type gml:Point .

om:location_1 gml:latitude “41.1915” .

om:location_1 gml:longitude “-111.8351” .

om:location_1 gml:elevation “6562.0” .

18

om:result is an “estimate of the value of some property generated by a known procedure

[O&M].” Example includes a temperature measurement result of 37 degrees Fahrenheit.

om:obs_1 om:result om:result_1 .

om:result_1 rdf:type om:ResultData .

om:result_1 om:value “37” .

om:result_1 om:uom w:Fahrenheit .

om:procedure is a “description of a process used to generate the result. It must be suitable for the

observed property [O&M].” Note that in this schema a sensor is defined as a type of process,

along with other methods, algorithms, instruments, or systems of these. Example includes a

temperature sensor as the procedure.

om:obs_1 om:procedure om:sensor_1 .

om:sensor_1 rdf:type w:TemperatureSensor .

w:TemperatureSensor rdfs:subClassOf om:Sensor .

om:Sensor rdfs:subClassOf om:Process .

2.2.2. Spatial, Temporal, and Thematic Ontologies

From Figure 2.3, you will notice concepts related to om:Observation such as om:Location,

om:Time, and om:Feature. While these concepts are defined in O&M-OWL, they are also

extended with more expressive descriptions from existing schemas, in the case of om:Location

and om:Time, and from a domain specific ontology, in the case of om:Feature. Locations within

O&M-OWL are described using concepts from GML, or Geography Markup Language [GML].

In particular, we re-use common concepts such as gml:Point, gml:Polygon, and gml:coordinates.

19

Time within O&M-OWL is described using concepts from OWL-Time [OWLTime]. OWL-Time,

a W3C recommended ontology based on temporal calculus, provides descriptions of temporal

concepts such as owl-time:instant and owl-time:interval, which supports defining interval queries

such as ‘within’, ‘contains’, and ‘overlaps’. The logical framework provided by OWL-Time for

reasoning over time intervals could be very useful when dealing with observations that require

complex temporal models. For example, om:TimeSeriesObservation is defined as a

om:CompoundObservation “whose sampling time is the period encompassing all the member

times” such that all “member observations have the same feature of interest, the same observed

property, and different sampling times [O&M].” The concept of om:Feature within O&M

encompasses all real-world entities and thus can be best described through domain-specific

thematic ontologies. For example, for use in the domain of weather, om:Feature is extended with

a weather ontology describing concepts such as w:SnowStorm, w:Blizzard, and w:SnowFlurry.

2.2.3. Semantic Annotation of SWE

While encoding sensor data in OWL is useful for advanced analysis and reasoning, the SOS

specification requires observation data to be encoded in XML for several operations. The

InsertObservation operation takes an O&M-XML document as input and adds the observations to

the storage facility. Similarly, the GetObservation operation returns an O&M-XML document as

response to the query. As previously stated, translating from O&M-XML to O&M-OWL, and

vice-versa, is straightforward. However, it is often useful to also embed semantic terminology

defined in an ontology model into an XML document. This technique is called semantic

annotation and is used for greater semantic interoperability of data encoded in XML, which

provides only syntactic interoperability. Ontology terms are embedded in XML documents

through model references, or URIs of concepts defined in an ontology. The OGC-SWE standards

already provide several mechanisms to reference concepts that are external to the document.

20

Such concepts are either defined in another XML document and accessed through an XLink

element or defined in a registry and accessed through the swe:definition attribute. Using either

mechanism, we can embed a model reference that will provide more meaningful description and

thus enhanced semantic interoperability. Semantically annotated O&M and SML are called

O&M-S and SML-S, respectively. This technique is also applied within the GetCapabilities

operation in order to embed high-level om:Feature concepts that may otherwise be unavailable in

an SOS GetCapabilities response. This is necessary to inform a SemSOS client of the precise

description of concepts that may be used to query the knowledgebase.

2.2.4. Rule Based Reasoning

To derive additional knowledge from semantically annotated sensor observations, it may be

necessary to define and use rules. To demonstrate rule-based reasoning over sensor observation

data, in this section we use the general purpose rule engine from the Jena Semantic Web

Framework [Jena]. Such rules deduce new ontological assertions from known instances and class

descriptions. This section provides an example of inference through rules in SemSOS. In the

weather domain, if a group of sensors provides observations regarding wind speed, visibility, and

precipitation, then by using inference rules we can specify existing weather events in the

environment, such as a blizzard. The following rule states that if wind speeds are high

(HighWinds), visibility is low (LowVisibility), and it is snowing (Snowfall), then there is a

blizzard event (Blizzard) [NOAA].

Blizzard  HighWinds & LowVisibility & Snowfall

Each of these conditions described above is associated with a single time and location, derived

from the time and location of the corresponding observations. Subsequently, the Blizzard

21

condition is associated with the same time and location as the component weather conditions.

The terms HighWinds and LowVisibility are also derived through rules.

HighWinds  WindSpeed >= 35 MPH

LowVisibility  Visibility <= ¼ mile

Within O&M-OWL, we begin with a quantified observation (om:Observation) and data result

(om:ResultData) and translate this into additional qualified knowledge that can also be used

within a reasoning engine. For example, the following set of RDF triples represents data about a

wind speed observation.

om:windspeed_1 rdf:type w:WindSpeedObservation .

om:windspeed_1 om:samplingTime om:time_1 .

om:windspeed_1 om:observationLocation om:location_1 .

om:windspeed_1 om:result om:result_1 .

om:result_1 om:value “37” .

om:result_1 om:uom w:MPH .

From this set of RDF triples we can infer that observation w:windspeed_1 can also be defined as

an instance of class w:HighWindSpeedObservation. This new assertion is added to the original set

of RDF triples (new triple in bold).

om:windspeed_1 rdf:type w:WindSpeedObservation .

om:windspeed_1 om:samplingTime om:time_1 .

om:windspeed_1 om:observationLocation om:location_1 .

om:windspeed_1 om:result om:result_1 .

22

om:result_1 om:value “37” .

om:result_1 om:uom w:MPH .

om:windspeed_1 rdf:type w:HighWindSpeedObservation .

The rule used to generate this new knowledge, titled HighWindSpeedObservationRule, is

specified below (in the Jena rule syntax [Jena]).

[HighWindSpeedObservationRule:

 (?w_obs rdf:type w:WindSpeedObservation)

 (?w_obs om:samplingTime ?time)

 (?w_obs om:observationLocation ?location)

 (?w_obs om:result ?result)

 (?result om:uom w:MPH)

 (?result om:value ?value)

 greaterThan(?value 35)

(?w_obs rdf:type w:HighWindSpeedObservation)]

A low visibility observation (w:LowVisibilityObservation) is deduced similarly, and together with

a snowfall precipitation observation (w:SnowfallObservation) we can infer a blizzard event

(w:Blizzard) at the same time and location. The rule used to generate this new knowledge is titled

BlizzardObservationRule.

[BlizzardObservationRule:

 (?w_obs rdf:type w:HighWindSpeedObservation)

 (?w_obs om:samplingTime ?time)

 (?w_obs om:observationLocation ?location)

23

 (?v_obs rdf:type w:LowVisibilityObservation)

 (?v_obs om:samplingTime ?time)

 (?v_obs om:observationLocation ?location)

 (?p_obs rdf:type w:SnowfallObservation)

 (?p_obs om:samplingTime ?time)

 (?p_obs om:observationLocation ?location)

 makeTemp(?blizzard)

(?blizzard rdf:type w:Blizzard)

 (?blizzard om:eventTime ?time)

 (?blizzard om:eventLocation ?location)

 (?w_obs om:featureOfInterest ?blizzard)

 (?v_obs om:featureOfInterest ?blizzard)

 (?p_obs om:featureOfInterest ?blizzard)]

Note that the makeTemp(?blizzard) function in the body of the rule generates a new instance in

the knowledge base. Subsequently, we then supply this instance of om:Blizzard with relations in

the head of the rule. In this example, such relations include rdf:type, om:eventTime,

om:eventLocation, and om:featureOfInterest. The final set of RDF triples is shown below

(ellipses used to truncate set of triples, and new triples in bold).

om:windspeed_1 rdf:type w:WindSpeedObservation .

om:windspeed_1 om:samplingTime om:time_1 .

om:windspeed_1 om:observationLocation om:location_1 .

…

om:windspeed_1 rdf:type w:HighWindSpeedObservation .

om:visibility_1 rdf:type w:VisibilityObservation .

24

…

om:visibility_1 rdf:type w:LowVisibilityObservation .

om:precipitation_1 rdf:type w:SnowfallObservation .

…

om:blizzard_1 rdf:type w:Blizzard .

om:blizzard_1 om:samplingTime om:time_1 .

om:blizzard_1 om:observationLocation om:location_1 .

om:windspeed_1 om:featureOfInterest om:blizzard_1 .

om:visibility_1 om:featureOfInterest om:blizzard_1 .

om:precipitation_1 om:featureOfInterest om:blizzard_1.

In this manner, we can infer features within the environment, of a particular type, at a specific

time and place, and then generate om:featureOfInterest relations between the original

observations and the new features. These new om:featureOfInterest relationships can be used to

query for high-level feature concepts in SemSOS.

2.2.5. SemSOS Implementation

In order to validate the framework discussed above, we have constructed a prototype of SemSOS.

Our SemSOS extends the open source implementation of SOS from 52North [52North] with an

ontological knowledge base in order to provide inference over sensor data and queries of high-

level features. For this prototype, the sensor observation data used to populate our ontologies was

collected from MesoWest, a repository of weather data at the University of Utah [MesoWest].

MesoWest continually collects data from over 20,000 sensor systems within North America, and

stores archives since 2002.

25

2.3.5.1. 52North SOS

52North’s SOS implementation is designed to be highly modular, and adaptable to arbitrary

suitable sensor data sources, transport protocols, etc. The larger enclosed box in Figure 2.4 shows

the high-level architecture of the 52North SOS.

Figure 2.3. 52North SOS Architecture, extended with an ontological knowledge base.

The Visualization Layer shown in Figure 2.4 is not part of the SOS itself, but rather corresponds

to external clients that interact with the SOS. These can be either publishers or consumers of

sensor data, and may also be other web services. The Presentation Layer of 52North’s

architecture defines the SOS’s interface to the outside world. The default implementation has a

Servlet interface that accepts requests and communicates responses via HTTP. If another

transport mechanism or protocol is required, this level can be replaced without affecting the other

layers of the SOS. The next level is the Business Layer, which receives requests from the

Presentation Layer, handles them as appropriate, and returns a response. The Business Layer

Extensions for SemSOS

52North SOS

Visualization Layer

Thin Clients Thick ClientsOther Services (e.g. WPS)

Presentation Layer

Business Logic

SOS Query

SOS Servlet

SML-S/O&M-S

XYZListenerGetObservationListenerGetCapabilitiesListener

RequestOperator

HTTP Request
HTTP Response

Data Layer

GetObservationDAO XYZDAOGetCapabilitiesDAO

Ontological Knowledge Base

Query Parameters Query Result

SPARQL Queries Data Graph

26

contains the logic for decoding requests and encoding responses. The main entry-point from the

Presentation Layer is the RequestOperator object, which validates incoming requests, determines

the type of request, and dispatches accordingly. Each operation supported by the SOS

(GetCapabilities, GetObservation, etc.) is embodied by a Listener object which handles the

corresponding incoming request (resp. GetCapabilitiesListener, GetObservationListener, etc.).

The Listener objects may be configured externally during deployment of the service. The

individual Listeners handle high-level translation of the request into an internal format which is

then used to query the respective object in the Data Layer and compose the response. The final

layer of the 52North architecture is the Data Layer. The Data Layer is an abstraction of a sensor

data source through Data Access Objects (DAO). Each DAO represents a particular interface to

the sensor data from the point of view of one of the SOS’s operations. For each Listener object in

the Business Logic Layer, there is a corresponding DAO object in the Data Layer. The DAO

objects are used by their respective Listener objects to obtain the data pertaining to a query. The

abstraction provided by the DAOs and the Data Layer is what allows the 52North’s SOS

implementation to be so easily adapted to new sources of sensor data. For each operation that

must be supported, all that is required is a new DAO that works with the data source. The default

implementation shipped with 52North uses a PostGIS database with a custom database schema to

store observation data, while sensor descriptions are stored on the file system in XML files (using

SensorML or TransducerML).

2.2.5.2. SemSOS Extensions to 52North

The box surrounding the bottom third of Figure 2.4 denotes the extensions made to 52North’s

SOS in order to implement SemSOS. The modular nature of the 52North implementation allowed

us to leave the request routing, encoding/decoding, and similar details in place, while replacing

the data access implementation with our own. The DAOs for all three operations specified in the

27

SOS core profile (GetCapabilities, GetObservation, and DescribeSensor) were replaced with

implementations that support data access to an O&M-OWL knowledge base. Specifically,

SemSOS uses the Jena Semantic Web Framework [Jena] to store and access the O&M-OWL

ontology. The stored ontology is then accessed via SPARQL queries that are generated from the

incoming SOS query parameters [SPARQL]. In producing the SPARQL queries, the syntactic

form of the SOS query parameters (such as date, time, magnitude, etc.) are transformed into

appropriate formats for semantic querying over O&M-OWL. Likewise, query filters (such as

location, comparison operators, etc.) must be transformed into SPARQL-style filters and

relational operations. Evaluating a SPARQL query results in a set of triples representing an RDF

graph, with data annotated in O&M-OWL. This graph is then transformed into the internal

52North result structure and returned to the Business Logic Layer. Here, the previous translation

to convert SOS queries into SPARQL must be performed in reverse. O&M-OWL concepts

instantiated within a set of RDF triples are translated into O&M-XML. The results of SemSOS

client queries are thus valid SOS results. SemSOS also provides richer semantic interoperability

for clients that are semantically-aware through semantic annotation of the O&M-XML result

document. This is achieved by using model references, or URIs of concepts defined in an

ontology, as identifiers within O&M-XML.

2.2.5.3. Example SemSOS Query Processing

The first step the SemSOS DAOs must take in serving an SOS request is to translate the incoming

SOS query into a SPARQL query which may be run against the knowledge base. Figure 2.5

shows an example SOS query asking for all observations that (1) are generated by procedures

(sensors) that are part of offering (sensor constellation) ‘BRAU1’, (2) fall within the time span of

2003-04-03T20:00:00-05 to 2003-04-04T02:00:00-05 (a six-hour interval), and (3) correspond to

one of four specific observed properties: air temperature, precipitation, wind speed, wind gust.

28

Figure 2.4. Example SOS query.

The SOS query is then transformed into the SPARQL query depicted in Figure 2.6, which

expresses the same constraints as the original, but in the language of O&M-OWL. Note that the

event time specification in the SOS query becomes a SPARQL filter, as do the observed property

specifications. Other SOS query relational operations and filters, such as location or feature of

interest, are handled similarly.

Figure 2.5. Example SPARQL query.

< Get Observat ion xm lns= .. . service= "SOS" version= "1.0 .0"

srsNam e= "urn:ogc:def:crs:EPSG:4326">

< offer ing> BRAU1< /offer ing>

< event Tim e>

< ogc:TM _During>

< ogc:Propert yNam e> urn:ogc:dat a:t im e:iso8601< /ogc:Propert yNam e>

< gm l:Tim ePeriod>

< gm l:beginPosit ion> 2003 -04 -03T20:00 :00 -05< /gm l:beginPosit ion>

< gm l:endPosit ion> 2003 -04 -04T0 2:00 :00 -05< /gm l:endPosit ion>

< /gm l:Tim ePeriod>

< /ogc:TM _During>

< /event Tim e>

< observedPropert y> ht t p://.. . /w eather.ow l# _AirTemperature< /observedPropert y>

< observedPropert y> ht t p://.. . /w eather.ow l# _Precipit at ion< /observedPropert y>

< observedPropert y> ht t p://.. . /w eather.ow l# _W indSpeed< /observedPropert y>

< observedPropert y> ht t p://.. . /w eather.ow l# _W indGust < /observedPropert y>

< responseForm at > t ext /xm l;subt ype= & quot ;om /1 .0 .0& quot ;< /responseForm at >

< /Get Observat ion>

SELECT DISTINCT ?offering ?offeringID ?proc ?obs ?phen ?resultDataType ?floatValue

?intValue ?booleanValue ?date ?foi ?foiType ?loc ?locType ?lat ?long ?elevation

WHERE {

?offering rdf:type observation:System .

?offering observation:ID "BRAU1" .

?offering observation:ID ?offeringID .

?offering observation:systemComponentProcess ?proc .

?proc observation:generatedObservation ?obs .

?obs observation:instFeatureOfInterest ?foi .

?obs observation:featureOfInterest ?foiType .

?obs observation:samplingTime ?inst .

?inst xsd:datetime ?date .

?obs observation:observedProperty ?phen .

?obs observation:result ?result .

?result rdf:type ?resultDataType .

{

{?result observation:floatValue ?floatValue . }

UNION {?result observation:intValue ?intValue . }

UNION {?result observation:booleanValue ?booleanValue . }

}

?obs observation:observationLocation ?loc .

?loc rdf:type ?locType .

?loc observation:latitude ?lat .

?loc observation:longitude ?long .

?loc observation:elevation ?elevation .

FILTER(?phen=<http://.../weather.owl#_AirTemperature>

|| ?phen=<http://.../weather.owl#_Precipitation>

|| ?phen =<http://.../weather.owl#_WindSpeed>

|| ?phen=<http://.../weather.owl#_WindGust>) .

FILTER (?date > "2003-04-03T20:00:00"^^xsd:dateTime

&& ?date < "2003-04-04T02:00:00"^^xsd:dateTime) .

}

29

Figure 2.6. Example SPARQL query results.

The table in Figure 2.7 displays one row of the result from the SPARQL query in Figure 2.6. The

row contains information pertaining to a single air temperature reading generated by a sensor that

is a member of the offering specified in the original SOS query. The result value of the reading is

present (?floatValue), along with the location (?loc, ?locType, ?lat, ?long, ?elevation) and a

related feature of interest (?foi, ?foiType), in this case an instance of freezing rain. The full result

of the SPARQL query contains many more rows including observations from the same sensor at

different times, and observations from other sensors contained in the same offering, which may

have observed different phenomena and relate to different features. The result of the SPARQL

query is then used to construct an SOS response document, as shown in Figure 2.8.

?offering <http://.../observation.owl#system_BRAU1>

?offeringID BRAU1

?proc <http://.../observation.owl#TemperatureSensor_46>

?obs <http://.../observation.owl#observation_BRAU1_2003_04_04_01_00_00_AIRTEMPERATURE>

?phen <http://.../weather.owl#_AirTemperature>

?resultDataType <http://.../observation.owl#MeasureData>

?floatValue 2.0

?date 2003-04-04T01:00:00

?foi <http://.../weather.owl#FreezingRain_562>

?foiType <http://.../weather.owl#_FreezingRain>

?loc <http://.../observation.owl#point_BRAU1>

?locType <http://.../observation.owl#Point>

?lat 40.8844

?long -110.8292

?elevation 8536.0

30

Figure 2.7. Example SOS response.

2.3. Linked Sensor Data

Beyond the Semantic Web languages and technologies discussed above, significant recent

progress in the realization of the vision of Semantic Web is the emergence of Linked Data

[Bizer09]. Linked Data is a large and growing collection of interlinked public datasets, encoded

in RDF, and spanning many diverse domains such as life sciences, nature, science, geography,

and entertainment. In the sensors domain, sources of geospatial information such as GeoNames

(http://www.geonames.org/) and LinkedGeoData (http://linkedgeodata.org/) are of particular

<om:ObservationCollection …>

<gml:boundedBy>
<gml:Envelope>

<gml:lowerCorner>-110.8292007446289 40.8843994140625</gml:lowerCorner>
<gml:upperCorner>-110.8292007446289 40.8843994140625</gml:upperCorner>

</gml:Envelope>
</gml:boundedBy>

<om:member>
<om:Observation>

<om:samplingTime>
<gml:TimePeriod xsi:type="gml:TimePeriodType">

<gml:beginPosition>2003-04-03T20:00:00-05:00</gml:beginPosition>
<gml:endPosition>2003-04-03T20:00:00-05:00</gml:endPosition>

</gml:TimePeriod>
</om:samplingTime>

<om:procedure xlink:href="http://.../observation.owl#TemperatureSensor_46"/>
<om:observedProperty>

<swe:CompositePhenomenon gml:id="cpid0" dimension="2">
<gml:name>resultComponents</gml:name>

<swe:component xlink:href="urn:ogc:data:time:iso8601"/>
<swe:component xlink:href="http://.../weather.owl#_AirTemperature"/>

</swe:CompositePhenomenon>
</om:observedProperty>

<om:featureOfInterest>
<gml:FeatureCollection>

<gml:featureMember>
<sa:SamplingPoint gml:id="FreezingRain_562">

<gml:name>FreezingRain_562</gml:name>
<sa:position>

<gml:Point>
<gml:pos srsName="urn:ogc:def:crs:EPSG:4326">

-110.8292007446289 40.8843994140625</gml:pos>
</gml:Point>

</sa:position>
</sa:SamplingPoint>

</gml:featureMember>
</gml:FeatureCollection>

</om:featureOfInterest>
<om:result>

<swe:DataArray>
<swe:elementCount>

<swe:Count><swe:value>1</swe:value></swe:Count>
</swe:elementCount>

<swe:elementType name="Components">
<swe:SimpleDataRecord>

<swe:field name="Time">
<swe:Time definition="urn:ogc:data:time:iso8601"/>

</swe:field>
<swe:field name="feature">

<swe:Text definition="urn:ogc:data:feature"/>
</swe:field>

<swe:field name="weather.owl#_AirTemperature">
<swe:Quantity definition="http://.../weather.owl#_AirTemperature">

<swe:uom code="http://.../observation.owl#fahrenheit"/>
</swe:Quantity>

</swe:field>
</swe:SimpleDataRecord>

</swe:elementType>
<swe:encoding>

<swe:TextBlock decimalSeparator="." tokenSeparator="," blockSeparator="@@"/>
</swe:encoding>

<swe:values>2003-04-03T20:00:00-05,FreezingRain_562,2.0@@</swe:values>
</swe:DataArray>

</om:result>
</om:Observation>

</om:member>
</om:ObservationCollection>

http://www.geonames.org/
http://linkedgeodata.org/

31

importance. The GeoNames geographical dataset contains over eight million geographical names

and consists of 7 million unique features including 2.6 million populated places and 2.8 million

alternate names.

Using the sensor model outlined above (Section 2.2.1), we have generated several sensor datasets

and made them available as Linked Data [Patni10][Pschorr10]. The datasets contain sensor

descriptions and observations collected from weather stations within the United States. These

datasets provide links to GeoNames in order to support location-based sensor discovery.

Linked Data as a Sensor Registry – An ideal mechanism for sensor discovery on the Sensor

Web should include facilities for expressive query against semantically meaningful user criteria,

simple procedures for the inclusion of new sensors and observations, and the ability to extend and

build upon existing data. These requirements are all fulfilled by Linked Data, while they highlight

weaknesses of traditional service registries. As such, we position Linked Data as an alternative to

more conventional registry approaches.

A registry for sensors can expect to have new sensors added occasionally, but must assume

additional observation data will be added on a continuous basis. A traditional centralized registry

system does not scale to the amount of sensor and observational data that we can expect sensor

systems to generate. Linked Data, however, presents a decentralized approach to publishing

sensor data by creating relations to existing data and providing dereferenceable URIs.

Extending existing data sets with new relationships is great advantage of using Linked Data as a

registry for sensor information. Sensor datasets can make use of temporal, spatial, and thematic

concepts published elsewhere in Linked Data. Just as important, however, sensors and

observations created by one publisher may be extended by another simply by the generation of

32

new relationships referencing the existing facts. The open and decentralized nature of Linked

Data allows rich interaction between sensor and thematic data that is often absent or prohibitively

complex given conventional, insular registries.

Sensor Descriptions on Linked Data – Using the model presented in Section 2.2.1, we have

generated a dataset of sensor descriptions called LinkedSensorData. This dataset is derived from

data collected by MesoWest, a project within the Department of Meteorology at the University of

Utah [MesoWest]. MesoWest continually collects data from over 20,000 weather stations

phenomena within North America. On average, there are about five sensors per weather station

measuring phenomena such as temperature, visibility, precipitation, pressure, wind speed,

humidity, etc. In addition to location attributes such as latitude, longitude, and elevation,

LinkedSensorData also contains links to locations in GeoNames. This dataset is now published as

Linked Data.

