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Abstract 

Wise, Zachary Gordon Lee, M.S.Egr., Department of Biomedical, Industrial and Human 

Factors Engineering, Wright State University, Dayton, OH, 2012. System Optimization 

and Patient Translational Motion Correction for Reduction of Artifacts in a Fan-

Beam CT Scanner. 

 

In computed tomography (CT) systems, many different artifacts may be present in the 

reconstructed image. These artifacts can greatly reduce image quality. For our laboratory 

prototype CT system, a fan-beam/cone-beam focal high-resolution computed tomography 

(fHRCT) scanner, the major artifacts that affect image quality are distortions due to errors 

in the reconstruction algorithm’s geometric parameters, ring artifacts caused by 

uncalibrated detectors, cupping and streaking created by beam hardening, and patient-

based motion artifacts. Optimization of the system was required to reduce the effects of 

the first three artifact types, and an algorithm for correction of translational motion was 

developed for the last. 

System optimization of the system occurred in three parts. First, a multi-step process was 

developed to determine the geometric parameters of the scanner. The ability of the 

source-detector gantry to translate allowed a precise method to be created for calculating 

these parameters. Second, a general flat-field correction was used to linearize the 

detectors and reduce the ring artifacts. Lastly, beam hardening artifacts were decreased 
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by a preprocessing technique. This technique assumes linear proportionality between the 

thickness of the calibration material, aluminum, and the experimental measurement of 

ln(No/N), where No is the total number of photons entering the material and N is the 

number of photons exiting the material. 

In addition to system optimization to minimize artifacts, an algorithm for correction of 

translational motion was developed and implemented. In this method, the integral mass 

and center of mass at each projection angle was seen to follow a sinusoidal or sinusoidal-

like curve. Fits were used on the motion-encoded sinograms to determine both of these 

curves and, consequently, the amount and direction of motion that occurred. Each 

projection was individually adjusted to compensate for this motion by widening or 

narrowing the projection based on the ratio of the actual and calculated ideal projection 

integrals and shifting the projection to match the actual centroid to the calculated ideal 

location. 

A custom imaging phantom with an outer diameter of approximately 16 mm was used to 

test the motion-correction algorithm in both simulated and experimental cases. A baseline 

of the error measured, taken as a fraction, was established as 0.16 for motion-free images 

measured on the scanner. Various motion patterns were tested. These included the 

distance of motion, the angle at which the motion occurred, and the ratio of the sinograms 

that was corrupted by motion. Experimental testing showed a maximum error increase of 

2.7% from the baseline error for the motion-corrected images at 4 mm motion.  

The overall optimization provided acceptable results for the reconstructed image and 

good-quality projections for use in the motion-correction algorithm. Distortion and ring 
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artifacts were almost completely removed, and the beam hardening artifacts were greatly 

reduced. The motion-correction algorithm implemented in this thesis helps minimize the 

amount of error due to translational motion and provides a foundation for future 

corrections of more complex motions. 
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1. Introduction 

There are many factors that can degrade the quality of a reconstructed image in computed 

tomography (CT). Some are artifacts caused by system errors whereas others are the 

effect of patient motion during the scanning process. The former problem can be reduced 

by optimizing the system. The latter can be reduced by developing motion correction 

techniques.  

1.1 Description of the System 

The system that is optimized in this paper is a focal High Resolution Computed 

Tomography (fHRCT) scanner. The system utilizes third-generation CT techniques for 

scanning yet retains the translation function of a second generation CT scanner.  It 

consists of a single source with a voltage range of 0-50 kVp and a current range of 0-1 

mA. Two equidistant linear detectors with 1024×512 elements are abutted lengthwise, 

with a gap between them of approximately 50 elements, creating a single detector with 

2098×512 elements. However, only a single detector row (2098×1 elements) is used in 

this project as the current interest is in 2D fan-beam reconstructed images. The linear 

detector elements are 50×50 microns in area. The source is purposefully tilted to increase 

the field of view, and the effects on the fan-beam geometry can be seen in Figure 2-1. To 

avoid issues with the gap between the two detectors, we limited our imaging projects to 

data received by only one of the detectors, which was approximately centered on the 
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cone-beam. After optimization, the system has an effective reconstruction area of 

approximately 2.7 cm in diameter. 

