
Wright State University Wright State University

CORE Scholar CORE Scholar

Computer Science & Engineering Syllabi College of Engineering & Computer Science

Fall 2008

CEG 399: Introduction to Software Testing CEG 399: Introduction to Software Testing

John A. Reisner
Wright State University - Main Campus, john.reisner@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cecs_syllabi

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Repository Citation Repository Citation
Reisner, J. A. (2008). CEG 399: Introduction to Software Testing. .
https://corescholar.libraries.wright.edu/cecs_syllabi/100

This Syllabus is brought to you for free and open access by the College of Engineering & Computer Science at
CORE Scholar. It has been accepted for inclusion in Computer Science & Engineering Syllabi by an authorized
administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cecs_syllabi
https://corescholar.libraries.wright.edu/cecs
https://corescholar.libraries.wright.edu/cecs_syllabi?utm_source=corescholar.libraries.wright.edu%2Fcecs_syllabi%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=corescholar.libraries.wright.edu%2Fcecs_syllabi%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fcecs_syllabi%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Wright State University

CEG 399: Introduction to Software Testing
Fall Quarter, 2008

Course Description
This course covers software testing strategies, along with established best practices, so students learn how to test
their software in a complete and systematic (vice ad-hoc) manner. Particular attention is paid to planning, writing,
and executing software testing documentation, i.e., software test plan, to include documented results. Various
projects are assigned, designed to illustrate various challenges associated with software testing, and to reinforce the
strategies and techniques used to overcome these challenges.

Textbook
Lee Copeland, A Practitioner's Guide to Software Testing, Artech House, 2004, ISBN 1-58053-791-X. This is a
required textbook for this course.

Reading Assignments
Each week's lessons have corresponding reading assignments. The course lectures are designed to augment (not
simply rehash) these readings.

The course text is a straightforward book. Chapters are written succinctly. It would behoove students to review the
material in the book during the week when it is being covered in class.

Course Projects & Lectures
This will be a "learning-by-doing" class. Students will have a series of projects throughout the course, where they
will write code, write test plans, execute test plans, and document the results.

Projects will be introduced during class, in the format of interactive discussion exercises. Students should attend
class ready to contribute through active participation. No open laptops are allowed in class.

Instructor Contact Info

John Reisner

Office Hours by Appointment

Daytime Phone: 255-3636 x7422 (this is a WPAFB phone number).

email: john.reisner@wright.edu (it wouldn't hurt to cc: john.reisner@afit.edu)

The instructor is an adjunct faculty member. Most contact will be done via email, phone, or during before- or after

class discussions. Other meetings can be arranged as needed.

Course Objectives
Each student should be able to:

1. Write appropriately comprehensive test plans.

2. Effectively document test plans and results.

3. Develop software using a test-driven approach.

4. Employ effective tf:sting strategies for different needs.

5. Write drivers, stubs, and testware as needed to sufficiently test a program.

6. Verify a program's correctness via a test strategy.

mailto:john.reisner@afit.edu
mailto:john.reisner@wright.edu

Grading
30% Course Projects

• 	 These consist of a programming project. The emphasis of this project will be testing the software that
has been written, with a written test plan.

• 	 All testing is to be performed using a written test plan, which will be developed by the student.
• 	 These are called "weekly" projects; however, in some cases, a project may be extended over two weeks,

where students are expected to write the code during the first week, and execute the test plan during the
second week. This may happen if the test plans are expected to be exceptionally complex.

• 	 Each project will be graded individually. Although the grade will be based on the thoroughness and
quality of the test plan, students are expected to use good programming practices throughout the course.

30% Mid-term Exam
• Mixed-fonnat exam, administered in class.

30% Final Exam
• Comprehensive, mixed-fonnat exam, administered during the school's final exam week.