Sensor Observations on Linked Data – Another dataset, called LinkedObservationData, has

been generated that contains expressive descriptions of sensor observation data. This dataset is

also based on data collected by MesoWest. The observations include measurements of

phenomena such as temperature, visibility, precipitation, pressure, wind speed, humidity, etc. The

dataset consists of observations made within the United States during the time periods in which

several major storms were active (e.g. Hurricane Katrina). These observations were generated by

the weather stations described in our sensor descriptions dataset, which they reference. Table 2.1

describes the storms, date ranges, and size of the LinkedObservationData dataset that currently

contains over one billion RDF triples and is now published as Linked Data.

33

Table 2.1. LinkedObservationData statistics

Name Storm

Type

Date Number of

Triples

Number of

Observations

Bill Hurricane Aug. 17-22, 2009 231,021,108 21,272,790

Gustav Hurricane Aug. 25-32, 2008 258,378,511 23,792,818

Bertha Hurricane July 6-17, 2008 278,235,734 25,762,568

Wilma Hurricane Oct. 17-23, 2005 171,854,686 15,797,852

Katrina Hurricane Aug. 23-30, 2005 203,386,049 18,832,041

Charley Hurricane Aug. 9-15, 2004 101,956,760 9,333,676

 Blizzard April 1-6, 2003 111,357,227 10,237,791

Sensor Locations on Linked Data – Once sensor data is encoded in RDF and published as

Linked Data, the next step is to leverage the vast spatial information already present on Linked

Data. GeoNames provides the type of spatial data necessary not only to relate user-friendly

location names to coordinate information, but also to associate contextual information such as

region containment and distance from location. Fig. 2.9 shows the overall structure of the datasets

and the relationships between them, including links to GeoNames.

Figure 2.9. Relationships between sensor datasets on Linked Data

For each sensor in our knowledge base, we use the findNearby
1
 service provided by GeoNames to

determine the geographically closest named location, or feature, within the GeoNames dataset.

This location is then linked with a sensor through the ‘near’ relationship. This relationship

1 http://www.geonames.org/export/web-services.html#findNearby

34

describes not only the location of the sensor, but also contextual information regarding the

sensor’s distance from the location.

GeoNames classifies locations according to containment (e.g. Wright State University is within

the city of Dayton) as well as feature classes and codes (e.g. the feature class of Wright State

University is a spot, building or farm and its feature code is school). This provides an extensive

source of semantic spatial information that allows us to construct an intuitive mechanism for

finding sensor data by region. In addition to feature hierarchy, each GeoNames location provides

a nearbyFeature relationship that links to a set of locations that are near the original location. The

nearbyFeature relationship provides another way to find locations near a sensor.

In order to encode these relations between a sensor and the nearest GeoNames location, sensors

are annotated with a link to LocatedNearRel. The LocatedNearRel concept encodes information

about the ‘near’ relationship that holds between a sensor and a named location. More specifically,

it contains the closest GeoNames location and its distance from the sensor. The structure is

illustrated in Figure 2.10.

Figure. 2.10. Concepts and relations linking sensors (or processes) described in

LinkedSensorData to features described in GeoNames

Sensor Discovery Query over Linked Data – With sensor and observation data published with

relationships to spatial datasets on Linked Data, discovery simply becomes a matter of querying

RDF data. In our implementation, we perform SPARQL queries over a cached version of the

35

relevant portions of Linked Data, particularly named locations in GeoNames and sensor

descriptions in LinkedSensorData described above. Currently, we support discovery of sensors

based on GeoNames locations through two basic operations:

 Find the named location closest to a given sensor

 Find all sensors near a given named location

Figure 2.11 shows an example query asking the following question: Find sensors near Wright

State University that can tell me about temperature and precipitation. The results from this query

will include sensors near the specified location and the associated distance between the sensor

and location.

Figure 2.11. Example discovery query of LinkedSensorData

2.4. Semantic Sensor Network Ontology

The O&M-OWL ontology described above served as inspiration for the Semantic Sensor

Network (SSN) ontology [Lefort11][Compton12] developed by the W3C Semantic Sensor

Network Incubator Group [SSN-XG]. This group included over 40 researchers from 16

organizations. My role in this group consisted of leading the development of a semantic

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX geonames:<http://www.geonames.org/ontology#>

PREFIX om-owl:<http://knoesis.wright.edu/ssw/sensor-observations.owl#>
PREFIX weather: <http://knoesis.wright.edu/ssw/weather.owl#>

SELECT DISTINCT ?sensor ?dist
WHERE {

 ?sensor rdf:type om-owl:System .

 ?sensor om-owl:hasLocatedNearRel ?near .
 ?sensor om-owl:parameter weather:AirTemperature .

 ?sensor om-owl:parameter weather:Precipitation .

 ?near om-owl:distance ?dist .
 ?near om-owl:hasLocation ?location .

 ?location geonames:name “Wright State University” .

};

36

annotation framework (for annotating SWE documents), contributing to the design and

development of the ontology, and acting as editor of the final report. The SSN ontology is

currently being used for improved management of sensor data on the Web, involving annotation,

integration, publishing, and search [Gray11][Calbimonte11][Pfisterer11]. The ontology defines

concepts for representing sensors, sensor observations, and knowledge of the environment. Figure

2.9 provides an overview of the primary classes and properties of the SSN ontology.

Figure 2.12. Overview of the Semantic Sensor Network ontology classes and properties.

The SSN ontology serves as a foundation to formalize the semantics of perception. In particular,

the representation of observations and environmental knowledge are employed. An observation

(ssn:Observation) is defined as a situation that describes an observed feature, an observed

property, the sensor used, and a value resulting from the observation (note: prefix ssn is used to

denote concepts from the SSN ontology). A feature (ssn:FeatureOfInterest; for conciseness,

ssn:Feature will be used throughout the paper) is an object or event in an environment, and a

37

property (ssn:Property) is an observable attribute of a feature. For example, in cardiology,

elevated blood pressure is a property of the feature Hyperthyroidism. To determine that blood

pressure is elevated requires some pre-processing; however, this is outside the scope of this work.

An observation is related to its observed property through the ssn:observedProperty relation.

Knowledge of the environment plays a key role in perception [Neisser76][Gregory97]. Therefore,

the ability to leverage shared knowledge is a key enabler of semantics-based machine perception.

In SSN, knowledge of the environment is represented as a relation (ssn:isPropertyOf) between a

property and a feature. To enable integration with other ontological knowledge on the Web, this

environmental knowledge design pattern is aligned with concepts in the DOLCE Ultra Lite

ontology
2
. Figure 2.10(a) provides a graphical representation of environmental knowledge in

SSN, with mappings to DOLCE. An environmental knowledgebase, storing facts about many

features and their observable properties, takes the shape of a bipartite graph. Figure 2.10(b) shows

an example knowledge base with concepts from cardiology.

Figure 2.13. (a) Graphical representation of environmental knowledge in the SSN ontology, with

mappings to DOLCE Ultra Lite (prefix dul). (b) Graphical representation of an example

2
 http://www.loa-cnr.it/ontologies/DUL.owl

http://www.loa-cnr.it/ontologies/DUL.owl

38

environmental knowledgebase in cardiology, taking the shape of a bipartite graph. This

knowledgebase is derived from collaboration with cardiologists at ezDI (http://www.ezdi.us/).

2.5. Concluding Remarks

A synthesis of the Sensor Web Enablement standards defined by the OGC and the Semantic Web

languages defined by the W3C provides a platform for integration and reasoning over sensor

observations in order to attain shared knowledge of an environment. This platform is broadly

termed the Semantic Sensor Web [Sheth08], of which SemSOS is a principal component. In the

preceding chapter we have described how this is accomplished by modeling the domain of

sensors and sensor observations in a suite of ontologies, adding semantic annotations to the

sensor data, using the ontology models to reason over sensor observations, and extending an open

source SOS implementation with our semantic knowledge base.

In 1999, Neil Gross expressed a vision of the future in which sensors were ubiquitous and

engrained in the fabric of our environment:

“In the next century, planet earth will don an electronic skin. It will use the Internet as a

scaffold to support and transmit its sensations. This skin is already being stitched together.

It consists of millions of embedded electronic measuring devices: thermostats, pressure

gauges, pollution detectors, cameras, microphones, glucose sensors, EKGs,

electroencephalographs. These will probe and monitor cities and endangered species, the

atmosphere, our ships, highways and fleets of trucks, our conversations, our bodies--even

our dreams [Gross99].”

http://www.ezdi.us/

39

I share this vision and wish to provide meaning to this new world, which is the subject of the next

chapter.

40

3. Semantic Perception

Look at the image in Figure 3.1. How quickly were you able to realize the identity of the depicted

object? The activity you just engaged in is called perception; and while people are able to

perceive their environment almost instantaneously, and seemingly without effort, machines

continue to struggle with the task. In the present chapter, we investigate how people are able to

perceive the world so effectively and show how an approximation of this process can be

formalized to better enable machines to perceive.

Figure 3.1. A red apple.

The study of perception likely began in ancient Greece when Plato first pondered the meaning of

shadows dancing on a wall.
1
 The Greek word for perception, intellego, stems from the Latin

intellegere: inter ("between") and lego ("to choose or gather") [Norwich91]. To the ancient

Greeks, to perceive was to choose from among alternative explanations which account for our

observations. Thus, to perceive an apple is to choose from among a range of possibilities,

including an apple, orange, or ball. These acts of observation and perception provide the building

1 Plato’s Cave, http://en.wikipedia.org/wiki/Allegory_of_the_Cave (accessed May, 2011)

41

blocks for all human knowledge [Locke1960]; they are the processes from which all ideas are

born; and the sole bond connecting ourselves to the world around us. Now, with the advent of

sensor networks
2
 capable of observation, this world may be directly accessible to machines.

Missing from this vision, however, is the ability of machines to glean semantics from

observation; to apprehend entities from detected qualities; to perceive. The systematic automation

of this ability is the focus of machine perception – the ability of computing machines to sense and

interpret the contents of their environment [Nevatia82]. Despite early successes within narrow

domains (e.g., facial recognition [Zhao03]), however, a general solution remains elusive. This

state of affairs is the result of difficult research challenges, such as the ability to effectively model

the process of perception, to provide an appropriate interpretation of observational data with

incomplete information, and to efficiently interpret the growing stream of observational data. The

issue of effectively modeling the process of perception is often investigated within specific

application areas, such as machine vision [Aloimonos88][Diamant07]. While much progress has

been achieved, this approach also results in a fractured assortment of models and algorithms that

are effective for narrowly defined problems, such as interpreting sensor data of a single modality.

Integrating and interpreting sensor data of multiple modalities for a wide range of applications,

however, requires a more encompassing approach. In an attempt to deal with the latter issue, of

efficiently interpreting the growing stream of observational data, there is much research within

the sensors community to mitigate the effects of observational data overload. Many such efforts

concentrate on developing effective schedules and sampling rates for sensor observations

[Gürgen06]. Interval-based sampling often generates data (through brute-force collection) that is

unnecessary for understanding the environment. Another technique for collecting sensor data,

called event-based sampling [Pawlowski08][Pawlowski09], generates observation records only

after a particular event is detected (e.g., temperature drops below a certain threshold).

2 A sensor network is a group of specialized measuring devices (i.e., sensors) with a communications infrastructure intended to

monitor and record conditions within an environment.

42

Unfortunately, this provides limited additional benefits towards effective analysis of (often

incomplete) data. The dichotomic need for reduced information overload and complete

information for effective analysis can be addressed through an understanding, and modeling, of

the techniques employed by human perception. More specifically, the techniques employed by

human perception, such as the ability to focus attention and seek out additional information from

our environment, holds the key to simultaneously minimizing the amount of information needed

for perception and enabling graceful degradation of perception with incomplete information.

Such challenges are addressed through the development of an ontology of perception, IntellegO.

This ontology is derived from well-established cognitive theories of perception and establishes a

formal semantics for machine perception.

3.1. Cognitive Models of Perception

What are perceptions and how are they formed? What can be perceived? How do perceptions

relate to reality? In order to bestow onto a machine the ability to glean semantics from

observation, such questions require explicit, implementable, answers. As perceptual beings,

people are constantly inundated with sensory input; yet we are able to make sense out of our

environment with relative ease. We have a remarkable aptitude for comprehending the world

around us; for subconsciously analyzing sensory input and apprehending mental conceptions with

efficiency and precision. For centuries, thinkers have endeavored to understand the mechanisms

underlying this phenomenon, and through such investigation have advanced complex theories of

perception within the fields of philosophy, psychology, physiology, cognitive science, and

machine vision. One idea that has emerged from such investigations includes the ability to utilize

background knowledge to determine what aspects of the environment to focus our attention

43

[Bajcsy88][Gregory68][Gregory97][Neisser76], which enables a perceiver to efficiently make

sense of the environment.

Figure 3.2. Neisser's Perception Cycle

In the late 1970’s, the idea of perception as a cyclical process began to take form. The most

famous expression of this idea was proposed by Ulric Neisser in 1976 [Neisser76]. Neisser's

Perception Cycle is divided into three stages: (1) sampling (or observing) the environment, (2)

modifying our knowledge (schema) of the environment, based on our newly acquired

observations, and (3) directing our attention for further exploration. Figure 3.2 shows a graphical

representation of Neisser’s Perception Cycle. In contemporary research, this general model is

called Active Perception [Bajcsy88]. The idea of perception as an active, cyclical process laid the

ground work for our current understanding of human perception. Shortly after, from the early

1980’s and into the late 1990’s, Richard Gregory’s theories of perception began to take shape and

were continually refined through investigations into the nature of illusions [Gregory97]. From

this work, he showed that the perception cycle iteratively generates and tests hypotheses that

explain our observations. As we progress through these tests, by focused attention on our

environment, the number of distinct explanatory hypotheses invariably diminishes, leading to

more precise, unambiguous hypotheses. In addition, Gregory was able to demonstrate that the

44

hypothesize and test cycle is driven by a-priori background knowledge. In other words, our

perception of the world is highly dependent on our knowledge of the world. More recently, the

term top-down processing has been used to describe the ability to map observations onto

background knowledge in order to fill in the gaps of this knowledge. This phenomenon has been

widely studied within the fields of biological/human vision [Cavanagh99][Gregory97] and

machine vision [Aloimonos88][Diamant07]. Meanwhile, in the early 1990’s, another unusual

model of perception emerged from the field of mathematics. At this time, James Gibson’s ideas

on perception gained influence; in particular, the idea that physical stimuli carry information

about the world, and our sensory organs have evolved to intercept, extract, and decode this

information [Gibson66]. From this general idea, Peter Norwich was able to extrapolate the

conjecture that the stimulus information intercepted by our senses could be measured and

understood using Claude Shannon’s Information Theory [Shannon48]. This is the basis for the

Entropy Theory of Perception which uses mathematical models of entropy and information-gain

to determine the informational value of different observations [Norwich91].

Inspired by these theories, this work provides an explicit formalization of perception that may be

understood and systematically executed by machines. The formalization is based on three core

ideas:

1. Perception is an active, cyclical process of exploration and interpretation (Nessier).

2. The perception cycle is driven by background knowledge in order to generate and test

hypotheses (Gregory).

45

3. In order to effectively test hypotheses, some observations are more informative than others

(Norwich).
3

Below, these ideas are synthesized and perception is viewed as an efficient, cyclical process of

actively seeking and detecting those qualities that carry information most useful for testing and

evaluating hypothesis.

3.2. Ontology of Perception – Set Theory

Over the years, cognitive theories of perception have been proposed, evaluated, revised, and

evolved within an impressive body of research. This research presents a valuable stepping-stone

towards the goal of machine perception, to embody this unique human ability within a

computational system. In this section, the aim is to explicitly define the information processes

involved in perception that will serve as an ontological account of knowledge production. The

ontology of perception, or IntellegO, attempts to formally model perception in a way that is

independent of any particular implementation technology and of suitable generality to encompass

both machine perception and human perception.
4
 A formal semantics

5
 of perception can be

defined by providing high-level interpretation of low-level observational data, which may be

derived through computational means. This ontology is a novel research contribution towards the

goal of machine perception.

3 To our knowledge, Norwich never actually made this connection between his ideas of measuring the informational value of

observations and Gregory’s ideas of testing hypotheses. This connection stems from our own imagination, and plays a critical role

within the ontology of perception.

4 We are NOT claiming to represent the full spectrum of human perception, but have tried to include ideas from cognitive theory of

perception that may be useful for machine perception.

5 Formal semantics is a rigorous, systematic, and unambiguous description of the meaning of some conceptualization, described in

purely symbolic terms; and often embodied within a set of logical axioms and entailments rules.

46

To communicate the semantics of perception, we must define an appropriate terminology. In the

text below, we will describe several concepts, relations, and processes. The concepts and relations

include entity, quality, quality-type, percept, observer, perceiver, focus, perceptual-theory,

inheres-in, and has-type. These concepts and relations are described in Section 3.2.1. The

processes include observation-process, perception-process, and perception-cycle. These

processes, along with several sub-processes, are formally defined in Section 3.2.2. Table 3.1

provides a quick reference guide.

Table 3.1. Quick reference guide to the terminology of IntellegO.

Term Description Example

entity An object or event in the world apple

quality An inherent property of an entity red

quality-type A category (or class) of qualities color

percept A quality that has been detected red

observer An agent that executes the observation-process sensor

perceiver An agent that executes the perception-process computer

focus A quality-type whose detection may reduce the

perceptual-theory

color

perceptual-theory A set of entities that each explains a set of

percepts

{apple, nose}

inheres-in A relation between a quality and an entity red inheres-in apple

has-type A relation between a quality and a quality-type red has-type color

47

observation-process An act of detecting a quality and generating a

percept

observation-process(red) 

red

perception-process An act of inferring a perceptual-theory from a

set of percepts

perception-process(red)

{apple, nose}

perception-cycle An act of minimizing a perceptual-theory by

focusing attention

perception-cycle(…)

 {apple}

3.2.1. Semantics of Perception: Concepts and Relations

Imagine again that you are looking at the red apple depicted in Figure 3.1. The apple is an entity

and red is a quality. The red quality is an inherent property of the apple entity. An entity is an

object or event in the world; a quality is an inherent property of an entity; and inheres-in is a

relation between a quality and an entity. Figure 3.3 illustrates an abstract set of inheres-in

relations. A quality-type is a named category, or class, of qualities; such as color. A quality must

have one-and-only-one quality-type; has-type is a relation between a quality and a quality-type.

Different qualities associated with the same quality-type (through the has-type relation) are

mutually exclusive. For example, red and green are mutually exclusive for the quality-type color.

The background knowledge needed for perception, termed perceptual-BK, is composed of a set of

has-type relations between qualities and quality-types, and a set of inheres-in relations between

qualities and entities.

48

Figure 3.3. Set of inheres-in relations.

An observer is an agent that detects a quality. In this case, the observer is a human eye detecting

the color red; however, the role of observer can be played by mechanical agents (e.g., sensors),

biological agents (e.g., human eyes), or social agents (e.g., micro-blogs [Sheth09]). Upon

detecting the color red, the mind brings forth an experience of redness embodied within an

experience of an apple (of appleness). These mental experiences are referred to as qualia. While

there is a clear distinction between a quality, or entity, and its associated qualia, we will make no

such distinction in IntellegO.
6
 A percept is a quality that has been detected by an observer. A

perceiver is an agent that generates explanations for a set of percepts; for example, an apple may

explain the red percept. In this case the perceiver is a human mind; however, the role of perceiver

can be played by mechanical agents or biological agents [Goldstine64]. An explanation of a set of

percepts is a set of entities, termed a perceptual-theory. Specifically, each entity in the

perceptual-theory accounts for (explains) all the percepts. In order to refine or minimize a

perceptual-theory, a perceiver may provide instructions to an observer to detect a particular

quality-type. The phrase “detect a particular quality-type” should be interpreted as the detection

of a member quality. When this occurs, the quality-type is termed focus. This ability to refine a

6 While such a distinction may more accurately reflect, or approximate, human perception, in the authors’ opinion it would also

complicate IntellegO without adding sufficient utility.

49

perceptual-theory by employing focus is the key to efficient perception and will be further

discussed in Section 3.2.2.3. Figure 3.4 provides an example of how qualities, quality-types,

entities, percepts, and perceptual-theories are related.

Figure 3.4. Example of how qualities, quality-types, entities, percepts, and perceptual-theories

are related. The green color and round shape qualities have been detected and can be explained by

the apple entity. Rudolph’s (“the red-nosed reindeer”) nose is not a member of the perceptual-

theory since it cannot explain a set of percepts containing the green color quality.

3.2.2. Semantics of Perception: Processes

The three primary processes of IntellegO are: observation-process, perception-process, and

perception-cycle. These processes are formally specified in set-theoretic notation. We have

chosen to formalize the semantics of IntellegO in this manner because set-theory provides a

notation that is unambiguous, well-established, and suitably expressive. Before these processes

are defined, Table 3.2 provides a few required preliminary definitions.

50

Table 3.2. Required definitions for formalizing processes in IntellegO.

Term Description

perceptual-BK =

⟨Q, E, I, QT, T⟩
Background knowledge about qualities, entities, and their relationships

Q Set of all qualities

E Set of all entities

I ⊆ (Q × E) Set of all inheres-in relations between qualities and entities

QT Set of all quality-types

T ⊆ (Q × QT) Set of all has-type relations between qualities and quality-types

P ⊆ Q Set of all percepts

3.2.2.1. Observation Process

While looking at the image in Figure 3.1, your eye detects the color red and generates an abstract

representation in your mind.
7
 This is an example of an observation-process. Given a quality-type

as input, observation-process returns a detected quality, termed a percept. The observation-

process represents an interface between an agent and the outside world. While we can define the

input and output parameters of this process, the method in which a quality is detected is highly

application dependent. For example, in many application scenarios the observation-process would

activate a transducer which interacts with some physical stimuli, and this interaction is then

interpreted as the detection of some quality in the world [Kuhn09]. For this reason, only the input

and output parameters of observation-process are fully specified.

7 Of course, this is an over simplification of the human visualization process, but is useful here for illustration purposes.

51

Definition: observation-process (QT → Q)

observation-process(qt) = p, where (p ∈ Q) ⋀ (qt ∈ QT) ⋀

((p, qt) ∈ T) ⋀ “p is detected”

A set of qualities is considered valid if the set contains at most one quality associated with each

quality-type. This validity check reflects real-world constraints on a set of percepts and the nature

of the background knowledge.

Definition: valid (Q → Boolean)

valid(ps) ⇒ (ps ⊆ Q) ⋀ (∀ p1, p2 ∈ ps : (p1 ≠ p2) ⇒

(∃ qt1, qt2 ∈ QT : ((p1, qt1) ∈ T) ⋀ ((p2, qt2) ∈ T) ⋀

(qt1 ≠ qt2))

3.2.2.2. Perception Process

Again, while looking at the image in Figure 3.1, after detecting the color red, your mind attempts

to explain the red color and generates an abstract representation of this explanation in your mind.

An entity explains a set of qualities if the set of qualities are valid and each quality is an inherent

property of the entity.

Definition: explains (E × Powerset(Q) → Boolean)

explains(e, ps) ⇔ (e ∈ E) ⋀ (ps ⊆ Q) ⋀ valid(ps) ⋀

(∀ p ∈ ps : (p,e) ∈ I)

52

The process of generating explanations for a set of qualities is called the perception-process. The

perception-process takes a set of qualities as input and yields a set of entities capable of

explanation; that is, each entity in the set explains the set of qualities. The set of entities generated

by a perception-process is called the perceptual-theory. In practice, the perception-process should

attempt to explain only a set of percepts.

Definition: perception-process (Powerset(Q) → Powerset(E))

perception-process(ps) = { e ∈ E | explains(e, ps) }

3.2.2.3. Perception Cycle

The perception-process generates a perceptual-theory containing entities that explain a set of

percepts. Notice that the perceptual-theory can contain multiple entities. This is not an ideal

situation. When you look at Figure 3.1, you should perceive an apple, not an apple and/or

Rudolph’s nose. There are examples of human perception, however, where this type of ambiguity

prevails. Consider the image in Figure 3.5: does this image depict a cup, or two human faces?

Figure 3.5. Is this a cup, or two human faces?

While such ambiguity may not always be ideal, the ability of the perceptual-theory to contain

multiple explanatory entities is also what enables handling of incomplete or missing information

53

(i.e., enables graceful degradation). For example, now (with incomplete information) we say that

the image in Figure 3.5 depicts either a cup or two human faces; our perceptual-theory is {cup,

two human faces}. However, if we were to subsequently detect eyes and/or ears, then (with

additional disambiguating information) our perceptual-theory is refined to {two human faces}.