1.2 Scanner Optimization 

There are several causes for artifacts from insufficiently optimized systems. The three 

main problems are first, establishment of the necessary mechanical parameters that are 

required to correctly reconstruct an image. Unlike the methods for detector calibration 

and beam hardening, the method used here is not standard, as the translation function is 

exploited to help determine these parameters. Second, the detector must be calibrated to 

remove the ring artifacts present in the reconstructed image. And third, beam hardening 

correction is applied to the linearized data to reduce cupping and streaking. These 

optimizations are necessary for the motion correction to be effective. 

1.3 Patient Motion Correction 

For the fHRCT scanner to take high resolution images, the time required for a scan is 

approximately three minutes. Because of this extended length of time, motion of the 

patient will be difficult to avoid, and the effect of that motion can greatly degrade the 

quality of a reconstructed image. Correcting for translational motion is the main concern. 

There are several methods to reduce this motion so that a scan can still produce a useful 

reconstructed image. Many of these were first developed for parallel-beam CT scanners, 

and many others use surface markers to determine the amount of motion.  However, one 

of the primary goals of this project was to develop an algorithm for the fan-beam scanner 

that did not rely on surface markers. Therefore, a method that corrects translational 

motion is presented that makes use of the integral and center of mass of each projection 

as indicators of motion.  
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2. Optimization of System for Reduction of Scanner Artifacts 

2.1 Parameter Calculation 

Mechanical parameters in a fan-beam computed-tomography scanner are difficult to 

determine when these parameters are not mechanically established in advance. The 

important parameters to be determined of the fan-beam CT scanner are source-to-center-

of-rotation distance, source-to-detector center distance, and detector center. In ideal cone-

beam CT scanners, the beam from the source that traverses the center-of-rotation also 

intersects the detector at an angle normal to the detector surface.  

When these parameters are not mechanically pre-established for a given CT scanner, they 

must be estimated. Both parallel-beam and fan–beam scanners use a pin of highly 

attenuating material as a marker for this determination. In parallel-beam CT, the pin is 

analyzed at two views taken 180
o 
apart from each other. The centroid of the pin in each of 

these views is calculated from the profile at these views, and the midpoint between the 

centroids denotes the position of the source at which the beam passes the center-of-

rotation [1]. Due to the geometry of the fan-beam, this is not a practical way to determine 

the center-of-rotation. Common practice for a third-generation CT scanner is to take a full 

scan of a pin located at (xo, yo) and then determine the parameters based on the chi-square 

reduction of Equation 2.1 [1]. 
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                                              (2.1) 

 

The variable p is the centroid of a projection of a pin at (xo, yo) at the gantry angle β. 

Figure 2-1 shows the fan-beam geometry of the fHRCT scanner with a displaced center-

of-rotation, where the midline of the detector does not traverse the center-of-rotation. 

 

Figure 2-1. Fan-beam geometry with a midline offset from the center-of-rotation at gantry angle β. (adapted 

from [1]) 

 

D is the source-to-detector distance along the midline of the fan-beam, Ro is the source-

to-center distance along the midline, c is the distance from the edge of the measurable 
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detector region to the detector element E, where E represents the position on the detector 

(i.e. the detector element) that the midline is incident, and τ is the offset of the midline 

from the center-of-rotation. The variable c can be calculated from E by c = E×(detector 

element length). Due to the six parameters that are solved for by the chi-square reduction, 

this process can yield inaccurate results. In the second/third-generation hybrid fHRCT 

scanner, the parameter calculation can be done in a multistep process that makes use of 

two full third
 
generation scans of the pin point source and four subsequent translational 

scans utilizing the second-generation functionality of the scanner. From the data obtained 

from these six scans, the necessary parameters of Ro, D, E and τ, can be estimated to 

perform an accurate reconstruction. 

2.1.1 Method for Parameters Calculation 

To begin, the pin must be placed in the scanner’s field of view. The pin can be placed 

anywhere within this region as long as it can be viewed at all angles. This position is 

designated as (xo, yo). Two full 360
o
 scans must be taken, where the translated positions 

of the source are not identical for both scans (i.e., two different values of τ). Figure 2-2 

shows an ideal example of the projection of the pin at position (xo, yo) but with different 

τ’s for Centroid A and Centroid B, and the position of E is represented by detector 

element 0. This yields two sinograms of the pin that can be used to determine at which 

angle the line defined by the pin and the center-of-rotation is parallel to the translation 

vector of the source and detector. Figure 2-3 shows an example of this line and how the 

distances between the rays that pass through the pin from translational source positions 1 

and 2 at the arbitrary gantry angle βi and βi+π  (d1 and d2 in Figure 2-3a and 2-3b, 

respectively) are not equivalent. However, at the special angles βnormal and βnormal + π, this 
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line is perpendicular to the midline, and the distances between these rays (d1 and d2 in 

Figure 2-4a and 2-4b, respectively) are the same. 