10% Homework Assignments
• 	 Homework assignments are designed to facilitate deeper comprehension about a lecture topic (in other

words, these are "think and respond" assignments).
• 	 There may be up to two assignments per week, but some weeks may have one or zero assignments.

Most weeks will not have more than one.
• 	 Homework assignments are different from the weekly projects.
• 	 Answers to these homework assignments generally run about a half to full page in length, and should

not take too long to complete.
• 	 Details about these assignments will be found on WebCT.
• 	 Nonnally, these assignments will be due on Tuesday each week (thus, students have one week to

complete a Tuesday assignment and five days to complete a Thursday assignment). Any exceptions to
this policy will be mentioned when the homework is assigned.

• 	 Assignments are due at the start of the class/lab session; please have them printed out and ready to tum
in at the start of class. If you are unable to attend class, email will be accepted. Emailed assignments
should be timestamped before class time (skipping class does not give you a homework extension).

• 	 These assignments will be graded using the SUE grading system (explained on the following page).

Final course grades will be assigned at the instructor's discretion, after all work has been graded, and the grade
distribution has been analyzed.

Grading of Course Work
Many of the assignments in this class will be graded subjectively, due to the nature of the work. Many assignments
require tum-ins that are not necessarily right or wrong, but rather well- or poorly-documented, strongly or weakly
substantiated, thorough or lax, well-organized or carelessly compiled. Superior work is graded above 90; satisfactory
work is graded between 80 and 90, and unsatisfactory work is graded below 80, depending upon the severity of the
problems.

Overall, my goal is to assign homework and projects that require much thought, thereby reinforcing understanding
and increasing retention.

2

Course Schedule (possibly subject to change)

Week Lesson Date Lesson Topics Readin2 Assi2nment Pro.iect
Mon Course Introduction Chapters I & 2 I Project l.
Sep _8_ Terminology & Basics Note: Create a $1,000 See details on Web CT.1 Intro to Course Text account at the B&D website.

1 Philosophies & Challen2es Perform at least two trades.

Wed Test Cases & Test Plans Chapters 12 & 14

2 Sep_10_ Testable Requirements (skim Chapter 12)

The V-Model & Testine:

Mon Black-Box Testing Section I Introduction Project 2.

3 Sep 15 Boundary Value Testing Chapters 3 & 4 See details on Web CT.

2
Wed Equivalence Class Testing

4 Sep 17
Mon Decision Tables Chapters 5 & 6

5 Sep 22 Orthoe:onal Arravs

3 Wed Testing for Robustness: Outside Readings

6 Sep_24 Stress Testing, Erroneous

Conditions, Patholof!ical Testing

Mon Test-Driven Development Chapter 9 Project 3.

7 Sep 29 Use Case Testine: See details on Web CT.

4 Wed Testing & the Software Lifecycle Outside Readings
8 Oct 1 Integration Testing Strategies

Larl!e System Testine:
Mon Domain Analysis Testing Chapter 8

9 Oct 6
5

Wed Exploratory Testing Section III Introduction
10

Oct 8 Chapter 13
Mon MIDTERM EXAM
Oct 13

6
IWed Intro to White-Box Testing Section II Introduction••

11 Oct 15
Mon Control Flow Testing Chapter 10 • Project4.

12 Oct 20 See details on Web CT.
7 Wed Data Flow Testing (Static) Chapter 11

13 Oct 22
Mon Data Flow Testing (Dynamic)

14I Oct 27
8 Wed TBD

15 Oct 29

Mon Regression Testing Project 5.

16 Nov 3 See details on Web CT.
9 Wed Simulation & Testware Chapter 7

17 Nov_5_ Scalability Problems
State Transition Testinl!

Mon Testing Usability
18 Nov 10 Performance Testing

10 Wed Testing Metrics TBD

19 Nov 12 Trends
-

How Test Results Shape Testinl!

3

	CEG 399: Introduction to Software Testing
	Repository Citation

	tmp.1389970103.pdf.vK_Xw