The study of perceptual illusions has provided significant insights into the nature of perception

[Gregory68][Gregory97]. Notwithstanding such cases, in general, we would like the resulting

perceptual-theory to contain as few entities as possible – ideally, with the goal of reaching exactly

one. This is because, in general, specificity improves action-ability. For example, the perceptual-

theory resulting from Figure 3.1 is {apple} rather than the ambiguous {apple, Rudolph’s nose}.

The size of a perceptual-theory can often be reduced (i.e., concepts can be removed/filtered out)

through the detection of new qualities, which must subsequently be explained. This cyclical

process of observation and perception is called the perception-cycle. The perception-cycle is a

process that relates the observation-process and perception-process; or, rather, relates observers

and perceivers. An observer communicates percepts to a perceiver, representing qualities that

have been detected, and the perceiver communicates focus to the observer, representing quality-

types that should be detected. Figure 3.6 provides a graphical representation of the perception-

cycle.

Figure 3.6. Architecture of the perception-cycle.

54

Within the perception-cycle, as new qualities are detected and the set of percepts grows, the size

of the perceptual-theory shrinks. Thus, perception is an anti-monotonic process (that is, if f is a

function that maps a set of percepts to a set of explanatory entities (i.e., perception-process), and

x, y are sets of percepts, then ((x ⊆ y)  (f(x)⊇ f(y))) [Gries99]. The anti-monotonic nature of the

perception-cycle does not permit a straightforward formalization in first-order logic using

standard deductive inference.

In order to optimize the perception-cycle, the observation-process should detect only those

qualities that are capable of reducing the perceptual-theory. For example, if a perceptual-theory

contains the entities apple and Rudolph’s nose, detecting shape is probably of little use – i.e.,

cannot help discriminate between an apple and Rudolph’s nose – since you can probably expect

both to be round(ish). In order to clarify which qualities enable the reduction of the perceptual-

theory, we will define four types of qualities: expected, unknown, extraneous, and discriminating.

A quality is expected with respect to a set of entities if it is an inherent property of every entity in

the set. Thus, if it were detected, it would be explained by every entity in the set. By definition,

all percepts are expected. For example, given the perceptual-theory {apple, Rudolph's nose}, then

the quality round-shape would be expected since both an apple and Rudolph's nose are round.

Definition: expected (Q × Powerset(E) → Boolean)

expected(q, es) ⇔ (q ∈ Q) ⋀ (es ⊆ E) ⋀ ¬empty(es) ⋀

(∀e ∈ es : (q,e) ∈ I)

A quality is unknown with respect to a set of entities if it is not an inherent property of any entity

in the set. Thus, if it were detected, it would not be explained by any entity in the set. By

definition, no percepts are unknown. For example, given the perceptual-theory {apple, Rudolph's

55

nose}, then the quality square-shape would be unknown since neither an apple nor Rudolph's

nose are square.

Definition: unknown (Q × Powerset(E) → Boolean)

unknown(q, es) ⇔ (q ∈ Q) ⋀ (es ⊆ E) ⋀ ¬empty(es) ⋀

(∀e ∈ es :(q,e) ∉ I)

A quality is extraneous with respect to a set of entities if it is either an inherent property of every

entity in the set (expected), or is not an inherent property of any entity in the set (unknown).

Thus, if it were detected, it would either be explained by all entities in the set or explained by no

entities in the set. In either case, detection would not help to reduce the perceptual-theory. For

example, given the perceptual-theory {apple, Rudolph's nose}, then the quality round-shape and

the quality square-shape would both be extraneous (for different reasons).

Definition: extraneous (Q × Powerset(E) → Boolean)

extraneous(q, es) ⇔ expected(q, es) ⋁ unknown(q, es)

A quality is discriminating with respect to a set of entities if its detection could potentially be

used to reduce the size of the perceptual-theory. The set of discriminating qualities and the set of

extraneous qualities are disjoint. Note that the set of discriminating qualities is not required to be

a valid set. For example, for the perceptual-theory {apple, Rudolph's nose}, the quality green-

color would be discriminating since an apple can be green while Rudolph's nose cannot.

Definition: discriminating (Q × Powerset(E) → Boolean)

discriminating(q, es) ⇔ ¬extraneous(q, es)

56

A perceptual-theory is minimum if it cannot be reduced through further observation. In other

words, there are no qualities whose detection may discriminate between entities in the perceptual-

theory.

Definition: minimum (Powerset(E) → Boolean)

minimum(es) ⇔ (∀q ∈ Q : extraneous(q, es))

With this terminology, we can now define a more specific goal of the perception-cycle: to

generate a minimum perceptual-theory for a set of percepts. In order to achieve this goal

efficiently, only those qualities capable of discriminating between entities in the perceptual-

theory should be detected. To ensure only discriminating qualities are detected, a perceiver may

provide instructions to (task) an observer to detect a particular quality-type, termed focus. This

ability to refine a perceptual-theory by employing focus is the key to efficient perception. Focus

is sent to an observation-process capable of detecting the represented quality-type. Given a set of

entities (i.e., perceptual-theory), the focus-candidates process returns a set of quality-types which,

when detected, can lead to reducing the perceptual-theory.

Definition: focus-candidates (Powerset(E) → Powerset(QT))

focus-candidates(es) = { qt ∈ QT | (∃q ∈ Q : (q ∉ P) ⋀

discriminating(q, es) ⋀ ((q, qt) ∈ T)) }

If there are several quality-types capable of reducing the perceptual-theory – i.e., several focus

candidates – only one (at-a-time) may be designated as focus. The choose process takes a set of

quality-types as input and returns a quality-type to observe. The method in which a single quality-

57

type may be chosen from a set of quality-types is highly application dependent. For this reason,

only the input and output parameters of the choose process are fully specified. In the next section,

we evaluate several different implementations of the choose process.

Definition: choose (Powerset(QT) → QT)

choose(qts) = qt, where (qts ⊆ QT) ⋀ (qt ∈ qts) ⋀

“one qt is chosen”

The perception-cycle generates the minimum perceptual-theory. The process begins with the set

of all known entities and an empty set of percepts, and repeatedly seeks suitable observations to

better assess the situation. The resultant set of entities is progressively refined, to eventually

obtain the minimum perceptual-theory. This perceptual-theory represents the best possible

explanation(s) admissible by the given background knowledge (perceptual-BK). The perception-

cycle algorithm proceeds as follows: (1) begin with a perceptual-theory and a set of percepts; (2)

if the perceptual-theory is minimum then return; otherwise (3) generate and send focus to an

observation-process and add the detected quality to the set of percepts; and finally, (4) update the

perceptual-theory by removing those entities which cannot explain the updated set of percepts,

and recursively continue the perception-cycle.

Definition: perception-cycle (Powerset(E) × Powerset(P) → Powerset(E))

Algorithm

input: es ⊆ E, ps ⊆ P

if minimum(es) then return es

else let aux = ps ⋃ {observation-process(choose(

focus-candidates(es)))}

 in perception-cycle(perception-process(aux), aux)

58

Function Call

initialize: es = E, ps = {} // {} is the empty set

perception-cycle(es, ps)

3.2.3. Evaluation

In the following section, we provide three evaluations of IntellegO. In Section 3.2.3.1, we

evaluate the sensing resources required for generating perceptual-theories, and show how focus,

determined by the perception-cycle, can lead to improved efficiency. In Section 3.2.3.2, we

evaluate the expressivity of IntellegO along two dimensions: (1) the ability to degrade gracefully

with incomplete information, and (2) the ability to minimize explanations based on new

information. IntellegO’s capacity to embody these abilities is compared with current approaches,

such as SWRL and first-order logic. In Section 3.2.3.3, we evaluate the resources required for

storing sensor observations and perceptual-theories, and show that, for some applications, the

generation and storing of perceptual-theories instead of raw observations can lead to significant –

an order of magnitude – storage savings.

3.2.3.1. Focus Evaluation

The ability to focus attention enables a perceiver to more efficiently make sense of their

environment. To better automate this process, IntellegO formalizes this ability. Specifically, we

have implemented a prototype of IntellegO to run three experiments that demonstrate a

realization of the perception-cycle and test the influence of focus on the interpretation of sensor

data. Our metric of evaluation, used to compare the results of these experiments, includes the

number of times the observation-process was executed in order to generate a minimum

59

perceptual-theory. The number of times the observation-process is executed can also be

represented by the size of the set of percepts to be explained (since each execution of the

observation-process generates one percept). In the first experiment, we disable the focus ability of

IntellegO and use background knowledge as discussed in Section 3.2.3.1.1. This is analogous to

executing a brute force approach and serves as a base-line for comparison against subsequent

experiments. This approach, however, is unfortunately the common modus operandi for

collecting and interpreting data from sensor networks. In the second experiment, we enable the

ability to focus and use the same background knowledge as the first experiment. In the third

experiment, we enable the ability to focus and attempt to select an optimal focus using an

enhanced background knowledge represented as a decision tree.

Claim – The use of focus within the perception-cycle generates a perceptual-theory more

efficiently (i.e., generates a smaller set of percepts) than the naïve brute force approach.

Proof Sketch – Focus-candidates by definition discriminate between entities that can potentially

serve as a viable explanation. Thus, observing a quality-type designated as focus is guaranteed to

reduce viable explanations. On the other hand, observing quality-types other than the focus-

candidates is of no consequence because either those values are already known (expected) or they

are not relevant (unknown) given the current set of viable explanations. Thus, observing quality-

types that are not focus-candidates requires wasteful computation and delays the determination of

the minimum set of explanations.

Table 3.3 provides definitions used for the following experiments. The domain of interest is

weather.

60

Table 3.3. Required definitions for evaluating IntellegO.

Term Description

perceptual-BK =

⟨Q, E, I, QT, T⟩

Background knowledge about qualities, entities, and their relationships

(see Figure 3.7)

Q

Set of all qualities = {freezing-temperature, not-freezing-temperature,

snow-precipitation, rain-precipitation, no-precipitation, high-wind-speed,

low-wind-speed}

E Set of all entities = {blizzard, flurry, rain-storm, rain-shower, clear}

I ⊆ (Q × E) Set of all inheres-in relations (see Figure 9)

QT Set of all quality-types = {temperature, precipitation, wind-speed}

T ⊆ (Q × QT) Set of all has-type relations (see Figure 9)

P ⊆ Q Set of all percepts (generated during execution of the perception-cycle)

3.2.3.1.1. Background Knowledge for Focus Evaluation

The background knowledge, or perceptual-BK, utilized by these experiments is encoded as a

graph representing the relationships between qualities and their types, and between qualities and

the entities in which they inhere-in. The domain of interest is weather; therefore, the background

knowledge contains weather related entities, such as blizzard, flurry, rain-storm, rain-shower, and

clear. Weather related inherent qualities of these entities include freezing-temperature, not-

freezing-temperature, snow-precipitation, rain-precipitation, no-precipitation, high-wind-speed,

and low-wind-speed. The quality-types include temperature, precipitation, and wind-speed.

Figure 3.7 illustrates the background knowledge related to weather. The concepts originated

61

from the National Oceanic and Atmospheric Association (NOAA)
8
 and are encoded in an

ontology of weather.

Figure 3.7. Background knowledge in the domain of weather. The graph shows how qualities and

quality-types are related through the has-type relationship, and how qualities and entities are

related through the inheres-in relationship.

The development of background knowledge is often a difficult challenge. In many domains, the

relationships between qualities and entities are unclear, resulting in representations that may be

imprecise and/or incomplete. While we acknowledge the difficulty, the development of such

domain specific knowledge is out of the scope of this work. For examples of recent work in this

area, see [Punuru07][Suchanek09][Thomas08].

3.2.3.1.2. Implementation

Before describing the experiments, we describe our implementation of IntellegO. The

implementation is written in Java and conforms to the specification formalized in Section 3.2.

Figure 3.8 shows an architecture diagram.

8 NOAA, http://www.noaa.gov/

62

Figure 3.8. Architecture of an implementation of IntellegO.

The implementation of IntellegO respects the specification given in Section 3.2. However, two

processes – observation-process and choose – were only partially defined; only the inputs and

outputs were defined. The choose process is implemented differently for each experiment below,

so the details will be described separately for each experiment. Note that the focus-candidates

process returns a set of quality-types as an ordered sequence (the rationale for this decision is

discussed in the experiment sections).

The implementation of the observation-process is highly dependent on the way in which sensor

data is accessed. For example, the observation-process could be designed to task sensors in an

environment and measure qualities in the world. For the evaluation presented in this paper,

however, the sensor data has already been collected, encoded in RDF, and made accessible on the

Web. Therefore, the observation-process, as implemented here, generates and executes a

SPARQL [Prud’hommeaux08] query against the sensor data on LOD. SPARQL (SPARQL

Protocol and RDF Query Language) is a W3C recommended language for querying RDF data. A

set of Java libraries for managing Semantic Web data, Jena/ARQ [Carroll04], is used to build and

execute the query.

63

The observation-process receives focus as input. In order to utilize this focus to generate an

appropriate SPARQL query, in this implementation we also annotate focus with additional

metadata, such as a time-interval and an observer (i.e., weather station). For example, given focus

of quality-type temperature, time-interval 2003-04-01T02:00:00 to 2003-04-01T03:59:59, and

observer System_SB1, the observation-process will generate the following SPARQL query to

detect the quality freezing-temperature.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#>

prefix lsd: <http://knoesis.wright.edu/ssw#>

prefix weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#>

prefix time: <http://www.w3.org/2006/time#>

ASK {

?observation ssn:observedProperty ?qualitytype .

 ?qualitytype rdf:type weather:temperature .

 ?observation ssn:observedBy lsd:System_SB1 .

 ?observation ssn:observationSamplingTime ?time .

 ?time time:inXSDDateTime ?datetime .

 ?observation ssn:observationResult ?result .

 ?result ssn:hasValue ?value .

 ?result weather:uom weather:Fahrenheit .

 FILTER(?value <= 32.0)

 FILTER(?datetime >= “2003-04-01T02:00:00”^^xsd:datetime)

 FILTER(?datetime <= “2003-04-01T03:59:59”^^xsd:datetime)

}

64

If the above ASK query returns true then the percept freezing-temperature is returned, otherwise

the percept not-freezing-temperature is returned. The percept returned is an URI for the detected

quality. SPARQL queries for the remaining quality-types are generated and executed in a similar

manner. The above query is executed against the LinkedSensorData dataset [Patni10].

3.2.3.1.3. Experiment Setup

Between April 1
st
 and April 6

th
 of 2003, a major blizzard hit the state of Nevada. Environmental

data within the surrounding area was collected by weather-stations, encoded as RDF, and made

accessible on the Web as Linked Data. For every two hour interval and for each observer within a

400 mile radius of the blizzard, we execute the perception-cycle and generate a perceptual-theory.

For each execution of the perception-cycle, the observer is a weather-station and the resulting

perceptual-theory contains member entities representing the weather event occurring at that time

and location (of the weather station). After each execution, the resultant perceptual-theory is

checked for correctness and the total number of percepts, in the set of percepts, is counted.

During the execution of the perception-cycle, two variables affect the size of the set of percepts:

(1) the order in which quality-types are detected, and (2) the weather conditions surrounding the

weather-station at the time of observation. The first issue is addressed by the way a quality-type is

chosen to be observed by the choose process. In order to address the second issue, we evaluate a

variety of weather conditions by executing the perception-cycle with observers at various

distances from the blizzard. More specifically, we execute the perception-cycle with observers

within a distance of 25 miles (17 observers), 50 miles (70 observers), 100 miles (170 observers),

200 miles (373 observers), and 400 miles (516 observers).

65

Given a particular time-interval and observer, in addition to the weather background knowledge

described in Section 3.2.3.1.1., the minimum perceptual-theory generated by the perception-cycle

should always be the same, despite the order in which quality-types are detected. The order only

affects how efficiently the perceptual-theory is generated. Thus, precision and recall statistics do

not make sense in this evaluation and will not be shown. In these experiments the minimum

perceptual-theory always contains either zero or one entity [note that this is a product of how the

specific qualities and entities are related within the weather background knowledge and not a

general rule]. As such, the resulting perceptual-theory will be labeled with a single term

representing the single member entity that explains the set of percepts (e.g., blizzard). If the

perceptual-theory contains no member entities (representing the empty set) then the perceptual-

theory is labeled as unclassified.

To allow validation, repeatability, and further experimentation, we have stored the data generated

by these experiments as RDF, accessible at: http://wiki.knoesis.org/index.php/Intellego.

3.2.3.1.4. Experiment 1: No Focus (brute force approach)

An experiment to test the naïve brute force approach was conducted by executing the perception-

cycle as described in Section 3.2.2.3., with one major retraction: the ability to check for

discriminating qualities and generate focus was disabled. The set of quality-types to choose from

is given as an ordered sequence: {temperature, precipitation, wind-speed}. The choose process

simply returns the first quality-type in this ordered sequence. Since, in this scenario, all quality-

types must be detected, the order of detection is irrelevant and the number of percepts generated

for each execution of the perception-cycle remains constant. For this experiment, we executed the

perception-cycle 37,152 times; once for each combination of time interval (72) and observer

66

(516). Each execution generated a set of percepts. Table 3.4 shows the total number of percepts

generated for each set of observers.

Table 3.4. The total number of percepts generated during all the executions of the perception-

cycle during experiment 1 (for different sets of observers).

25 miles

(17 observers)

50 miles

(70 observers)

100 miles

(170 observers)

200 miles

(373 observers)

400 miles

(516 observers)

3672 15,120 36,720 80,568 111,456

Table 3.5 shows the types of perceptual-theories that resulted from the execution of the

perception-cycle for the different sets of observers. From this table, we can see that the clear

condition is by far the most common while blizzard and unclassified rarely occur. There is a

minor trend towards a decreasing percentage of blizzard, flurry, and unclassified theories, and an

increasing percentage of clear theories, as the distance from the blizzard increases. This trend

seems reasonable, since as you move farther away from the blizzard, the weather is more likely to

be clear.

Table 3.5. Shows the percentage of different perceptual-theories generated during the execution

of the perception-cycle (for different sets of observers).

distance

(# observers)

blizzard flurry

rain-

storm

rain-

shower

clear unclassified

25 miles (17) 1.77% 22.21% 0% 17.65% 58.36% 3.5%

50 miles (70) 0.5% 17.19% 0.44% 14.04% 67.8% 1.7%

100 miles (170) 0.25% 14.08% 0.95% 14.83% 69.86% 1.2%

200 miles (373) 0.11% 9.64% 2.25% 20.5% 67.48% 0.9%

67

400 miles (516) 0.09% 9.11% 2.41% 21.58% 66.81% 0.85%

3.2.3.1.5. Experiment 2: With Focus

The choose process for this experiment is the same as in the first experiment. This time, however,

the ability to generate focus is enabled and thus the focus-candidates process returns an ordered

sequence of only those quality-types that may discriminate between entities in the perceptual-

theory. Under these conditions, the ordering in the ordered sequence of quality-types affects the

number of percepts generated.

Consider the following illustrative examples. Suppose we have a perceptual-theory {blizzard,

flurry, rain-shower}. First, consider the ordered sequence of quality-types {precipitation, wind-

speed}. The choose process will pick precipitation as focus. Now suppose snow-precipitation is

detected, resulting in an updated perceptual-theory {blizzard, flurry}. This perceptual-theory is

not minimum, so the perception-cycle will continue. The next ordered sequence of quality-types

is now {wind-speed}, so the choose process will pick wind-speed as focus. If we suppose that

high-wind-speed is detected, the resulting perceptual-theory is {blizzard}. This is a minimum

perceptual-theory, so the perception-cycle terminates. In total, two percepts were generated,

snow-precipitation and high-wind-speed. Now consider the case where the ordered sequence of

quality-types has been changed to {wind-speed, precipitation}. The choose process will pick

wind-speed as focus. Again suppose high-wind-speed is detected, resulting in an updated

perceptual-theory {blizzard}. This perceptual-theory is minimum, so the perception-cycle

terminates. In this case, only one percept was generated, high-wind-speed.

Since we do not know a-priori which ordered sequence of quality-types will produce the optimal

result, we test each possible sequential order. Given the three quality-types in the background

68

knowledge – temperature (t), precipitation (p), and wind-speed (w) – there are six possible

orderings. Thus, for this experiment, we executed the perception-cycle 222,912 times; once for

each time interval (72), observer (516), and permutation of quality-types (6). As expected, the

perceptual-theories generated during the execution of the perception-cycle, as shown in Table 3.5,

were found to be identical in this experiment. Figure 3.9 shows the results of executing the

perception-cycle for the 516 weather-stations within a radius of 400 miles of the blizzard, for

each time interval, and for each ordering of quality-types.

Figure 3.9. Percepts generated by observers within 400 miles of a known blizzard. The horizontal

axis represents the different orderings of observable qualities; p represents precipitation, w

represents wind-speed, and t represents temperature.

For each ordering of quality-types, 37,152 perceptual-theories were generated from 111,456

potential quality-type detections. However, in many cases the number of percepts is far less than

the number of quality-types that could potentially be detected. For example, with two of the

orderings (p-t-w and p-w-t) the ratio is less than 48%; this accounts for a significant reduction in

the number of percepts needed to generate the minimum perceptual-theory. On the other hand,

with two of the orderings (w-t-p and t-w-p) the ratio is 100%; all of the quality-types were

detected resulting in the maximum number of percepts. Looking at Figure 3.9, we see that the

two orderings with the best results (p-w-t and p-t-w) both begin with precipitation; and the two

69

orderings with the worst results (w-t-p and t-w-p) both place precipitation last in the order. This

may inform us that a precipitation percept is proficient in discriminating between entities in the

perceptual-theory. From the weather background knowledge in Figure 3.7 this can be more

clearly seen by noticing that the no-precipitation quality only inheres-in the entity clear. This

means that a no-precipitation percept is only explained by the entity clear; if this quality is

detected then the minimum perceptual-theory is found. Therefore, detecting the precipitation

quality-type early is an efficient approach. This experiment clearly shows that the order in which

quality-types are evaluated and detected dramatically affects the efficiency of the perception-

cycle.

The statistics of the remaining executions of the perceptual-cycle – for each set of observers

within a radius of 25, 50, 100, 200, and 400 miles – are shown in Table 3.6. You may notice that

the percentage of percepts remains fairly stable across the different sets of observers. There is a

minor trend towards a decreasing percentage of percepts as the distance from the blizzard

increases. This trend can be explained by noticing that complex weather conditions (e.g.,

blizzard) may require more percepts to explain than more simple weather conditions (e.g., clear).

Table 3.6. Shows the percentage of percepts generated during the execution of the perception-

cycle (for different sets of observers and orderings of quality-types).

distance (# observers) p-t-w p-w-t t-p-w t-w-p w-p-t w-t-p

25 miles (17) 55.58% 56.67% 80.09% 100% 75.49% 100%

50 miles (70) 50.25% 50.82% 77.21% 100% 73.03% 100%

100 miles (170) 48.38% 48.80% 76.58% 100% 71.80% 100%

200 miles (373) 47.60% 47.92% 77.40% 100% 70.20% 100%

400 miles (516) 47.62% 47.90% 77.63% 100% 69.98% 100%

70

3.2.3.1.6. Experiment 3: With Optimized Focus

The previous experiment showed that while focus is useful for efficient perception, these gains in

efficiency are dependent on knowing the optimal sequential ordering of quality-types to focus

attention. Since the number of possible sequential orderings grows exponentially with the total

number of quality-types (O(n!), where n = # of quality-types), such an approach to arriving at the

optimal order may not be suitable for Web-scale data. One possible solution to the scalability

issue would be to learn the optimal ordering of quality-types by analyzing a representative

training dataset. For this approach, we used the standard decision-tree algorithm (C4.5

[Mitchell97]). Starting with a representative training dataset that has been annotated with correct

classifications, a decision-tree representation capable of efficient classification is generated. This

algorithm is able to compute the optimal ordering of quality-types in polynomial-time with

respect to the total number of quality-types (O(n
3
 * max(v)

n
, where n = # of quality-types and v =

of discrete qualities for a quality-type). The polynomial-time complexity of this algorithm is a

drastic improvement over the exponential-time complexity of the technique employed in the

second experiment (Section 3.2.3.1.5.).

In the third experiment, we executed the C4.5 decision-tree algorithm over a training dataset

which includes a representative sample of quality detections within 400 miles of the blizzard in

Nevada. An excerpt of the training dataset is shown in Table 3.7, and the resulting decision-tree is

shown in Figure 3.10. The choose process for this experiment is more complex than in the first or

second experiment. Instead of simply returning the first quality-type in the sequence, the choose

process returns the quality-type represented by the current node in the decision-tree, which has

71

the highest informational value (i.e., highest information-gain)
9
. The quality-type represented by

this node, therefore, is the optimal choice for focusing attention. As noted in Section 3.1, Peter

Norwich first used Information Theory to quantify the informational value of observations; he

called this the Entropy Theory of Perception [Norwich91]. This experiment goes (slightly) further

and orders the observable quality-types based on their informational value and encodes this order

in a decision tree data-structure.