 

Figure 2-2. Centroid of the pin for two full third-generation scans. Centroid A and Centroid B show the centroid 

of a pin located at (xo, yo) at differing midline offset values τ. E for this example is detector element 0. 

 

The process to determine βnormal and βnormal + π is the comparison of the sinograms, at 

which the difference between Centroid A and Centroid B in Figure 2-2 is calculated for 

all projection angles β (Equation 2.2).  

                  (2.2) 

 

where A = Centroid A and B = Centroid B represent the centroid calculation at each 

projection angle β for the two translation positions τ1 and τ2 (Figure 2-5). 

0 1 2 3 4 5 6 7 
-10 

-5 

0 

5 

Projection Angle [radians] 

P
ro

je
c
ti
o

n
 o

f 
C

e
n
tr

o
id

 o
n
 D

e
te

c
to

r 
[d

e
te

c
to

r 
e
le

m
e

n
t]
 

  

  

Centroid A 
Centroid B 



7 

 

 

Figure 2-3. The difference of the rays incident on the pin from the two translation positions. (a) shows the 

difference as d1 given the gantry angle at arbitrary position βi and (b) shows the difference as d2 given the 

complementary gantry angle of βi, βi+π. The midlines of the sources are not perpendicular to the line that 

traverses the center-of-rotation and the pin. Therefore d1≠d2. The detector is assumed to be fixed for simplicity. 
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Figure 2-4. The difference of the rays incident on the pin from the two translation positions. (a) shows the 

difference as d1 given the special gantry angle of βnormal  and (b) shows the difference as d2 given the 

complementary gantry angle of  βnormal, βnormal+π. The midlines of the sources are now perpendicular to the line 

that traverses the center-of-rotation and the pin. Therefore d1=d2. Again, the detector is assumed to be fixed for 

simplicity. 
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Figure 2-5. Difference between Centroid A and Centroid B at all projection angles. 

 

For 0 ≤β <π the absolute difference of ΔAB(β) and ΔAB(β+π) is then calculated 

(Equation 2.3).  

                                (2.3) 

 

The angle β, at which the absolute difference reaches a minimum, determines the angle 

for which the fan midline is perpendicular to the line that traverses the pin and the center-

of-rotation shown in Figure 2-4. Figure 2-8 shows the result of Equation 2.3. Inspection 

of Figure 2-6 shows that only one such minimum exists as long as (xo, yo) ≠ (0, 0). 
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Figure 2-6. Absolute difference of ΔAB(β) and ΔAB(β+π) for 0 ≤  β< π. 

 

The position E, where the midline is incident on the detector, and the position of τ=0 for 

the midline can now be determined simultaneously by taking two second-generation 

translation scans at βnormal + π/2 and βnormal – π/2 (Figure 2-7). 

With the scanner at this position, the midline is now parallel to the line that traverses the 

pin and the center-of-rotation. Therefore, only when the midline (Figure 2.1) crosses the 

center-of-rotation (i.e. when τ = 0) will results of the translation scans at βnormal + π/2 and 

βnormal – π/2 have the same centroid position of the pin incident on the detector translation 

position. The translation positions of the source vs. projection of the pin for the 

translational scan at βnormal + π/2 and βnormal – π/2 are plotted together, and the intersection 
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Figure 2-7. The translation scan taken at (a) βnormal + π/2 and (b) βnormal – π/2, where the midline for each is 

paralle1 to the line that traverses the center-of-rotation and the pin. 

 

Figure 2-8. The projection of the pin vs. translation position of the source for the translational scan at βnormal + 

π/2(Translation Scan 1) and βnormal – π/2(Translation Scan 2). 

of these two plots gives both the translation position where τ = 0 and the detector element 

E (shown to be the given value of 0 from Figure 2-2). Figure 2-8 shows the general shape 
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of two plots of the projected pin position on the detector at differing positions of τ for an 

equidistant detector.  

After the scanner translation position where τ = 0 and the value of E at this position are 

estimated, the remaining parameters of D and Ro (Figure 2.1) can be estimated given two 

more translational scans at βnormal  and βnormal + π (Figure 2-9). Figure 2-10 shows the 

result of two such scans, from which the distance of the pin from the center-of-rotation 

can be determined. The difference in the translation positions where the centroids of the 

pin at βnormal  and βnormal + π are at the detector element E gives the result of twice the 

object-to-center-of-rotation distance OC.  