Table 3.7. Excerpt from the representative training dataset.

Figure 3.10. Decision tree representing the optimal sequential ordering of quality-types.

The optimal ordering of quality-types, shown in Figure 3.10, begins with precipitation – at the

root of the tree – followed by wind-speed. This is consistent with the previous optimal orderings

found in Section 3.2.3.1.5 (i.e., p-w-t). Notice, however, that temperature is not represented

9 The C4.5 decision-tree algorithm is based on Claude Shannon’s Information Theory [Shannon48], and the current node in the tree
corresponds to the attribute from the training dataset with the highest information-gain [Mitchell97].

72

within the decision-tree. This omission is the result of a discovery by the decision-tree algorithm

that temperature is always extraneous.

For this experiment, we executed the perception-cycle 37,152 times; once for each combination

of time interval (72) and observer (516). Table 3.8 shows the number and percentage of percepts

generated for each set of observers. The results show an average 50% reduction in the number of

percepts needed to generate a minimum perceptual-theory; these results mirror those found in

Section 3.2.3.1.5 for the sequential ordering of quality-types {precipitation, wind-speed,

temperature}.

Table 3.8. Shows the percentage of percepts generated during the execution of the perception

cycle (for different sets of observers and orderings of quality types).

distance (# observers) # of percepts % of percepts

25 miles (17) 2081 56.67%

50 miles (70) 7684 50.82%

100 miles (170) 17921 48.80%

200 miles (373) 38613 47.92%

400 miles (516) 53395 47.90%

3.2.3.2. Expressivity Evaluation

In our design and representation of perception, we emphasize two important capabilities: (1) the

ability to degrade gracefully with incomplete information, and (2) the ability to minimize

explanations based on new information. Current solutions to the perception problem often encode

the background knowledge within first-order logic (FOL). In particular, Ricquebourg

73

[Ricquebourg07], Keßler [Keßler09], and Sheth [Sheth08] and have all used the Semantic Web

Rule Language (SWRL) [Horrocks04] to encode such background knowledge and infer

explanations. SWRL is a restricted fragment of FOL (see [Horrocks04] for additional details).

Calder [Calder10] and Henson [Henson09] have also used the Jena Rule Engine for this task. In

the following section, we compare IntellegO with SWRL and first-order logic; and summarize

our results in Table 3.9. While IntellegO is expressive enough to achieve both capabilities, SWRL

achieves neither, and FOL can degrade gracefully with incomplete information, but cannot

minimize explanations. The ability to minimize explanations is an anti-monotonic process; and

therefore, it is not surprising that the monotonic FOL and the more restrictive SWRL cannot

express such a process.

Table 3.9. Qualitative comparison of logic frameworks to express the desired capabilities of

perception; including the ability to degrade gracefully with incomplete information and the ability

to minimize explanations with additional information.

Graceful

Degradation

Minimize

Explanations

IntellegO Yes Yes

SWRL - -

FOL Yes -

3.2.3.2.1. Background Knowledge for Expressivity Evaluation

To compare the expressivity of existing approaches, we will provide an example scenario based

on the background knowledge represented in Figure 3.11 and show how each approach behaves.

74

Figure 3.11. Example background knowledge used within the expressivity evaluation of

IntellegO (Section 3.2.3.2).

3.2.3.2.1.1. Encoding of Rules in SWRL

A straightforward encoding of Figure 3.11 in SWRL, based on the SSN ontology, is shown

below. In this encoding, each entity is defined as a rule, as demonstrated by

[Keßler09][Ricquebourg07][Sheth08]. For each rule, we assume that a generic entity individual

has been created and added to the knowledge base for each spatial-temporal context. For

simplicity, all spatial-temporal and value constraints are removed, since they complicate the rules

without differentiating the approach (note that in a real-world application, such constraints must

be added).

Blizzard Rule

ssn:isQualityOf(high-wind-speed, ?e) ⋀

ssn:isQualityOf(freezing-temperature, ?e) ⋀

ssn:isQualityOf(snow-precipitation, ?e)

→ blizzard(?e)

75

Flurry Rule

ssn:isQualityOf(low-wind-speed, ?e) ⋀

ssn:isQualityOf(freezing-temperature, ?e) ⋀

ssn:isQualityOf(snow-precipitation, ?e)

→ flurry(?e)

Winter Wind Storm Rule

ssn:isQualityOf(high-wind-speed, ?e) ⋀

ssn:isQualityOf(freezing-temperature, ?e) ⋀

→ winter-wind-storm(?e)

In order to satisfy the entity rules defined above, each of the ssn:isQualityOf predicates in the

antecedent must be satisfied. This is achieved if a corresponding observation is found in the

knowledge base, as defined in the following rule:

Observation Rule

ssn:observedProperty(?o,?q) ⋀ ssn:featureOfInterest(?o,?e)

→ ssn:isQualityOf(?q, ?e)

3.2.3.2.1.2. Additional Rules in FOL

First-order logic (FOL), in general, is more expressive than SWRL. In particular, FOL provides

the disjunction (⋁) and negation (¬) operator – which are not permissible in SWRL [Mei04] –

that may be utilized to infer more complex explanations. In addition to the SWRL rules defined

above, the following FOL rules can be added in order to guarantee that a set of observed qualities

76

(i.e., percepts) are mutually exclusive and collectively exhaustive for each quality-type. These

rules also require the introduction of the has-type relation from IntellegO, which explicitly relates

qualities to quality-types. The mutually exclusive criterion says that at most one quality, per

quality-type, may be detected for each entity.

Mutually Exclusive Rule

ssn:isQualityOf(?q, ?e) ⋀ io:has-type(?q, ?t)

→ [∀?q’ ∈ Q : (?q’ ≠ ?q) ⋀ io:has-type(?q’, ?t) →

¬ssn:isQualityOf(?q’, ?e)]

The collectively exhaustive criterion says that at least one quality, per quality-type, must be

detected for each entity. This criterion may not be generally true and is not defined in IntellegO;

but is necessary to infer suitable explanations with FOL.

Collectively Exhaustive Rule

∀?e ∈ E, ∀?t ∈ QT :[∃ ?q ∈ Q : ssn:isQualityOf(?q, ?e) ⋀

io:has-type(?q, ?t)]

With the addition of these two rules, and given a set of observations, FOL is able to generate an

explanation as a disjunction of entities. As seen in the comparisons below, this enables

satisfactory results in relation to the ability to degrade gracefully with incomplete information.

77

3.2.3.2.2. Expressivity Comparison

Given the background knowledge described above, the following scenarios will provide

additional facts to the knowledge base. Each will then show the inference results from IntellegO,

a SWRL inference engine, and a FOL inference engine.

3.2.3.2.2.1. Comparison 1: The ability to degrade gracefully with incomplete information

Given observations for freezing-temperature and snow-precipitation, in addition to the

background knowledge above, the expected perceptual-theory would be {blizzard, flurry}. That

is, blizzard is an explanation, and flurry is an explanation. Notice that freezing-temperature and

snow-precipitation do not completely describe either blizzard or flurry, but they both provide

evidence for blizzard, and they both provide evidence for flurry.

Facts in knowledge base

ssn:Entity(e)

ssn:Observation(o1)

ssn:observedProperty(o1, snow-precipitation)

ssn:featureOfInterest(o1, e)

ssn:Observation(o2)

ssn:observedProperty(o2, freezing-temperature)

ssn:featureOfInterest(o2, e)

Given the above facts in the knowledge base resulting from observations, in addition to the rules

in Section 3.2.3.2.1.1 and Section 3.2.3.2.1.2, the following results:

78

Resulting explanations (i.e., perceptual-theory)

IntellegO: {blizzard, flurry}

SWRL:

FOL: blizzard(e) ⋁ flurry(e)

From this example, IntellegO provides blizzard as an explanation, and flurry as an explanation,

for the set of observations. SWRL, on the other hand, does not provide any explanation. FOL

provides blizzard ⋁ flurry as the explanation. This result occurs by virtue of the fact that high-

wind-speed and low-wind-speed are the only two qualities of quality-type wind-speed. This

knowledge thus allows FOL to derive meaningful partial information. We can see that both

IntellegO and FOL allow explanations to degrade gracefully with incomplete information, while

SWRL does not.

3.2.3.2.2.2. Comparison 2: The ability to minimize explanations based on new information

In the initial situation, we are given observations for high-wind-speed and freezing-temperature.

Initial situation

Facts in knowledge base

ssn:Entity(e)

ssn:Observation(o1)

ssn:observedProperty(o1, high-wind-speed)

ssn:featureOfInterest(o1, e)

ssn:Observation(o2)

ssn:observedProperty(o2, freezing-temperature)

ssn:featureOfInterest(o2, e)

79

Given the above facts in the knowledge base resulting from observations, in addition to the rules

in Section 3.2.3.2.1.1 and Section 3.2.3.2.1.2, the following results:

Resulting explanations (i.e., perceptual-theory)

IntellegO: {winter-wind-storm, blizzard}

SWRL: winter-wind-storm(e)

FOL: winter-wind-storm(e)

Now suppose that the precipitation quality-type is detected and an additional snow-precipitation

observation is added to the knowledge base. Given observations for high-wind-speed, freezing-

temperature, and snow-precipitation, in addition to the background knowledge above, the

expected perceptual-theory would be {blizzard}.

Updated situation with new observation

Facts in knowledge base

ssn:Entity(e)

ssn:Observation(o1)

ssn:observedProperty(o1, high-wind-speed)

ssn:featureOfInterest(o1, e)

ssn:Observation(o2)

ssn:observedProperty(o2, freezing-temperature)

ssn:featureOfInterest(o2, e)

ssn:Observation(o3)

ssn:observedProperty(o3, snow-precipitation)

ssn:featureOfInterest(o3, e)

80

Given the above facts in the knowledge base resulting from observations, in addition to the rules

in Section 3.2.3.2.1.1 and Section 3.2.3.2.1.2, the following results:

Resulting explanations (i.e., perceptual-theory)

IntellegO: {blizzard}

SWRL: winter-wind-storm(e), blizzard(e)

FOL: winter-wind-storm(e) ⋀ blizzard(e)

From this example, IntellegO provides blizzard as the only explanation for the set of

observations, while SWRL and FOL provide winter-wind-storm and blizzard as explanations.

With IntellegO, as more information (i.e., observations) is provided, the set of explanations is

reduced to improve specificity. With SWRL and FOL, on the other hand, as more information is

provided, the set of explanations can grow only larger. We can see that IntellegO has the ability

to minimize explanations based on new information in an intuitively satisfactory way, while both

SWRL and FOL are unable to do so due to their monotonicity.

3.2.3.3. Storage Requirements and Scalability Evaluation

In the digital age, information is being generated at an extraordinary pace. It has even been

suggested that more data has been created in the last three years than in the past 40,000. Around

2008, this rate of expansion surpassed the generation rate of storage capacity, leading to a future

where we can no longer store all the sensor data being generated [Higginbotham10]. With this

future ahead, the efficient representation and interpretation of sensor data at scale has become an

important area of research.

81

A single flight from New York to Los Angeles on a twin-engine Boeing 737 generates around

240 terabytes of data; and, on any given day, there are around 28,537 such commercial flights in

the United States [Higginbotham10]. But how much of this sensor data is actually useful for

decision-making and needs to be stored for later retrieval? The pilot may need to understand the

general condition of the plane and the external environment during flight; the ground crew may

need to know the speed, location and trajectory of the aircraft; and the mechanic may need to

know of any anomalous behavior detected during the flight. Much of this knowledge must be

derived from the low-level observational data, but only the high-level inferences may be required

for actual decision-making (with possible inspection or analysis of a very small minority of the

raw data).

As another example, consider a weather alert service which represents, stores, and alerts people

of the type of current weather conditions. In this case, all the low-level observations can be

discarded while only the perceptual-theories need to be stored. If the weather alert service only

generates alerts for severe weather conditions, then perceptual-theories representing “irrelevant”

weather conditions, such as clear, can also be discarded; such information is unnecessary for the

task of alerting people of severe weather.

We evaluate the resources required for storing sensor observations and perceptual-theories, and

show that for some applications the generation of perceptual-theories can lead to significant

storage savings. For this evaluation, we will count the number of records that are generated and

stored for different dataset storage configurations. A record could represent an observable quality,

percept, or perceptual-theory. The statistics used in the following five data storage configurations

are summarized in Figure 3.12.

82

Figure 3.12. Storage requirements for several common dataset configurations; based on statistics

gathered from the experiment discussed in Section 3.2.3.1.

 All observable qualities are stored,

 All perceptual-theories are stored,

 All observable qualities and all perceptual-theories are stored,

 Only relevant perceptual-theories are stored, and

 Only relevant perceptual-theories and relevant percepts are stored.

All observable qualities are stored – Within this dataset configuration, percepts for all possible

observable qualities are generated and stored. From the experiment in Section 3.2.3.1, this

configuration generates 111,456 records.

All perceptual-theories are stored – This dataset configuration generates and stores perceptual-

theories for all weather conditions (within some spatial-temporal context). From the experiment

in Section 3.2.3.1, this configuration generates 37,152 records. The ratio of records generated for

(1) all observable qualities versus (2) all perceptual-theories is around 3:1. Thus, if only

perceptual-theories are required for an application then the storage requirements result in 66%

savings.

83

All observable qualities and all perceptual-theories are stored – This configuration represents

the situation from our experiment in Section 3.2.3.1.4 that executed a brute force approach to

observe all qualities and generate all percepts and perceptual-theories. During this experiment,

111,456 percept records and 37,152 perceptual-theory records are generated and stored, totaling

148,608 records.

Only relevant perceptual-theories are stored – Within this configuration, perceptual-theories

for only relevant (severe) weather conditions (within some spatial-temporal context) are defined

and stored. From the experiment in Section 3.2.3.1, we can define a relevant perceptual-theory as

any perceptual-theory representing a blizzard, flurry, rain-storm, or rain-shower condition.

12,331 records are generated with this configuration. The ratio of records generated for (1) all

observable qualities versus (4) only relevant perceptual-theories is around 9:1. The ratio of

records generated for (3) all observable qualities and all perceptual-theories versus (4) only

relevant perceptual-theories is around 12:1. These represent over an order of magnitude storage

savings.

Only relevant perceptual-theories and relevant percepts are stored – It may also be important

to store the percepts associated with the relevant perceptual-theories. Such information may be

useful for validation, additional analysis, or simply allowing for further investigation. For

example, suppose the severe weather alert service described above also allowed the user to access

the observation records that were used to determine the severe weather condition (e.g., to see just

how fast the wind is blowing). From the experiment in Section 3.2.3.1, this configuration

generates 36,993 records. The ratio of records generated for (3) all observable qualities and all

perceptual-theories versus (5) only relevant perceptual-theories and relevant percepts is

around 4:1.

84

This evaluation illustrates the benefits that come from the ability to abstract away from the details

of low-level sensory input and generate high-level explanations. While the application scenarios

may vary, and the definition of relevance is highly dependent on the domain of interest and

application, such examples clearly show the benefits, from generating perceptual-theories with

IntellegO.

3.3. Ontology of Perception – OWL

Emerging solutions to the challenge of machine perception are using ontologies to provide

expressive representation of concepts in the domain of sensing and perception, which enable

advanced integration and interpretation of heterogeneous sensor data on the Web. As discussed in

Section 2, the W3C Semantic Sensor Network Incubator Group [SSN-XG] has recently

developed the Semantic Sensor Network (SSN) ontology [Lefort11][Compton12] that enables

expressive representation of sensors, sensor observations, and knowledge of the environment. The

SSN ontology is encoded in the Web Ontology Language (OWL) and has begun to achieve broad

adoption within the sensors community [Gray11][Calbimonte11][Pfisterer08]. Such work is

leading to a realization of a Semantic Sensor Web.

OWL provides an ideal solution for defining an expressive representation and formal semantics

of concepts in a domain. As such, the SSN ontology serves as a foundation for defining the

semantics of machine perception in OWL. In this section, we present a formal definition of two

primary inference tasks, in OWL, that are generally applicable to machine perception –

explanation and discrimination – as an extension of the SSN ontology. A complete representation

of IntellegO, including the perception cycle, is not provided since such an encoding is beyond the

expressivity of OWL.

85

3.3.1. Abduction in OWL

Abduction is often described as inference to the best explanation. Given some background

knowledge and a set of observations, an abductive reasoner will compute a set of best

explanations. In general, abduction is formalized as Σ ⋀ Δ ⊧ Γ where background knowledge Σ

and observations Γ are given, and explanations Δ (also called abducibles) are to be computed (⊧

refers to the first-order logic consequence relation). One highly popular abductive reasoning

framework is the Parsimonious Covering Theory (PCT) [Reggia87]. PCT has predominantly been

used in the domain of medical disease diagnosis. Reasoning in PCT is executed by algorithms

that support a hypothesize-and-test inference process, and is driven by background knowledge

modeled as a bipartite graph causally linking disorders to manifestations. The basic premise of

PCT is that diagnostic reasoning can be divided into two parts: coverage and parsimony. The

coverage criterion describes how to generate a set of explanations such that each given

observation is caused by a disorder in the explanation (an observation is a manifestation that has

been observed). In complicated domains, such as medical disease diagnosis, the number and size

of explanations may grow to be large. In order to reduce to a more reasonable size, the parsimony

criterion describes how to choose which explanations are best. Many different parsimony criteria

have been advanced, including minimum cardinality criterion, subset minimality (irredundancy)

criterion, etc. [Reggia87]. The single disorder assumption is a simple, yet effective, parsimony

criterion that has also proved popular in the past; it states that explanations may contain only a

single disorder.

While OWL [Hitzler09] may not have been designed for abductive reasoning, the integration of

OWL and abduction has been explored [Elsenbroich06]; however previous approaches have

required modification of OWL syntax and/or an OWL inference engine [Peraldi09]. In this

86

section, we will demonstrate that OWL does provide some of the expressivity needed to

approximate diagnostic reasoning – without extension of its syntax or semantics – by outlining a

suitable encoding of PCT in OWL-DL. We caution the reader, however, that the OWL

representation discussed does not explicitly implement PCT, but only approximates PCT, since

OWL inference does not support a hypothesize-and-test inference

3.3.1.1. Parsimonious Covering Theory (PCT)

PCT is an abductive logic framework that provides a formal model of diagnostic reasoning that

represents knowledge as a network of binary relations. The goal of PCT is to account for

observed symptoms (qualities) with plausible explanatory hypotheses (entities). PCT has

predominantly been used in medical disease diagnosis. Reasoning in PCT uses a hypothesize-

and-test inference process and is driven by background knowledge modeled as a bipartite graph

relating entities to qualities.

PCT divides diagnostic reasoning into two parts: coverage and parsimony. The coverage criterion

describes how to generate a set of explanations such that each observation is accounted for by an

entity in the explanation (where an observation is a quality that has been observed). To reduce the

set of explanations to a reasonable size, the parsimony criterion describes how to select the best

explanations. Researchers have advanced many different parsimony criteria: minimum cardinality

criterion, subset minimality (irredundancy) criterion, and so on [Reggia87]. The single-entity

assumption is a simple yet effective parsimony criterion that has proved popular for medical

disease diagnosis. It states that explanations may contain only a single entity.

Consider the process of abduction in which background knowledge Σ = Q, E, C, observations Γ

are given, and explanations Δ are to be inferred. Specifically, an abduction problem P (in PCT) is

87

a 4-tuple Q, E, C, Γ, in which Q is a finite set of qualities, E is a finite set of entities, C : E 

Powerset(Q) is the causation function that maps an entity to the corresponding set of qualities it

causes, and Γ  Q is the set of observations. For any entity e ∈ E and quality q ∈ Q, effects(q) =

C(e) and causes(q) = {e | q ∈ C(e)}. effects(E) = ⋃ ∈ . The set EI ⊆ E is said to be a

cover of QJ ⊆ Q if QJ ⊆ effects(EI). A set Δ  E is an explanation of Γ for a problem E, Q, C, Γ

if and only if Δ covers Γ and satisfies a given parsimony criterion. A cover EI of QJ is said to be

minimal if its cardinality is smallest among all covers of QJ. A cover EI of QJ is said to be

irredundant if none of its proper subsets is also a cover of MJ [Reggia87].

Thus, an explanation is a cover if, for each observation, there is a causal relationship within the

background knowledge from an entity contained in the explanation to the observed quality. (We

are implicitly using the one-to-one correspondence between a function over E  Powerset(Q)

and its equivalent rendering as a relation over E  Q.) An explanation is parsimonious (the best)

if it contains only a single entity. Thus, an explanation is a parsimonious cover if it contains only

a single entity that explains all observations.

3.3.1.2. Translating PCT into OWL

Using RDF and OWL to represent information on the Web — and employing OWL reasoners to

infer new information — is gaining support. For this reason, and given the increasing number of

observations on the Web, it makes sense to explore using these languages to model the perception

process. However, OWL isn’t designed for representing abductive inference. So, existing OWL

ontologies have limited ability to formalize perceptions and derive explanations. Nevertheless,

OWL does provide some of the expressivity required to derive explanations from observations,

and we have developed a suitable encoding of PCT in OWL. Translating PCT into OWL lets us

88

use sensor data in standard Semantic Sensor Web format by adapting OWL reasoning to perform

the needed abductive inference.

Researchers have explored integrating OWL with abductive reasoning [Elsenbroich06]. However,

this integration would require modifying OWL syntax and/or modifying an OWL inference

engine. Here, we demonstrate that OWL provides some of the expressivity needed to derive

explanations — without extending its syntax or semantics — by outlining a suitable encoding of

PCT in OWL [Henson11a]. Note, however, that the OWL representation discussed only

approximates PCT, because OWL inference doesn’t support a hypothesize-and-test inference

process.

The task of representing PCT in OWL involves encoding the background knowledge Σ and the

set of observations Γ in an OWL ontology such that an OWL reasoner can compute explanations

Δ that satisfy both the coverage and parsimony criteria. This translation is summarized in Table

3.11.

Table 3.10. Translating PCT to OWL.

 PCT OWL

1 E for all e  E assert Entity(e)

2 Q for all q  Q assert Quality(q)

3 C for all q  C(e) assert causes(e,q)

4 Γ Explanation ≡ causes.{q1} ⊓ … ⊓ causes.{qn}, where qi  Γ

5 Δ for each Δ = {e}, Explanation(e) holds

89

To translate the set of entities E, we create a class Entity, and for all e  E, we create an

individual instance of type Entity by asserting Entity(e). To translate the set of qualities Q, we

create a class Quality, and for all q  Q, we create an individual instance of type Quality by

asserting Quality(q). Finally, to translate the set of causes relation instances C, we create an

object property causes; and, for all entities in the domain of C and for each q  C(e), we create a

causes fact by asserting causes(e, q).

To translate the set of observations Γ into OWL, we first select an observation q
1
  Γ and create

an existentially quantified property restriction for the causes relation, causes.{q
1
}. For each

additional observation q
i
  Γ (i = 2, ..., n), we create an additional existentially quantified

property restriction for the causes relation and conjoin it to the previous restriction: causes.{q
1
}

⊓ … ⊓ causes.{q
n
}. Finally, we create a class Explanation and define it to be equivalent to the

conjunction of restrictions, Explanation ≡ causes.{q
1
} ⊓ … ⊓ causes.{q

n
}. To generate

explanations Δ, we execute a query for all individual instances of type Explanation as

Explanation(?x). Explanation(e) is a result of this query if and only if {e} is a parsimonious

cover. The resulting knowledge base lies in the tractable EL profile of OWL 2.

Theorem. Given a PCT problem P = E, Q, C, Γ and its translation o(P) into OWL, Δ = {e} is a

PCT explanation if and only if Explanation(e) is deduced by an OWL-DL reasoner — that is, if

and only if o(P) ⊧ Explanation(e).

Proof. () If {e} is a parsimonious cover of Γ = {q
1
, …, q

n
}, then, by definition, Γ  C(e). By

construction of causes in o(P), f : causes.{q
1
} ⊓ … ⊓ causes.{q

n
}. Hence, by definition of

Explanation, o(P) ⊧ Explanation(e) holds.

90

() To justify our claim that this OWL representation approximates PCT, we verify that all

query results satisfy both the coverage and parsimony criteria. To satisfy the coverage criterion,

each binding of ?x for the query Explanation(?x) must be an entity that explains all the

observations in Γ. This follows from the definition of Explanation ≡ causes.{q
1
} ⊓ … ⊓

causes.{q
n
}. That is, Explanation(e) implies causes(e, q

1
) ⊓ … ⊓ causes(e, q

n
). To satisfy the

parsimony criterion, each binding of ?x must be a single entity. This follows since each entity that

binds to ?x is a single individual. This completes the proof.

If we want to generalize the definition of Explanation to allow for covers with multiple disorders,

then the parsimony criterion cannot easily be expressed in OWL, since it would require

minimization of the extension of a predicate. Simulation by using multiple queries may be an

option, by incrementally generating cover candidates and checking whether each constitutes an

explanation. This seems hardly efficient, though, and also unsatisfactory because the parsimony

criterion itself is not modeled.
10

3.3.2. Discussion of Terminology

In order to encode important fragments of the ontology of perception, Intellego, into OWL

(Intellego—OWL), as an extension of the SSN ontology, several terminological adjustments will

be made. Table 3.10 provides a quick summary of equivalent terms from Intellego—Set Theory,

PCT, SSN, and Intellego—OWL.

10

 In a circumscriptive version of OWL [Grimm09][Bonatti09] it could easily be modeled.

91

Table 3.11. Quick summary of equivalent terms used within the different

frameworks/formalizations discussed in this chapter. Ontologies formalized in OWL use

namespace prefixes (SSN uses ssn, and the OWL encoding of Intellego uses io).

IntellegO –

Set Theory

PCT SSN IntellegO –

OWL

entity Entity (E) ssn:Feature ssn:Feature

quality Quality (Q) ssn:Property ssn:Property

inheres-in causes (C)

(*inverse of inheres-in)

ssn:isPropertyOf ssn:isPropertyOf

percept Observation (Γ) ssn:Observation

ssn:observedProperty

io:ObservedProperty

perceptual-

theory

Explanation (Δ) io:ExplanatoryFeature

expected io:ExpectedProperty

unknown io:NotApplicableProperty

extraneous

discriminating io:DiscriminatingProperty

focus-candidate

Throughout the remainder of Section 3.3, the Intellego—OWL terminology will be used. Also,

examples used throughout this section will utilize the knowledge base represented in Figure 3.13.

92

Figure 3.13. Graphical representation of an example knowledgebase in cardiology, taking the

shape of a bipartite graph.

3.3.3. Semantics of Explanation in OWL

In this section, explanation is encoded in OWL, as an extension of the SSN ontology. Explanation

is the act of accounting for sensory observations; often referred to as hypothesis building

[Gregory97][Shanahan05]. More specifically, explanation takes a set of observed properties as

input and yields the set of features that explain the observed properties. A feature is said to

explain an observed property if the property is related to the feature through an ssn:isPropertyOf

relation. A feature is said to explain a set of observed properties if the feature explains each

property in the set. Example: Given the knowledge base in Figure 3.13, Hyperthyroidism explains

the observed properties elevated blood pressure, clammy skin, and palpitations.

Explanation is used to derive knowledge of the features in an environment from observation of

their properties. Since several features may be capable of explaining a given set of observed

properties, explanation is most accurately defined as an abductive process (i.e., inference to the

best explanation) [Shanahan05]. Example: the observed properties, elevated blood pressure and

palpitations, are explained by the features Hypertension and Hyperthyroidism (discussed further

93

below). As discussed above, while OWL has not been specifically designed for abductive

inference, it does provide some of the expressivity needed to derive explanations.

The formalization of explanation in OWL consists of two steps: (1) derive the set of observed

properties from a set of observations, and (2) utilize the set of observed properties to derive a set

of explanatory features.

3.3.3.1. Observed Property

The SSN ontology defines an observation as a situation that describes an observed feature, an

observed property, a sensor, the method of sensing used, and a value for the observed property.

Currently, however, an SSN observation can’t directly yield explanations. To accomplish this, we

must translate the SSN observations to OWL as discussed in Section 3.3.1.2.

An observed property is a property that has been observed. Note that observations of a property,

such as elevated blood pressure, also contain information about the spatiotemporal context,

measured value, unit of measure, etc., so the observed properties need to be “extracted” from the

observations. To derive the set of observed properties (instances), first create a class

ObservedProperty. For each observation o in ssn:Observation create an existentially quantified

property restriction for the ssn:observedProperty
—

 relation, and disjoin them as follows (note: x
—

represents the inverse of relation x):

Definition 1: ObservedProperty

ObservedProperty ≡ ssn:observedProperty—.{o1} ⊔ … ⊔

ssn:observedProperty—.{on}

94

Example: Assume the properties elevated blood pressure and palpitations have been observed,

and encoded in RDF (conformant with SSN):

ssn:Observation(o1),

ssn:observedProperty(o1, elevated blood pressure)

ssn:Observation(o2),

ssn:observedProperty(o2, palpitations)

Given these observations, the following ObservedProperty class is constructed:

ObservedProperty ≡ ssn:observedProperty—.{elevated blood

pressure} ⊔ ssn:observedProperty—.{palpitations}

Executing the query ObservedProperty(?x) can infer the properties, elevated blood pressure and

palpitations, as individuals of type ObservedProperty:

ObservedProperty(elevated blood pressure)

ObservedProperty(palpitations)

3.3.2.2. Explanatory Feature

An explanatory feature is a feature that explains the set of observed properties. To derive the set

of explanatory features, create a class ExplantoryFeature, and for each observed property p in

ObservedProperty create an existentially quantified property restriction for the ssn:isPropertyOf
—

relation, and conjoin them as follows:

95

Definition 2: ExplanatoryFeature

ExplanatoryFeature ≡ ssn:isPropertyOf—.{p1} ⊓ … ⊓

ssn:isPropertyOf—.{pn}

Recall (from Section 3.3.1) that the set of observations Γ = {q
1
 … q

n
}, when translated to OWL,

are encoded as Explanation ≡ causes.{q
1
} ⊓ … ⊓ causes.{q

n
}. When extending the SSN

ontology with explanation, the ssn:isPropertyOf
—

 relation is interpreted to be equivalent to causes

in PCT.

To derive the set of all explanatory features, construct the ObservedProperty class and execute the

query ObservedProperty(?x) with an OWL reasoner. Then, construct the ExplanatoryFeature

class and execute the query ExplanatoryFeature(?y).

Example: As above, assume the properties elevated blood pressure and palpitations have been

observed:

ObservedProperty(elevated blood pressure)

ObservedProperty(palpitations)

Given these observations, the following ExplanatoryFeature class is constructed:

ExplanatoryFeature ≡ ssn:isPropertyOf—.{elevated blood

pressure} ⊓ ssn:isPropertyOf—.{palpitations}

96

Given the knowledge base in Figure 3.13, executing the query ExplanatoryFeature(?y) can infer

the features, Hypertension and Hyperthyroidism, as explanations:

ExplanatoryFeature(Hypertension)

ExplanatoryFeature(Hyperthyroidism)

This encoding of explanation in OWL (see DEF 2) provides an accurate simulation of abductive

reasoning in the Parsimonious Covering Theory [Reggia87], with the single-entity (as discussed

in Section 3.3.1.1) [Henson11][Henson12]. The Description Logic expressivity of the explanation

task is ALCOI
11,12

, with ExpTime-complete complexity [Tobies01].

3.3.4. Semantics of Discrimination in OWL

Although the result give above is valid (that is, both Hypertension and Hyperthyroidism are

explanations – i.e., parsimonious covers), we might not be satisfied and might want to

distinguish, or discriminate, between these two explanations. In this section discrimination (or

focus) is encoded in OWL, as an extension of the SSN ontology. As discussed previously,

Discrimination is the act of deciding how to narrow down the multitude of explanatory features

through further observation. The innate human ability to focus attention on aspects of the

environment that are essential for effective situation-awareness stems from the act of

discrimination [Neisser76][Gregory97][Bajcsy88]. Discrimination takes a set of features as input

and yields a set of properties. A property is said to discriminate between a set of features if its

presence can reduce the set of explanatory features. Example: Given the knowledge base in

11

 Using DL constructs: ⊓, ⊔,, {a}, R—
12

 http://www.cs.man.ac.uk/~ezolin/dl/

http://www.cs.man.ac.uk/~ezolin/dl/

97

Figure 3.13, the property clammy skin discriminates between the features, Hypertension and

Hyperthyroidism (discussed further below).

The ability to identify discriminating properties can significantly improve the efficiency of

machine perception [Henson11c]. Such knowledge can then be used to task sensors capable of

observing those properties.

To formalize discrimination in OWL, we will define three types of properties: expected property,

not-applicable property, and discriminating property.

3.3.4.1. Expected Property

A property is expected with respect to (w.r.t.) a set of features if it is a property of every feature in

the set. Thus, if it were to be observed, every feature in the set would explain the observed

property. Example: the property elevated blood pressure is expected w.r.t. the features,

Hypertension, Hyperthyroidism, and Pulmonary Edema. To derive the set of expected properties,

create a class ExpectedProperty, and for each explanatory feature f in ExplanatoryFeature, create

an existentially quantified property restriction for the ssn:isPropertyOf relation, and conjoin them

as follows:

Definition 3: ExpectedProperty

ExpectedProperty ≡ ssn:isPropertyOf.{f1} ⊓ … ⊓

ssn:isPropertyOf.{fn}

98

3.3.4.2. Not Applicable Property

A property is not-applicable w.r.t. a set of features if it is not a property of any feature in the set.

Thus, if it were to be observed, no feature in the set would explain the observed property.

Example: the property clammy skin is not-applicable w.r.t. the features, Hypertension and

Pulmonary Edema. To derive the set of not-applicable properties, create a class

NotApplicableProperty, and for each explanatory feature f in ExplanatoryFeature, create a

negated existentially quantified property restriction for the ssn:isPropertyOf relation, and conjoin

them as follows:

Definition 4: NotApplicableProperty

NotApplicableProperty ≡ ¬ssn:isPropertyOf.{f1} ⊓ … ⊓

¬ssn:isPropertyOf.{fn}

3.3.4.3. Discriminating Property

A property is discriminating w.r.t. a set of features if it is neither expected nor not-applicable.

Observing a discriminating property would help to reduce the number of explanatory features.

Example: As stated above, the property clammy skin is discriminating w.r.t. the features,

Hypertension and Hyperthyroidism, as it would be explained by Hyperthyroidism, but not by

Hypertension. To derive the set of discriminating properties, create a class,

DiscriminatingProperty, which is equivalent to the conjunction of the negated ExpectedProperty

class and the negated NotApplicableProperty class.

99

Definition 5: DiscriminatingProperty

DiscriminatingProperty ≡ ¬ExpectedProperty ⊓

¬NotApplicableProperty

To derive the set of all discriminating properties, construct the ExpectedProperty and

NotApplicableProperty classes, and execute the query DiscriminatingProperty(?x).

Example: Given the explanatory features from the previous example, Hypertension and

Hyperthyroidism, the following classes are constructed:

ExpectedProperty ≡ ssn:isPropertyOf.{Hypertension} ⊓

ssn:isPropertyOf.{Hyperthyroidism}

NotApplicableProperty ≡ ¬ssn:isPropertyOf.{Hypertension} ⊓

¬ssn:isPropertyOf.{Hyperthyroidism}

Given the KB in Figure 3-13, executing the query DiscriminatingProperty(?x) can infer the

property clammy skin as discriminating:

DiscriminatingProperty(clammy skin)

To choose between Hypertension and Hyperthyroidism, task a sensor to measure galvanic skin

response (i.e., for clammy skin). The Description Logic expressivity of the discrimination task is

ALCO
13

, with PSpace-complete complexity [Tobies01].

13

 using DL constructs: ⊓, ∃, {a}, ¬C

100

3.4. Related Work

In addition to the SSN ontology, there have been several other attempts to develop an ontology

for sensors and sensor observations [Compton09]. Kuhn [Kuhn09] and Stasch [Stasch09] have

developed an ontology for describing sensors and sensor observations in Haskell. Similar to

IntellegO, this ontology attempts to represent the process of observation in a way that is

independent of any particular implementation technology (e.g., machine sensor, human eye). The

Perception, Cognition and Communication (PCC) Ontology defines a set of classes and relations

that provide terminology to describe "what we believe exists, what we experience, what we think

and what we communicate [Anandavala10]." PCC shares many concepts with the ontology of

perception described in this paper. However, we have been unable to find any use-case,

application, or evaluation for this ontology. Even the Gene Ontology (GO) contains

representation for sensory perception [SensoryPerception10]. However, perception in GO is

defined as a neurophysiological process and is similar to what we describe as the observation-

process. Devaraju et al. [Devaraju10] have developed an approach for representing the

relationship between observed qualities and the geo-processes that influence those observations.

This approach is aligned with the DOLCE foundational ontology [Borgo09] and has been used to

represent relations between qualities and entities in the domain of hydrology. This ontology has

been used primarily for the integration of sensor data, and there is no attempt to show how to

perform inference over observed qualities. Scheider et al. [Scheider10] have developed a general

theory for grounding entities and qualities to observation processes, based on ideas from language

semantics.

In addition to the development of related ontologies, there have been several efforts to reason

over observational data, encoded as RDF, in order to infer entities in the world. In 2008, Sheth

101

[Sheth08] suggested using the Semantic Web Rule Language (SWRL) to reason over sensor data.

Since this time, First-Order Logic (FOL) rules are often employed to derive knowledge of the

features in the environment [Keßler09][Scheider10][Devaraju11]. Keßler [Keßler09] has further

developed this idea and provides a suitable investigation of the use of SWRL for reasoning over

sensor data. Ricquebourg [Ricquebourg07] has utilized SWRL to infer context and determine

proper actions (i.e., turn on/off lights) within a smart home environment which contains sensors.

Calder [Calder10] has used the Jena Semantic Web Toolkit [Carroll04] to define rules to detect

anomalous events (such as winter weather and algal blooms). Taylor et al. [Taylor11] have used

Complex Event Processing to derive knowledge of events from observation data encoded in SSN.

These approaches all define first-order logic (deductive) rules to infer entities from qualities. As

discussed in this paper, however, such an approach is limited in its ability to represent the anti-

monotonic, abductive nature of perception, to handle incomplete information, and to minimize

explanations based on new information. In particular, such approaches cannot model perception

as a cyclical process that actively seeks out and detects those qualities which carry information

most useful for explanation. In addition, as we have shown, several inference tasks useful for

machine perception do not require the full expressivity of FOL; they are expressible in OWL, a

decidable fragment of FOL.

Reggia and Peng [Reggia86] have discussed techniques for abductive reasoning (called

Parsimonious Covering Theory) that is similar to the approach taken in this paper; however, they

were mainly interested in inferring medical diseases from symptoms. Perhaps the closest related

work is by Shanahan [Shanahan05], who formalized an abductive account of perception using

Event Calculus. More specifically, he characterized perception as follows:

“Given a stream of low-level sensor data, represented by the conjunction Γ of a set of

observation sentences, the task of perception is to find one or more explanations of Γ in

102

the form of a consistent logical description Δ of hypothesized objects, such that, Σ  Δ 

Γ, where Σ is a background theory describing the environment [Shanahan05].”

Thirunarayan [Thirunarayan09] explored how a logic programming-based abductive reasoning

framework can benefit the formalization and interpretation of sensor data to garner situation

awareness. Although there are several related efforts, the research discussed in this paper is first

of its kind to present and evaluate an approach that is grounded in well-established cognitive

theories of perception and also applicable for sensor applications on the Web.

The integration of Web languages, such as OWL, with abductive reasoning has been explored

[Elsenbroich06]. However, previous efforts have required modification of OWL syntax and/or

inference engine [Peraldi09]. We demonstrated that, under the single-feature assumption,

abductive consequences can be computed using standard OWL reasoners.

3.5. Concluding Remarks

Sensors are quickly becoming ubiquitous and are now collecting data about our environment at an

extraordinary pace. In this paper, we have demonstrated substantial benefits to be gained in

processing sensor data by automating an approximation of how people perceive their environment

efficiently. Specifically, this ability is afforded by background knowledge and the cyclical nature

of observation and perception processes. While one can take different positions on the

philosophical (or technical) foundations of perception, it is clear that a careful ontological

specification makes these positions explicit and testable. The ontology described in this chapter

establishes a formal semantics for machine perception; and provides a solution to difficult

challenges, such as the ability to effectively model the process of perception, to provide an

appropriate interpretation of observational data with incomplete information, and to efficiently

103

interpret and store the growing stream of observational data. This approach has been evaluated on

a large, open, real-world dataset of weather observations. Three evaluations were provided to

demonstrate (1) how focus can lead to improved efficiency in generating and processing sensor

observations, (2) how the expressivity of Intellego compares to existing solutions, and (3) how

perception can lead to significant storage savings. In the future, such results can be exploited to

enable significant savings of energy and computational resources. If current trends in sensor

capabilities continue, the predicted data requirements will be in excess of a yottabyte (1024

Bytes) by 2015 [Mitre08]. Besides the obvious issues of data management, knowing how to

effectively make sense of sensor data – that will largely be flowing through the Web – represents

a significant challenge. This research is an early and modest step in understanding and addressing

this challenge.

The next chapter will discuss not only how to make sense of sensor data, but also how to do so

efficiently on resource-constrained devices, such as mobile phones.

104

4. Intelligence at the Edge

In recent years, we have seen dramatic advances and adoption of sensor technologies to monitor

all aspects of our environment; and increasingly, these sensors are embedded within mobile

devices. There are currently over 4 billion mobile devices in operation around the world; and an

estimated 25% (and growing) of those are smart devices
1
. Many of these devices are equipped

with sensors, such as cameras, GPS, RFID, and accelerometers. Other types of external sensors

are also directly accessible to mobile devices through either physical attachments or wireless

communication protocols, such as Bluetooth. Mobile applications that may utilize this sensor data

for deriving context and/or situation awareness abound. Consider a mobile device that’s capable

of communicating with on-body sensors measuring body temperature, heart rate, blood pressure,

and galvanic-skin response. The data generated by these sensors may be analyzed to determine a

person’s health condition and recommend subsequent action. The value of such applications such

as these is obvious, yet difficult challenges remain.

The act of observation performed by heterogeneous sensors creates an avalanche of data that must

be integrated and interpreted in order to provide knowledge of the situation. This process is

commonly referred to as perception, and while people have evolved sophisticated mechanisms to

efficiently perceive their environment – such as the use of a-priori knowledge of the environment

[Neisser76][Gregory97] – machines continue to struggle with the task. The primary challenge of

machine perception is to define efficient computational methods to derive high-level knowledge

1
 http://www.digitalbuzzblog.com/2011-mobile-statistics-stats-facts-marketing-infographic/

http://www.digitalbuzzblog.com/2011-mobile-statistics-stats-facts-marketing-infographic/

105

from low-level sensor observation data. From the scenario above, the high-level knowledge of a

person’s health condition is derived from low-level observation data from on-body sensors.

Given the ubiquity of mobile devices and the proliferation of sensors capable of communicating

with them, mobile devices serve as an appropriate platform for executing machine perception.

Despite the popularity of cloud-based solutions, many applications may still require local

processing, e.g., for privacy concerns, or the need for independence from network connectivity in

critical healthcare applications. The computational complexity of OWL, however, seriously limits

its applicability and use within resource-constrained environments, such as mobile devices

[Ali09].

To overcome this issue, we develop encodings and algorithms for the efficient execution of the

inference tasks needed for machine perception: explanation and discrimination. Explanation is the

task of accounting for sensory observations; often referred to as hypothesis building

[Gregory97][Shanahan05]. Discrimination is the task of deciding how to narrow down the

multitude of explanations through further observation [Neisser76][Gregory97]. The efficient

algorithms devised for explanation and discrimination use bit vector operations, leveraging

environmental knowledge encoded within a two-dimensional bit matrix.

To preserve the ability to share and integrate with knowledge on the Web, lifting and lowering

mappings between the semantic representations and the bit vector representations are provided.

Using these mappings, knowledge of the environment encoded in RDF (and shared on the Web,

i.e., as Linked Data) may be utilized by lowering the knowledge to a bit matrix representation. On

the other hand, knowledge derived by the bit vector algorithms may be shared on the Web (i.e., as

Linked Data), by lifting to an RDF representation.

106

In this chapter, two novel contributions towards efficient machine perception in resource-

constrained environments are presented:

1. Lifting and lowering mappings to enable the translation of knowledge between the high-level

semantic representations and low-level bit-vector representations, and

2. Efficient algorithms for these inference tasks, using bit vector operations.

The applicability of this approach to machine perception is evaluated on a smart-phone mobile

device, demonstrating dramatic improvements in both efficiency and scale. Note that this work

does not support reasoning for all of OWL, but supports what is needed for machine perception,

which is useful in a variety of applications. Table 4.1 summarizes the data structures used by our

algorithms.

Table 4.1. Quick summary of data structures used by the bit vector algorithms

(note: |x| represents the number of members of x).

Name Description About (type, size)

KBBM Environmental knowledge Bit matrix of size |ssn:Property| x |ssn:Feature|

OBSVBV Observed properties Bit vector of size |ssn:Property|

EXPLBV Explanatory features Bit vector of size |ssn:Feature|

DISCBV Discriminating properties Bit vector of size |ssn:Property|

The lifting and lowering mappings are provided in Section 4.1. The efficient bit vector algorithms

for explanation and discrimination are discussed in Sections 4.2 and 4.2, respectively. This

approach is evaluated in Section 4.3, followed by related work in Section 4.4.

107

4.1. Lifting and Lowering of Semantic Data

To preserve the ability to share and integrate with knowledge on the Web, lifting and lowering

mappings between the semantic representations and bit vector representations are provided. Using

these mappings, knowledge of the environment encoded in RDF, as well as observed properties

encoded in RDF, may be utilized by lowering them to a bit vector representation. Knowledge

derived by the bit vector algorithms, including observed properties, explanatory features, and

discriminating properties, may be shared on the Web, by lifting them to an RDF representation.

Environmental knowledge: An environmental knowledgebase is represented as a bit matrix

KBBM, with rows representing properties and columns representing features. KBBM[i][j] is set to 1

(true) iff the property pi is a property of feature fj. To lower an SSN KB encoded in RDF: for all

properties pi in ssn:Property, create a corresponding row in KBBM, and for all features fj in

ssn:Feature, create a corresponding column. Set KBBM[i][j] to 1 iff there exists a

ssn:isPropertyOf(pi,fj) relation. Figure 4.1(a) shows an example knowledge base, from Figure

3.13, which has been automatically lowered to a bit matrix representation. Index tables are also

created to map between the URI’s for concepts in the semantic representation to their

corresponding index positions in the bit vector representation. Figures 4.1(b) and 4.1(c) show

example index tables for properties and features.

108

Figure 4.1. (a) Example environmental knowledgebase in the domain of cardiology, from Figure

3.13, represented as a bit matrix. Index tables are used for lifting and lowering environmental

knowledge between a semantic representation and a bit vector representation. (b) Index table for

properties. (c) Index table for features.

Observed properties: Observed properties are represented as a bit vector OBSVBV, where

OBSVBV[i] is set to 1 iff property pi has been observed. To lower observed properties encoded in

RDF: for each property pi in ssn:Property, OBSVBV[i] is set to 1 iff ObservedProperty(pi). To lift

observed properties encoded in OBSVBV: for each index position i in OBSVBV, assert

ObservedProperty(pi) iff OBSVBV[i] is set to 1. To generate a corresponding observation o, create

an individual o of type ssn:Observation, ssn:Observation(o), and assert

ssn:observedProperty(o,pi).

Explanatory features: Explanatory features are represented as a bit vector EXPLBV. EXPLBV[j]

is set to 1 iff the feature fj explains the set of observed properties represented in OBSVBV (that is,

it explains all properties in OBSVBV that are set to 1). To lift explanatory features encoded in

109

EXPLBV: for each index position j in EXPLBV, assert ExplanatoryFeature(fj) iff EXPLBV[j] is set

to 1.

Discriminating properties: Discriminating properties are represented as a bit vector DISCBV

where DISCBV[i] is set to 1 iff the property pi discriminates between the set of explanatory

features represented in EXPLBV. To lift discriminating properties encoded in DISCBV: for each

index position i in DISCBV, assert DiscriminatingProperty(pi) iff DISCBV[i] is set to 1.

4.2. Efficient Bit Vector Algorithm for Explanation

The strategy employed for efficient implementation of the explanation task relies on the use of

the bit vector AND operation to discover and dismiss those features that cannot explain the set of

observed properties (see Algorithm 1). It begins by considering all the features as potentially

explanatory, and iteratively dismisses those features that cannot explain an observed property,

eventually converging to the set of all explanatory features that can account for all the observed

properties. Note that the input OBSVBV can be set either directly by the system collecting the

sensor data or by translating observed properties encoded in RDF.

110

We will now sketch the correctness of the explanation algorithm w.r.t. the OWL specification.

For each index position in EXPLBV that is set to 1, the corresponding feature explains all the

observed properties. (See note about indices
2
).

Theorem 1: Given an environmental knowledgebase KB (i.e., KBBM), the following two

statements are equivalent:

S1: The set of m observed properties {pk1, …, pkm}, i.e., ObservedProperty(pk1) ⊓ … ⊓

ObservedProperty(pkm), is explained by the feature fe, implies ExplanatoryFeature(fe).

S2: The Hoare triple3 holds: { i  {1, …, m}: OBSVBV[ki] = 1 }

 Algorithm 1: Explanation

 { EXPLBV[e] = 1 }.

Proof (S1  S2): The ObservedProperty assertions are captured by the proper initialization of

OBSVBV, as stated in the precondition. Given (i) S1, (ii) the single-feature assumption, (iii)

the definition: ExplanatoryFeature ≡ ∃ssn:isPropertyOf
—

.{pk1} ⊓ … ⊓ ∃ssn:isPropertyOf
—

.{pkm}, and (iv) the fact that ExplanatoryFeature(fe) is provable, it follows that i  {1, …,

m}: ssn:isPropertyOf(pki,fe) is in KB. By our encoding, i  {1, …, m}: KBBM[ki][e] = 1.

Using lines 5-7, the fact that EXPLBV[e] is initialized to 1 and is updated only for i  {1, …,

m} where OBSVBV[ki] = 1, we get the final value of EXPLBV[e] = KBBM[k1][e] AND …

AND KBBM[km][e] = 1 (true).

2 Note that property pki has property index ki and feature fej has feature index ej. So ki ranges over 0 to |ssn:Property|-1 and e/ej range
over 0 to |ssn:Feature|-1. i and j are merely indices into the enumeration of observed properties and their explanatory features,

respectively. Thus, i ranges over 1 to |ssn:Property| and j ranges over 1 to |ssn:Feature|. (In practice, initially i is small and j is large,

and through each cycle of explanation and discrimination, i increases while j diminishes.)
3 {P} S {Q} where P is the pre-condition, S is the program, and Q is the post-condition.

111

(S2  S1): Given that {i  {1, …, m}: OBSVBV[ki] = 1} and {EXPLBV[e] = 1} (pre and post

conditions), it follows that i  {1, …, m}: KBBM[ki][e] = 1 must hold. According to our

encoding, this requires that i  {1, …, m}: ssn:isPropertyOf(pki,e) holds. Using the

definition of ExplanatoryFeature, it follows that ExplanatoryFeature(e) is derivable (that is,

fe explains all the observed properties {pk1, …, pkm}).

Theorem 2: The explanation algorithm (Algorithm 1) computes all and only those features that

can explain all the observed properties.

Proof: The result follows by applying Theorem 1 to all explanatory features. Q.E.D.

4.3. Efficient Bit Vector Algorithm for Discrimination

The strategy employed for efficient implementation of the discrimination task relies on the use of

the bit vector AND operation to discover and indirectly assemble those properties that

discriminate between a set of explanatory features (see Algorithm 2). The discriminating

properties are those that are determined to be neither expected nor not-applicable.

112

In the discrimination algorithm, both the discriminating properties bit vector DISCBV and the zero

bit vector ZEROBV, are initialized to zero. For a not-yet-observed property at index ki, the bit

vector PEXPLBV can represent one of three situations: (i) PEXPLBV = EXPLBV holds and the ki
th

property is expected; (ii) PEXPLBV = ZEROBV holds and the ki
th
 property is not-applicable; or

(iii) the ki
th
 property discriminates between the explanatory features (and partitions the set).

Eventually, DISCBV represents all those properties that are each capable of partitioning the set of

explanatory features in EXPLBV. Thus, observing any one of these will narrow down the set of

explanatory features.

We will now sketch the correctness of the discrimination algorithm w.r.t. the OWL specification.

Each explanatory feature explains all the observed properties. Lemma 1 shows that this is

equivalent to all the observed properties being expected properties of the explanatory features.

Lemma 1: If m observed properties {pk1, …, pkm}, i.e., ObservedProperty(pk1) ⊓ … ⊓

ObservedProperty(pkm), are explained by n features {fe1, …, fen}, i.e., ExplanatoryFeature(fe1)

⊓ … ⊓ ExplanatoryFeature(fen), then the following holds: i: 1 ≤ i ≤ m:

ObservedProperty(pki)  ExpectedProperty(pki).

Proof Sketch: The result is obvious from the definition: ExplanatoryFeature ≡

∃ssn:isPropertyOf
—

.{pk1} ⊓ … ⊓ ∃ssn:isPropertyOf
—

.{pkm}. So, i, j: 1 ≤ i ≤ m /\ 1 ≤ j ≤ n:

ssn:isPropertyOf(pki,fej). ExpectedProperty ≡ ∃ssn:isPropertyOf.{fe1} ⊓ … ⊓

∃ssn:isPropertyOf.{fen}.

113

Lemma 2 restates the assertion (from Lemma 1) that observed properties are also expected

properties of explanatory features, in terms of the bit vector encoding.

Lemma 2: The initial values of EXPLBV and OBSVBV satisfy the assertion: ki: (OBSVBV[ki] =

1)  [e: (EXPLBV[e] = 1)  (KBBM[ki][e]) = 1)]. And hence, i: (OBSVBV[ki] = 1) 

[e: (EXPLBV[e] /\ KBBM[ki][e]) = EXPLBV[e])].

Proof Sketch: The claim follows from Lemma 1 and the bit vector encoding.

Lemma 3 generalizes Lemma 2 to elucidate an efficient means to determine when a not-yet-

observed property is expected, w.r.t. a set of explanatory features.

Lemma 3: Given property ki (pki) has not-yet been observed, i.e., OBSVBV[ki] = 0,

ExpectedProperty(pki) iff e: (EXPLBV[e] /\ KBBM[ki][e]) = EXPLBV[e].

Lemma 4 demonstrates an efficient means to determine when a not-yet-observed property is not-

applicable, w.r.t. a set of explanatory features.

Lemma 4: For explanatory features EXPLBV {fe | EXPLBV[e] = 1}, NotApplicableProperty(pki)

iff e: (EXPLBV[e] /\ KBBM[ki][e]) = ZEROBV[e].

Proof Sketch: The result follows from: (i) the definition of NotApplicableProperty w.r.t. the set

of explanatory features: NotApplicableProperty(pki) iff ki, e: ExplanatoryFeature(fe) 

¬∃ssn:isPropertyOf(pki,fe); (ii) [e: ExplanatoryFeature(fe) iff EXPLBV[e] = 1]; and (iii) ki,

e: [¬∃ssn:isPropertyOf(pki,fe)  KBBM[ki][e] = 0].

114

Theorem 3: The discrimination algorithm (Algorithm 2) computes all and only those properties

that can discriminate between the explanatory features.

Proof: A not-yet-observed property is discriminating if it is neither expected nor not-applicable.

The result follows from the definition of discriminating property, Lemma 3, and Lemma 4.

Q.E.D.

4.4. Evaluation of Bit Vector Algorithms

To evaluate our approach, we compare two implementations of the explanation and

discrimination inference tasks. The first utilizes an OWL reasoner, and the second utilizes the bit

vector algorithms. Both implementations are coded in Java, compiled to a Dalvik
4
 executable, and

run on a Dalvik virtual machine within Google’s Android
5
 operating system for mobile devices.

The OWL implementation uses Androjena
6
, a port of the Jena Semantic Web Framework for

Android OS. The mobile device used during the evaluation is a Samsung Infuse
7
, with a 1.2 GHz

processor, 16GB storage capacity, 512MB of internal memory, and running version 2.3.6 of the

Android OS.

To test the efficiency of the two approaches, we timed and averaged 10 executions of each

inference task. To test the scalability, we varied the size of the knowledge base along two

dimensions – varying the number of properties and features. In the OWL approach, as the number

of observed properties increase, the ExplanatoryFeature class (DEF 2) grows more complex (with

4
 http://code.google.com/p/dalvik/

5
 http://www.android.com/

6
 http://code.google.com/p/androjena/

7
 http://www.samsung.com/us/mobile/cell-phones/SGH-I997ZKAATT

http://code.google.com/p/dalvik/
http://www.android.com/
http://code.google.com/p/androjena/
http://www.samsung.com/us/mobile/cell-phones/SGH-I997ZKAATT

115

more conjoined clauses in the complex class definition). As the number of features increase, the

ExpectedProperty class (DEF 3) and NotApplicableProperty class (DEF 4) grows more complex.

In the bit vector approach, as the number of properties increase, the number of rows in KBBM

grows. As the number of features increase, the number of columns grows.

To evaluate worst-case complexity, the set of relations between properties and features in the

knowledge base form a complete bi-partite graph
8
. In addition, for the explanation evaluations,

every property is initialized as an observed property; for the discrimination evaluations, every

feature is initialized as an explanatory feature. This creates the worst-case scenario in which

every feature is capable of explaining every property, every property needs to be explained, and

every feature needs to be discriminated between. The results of this evaluation are shown in

Figure 4.2.

Figure 4.2. Evaluation results: (a) Explanation (OWL) with O(n
3
) growth, (b) Explanation (bit

vector) with O(n) growth, (c) Discrimination (OWL) with O(n
3
) growth, and (d) Discrimination

(bit vector) with O(n) growth.

8 http://en.wikipedia.org/wiki/Complete_bipartite_graph (accessed: June 8, 2012)

http://en.wikipedia.org/wiki/Complete_bipartite_graph

116

Result of OWL evaluations: The results from the OWL implementations of explanation and

discrimination are shown in Figures 4.2(a) and 4.2(c), respectively. With a knowledge base of 14

properties and 5 features, and 14 observed properties to be explained, explanation took 688.58

seconds to complete (11.48 min); discrimination took 2758.07 seconds (45.97 min). With 5

properties and 14 features, and 5 observed properties, explanation took 1036.23 seconds to

complete (17.27 min); discrimination took 2643.53 seconds (44.06 min). In each of these

experiments, the mobile device runs out of memory if the number of properties or features

exceeds 14. The results of varying both properties and features show greater than cubic growth-

rate (O(n
3
) or worse). For explanation, the effect of features dominates; for discrimination, we are

unable to discern any significant difference in computation time between an increase in the

number of properties vs. features.

Result of bit vector evaluations: The results from the bit vector implementations of explanation

and discrimination are shown in Figures 4.2(b) and 4.2(d), respectively. With a knowledge base

of 10,000 properties and 1,000 features, and 10,000 observed properties to be explained,

explanation took 0.0125 seconds to complete; discrimination took 0.1796 seconds. With 1,000

properties and 10,000 features, and 1,000 observed properties, explanation took 0.002 seconds to

complete; discrimination took 0.0898 seconds. The results of varying both properties and features

show linear growth-rate (O(n)); and the effect of properties dominates.

Discussion of results: The evaluation demonstrates orders of magnitude improvement in both

efficiency and scalability. The inference tasks implemented using an OWL reasoner both show

greater than cubic growth-rate (O(n
3
) or worse), and take many minutes to complete with a small

number of observed properties (up to 14) and small knowledge base (up to 19 concepts;

#properties + #features). While we acknowledge the possibility that Androjena may have

117

shortcomings (such as an inefficient reasoner and obligation to compute all consequences), our

results are in line with Ali et al. [10] that also found OWL inference on resource-constrained

devices to be infeasible. On the other hand, the bit vector implementations show linear growth-

rate (O(n)), and take milliseconds to complete with a large number of observed properties (up to

10,000) and large knowledge base (up to 11,000 concepts).

Consider the mobile application in which a person’s health condition is derived from on-body

sensors. A person’s condition must be determined quickly, i.e., within seconds (at the maximum),

so that decisive steps can be taken when a serious health problem is detected. Also, for the

application to detect a wide range of disorders (i.e., features) from a wide range of observed

symptoms (i.e., properties) the knowledge base should be of adequate size and scope. In practice,

an application may not require a knowledge base of 11,000 concepts; however, many applications

would require more than 19 concepts.

The comparison between the two approaches is dramatic, showing asymptotic order of magnitude

improvement; with running times reduced from minutes to milliseconds, and problem size

increased from 10’s to 1000’s. For the explanation and discrimination inference tasks executed on

a resource-constrained mobile device, the evaluation highlights both the limitations of OWL

reasoning and the efficacy of specialized algorithms utilizing bit vector operations.

4.5. Related Work

While OWL is decidable, the computational complexity still limits its practical use within

resource-constrained environments. A recent W3C Member Submission [HDT11] proposes a

general-purpose RDF binary format for efficient representation, exchange, and query of semantic

data; however, OWL inference is not supported. Several approaches to implementing OWL

118

inference on resource-constrained devices include [Ali09][Seitz11][Preuveneers08][Motik12].

Preuveneers et al. [Preuveneers08] have presented a compact ontology encoding scheme using

prime numbers that is capable of class-subsumption. Ali et al. [Ali09] have developed Micro-

OWL, an inference engine for resource-constrained devices implementing a subset of OWL

constructs, but it is not expressive enough for our inference tasks. McGlothlin et al.

[McGlothlin10] serialize RDF datasets and materialize data inferred through OWL reasoning

using bit vectors. For the inference tasks needed for machine perception, however, it is not

scalable. Since we cannot predict which observed properties require explanation, this approach

would generate and materialize an ExplanatoryFeature class for all possible (exponentially many)

combinations of observable properties. In contrast, we have deployed specially tailored linear

algorithms that compute explanation and discrimination efficiently.

4.6. Concluding Remarks

This chapter has demonstrated an approach to machine perception on resource-constrained

devices that is simple, effective, and scalable. In particular, two novel contributions were

presented: (1) lifting and lowering mappings to enable the translation of knowledge between the

high-level semantic representations and low-level bit-vector representations, and (2) efficient

algorithms for these inference tasks, using bit vector operations. The bit vector encodings and

algorithms yield significant and necessary computational enhancements – including asymptotic

order of magnitude improvement, with running times reduced from minutes to milliseconds, and

problem size increased from 10’s to 1000’s. The approach is prototyped and evaluated on a

mobile device, with promising applications of contemporary relevance (e.g.,

healthcare/cardiology).

119

In the future, this approach could be extended to encompass more expressive definitions of

explanation (beyond the single-feature assumption), rank explanatory features based on

likelihood and/or severity, and rank discriminating properties based on their ability to reduce the

number of explanatory features. In addition, the approach could be extended to incorporate

stream reasoning through (i) periodic sampling and updating of observations, and (ii) explaining

observations within a time window.

As the number and ubiquity of sensors and mobile devices continue to grow, the need for

computational methods to analyze the avalanche of heterogeneous sensor data and derive

situation awareness will grow. Efficient and scalable approaches to semantics-based machine

perception will be indispensable.

The next chapter will discuss the utility of the semantics-based machine perception framework in

a real-world scenario. In particular, it will describe the development of a mobile app intended to

help reduce hospital readmission rates for patients with congestive heart failure. This is

accomplished through the creation of a cardiology knowledgebase and use of the explanation and

discrimination inference tasks to recognize a person’s health condition and suggest subsequent

actions.

120

5. Knowledge-enabled Healthcare

Knowledge-enabled Healthcare, or kHealth, is a platform that integrates data from passive and

active sensing (including both machine and human sensors) with background knowledge from

domain ontologies, semantic reasoning, and mobile computing environments to help people make

decisions to improve health, fitness, and wellbeing. kHealth brings together the technologies

discussed in previous chapters to enable advanced healthcare applications, including Semantic

Sensor Web (Chapter 2), Semantic Perception (Chapter 3), and Intelligence at the Edge (Chapter

4).

Sensors and mobile computing devices are increasingly being used to monitor and manage

personal health [Pantelopoulos10][QS12b]. Low-cost (sub-$100), unobtrusive on-body sensors

can passively track health-related signals such as heart rate, temperature, galvanic skin response,

and activity level. Mobile computing devices and applications can wirelessly collect the sensor

data, process the data, and interact with the user. Quantified Self [QS12a], a growing group of

individuals using low-cost sensors and mobile apps to track health metrics and share their

experiences, exemplifies the trend. This technology has been successful in monitoring and

managing simple conditions, i.e., those that can be monitored using a single sensor. The

monitoring of complex conditions, such as chronic heart failure, however, involves multiple

sensors of different modalities. The data from even a few multimodal sensors can quickly become

too complex and confusing for a patient and too time-consuming for a clinician. What is needed

is a process to convert the low-level data to high-level knowledge useful for understanding

health-related concepts that are relevant to decision-making. To address this challenge, we utilize

121

a semantics-based approach to machine perception to convert data to knowledge through the

integration of heterogeneous data and application of perceptual inference. This is now possible

through the convergence of multiple technologies, including inexpensive and unobtrusive health

sensors, mobile computing platforms, and maturing semantic technologies [Sheth11].

The approach presented above is embodied in an application that integrates data from passive

sensors (i.e., on-body sensors), active sensors (i.e., sensors available at home—weight scale,

blood pressure monitor, etc.—and personal observation), and health-related background

knowledge. This heterogeneous data is integrated and utilized to generate explanations of the

low-level physiological data, resulting in high-level knowledge useful for decision-making. The

integration of heterogeneous sensor data utilizes Semantic Web technologies, in general, and

recent developments in the Semantic Sensor Web (SSW) (Chapter 2), in particular. The

application of perceptual inference utilizes recent developments in an ontology of perception

(Chapter 3) and efficient algorithms for inference on resource-constrained devices (Chapter 4).

The hypothesis is that semantic integration and perception are effective methods for enabling

users and clinicians to find clinically relevant knowledge from multimodal sensing.

5.1. Motivation for Knowledge-enabled Healthcare

Hospital readmission of patients suffering from chronic conditions, such as heart failure, is a

growing concern, affecting up to 24.8% of patients [HHS11] and costing $17.4 billion per year

[Jencks11]. Heart failure is a chronic disease that affects more than 5 million people in the United

States, and more than 550,000 new cases are diagnosed each year [Gheorghiade09]. It accounts

for nearly 1.2 million hospitalizations a year as the primary diagnosis [AHA08] and from 2.4 to

3.6 million as a primary or secondary diagnosis [Fang08]. With an aging population, the

122

incidence and prevalence of heart failure is expected to increase. The estimated cost of heart

failure in the US for 2008 is $34.8 billion [AHA07]. Approximately 50% of patients are

readmitted within 6 months after the index case of heart failure [Butler08] and 70% of

readmissions are related to worsening of the previously diagnosed heart failure [Gheorghiade05].

The average rate of readmission within 30 days of discharge for heart failure is 24.8% [HHS11].

Because of the seriousness of this problem, 30-day post-discharge heart failure readmission rates

are now being considered as major quality measures for hospitals. In fact, in 2010 President

Obama signed into law a new healthcare reform bill that included financial penalties for hospitals

with high numbers of preventable readmissions [PPACA10].

A major unresolved challenge is the inability to adequately predict worsening heart failure using

either patient self-monitoring or remote telemonitoring of symptoms and daily weight

[Abraham11a][Goldberg03][Fonarow04]. Current solutions to this problem employ traditional

intervention strategies, such as checkup within 7 days, use of in-body sensors requiring additional

surgery at significant expense [Abraham11b], and/or remote-monitoring and telemedicine

(sensors/equipment are often very (prohibitively) expensive). The degree of additional

commitment (time and money) required from both the patient and the health professionals have

impeded adoption of these solutions.

Case Study / Example: In the following scenario, John has been hospitalized over the past five

days for Acute Decompensated Heart Failure (ADHF). Unfortunately, patients discharged post-

ADHF are frequently readmitted due to poor adherence to both the prescribed medications and

low sodium diet. To reduce the risk of readmission over the next 30 days post-discharge, he will

be supplied with remote monitoring sensors and a mobile app to help monitor his health. These

sensors can measure heart rate, breathing rate, skin temperature, movement, galvanic skin

response, electrocardiogram (ECG), weight, blood pressure, and pulse oximetry (SpO2). By

123

monitoring his physiological status through these sensors, the possible deterioration of John’s

health can be detected, prior to reaching the point of readmission.

After returning home, John ignores dietary restrictions and misses his medications. This results in

rapid weight gain due to fluid retention. John begins to have a noticeable increase in respiratory

rate and a decrease in oxygen saturation (SpO2). With health-related background knowledge,

Intellego can turn these collected data into high-level explanations, and alert both John and a

clinician. A clinician reviews John’s data from the sensors and proactively contacts him in order

to determine that poor adherence is the cause of this deterioration, and advises him accordingly.

John increases his dietary and medication adherence, preventing a readmission to the hospital.

These interactions are shown in Figure 5.1.

5.2. kHealth Application

The activity of observing symptoms and diagnosing a patient’s condition is a perceptual act,

routinely performed by a clinician. Now, with the advent of sensors, machines also have the

Figure 5.1. Diagram shows the interactions between the patient,

clinician, sensors, and mobile device.

124

ability to measure physiological signals and observe symptoms. Given this ability, many systems

simply provide access to raw data, through Internet or mobile access, leading to a deluge of

incomprehensible data. What these systems lack, and the clinicians possess, is the ability to

effectively glean semantics from observation, to apprehend entities from detected qualities—in

short, to perceive.

This section will discuss a practical health application, which uses sensor, mobile, and semantic

technologies. In particular, the application leverages semantic perception to convert health-related

sensor data to knowledge through the integration of heterogeneous data and application of

perceptual inference. The integration of heterogeneous sensor data will utilize Semantic Web

technologies, in general, and Semantic Sensor Web technologies, in particular. The application of

perceptual inference will utilize the ontology of perception, Intellego.

To test the solutions to the challenges of semantic perception in healthcare, a semantics-enhanced

sensor and mobile health application is implemented. This application is capable of observing a

patient’s symptoms, semantically annotating the data, analyzing the data using medical domain

knowledge encoded in a clinical cardiology ontology, and providing relevant and useful

information to aid the patient and clinician in decision-making. The application is developed for

the Android mobile operating system.
1

5.2.1. Domain Knowledge Base

A cardiology knowledge base was built by extracting knowledge from different sources available

on the Web. The knowledge base is expressed using the Resource Description Framework (RDF).

The primary source of cardiology knowledge is the Unified Medical Language System (UMLS)

1 http://www.android.com/

http://www.android.com/

125

[Bodenreider04]. UMLS is a comprehensive ontology of biomedical concepts designed and

maintained by the U.S. National Library of Medicine. All disorders and symptoms in the

knowledge base were extracted from UMLS. While UMLS provides the hierarchical relations

between terms, it does not provide causal relations between symptoms and disorders. However,

using the cardiology-related symptoms and disorders from UMLS, these causal relations were

extracted from Healthline.com. Healthline.com (http://www.healthline.com/) is a website that

provides access to vast amounts of health-related information. Finally, this knowledge base was

vetted by domain experts at ezDI (http://www.ezDI.us) [Perera12]. The resulting cardiology

knowledge base used by the kHealth application contains 173 disorders, 284 symptoms, and 1944

causal relations between disorders and symptoms.

Sensors will measure the physiological signals of the user and – using a Bluetooth wireless

connection – transmit the measurement data to the application, running on the mobile device.

Two types of sensing are utilized, including both passive sensing and active sensing.

5.2.2. Passive Sensing

With passive sensing, low-cost, unobtrusive, on-body sensors continuously monitor the patient.

These sensors are aptly referenced as “wear-em-and-forget-em” data tracking devices, and their

use requires very little commitment from the user; they must simply wear the sensors, carry the

mobile computing device (i.e., smart phone), and in some cases charge them (sensors and mobile

devices). Such passive sensors include: heart-rate sensor, accelerometer, temperature sensor, and

galvanic skin response sensor. We have been prototyping with an accelerometer (http://fitbit.com)

and a heart-rate monitor (http://www.zephyr-technology.com/consumer-hxm). The data from the

sensors is automatically transferred to the mobile device through a Bluetooth wireless connection.

The heterogeneous data from the different sensors is then semantically annotated with concepts

http://www.healthline.com/
http://www.ezdi.us/
http://fitbit.com/
http://www.zephyr-technology.com/consumer-hxm

126

from the SSN ontology and cardiology knowledge base. The low-level semantically annotated

observations are then converted to useful and actionable knowledge (i.e.,

explanations/abstractions).

As an example, suppose that a patient is wearing a heart-rate sensor and a galvanic skin response

sensor, resulting in the observations of tachycardia and clammy skin. Given these observed

symptoms and the cardiology background knowledge, the kHealth app may generate a set of

explanations including panic disorder, hypoglycemia, hyperthyroidism, myocardial infarction,

and septic shock. The user and/or clinician may then surmise that, given the users recent history

of heart disease, this set of explanations is troubling, resulting in follow up treatment.

5.2.3. Active Sensing

Active sensing requires further participation and commitment by the user. The goal is to collect

information from additional (active) sensors available to the user (e.g., weight scale) and

observations made by the users themselves (e.g., feeling chest pain). This additional information

is then used to minimize the set of explanations (generated during the passive sensing phase). The

types of sensors used in this phase include: blood pressure monitor and weight scale.

Contemporary services such as WebMD.com and HealthLine.com request that patients enter their

symptoms into a Web form so that the system can provide additional information about potential

causes. A better approach, as exemplified in this application, is to utilize the derived explanations

from the passive sensing phase, together with the background knowledge and the focus

functionality of Intellego, to generate and ask relevant and targeted questions about the symptoms

of the user. Such questions may require access to sensors available to the user at home (e.g.,

blood pressure monitor), or the questions may only be answerable by the user themselves (e.g.,

127

“Are you experiencing chest pain?”). This question-and-answer interaction between the

application and user proceeds in the form of a common chat dialog (Figure 5.2) to efficiently

minimize the set of explanations.

Figure 5.2. Active sensing through a chat dialog.

Continuing the previous example, recall the tachycardia and clammy skin observations from the

passive sensing phase, resulting in a set of explanations, including panic disorder, hypoglycemia,

hyperthyroidism, myocardial infarction, and septic shock. To minimize this set of explanations,

the application seeks informative observations (by asking questions) regarding lightheadedness,

trouble breathing, and low blood pressure (since the patient has access to a blood pressure

monitor). With these additional observations, the App updates the explanations to include

hypoglycemia and hyperthyroidism.

5.2.3. Application Walkthrough

As discussed above, kHealth is a knowledge-enabled (semantic) application development

framework with the ability to create advanced healthcare applications. This section provides a

brief walkthrough and screenshots of an implemented kHealth application for Android devices.

The main interface screen provides links to the various screens of the application (see Figure 5.3).

128

Figure 5.3. Screenshot of the main interface screen of the kHealth application

Below is a quick overview of the functionality:

 Observations screen shows current observed symptoms, from both passive and active

sensing.

 Manual screen allows the user to manually enter their symptoms.

 Dialog screen asks the user questions about their symptoms.

 Alerts screen provides a log of observed precarious symptoms.

 Sensors screen provides access to the various sensors available to the application.

 Abstractions screen shows current explanations (i.e., disorders that explain the current set

of observed symptoms).

In the observations screen, observation measurements and detected symptoms are shown (see

Figure 5.4(a)). Machine observation measurements, e.g., heart rate, can be seen in real time. Also,

symptoms detected by the user, and entered through either the manual screen or dialog screen, are

129

also provided. The abstractions screen shows the disorders that explain (or account for) the

observed symptoms (see Figure 5.4(b)).

Figure 5.4. Screenshot of the (a) observations screen and (b) abstractions screen of the kHealth

application.

In order to narrow down the set of explanatory disorders, the application will ask the user specific

questions through a dialog screen (see Figure 5.5(a)). The questions are based on discriminating

symptoms (i.e., symptoms that can discriminate between multiple explanatory disorders). The

user may also enter their symptoms manual, through the manual screen, if they prefer (see Figure

5.5(b)).

130

Figure 5.5. Screenshot of the (a) dialog screen and (b) manual screen of the kHealth application.

5.3. Related Work

The most similar related technology to kHealth is a technology called WANDA B – Weight and

Activity with Blood Pressure Monitoring System – developed by the University of California -

Los Angeles (UCLA) Wireless Health Institute in conjunction with the UCLA Nursing School.

WANDA B. is a wireless health technology that uses sensors and wireless communication with a

smart phone to remotely monitor patients with cardiovascular disorders [Suh11]. Figure 5.6

shows the architecture of WANDA B.

131

Figure 5.6. WANDA B. Architecture

Similar to the kHealth application discussed in this section, WANDA B. also engages in active

sensing by asking questions of the user through SMS (Short Message Service) messaging. Each

day the user is using the application, WANDA asks the user 12 questions derived from the Heart

Failure Somatic Awareness Scale (HFSAS). HFSAS tracks 12 metrics, or symptoms, that are

indicative of Congestive Heart Failure, including shortness of breath, swollen feat, chest pains,

and elevated heart rate [Suh11]. Figure 5.7 shows the questionnaire items of the HFSAS.

Figure 5.7. Questionnaire items of the Heart Failure Somatic Awareness Scale (HFSAS)

132

Previous telemedicine approaches, such as WANDA B., have often focused on alerts based on a

single parameter threshold. To date, studies utilizing single diagnostic parameters such as intra-

thoracic impedance monitoring have been disappointing and, in the only intervention trial yet

performed, resulted in an increase in heart failure hospitalizations [Veldhuisen11]. Our

hypothesis is that kHealth provides an improvement over current state-of-the-art technologies. A

comparison with the closest effort with similar objectives, the WANDA project, is given in Table

5.1.

Table 5.1. Comparison of kHealth with WANDA.

 kHealth WANDA

Architecture Uses local computation on mobile

devices.

Sends all sensor data to a remote

server at a clinic.

Technology: Device Mobile Device: Android

smartphone to collect sensor

observations, compute results, and

display information.

Passive Sensors: Heart Rate

Monitor.

Active Sensors: Weight Scale,

Blood Pressure Monitor, Citizen

Sensor (users observing their own

symptoms)

Mobile Device: Android

smartphone to collect sensor

observations and display

information.

Web Server: sends observations to

web server to compute results

Active Sensors: Weight Scale,

Blood Pressure Monitor, Heart Rate

Monitor, Activity Monitor, Citizen

Sensor (limited to symptoms within

the Heart Failure Somatic

133

Awareness Scale (HFSAS)).

Technology:

Computation

Abductive inference to explain

symptoms (utilizing bipartite graph

relating symptoms to disorders).

Active Perception by asking

targeted questions to users.

For each observed symptom,

determine if the measured value

crosses some threshold (utilizing

domain knowledge in the form of

thresholds for each symptom value).

Advancing the

Four P’s of

Healthcare:

Personalization,

Prevention,

Participation, and

Prediction

Personalization: Limited to sensing

parameter thresholds based on

population level information.

Participation: Provides focused

questioning, and proactive

engagement.

Prediction: Provides an explanation

of observed symptoms, which may

predict further symptoms.

Prevention: Provides explanation of

symptoms that can be used to derive

actions and treatment.

Personalization: Limited to sensing

parameter thresholds based on

population level information.

Participation: Limited to asking

standard questions (e.g., HFSAS).

Prediction: Prediction of

readmission using machine learning

techniques.

Prevention: Limited since machine

learning techniques are black box

(i.e., do not provide reason for

prediction).

5.4. Evaluation

In order to demonstrate the value of our approach – a semantics-based approach for machine

perception – in the domain of healthcare, an evaluation has been conducted that focuses on the

134

discrimination operation of Intellego. In particular, the evaluation focuses on the ability to

discriminate between sets of potential disorders using (1) a restricted set of symptoms (12 used by

HFSAS/WANDA), and (2) a more comprehensive set of symptoms (284 used by kHealth).

This evaluation will demonstrate that the knowledge base and methodology used by WANDA is

too limited to effectively derive a minimum set of explanations and determine the specific

condition of the user. On the other hand, the use of Intellego to determine observable properties

(i.e., symptoms) that can discriminate between multiple explanations enables the ability to ask

questions of the user from a larger set of possible symptoms. The use of a knowledge base with a

larger set of symptoms, and the ability to determine which symptoms are important, improves the

ability of the health application to determine the condition of the user.

For this evaluation, 496 electronic medical records were used, provided by ezDI

(http://www.ezDI.us). These records provided grounding for the evaluation by specifying the

correct diagnosis of a patient. This evaluation is composed of two steps: (1) extracting a

diagnosed disorder from an EMR record, and (2) discriminate between the multiple possible

disorders and derive the minimum set of disorders, preferably the diagnosed disorder extracted

from the EMR (see Algorithm 5.1 below).

Algorithm 5.1: Generate potential disorders – The task of this algorithm is to find the set of

disorders that the patient could have had, before the medical professional minimized the set of

hypotheses and produced a diagnosis. In other words, determine all the possible disorders that the

doctor had to consider and dismiss in order to determine the current disorder and place it within

the diagnosis in the EMR. To accomplish this, prior disorders are extracted from the EMR (Dprior);

there is a section of the EMR dedicated to prior disorders.

http://www.ezdi.us/

135

[1] Then using knowledge in the cardiology knowledge base, the set of all symptoms that could

be caused by one of these prior disorders are found (Sprior).

[2] Next, for the diagnosed disorder, the set of symptoms that could be caused by this disorder

are found (Snew).

[3] The set of symptoms that the new disorder shares with the prior disorders are found (Scommon).

This set of common symptoms represents the observable symptoms that a medical

professional would need to consider while discriminating between multiple potential

explanations. More specifically, these are the symptoms that are capable of discriminating

between disorders the patient has (dnew and Dprior) and the disorders the patient does not have.

[4] Finally, the set of disorders that explain at least one of the common symptoms are found

(Dposs). This set of disorders represents the set of disorders that the patient could have had,

before being diagnosed by the medical professional. In other words, disorders that the doctor

considered and dismissed during the visit.

Input

 Dprior: set of previously diagnosed disorders, extracted from EMR (based on prior visits)

 dnew: newly diagnosed disorder, extracted from EMR (based on current visit)

Procedure

[1] Sprior := causes(Dprior) // union of all symptoms caused by a prior disorder

[2] Snew := causes(dnew) // union of all symptoms of new disorder (dnew)

[3] Scommon := intersection(Sprior,Snew) // intersection of symptoms that this

// new disorder and prior disorders have in common

[4] Dposs := causedBy(Scommon) // disorders that cause a common symptom

Algorithm 5.1: Discriminate between potential disorders – The task of this algorithm is to

minimize the set of potential disorders and derive the diagnosed disorder extracted from the

EMR. This task will use the discrimination operator, given a set of potential disorders to

discriminate between, a set of observable symptoms, and a knowledge base encoding the causal

relations between symptoms and disorders. More specifically, the algorithm will minimize the set

136

of potential disorders (all known cardiology-related disorders defined within the cardiology

knowledge base) by discriminating them with the diagnosed disorder.

[1] First, a copy of the set of possible disorders to be minimized is created (Dmin).

[2] Next, the algorithm will iterate through each member of the set of possible disorders (di).

[3] For each disorder in the set of potential disorders, the set of observable symptoms capable of

discriminating between this potential disorder (di) and the actually diagnosed disorder (dnew)

are found (Sdisc).

[4] If the set of discriminating symptoms is empty then the minimum set of potential disorders

has been found (Dmin is minimal).

[5] Otherwise, find the set of potential disorders that are causally related to any of the

discriminating symptoms (Dmin).

[6] If the set of filtered potential disorders is of size 1 or less then the minimum set has been

found (Dmin is minimal).

Continue to iterate through this process until the set of potential disorders is minimum; i.e., the

set contains only one disorder (the diagnosed disorder) or there are still discriminating symptoms.

As discussed in the results section below, the number of times this process executes measures

efficiency, and the number of members in the minimum set of potential disorders measures

specificity.

Input

 Dposs: set of disorders to discriminate between (generated by Algorithm 5.1)

 Sobs: set of all observable symptoms, which are accessible by the algorithm

 dnew: newly diagnosed disorder, extracted from EMR (based on current visit)

Procedure

[1] Dmin == Dposs // create copy of set of possible disorders
[2] for each di in Dposs

[3] Sdisc := discriminator(dnew,di,Sobs) // find discriminators between

137

 // a disorder the patient could have (Di) and the disorder

 // the patient does have (dnew) from the set of observable

// symptoms (Sobs)

[4] if size(Sdisc) == 0 then break // set of potential disorders is minimum

[5] Dmin := causedBy(Sdisc) // set of disorders that cause a discriminating symptom

[6] if size(Dmin) <= 1 then break // set of potential disorders is minimum

Experiment – To compare the ability of the two competing approaches to discriminate between

disorders, two experiments were run. The first experiment evaluated the ability of the 12

symptoms from HFSAS to discriminate between potential disorders. The second experiment

evaluated the ability of the symptoms defined in the cardology knowledge base (Section 5.2.1) to

discriminate between potential disorders. The set of potential disorders (from the cardiology

knowledge base) is the same for both experiments. The difference between the two experiments

lies in the set of observable symptoms available to help discriminate between the potential

disorders (Sobs in Algorithm 5.1). Particularly, in the first experiment the set of observable

symptoms (Sobs) is composed of the 12 symptoms of HFSAS (see Section 5.3). In the second

experiment, the set of observable symptoms (Sobs) is composed of the 284 symptoms from the

cardiology knowledge base (see Section 5.2.1).

Experiment results – For this evaluation, 496 electronic medical records (EMRs) were used,

selected at random from 3172 EMR records provided by ezDI. There were an average of 3.2

diagnosed disorders extracted from each EMR. The cardiology knowledge base (from Section

5.2.1) provided 173 potential disorders.

Result from experiment #1: The first experiment tested the ability of the 12 symptoms from the

HFSAS to discriminate between potential disorders. This required an average of 7.45 cycles (i.e.,

executions of the discrimination operator) to find the minimum set of explanations. In this case,

"minimum set" means that the set of explanations cannot be further reduced by observing any

new symptom. In addition, the minimum set of explanations contained 11.95 disorders, on

138

average. The minimum set of explanations converged to include only the one correct explanation,

i.e., the disorder within the EMR diagnosis, 20% of the time.

Result from experiment #2: The second experiment tested the ability of the 284 symptoms defined

in the cardiology knowledge base (Section 5.2.1) to discriminate between potential disorders.

This required an average of 7.28 cycles (i.e., executions of the discrimination operator) to find the

minimum set of explanations. 25% of the chosen discriminators were from the set of 12 HFSAS

symptoms, 75% were not included in the set of 12 HFSAS symptoms. The minimum set of

explanations contained 1 disorder, on average. In other words, the minimum set of explanations

converged to include only the one correct explanation, i.e., the disorder within the EMR

diagnosis, each time.

These two experiments clearly demonstrate that the ability to observe and analyze a larger set of

symptoms (as used by kHealth) produces more efficient and more precise results as compared to

the use of a more restricted set of symptoms (as used by HFSAS/WANDA). More specifically,

the minimum set of explanations can be generated quicker (i.e., using less cycles) given the larger

set of known symptoms from the cardiology knowledge base (~7.28 cycles) vs. the smaller set of

symptoms from HFSAS (~7.45 cycles). In addition, even though the minimum set is generated

more efficiently, the resulting set is also more specific using the larger set of known symptoms (1

disorder in minimum set of explanations) vs. the smaller set of symptoms from HFSAS (~11.95

disorders in the minimum set of explanations). Therefore, the approach utilized by kHealth is

shown to be both more efficient and specific than HFSAS/WANDA for discriminating between

potential disorders.

139

5.5. Concluding Remarks

A semantics-based approach to machine perception is not only novel, but also demonstrably

effective and practical. Knowledge-enabled Healthcare (kHealth) is the result of the use of the

techniques and methodologies presented in this dissertation in the healthcare domain. In

collaboration with cardiology domain scientists at Ohio State University, Wexner Medical

Center, a mobile application has been developed to help people improve their cardiovascular

fitness. Currently the app is being used by patients at the OSU Wexner Medical Center in a pre-

clinical usability trial with the aim of reducing preventable hospital readmissions of patients with

Acute Decompensated Heart Failure. Hopefully, in the near future, such research may be further

utilized to empower patients with low-cost, easy-to-use technologies to increase their

participation in their own healthcare and health decision-making in order to improve their health,

fitness, and wellbeing.

140

6. Conclusion

Machine perception is still a hard problem in computer science with many issues to be addressed.

This dissertation addressed the question of whether machine perception could be formalized using

semantic web technologies in order to derive abstractions from sensor data using background

knowledge on the Web, and efficiently executed on resource-constrained devices. The particular

issues addressed include the semantic annotation of sensor data, the interpretation of sensor data,

and the efficient and scalable execution on resource-constrained devices. The chapters of this

dissertation demonstrated the techniques employed to address these issues, as well as real world

use-cases demonstrating the value of the approach towards solving real problems. More

concretely, the addressed issues include:

1. Develop techniques for semantically annotating sensor descriptions and sensor observation

data on the Web to enable advanced integration, query, and inference (Chapter 2: Semantic

Sensor Web).

2. Develop techniques for interpreting semantically annotated sensor observation data to derive

actionable intelligence and situational awareness (i.e., high-level abstractions), using

background knowledge on the Web (Chapter 3: Semantic Perception).

3. Develop techniques to enable the efficient and scalable interpretation of semantically

annotated sensor observation data on resource-constrained devices (Chapter 4: Intelligence at

the Edge).

4. Develop a prototype application to demonstrate the utility of the semantics-based machine

perception framework in a real-world scenario (Chapter 5: Knowledge-enabled Healthcare).

141

6.1. Summary

The semantic annotation of sensor data was addressed in Chapter 2: Semantic Sensor Web. This

chapter demonstrated techniques for semantically annotating sensor descriptions and sensor

observation data on the Web to enable advanced integration, query, and inference. This was

accomplished by marrying the Web-based sensor description languages defined by the Open

Geospatial Consortium’s Sensor Web Enablement (SWE) and the Web-based ontology languages

defined by the World Wide Web Consortium. The primary contributions of this chapter included

(1) an ontology for representing sensor descriptions and sensor observation data, the Semantic

Sensor Network (SSN) ontology (2) a framework for semantically annotating sensor descriptions

and sensor observation data encoded SWE’s XML based languages and service descriptions, and

(3) a semantic sensor observation service (SemSOS) that utilizes the SSN ontology and the

semantic annotation framework to enable better integration, query, and inference capabilities over

sensor data in comparison with the sensor observation service (SOS) defined by SWE.

The interpretation of sensor data was addressed in Chapter 3: Semantic Perception. This chapter

demonstrated techniques for interpreting semantically annotated sensor observation data to derive

actionable intelligence and situational awareness (i.e., high-level abstractions), using background

knowledge on the Web. The primary contribution of this chapter included an ontology of

perception, Intellego, which is derived from cognitive models of perception and provides a formal

semantics of machine perception. This ontology is first encoded in set-theoretic notation to

provide a formal representation of the concepts and processes involved in perception. Particular

aspects of the ontology – i.e., explanation and discrimination – are then encoded in the Web

Ontology Language to enable better integration with data and knowledge on the Web.

142

The ability to interpret sensor data efficiently, and at scale, on resource-constrained devices, such

as smart phones, was addressed in Chapter 4: Intelligence at the Edge. In Chapter 3 the

explanation and discrimination operators of Intellego were encoded in OWL to enable better

integration with data and knowledge on the Web. The computational complexity of the Web

Ontology Language (OWL), however, seriously limits its applicability and use within resource-

constrained environments, such as mobile devices. To address this issue, this chapter

demonstrated techniques to enable the efficient and scalable interpretation of semantically

annotated sensor observation data on resource-constrained devices. More specifically, the primary

contributions of this chapter included efficient algorithms for the explanation and discrimination

operators of Intellego, using bit-vector encodings and operations.

The ability of the approach presented in this dissertation to help address a real-world problem was

addressed in Chapter 5: Knowledge-enabled Healthcare. This chapter demonstrated a prototype

application to show the utility of the semantics-based machine perception framework to help

people make decisions to improve health, fitness, and wellbeing. The primary contribution of this

chapter is a semantics-based platform called kHealth, Knowledge-enabled Healthcare, which

integrates data from passive and active sensing with background knowledge from domain

ontologies, semantic reasoning, and mobile computing environments. kHealth utilizes technology

discussed within this dissertation – i.e., the semantic annotation of sensor data (Semantic Sensor

Web), interpretation of sensor data (Semantic Perception), and efficient algorithms for

interpreting sensor data on resource-constrained devices (Intelligence at the Edge) – to enable

advanced healthcare applications. Currently, the application of kHealth towards the management

of several disorders, including chronic heart disease and asthma, is being investigated in

collaboration with clinicians.

143

6.2. Final Remarks

Sensors are quickly becoming ubiquitous and are now collecting data about our environment at an

extraordinary pace. This dissertation has demonstrated the substantial benefits to be gained in

processing sensor data by semantically annotating the data and automating an approximation of

how people perceive their environment efficiently. Specifically, this ability is afforded by

background knowledge and the cyclical nature of observation and perception processes. While

one can take different positions on the philosophical (or technical) foundations of perception, it is

clear that a careful ontological specification makes these positions explicit and testable. The

approach described in this work establishes a formal semantics for machine perception; and

provides a solution to difficult challenges, such as the ability to effectively model the process of

perception, to provide an appropriate interpretation of observational data with incomplete

information, and to efficiently interpret the growing stream of observational data on resource-

constrained devices.

As the number and ubiquity of sensors and mobile devices continue to grow, the need for

computational methods to analyze the avalanche of heterogeneous sensor data and derive

situation awareness will grow. Efficient and scalable approaches to semantics-based machine

perception will be indispensable. This research represents a thoughtful and earnest step towards

understanding and addressing this challenge.

144

Bibliography

[52North] 52North Sensor Web Community, http://52north.org

[Aberer06] Aberer, K., Hauswirth, M., & Salehi, A.: A middleware for fast and flexible sensor

network deployment. Proceedings of the 32nd International Conference on Very Large

Data Bases, pp.1199–1202 (2006).

[Abraham11a] Abraham, W., Compton, S., Haas, G., Foreman, B., Canby, R., Fishel, R., et al.:

Intrathoracic impedance vs daily weight monitoring for predicting worsening heart failure

events: results of the Fluid Accumulation Status Trial (FAST). Congest Heart Fail, 17, 51-

55 (2011).

[Abraham11b] Abraham, W., Adamson, P., Bourge, R., Aaron, M., Costanzo, M., Stevenson, L.,

et al.: CHAMPION Trial Study Group. Wireless pulmonary artery haemodynamic

monitoring in chronic heart failure: a randomised controlled trial. Lancet, 377 (9766), 658-

666 (2011).

[AHA07] American Heart Association: Heart Disease and Stroke Statistics--2008 Update: A

Report From the American Heart Association Statistics Committee and Stroke Statistics

Subcommittee. Journal of the American Heart Association (2007).

http://circ.ahajournals.org/content/117/4/e25.full.pdf

[AHA08] American Heart Association: Heart Disease and Stroke Statistics--2009 Update: A

Report From the American Heart Association Statistics Committee and Stroke Statistics

Subcommittee. Journal of the American Heart Association (2008).

http://circ.ahajournals.org/content/119/3/e21.full.pdf

[Ali09] Ali, S., Kiefer, S.: μOR – A Micro OWL DL Reasoner for Ambient Intelligent Devices.

4
th
 Intl. Conf. on Grid and Pervasive Computing, 5529, pp.305–316, Geneva, Switzerland,

May 4-8 (2009).

[Aloimonos88] Aloimonos, J., Weiss, I., Bandyopadhyay, A.: Active Vision. International

Journal of Computer Vision, 1(4), 333-356 (1988). MIT Press. doi:10.1007/BF00133571

[Anandavala10] Anandavala: Perception, Cognition, and Communication (PCC) Ontology.

Anandavala. Retrieved from http://www.anandavala.info/ontech/PCC/pcc-intro.html

http://52north.org/
http://circ.ahajournals.org/content/117/4/e25.full.pdf
http://circ.ahajournals.org/content/119/3/e21.full.pdf

144

[Baader03] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F.:

The Description Logic Handbook: Theory , Implementation , and Applications. (F. Baader,

D. Calvanese, D. L. McGuinness, D. Nardi, & P. F. Patel-Schneider, Eds.) Description

Logic Handbook, pp. 622 (2003). Cambridge University Press. doi:10.2277/0521781760

[Bajcsy88] Bajcsy, R.: Active perception. IEEE, 76(8), pp.996-1005 (1988).

[Bizer09] Bizer, C., Heath, T., & Berners-Lee, T.: Linked Data - The Story So Far. International

Journal on Semantic Web and Information Systems, 5(3), 1-22 (2009). Elsevier.

doi:10.4018/jswis.2009081901

[Bodenreider04] Bodenreider, O.: The Unified Medical Language System (UMLS): Integrating

Biomedical Terminology. Nucleic acids research, 32 (suppl 1):D267-D270 (2004).

[Bonatti09] Bonatti, P., Lutz, C., Wolter, F.: The Complexity of Circumscription in DLs. J. Artif.

Intell. Res. 35: 717-773 (2009).

[Borgo09] Borgo, S., & Masolo, C.: Foundational choices in DOLCE. Applied Ontology, 2, 361-

381 (2009). Springer-Verlag.

[Botts08] Botts, M., Percivall, G., Reed, C., & Davidson, J.: OGC (R) Sensor Web Enablement:

Overview and High Level Architecture. Lecture Notes in Computer Science, Vol. 4540, pp.

175–190 (2008). Springer. doi:10.1007/978-3-540-79996-2

[Butler08] Butler, J., & Kalogeropoulos, A.: Worsening heart failure hospitalization epidemic we

do not know how to prevent and we do not know how to treat! J Am Coll Cardiol, 52, 435-

437 (2008).

[Calbimonte11] Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Semantic Sensor Data

Search in a Large-Scale Federated Sensor Network. 4th Intl. Workshop on Semantic Sensor

Networks, Bonn, Germany, Oct. 23-27 (2011).

[Calder10] Calder, M., Morris, R. A., & Peri, F.: Machine reasoning about anomalous sensor

data. Ecological Informatics, 5(1), 9-18 (2010). Elsevier B.V.

doi:10.1016/j.ecoinf.2009.08.007

[Carroll04] Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., & Wilkinson, K.:

Jena: implementing the semantic web recommendations. Digital Media, (HPL-2003-146),

74-83 (2004). ACM. doi:10.1145/1013367.1013381

[Cavanagh99] Cavanagh, P.: Top-Down Processing in Vision. The MIT Encyclopedia of the

Cognitive Sciences, (Costall 1980), 839-840 (1999).

145

[Compton09] Compton, M., Henson, C., Lefort, L., Neuhaus, H., & Sheth, A.: A Survey of the

Semantic Specification of Sensors. In K. Taylor, A. Ayyagari, & D. D. Roure (Eds.),

International Workshop on Semantic Sensor Networks, Vol. 522, p.17 (2009). CEUR-

WS.org.

[Compton12] Compton, M. et al.: The SSN Ontology of the W3C Semantic Sensor Network

Incubator Group. Journal of Web Semantics (2012).

[Corcho10] Corcho, O., & García-Castro, R.: Five challenges for the Semantic Sensor Web.

Semantic Web - Interoperability, Usability, Applicability, 1(1), 121-125 (2010). IOS Press.

doi:10.3233/SW-2010-0005

[Devaraju10] Devaraju, A., Kuhn, W.: A Process-Centric Ontological Approach for Integrating

Geo-Sensor Data. 6
th
 Intl. Conf. on Formal Ontology in Information Systems, pp.199-212,

Toronto, Canada, May 11-14 (2010).

[Devaraju11] Devaraju, A., Kauppinen T.: Sensors Tell More than They Sense: Modeling and

Reasoning about Sensor Observations for Understanding Weather Events. Special Issue on

Semantic Sensor Networks, Intl. Journal of Sensors, Wireless Communications and

Control, Bentham Science Publishers (2011).

[Diamant07] Diamant, E.: Modeling human-like intelligent image processing: An information

processing perspective and approach. Signal Processing Image Communication, 22(6), 583-

590 (2007). doi:10.1016/j.image.2007.05.007

[Elsenbroich06] Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over

ontologies. Workshop on OWL: Experiences and Directions, Athens, GA, USA, Nov. 10-

11 (2006).

[Euzenat07] Euzenat, J., & Shvaiko, P.: Ontology Matching. Booksgooglecom, pp. 1 – 333

(2007). Springer-Verlag, Berlin Heidelberg. doi:10.1007/978-3-540-49612-0

[Fang08] Fang, J., Mensah, G., Croft, J., & Keenan, N.: Heart failure related hospitalization in the

U.S., 1979 to 2004. J Am Coll Cardiol, 52, 428-434 (2008).

[Fonarow04] Fonarow, G., & Corday, E.: ADHERE Scientific Advisory Committee. Overview of

acutely decompensated congestive heart failure (ADHF): a report from the ADHERE

registry. Heart Fail Rev, 9, 179-185 (2004).

[Gheorghiade05] Gheorghiade, M., Zannad, F., Sopko, G., Klein, L., Pina, I., & Konstam, M.:

Acute heart failure syndromes: current state and framework for future research. Circulation,

112, 3958-3968 (2005).

146

[Gheorghiade09] Gheorghiade, M., & Pang, P.: Acute heart failure syndromes. J Am Coll

Cardiol, 53, 557-573 (2009).

[Gibson66] Gibson, J. J.: The Senses Considered as Perceptual Systems. Leonardo, Vol. 1, p. 335

(1966). Houghton Mifflin. doi:10.2307/1571911

[GML] Geography Markup Language (GML), http://www.opengeospatial.org/standards/gml

[Goldberg03] Goldberg, L., Piette, J., Walsh, M., Frank, T., Jaski, B., Smith, A., et al.:

Randomized trial of a daily electronic home monitoring system in patients with advanced

heart failure: the Weight Monitoring in Heart Failure (WHARF) trial. Am Heart J., 146 (4),

705-712 (2003).

[Goldstine64] Goldstine, H. H.: Computers and Perception. Proceedings of the American

Philosophical Society, 108(4), pp. 282-290 (1964). American Philosophical Society.

[Gray11] Gray, A., et al.: A Semantically Enabled Service Architecture for Mashups over

Streaming and Stored Data. 9
th
 Extended Semantic Web Conf., Heraklion, Greece, May 29

– June 2 (2011).

[Gregory68] Gregory, R.: (1968. Perceptual illusions and brain models. Proceedings of the Royal

Society of London, 171(24), 279-296 (1968).

[Gregory97] Gregory, R.L.: Knowledge in perception and illusion. In: Philosophical Transactions

of the Royal Society of London, 352(1358), pp.1121-1127 (1997).

[Gries99] Gries, D.: Monotonicity in Calculational Proofs. Correct System Design, Recent Insight

and Advances, pp. 79-85, London, UK: Springer-Verlag (1999).

[Grimm09] Grimm, S., Hitzler, P.: A Preferential Tableaux Calculus for Circumscriptive ALCO.

In: Polleres, A., Swift, T. (Eds.), Web Reasoning and Rule Systems, Third International

Conference, RR 2009, Chantilly, VA, USA, October 2009, Proceedings. Lecture Notes in

Computer Science Vol. 5837, Springer, pp. 40-54 (2009).

[Gross99] Gross, N.: The Earth Will Don an Electronic Skin. BusinessWeek, Aug. (1999).

www.businessweek.com/1999/99_35/b3644024.htm

[Gruber93] Gruber, T.: A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition, 5(2), pp.199-220 (1993).

[Gürgen06] Gürgen, L., Roncancio, C., Labbé, C., & Olive, V.: Transactional issues in sensor

data management. Proceedings of the 3rd Workshop on Data Management for Sensor

Networks in conjunction with VLDB 2006, 27 (2006). ACM Press.

doi:10.1145/1315903.1315910

http://www.opengeospatial.org/standards/gml
http://www.businessweek.com/1999/99_35/b3644024.htm

147

[HDT11] Binary RDF Representation for Publication and Exchange (HDT). W3C Member

Submission (2011). http://www.w3.org/Submission/2011/SUBM-HDT-20110330/

[HHS11] U.S. Department of Health & Human Services: Hospital Compare (2011).

http://www.hospitalcompare.hhs.gov (Accessed on February 19, 2012).

[Henson09] Henson, C., Pschorr, J. K., Sheth, A. P., & Thirunarayan, K. (2009). SemSOS:

Semantic sensor Observation Service. 2009 International Symposium on Collaborative

Technologies and Systems, 0(Cts), 44-53 (2009). Ieee. doi:10.1109/CTS.2009.5067461

[Henson11a] Henson, C., Thirunarayan, K., Sheth, A., Hitzler, P.: Representation of

Parsimonious Covering Theory in OWL-DL. 8
th
 Intl. Workshop on OWL: Experiences and

Directions, San Francisco, CA, USA, June 5-6 (2011).

[Henson11b] Henson, C., Sheth, A., Thirunarayan, K.: Semantic Perception: Converting Sensory

Observations to Abstractions. IEEE Internet Computing, 16(2), pp.26-34, Mar/Apr (2012).

[Henson11c] Henson, C., Thirunarayan, K., Sheth, A.: An Ontological Approach to Focusing

Attention and Enhancing Machine Perception on the Web. Applied Ontology, 6(4), pp.345–

376 (2011).

[Henson12] Henson, C., Thirunarayan, K., Sheth, A.: An Efficient Bit Vector Approach to

Semantics-based Machine Perception in Resource-Constrained Devices. Proceedings of

11th International Semantic Web Conference (ISWC 2012), Boston, Massachusetts, USA,

November 11-15 (2012).

[Higginbotham10] Higginbotham, S.: Sensor Networks Top Social Networks for Big Data.

Gigaom.com, September (2010). Retrieved from http://gigaom.com/cloud/sensor-networks-

top-social-networks-for-big-data-2/

[Hitzler09] Hitzler, P., Parsia, B., Patel-Schneider, P. F., & Rudolph, S.: OWL 2 Web Ontology

Language Primer. W3C Recommendation (2009).

[Horrocks04] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M.:

SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C

Recommendation (2004).

[Janowicz10] Janowicz, K., Schade, S., Bröring, Arne, Keßler, C., Maué, P., & Stasch, C.:

Semantic Enablement for Spatial Data Infrastructures. (J. P. Wilson, A. S. Fotheringham, &

D. O’Sullivan, Eds.) Transactions in GIS, 14(2), 111-129 (2010). Wiley Online Library,

2010. doi:10.1111/j.1467-9671.2010.01186.x

[Jena] Jena Semantic Web Framework, http://jena.sourceforge.net/

http://www.w3.org/Submission/2011/SUBM-HDT-20110330/
http://gigaom.com/cloud/sensor-networks-top-social-networks-for-big-data-2/
http://gigaom.com/cloud/sensor-networks-top-social-networks-for-big-data-2/
http://jena.sourceforge.net/

148

[Jencks11] Jencks, S., Williams, M., & Coleman, E.: Rehospitalizations among patients in the

Medicare fee-for-service program. New Englland Journal of Medicine, 360, 1418- 1428

(2011). http://www.nejm.org/doi/full/10.1056/NEJMsa0803563

[Jurgens06] Jurgens, C. Y., Fain, J. A., Riegel, B.: Psychometric testing of the heart failure

somatic awareness scale. Journal of cardiovascular nursing, 21(2), 95 (2006).

[Keßler09] Keßler, C., Raubal, M., Wosniok, C.: Semantic rules for context-aware geographical

information retrieval. Smart Sensing and Context, 4
th
 European Conf. on Smart Sensing and

Context, Guildford, UK, 5741, pp.77-92, Sept. 16-18 (2009).

[Kuhn09] Kuhn, W.: A Functional Ontology of Observation and Measurement. 3
rd
 Intl. Conf. on

GeoSpatial Semantics, Mexico City, Mexico, Vol. 3, pp. 26-43, Dec. 3-4 (2009).

[Lefort11] Lefort, L., Henson, C., Taylor, K., Barnaghi, P., Compton, M., Corcho, O., Garcia-

Castro, R., et al.: Semantic Sensor Network XG Final Report, W3C Incubator Group

Report (2011). http://www.w3.org/2005/Incubator/ssn/XGR-ssn/

[Locke1690] Locke, J.: An Essay Concerning Human Understanding. (L. A. Selby-Bigge, Ed.)

Philosophy and Phenomenological Research, Vol. 68, p. 496 (1960). Orion Publishing

Group, Ltd.

[Manola04] Manola, F., & Miller, E.: RDF Primer. (Frank Manola & Eric Miller, Eds.) W3C

Recommendation, Vol. 10, pp. 1-107 92004). W3C.

[McGlothlin10] McGlothlin, J.P., Khan, L.: Materializing and Persisting Inferred and Uncertain

Knowledge in RDF Datasets. 24
th
 AAAI Conf. on Artificial Intelligence, Atlanta, GA,

USA, July 11-15 (2010).

[MesoWest] MesoWest, http://www.met.utah.edu/mesowest/

[Mitchell97] Mitchell, T. M.: Machine Learning. (J. F. Traub, B. J. Grosz, B. W. Lampson, & N.

J. Nilsson, Eds.) Annual Review of Computer Science, Vol. 4, pp. 417-433 (1997).

McGraw-Hill. doi:10.1145/242224.242229

[Mitre08] Mitre: Data Analysis Challenges. (2008). Retrieved from

http://www.fas.org/irp/agency/dod/jason/data.pdf

[Motik12] Motik, B., Horrocks, I., Kim, S.: Delta-Reasoner: a Semantic Web Reasoner for an

Intelligent Mobile Platform. 21st International World Wide Web Conference (WWW2012),

Lyon, France, April 16-20 (2012).

http://www.w3.org/2005/Incubator/ssn/XGR-ssn/
http://www.met.utah.edu/mesowest/

149

[Neisser76] Neisser, U.: Cognition and Reality. Psychology, vol.218, San Francisco: W.H.

Freeman and Company (1976).

[Nevatia82] Nevatia, R.: Machine Perception. Perception, 10 (1982). Prentice-Hall.

[NOAA] National Oceanic and Atmospheric Administrationís (NOAA) National Weather

Service, Glossary, http://www.nws.noaa.gov/glossary/

[Nokia08] Nokia: Sensing the World with Mobile Devices: The Vision. Nokia Technology

Insight Series, Nokia Research Center (NRC), December (2008). Retrieved from

http://research.nokia.com/files/insight/NTI_Sensing_-_Dec_2008.pdf

[Norwich91] Norwich, K.: On the fundamental nature of perception. Acta Biotheoretica, 39(1),

81-90 (1991).

[O&M] Observations and Measurements (O&M), http://www.opengeospatial.org/standards/om

[OWL] Web Ontology Language (OWL), http://www.w3.org/TR/owl-ref/

[OWLTime] Time Ontology in OWL (OWL-Time), http://www.w3.org/TR/owl-time/

[Pantelopoulos10] Pantelopoulos, A., & Bourbaki, N. G.: A survey on wearable sensor-based

systems for health monitoring and prognosis. Trans. Sys. Man Cyber Part C, 40 (1), 1-12

(2010). http://dx.doi.org/10.1109/TSMCC.2009.2032660

[Patni10] Patni, H., Henson, C., & Sheth, A.: Linked Sensor Data. 2010 International Symposium

on Collaborative Technologies and Systems, 362-370 (2010).

doi:10.1109/CTS.2010.5478492

[Pawlowski08] Pawlowski, A., Guzman, J. L., Rodriguez, F., Berenguel, M., Sanchez, J., &

Dormido, S.: Event-based control and wireless sensor network for greenhouse diurnal

temperature control: A simulated case study. 2008 IEEE International Conference on

Emerging Technologies and Factory Automation, 500-507 (2008).

doi:10.1109/ETFA.2008.4638446

[Pawlowski09] Pawlowski, A., Guzman, J. L., Rodriguez, F., Berenguel, M., Sanchez, J., &

Dormido, S. (2009). The influence of event-based sampling techniques on data

transmission and control performance. Emerging Technologies Factory Automation. IEEE

Conference on ETFA, pp.1-8 (2009). doi:10.1109/ETFA.2009.5347045

[Peraldi09] Peraldi, S.E., Kaya, A., Möller, R.: Formalizing multimedia interpretation based on

abduction over description logic aboxes. 22
nd

 Intl. Workshop on Description Logics,

Oxford, UK, July 27-30 (2009).

http://www.nws.noaa.gov/glossary/
http://www.opengeospatial.org/standards/om
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-time/

150

[Perera12] Perera, S., Henson, C., Thirunarayan, K., Sheth, A., & Nair, S.: Data driven

knowledge acquisition method for domain knowledge enrichment in healthcare. IEEE

International Conference on Bioinformatics and Biomedicine (BIBM 2012), pp.1-8,

October (2012).

[Pfisterer11] Pfisterer, D., et al.: SPITFIRE: toward a semantic web of things. IEEE

Communications Magazine, 49(11), pp.40-48 (2011).

[PPACA10] The Patient Protection and Affordable Care Act, Pub. L. No. 111-148. 124 Stat. 110

(201). http://www.gpo.gov/fdsys/pkg/PLAW-111publ148/content-detail.html

[Preuveneers08] Preuveneers, D., Berbers, Y.: Encoding Semantic Awareness in Resource-

Constrained Devices. IEEE Intelligent Systems, 23(2), pp.26-33, March (2008).

[Prud’hommeaux08] Prud’hommeaux, E., & Seaborne, A.: SPARQL Query Language for RDF.

(E. Prud’hommeaux & A. Seaborne, Eds.)W3C Recommendation (2008).

[Pschorr10] Pschorr, J., Henson, C., Patni, H., & Sheth, A.: Sensor Discovery on Linked Data.

Kno.e.sis Center Technical Report (2010).

[Punuru07] Punuru, J. R.: Knowledge-based Methods for Automatic Extraction of Domain-

specific Ontologies. Louisiana State University (2007).

[QS12a] Quantified Self, http://quantifiedself.com/ (Accessed: May 31, 2013)

[QS12b] Sensors - Quantified Self, http://quantifiedself.com/sensors/ (Accessed: May 31, 2013)

[RDF] Resource Description Framework (RDF), http://www.w3.org/TR/rdfconcepts/

[RDFS] RDF Schema (RDF-S), http://www.w3.org/TR/rdf-schema/

[Reggia87] Reggia, J.A., Peng, Y.: Modeling Diagnostic Reasoning: A Summary of

Parsimonious Covering Theory. Computer Methods and Programs Biomedicine, 25,

pp.125-34 (1987).

[Ricquebourg07] Ricquebourg, V., Durand, D., Menga, D., Marhic, B., Delahoche, L., Loge, C.,

& Jolly-Desodt, A. M.: Context Inferring in the Smart Home: An SWRL Approach.

International Conference on Advanced Information Networking and Applications

Workshops, Vol. 2, pp. 290-295 (2007).

[Salter08] J. Salter: Heavy Rains Close Missouri Roads, Renew Flood Concerns. USA Today, 10

April (2008); www.usatoday.com/weather/storms/2008-04-10-missouri-flooding_N.htm

http://quantifiedself.com/
http://quantifiedself.com/sensors/
http://www.w3.org/TR/rdfconcepts/
http://www.w3.org/TR/rdf-schema/

151

[Scheider10] Scheider, S., Probst, F., Janowicz, K.: Constructing Bodies and their Qualities from

Observations. 6
th
 Intl. Conf. on Formal Ontology in Information Systems, Toronto, Canada,

May 11-14 (2010).

[Seitz11] Seitz, C., Schönfelder, R.: Rule-based OWL reasoning for specific embedded devices.

10
th
 Intl. Semantic Web Conf., Bonn, Germany, Oct. 23-27 (2011).

[SensoryPerception10] Sensory Perception. Gene Ontology. (2010).

http://www.geneontology.org/GO.doc.sensory-perception.shtml

[Shadbolt08] Shadbolt, N., Berners-Lee, T.: Web Science: Studying the Internet to Protect Our

Future. Scientific American, September (2008). http://www.sciam.com/article.cfm?id=web-

science

[Shanahan05] Shanahan, M.P.: Perception as Abduction: Turning Sensor Data into Meaningful

Representation. Cognitive Science, 29, pp.103-134 (2005).

[Shannon48] Shannon, C.: A Mathematical Theory of Communication. MD computing

computers in medical practice, 27(4), 306-17 (1948). ACM. doi:10.1145/584091.584093

[Sheth06] Sheth, A., Agrawal, S., Lathem, J., Oldham, N., Wingate, H., Yadav, P., and Gallagher,

K.: Active Semantic Electronic Medical Record. Proceedings of the 5th International

Semantic Web Conference, pp. 913-926, Athens, GA, November 6-9 (2006).

[Sheth08] Sheth, A., Henson, C., Sahoo, S.: Semantic Sensor Web. IEEE Internet Computing,

12(4), pp.78-83, July/Aug (2008).

[Sheth09] Sheth, A.: Citizen Sensing, Social Signals, and Enriching Human Experience. IEEE

Internet Computing, 13(4), 87-92 (2009). doi:10.1109/MIC.2009.77

[Sheth11] Sheth, A.: Semantics Scales Up: Beyond Search in Web 3.0. IEEE Internet Computing,

November/December, 3-6 (2011).

http://www.computer.org/csdl/mags/ic/2011/06/mic2011060003-abs.html

[SOS] Sensor Observation Service, http://www.opengeospatial.org/standards/sos

[SPARQL] SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparqlquery/

[SSN-XG] W3C Semantic Sensor Network Incubator Group (SSN-XG) Charter.

http://www.w3.org/2005/Incubator/ssn/charter.

[Stasch09] Stasch, C., Janowicz, K., Bröring, A, Reis, I., & Kuhn, W.: A Stimulus-Centric

Algebraic Approach to Sensors and Observations. (N. Trigoni, A. Markham, & S. Nawaz,

http://www.sciam.com/article.cfm?id=web-science
http://www.sciam.com/article.cfm?id=web-science
http://www.computer.org/csdl/mags/ic/2011/06/mic2011060003-abs.html
http://www.opengeospatial.org/standards/sos
http://www.w3.org/TR/rdf-sparqlquery/
http://www.w3.org/2005/Incubator/ssn/charter

152

Eds.) GeoSensor Networks, 5659, 169-179 (2009). Springer-Verlag. doi:10.1007/978-3-

642-02903-5_17

[Suchanek09] Suchanek, F. M.: Automated Construction and Growth of a Large Ontology.

Saarland University (2009).

[Suh11] Suh, M., Chen, C., Woodbridge, J., Kai Tu, M., In Kim, J., Nahapetian, A., Evangelista,

L., and Sarrafzadeh. M.: A Remote Patient Monitoring System for Congestive Heart

Failure. J. Med. Syst. 35, 5, 1165-1179, October (2011),. DOI=10.1007/s10916-011-9733-y

http://dx.doi.org/10.1007/s10916-011-9733-y

[SWActivity] W3C Semantic Web Activity, http://www.w3.org/2001/sw/

[Taylor11] Taylor, K., Leidinger, L.: Ontology-Driven Complex Event Processing in

Heterogeneous Sensor Networks. 8
th
 Extended Semantic Web Conf., Heraklion, Greece,

May 29 – June 2 (2011).

[Thirunarayan09a] Thirunarayan, K., Henson, C., Sheth, A.: Situation Awareness via Abductive

Reasoning from Semantic Sensor Data: A Preliminary Report. International Symposium on

Collaborative Technologies and Systems (CTS2009), Workshop on Collaborative Trusted

Sensing, Baltimore, Maryland (2009).

[Thirunarayan09b] Thirunarayan, K., Pschorr, J.: Semantic Information and Sensor Networks. In:

Proceedings of the 24th Annual ACM Symposium on Applied Computing (ACM SAC

2009), March (2009).

[Tobies01] Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge

Representation. Ph.D. Thesis, RWTH Aachen, Germany (2001).

[Thomas08] Thomas, C., Mehra, P., Brooks, R., & Sheth, A.: Growing Fields of Interest. 2008

IEEE International Conference on Web Intelligence and Intelligent Agent Technology,

2(1), 496-502 (2008). doi:10.1109/WIIAT.2008.358

[XLink] XML Linking Language (XLink), http://www.w3.org/TR/xlink/

[Zhao03] Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A.: Face recognition: A literature

survey. ACM Computing Surveys, 35(4), 399-458 (2003). ACM.

doi:10.1145/954339.95434

http://www.w3.org/2001/sw/
http://www.w3.org/TR/xlink/

	A Semantics-Based Approach to Machine Perception
	Repository Citation

	First 1 - 10.pdf
	1 - Title.pdf
	2 - Copyright.pdf
	3 - Signatures.pdf
	4 - Abstract.pdf
	5 - Table of Contents.pdf
	6 - List of Figures.pdf
	7 - List of Tables.pdf
	8 - Acknowledgement.pdf
	9 - Dedication.pdf
	10 - Chapter 1 - Introduction.pdf

	11 - Chapter 2 - Semantic Sensor Web.pdf
	12 - Chapter 3 - Semantic Perception.pdf
	13 - Chapter 4 - Intelligence at the Edge.pdf
	14 - Chapter 5 - Knowledge-enabled Healthcare.pdf
	15 - Chapter 6 - Conclusion.pdf
	16 - Bibliography.pdf