 

 

 
Figure 2-9. The translation scan taken at (a) βnormal and (b) βnormal + π, where the midline for each is 

perpendicular to the line that traverses the center-of-rotation and the pin. 
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Figure 2-10. The translation position of the source vs. projection of the pin for the translational scan at βnormal 

and βnormal + π. In this instance the Euclidean distance is 6 units and, consequently, the pin is 3 units from the 

center. 

Utilizing the data obtained from the translational scans at βnormal + π/2 and βnormal – π/2 

again, the slopes of Translation Scan 1 and Translation Scan 2 can be estimated near the 

midline position on the detector E. Due to magnification, the change in centroid position 

on the detector has an essentially linear response as the translation position of the midline 

of the source crosses this point. This can be seen by zooming in to the intersection point 

in Figure 2-8, and this shown in Figure 2-11. The values Δ1 and Δ2 are assigned to the 

slopes of Translation Scan 1 and Translation Scan 2 in this linear region, where Δ1 is 

assigned to the greater slope for later calculation. Also, a linear fit can be helpful to 

determine these slopes. Given the size of each detector element, Δ1 and Δ2 should be 

converted from element per translation distance to distance per distance. 
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Figure 2-11. Linear region of Figure 2-8 showing the projection of the pin vs. the translation position of the 

source for the translational scan at βnormal + π/2 and βnormal – π/2. 

 

Within this linear region, the angles α1 and α2 (Figure 2-12) that the line from the source 

through the centroid position creates with the midline can be estimated at βnormal + π/2 

and βnormal – π/2 with Equations 2.4 through 2.15. Figure 2-12 shows the geometric 

relationships that can be used to solve for the remaining parameters D and Ro, where Rd 

is the center-of-rotation-to-detector distance, and TR is the translation of the midline.  
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Figure 2-12. The geometric relationships used to determine the parameters D and Rd where (a) shows the 

position of the pin at βnormal + π/2 , (b) shows the position of the pin at βnormal - π/2, (c) shows the effect of a 

translation of the source on the projection of the pin on the detector given the source at βnormal + π/2, and (d) 

shows the effect of a translation of the source on the projection of the pin on the detector given the source at 

βnormal - π/2. 

 

 
        

  

     
 

(2.7) 

 

 
        

     

 
 

(2.8) 

 

 
        

     

     
 

(2.9) 

 



16 

 

With these equations, two equations of D can be determined by setting Equation 2.4 

equal to Equation 2.5 as well as setting Equation 2.7 equal to Equation 2.8to yield: 

             (2.10) 

 

             (2.11) 

 

Setting Equation 2.10 equal to Equation 2.11, the value of Ro can be determined given 

that OC, Δ1, and Δ2 are known. This is shown in Equations 2.12a through 2.12b. 

                     (2.12a) 

 

 
     

     

     
 

(2.12b) 

 

After Ro is obtained, the equation for determining Rd can be solved by either setting 

Equation 2.4 equal to Equation 2.6 or setting Equation 2.7 equal to Equation 2.9. 

Equations 2.13a through 2.13c show the result of solving for Rd after setting Equation 2.4 

equal to Equation 2.6. 

   

     
 

     

     
 

(2.13a) 

 

                 (2.13b) 

 

                 (2.13c) 

 

Thus, the equations to determine the magnitude of Ro and Rd are as follows: 

 
 

      
     

     
  

(2.14) 
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                   (2.15) 

 

The source-to-detector distance along the midline is D = Ro+Rd. 

2.1.2 Parameter Calculation Results 

Figure 2-13 shows the results of two real full 360 degree scans at differing translational 

positions using the fHRCT. The figure shows the centroid positions of the pin where the 

pin is positioned at (xo, yo) ≠ (0, 0). Linear interpolation was used to artificially increase 

the number of projections from 500 to 500,000. This increased the precision of the 

calculated angle βnormal. 

 

Figure 2-13. Centroid of the pin for two full third-generation scans. Centroid A and Centroid B show the 

centroid at differing midline offset values τ. 

The difference ΔAB between Centroid A and Centroid B is calculated for all projection 

angles β (Equation 2.2). Figure 2-14 shows ΔAB at all angles β.  
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Employing Equation 2.3, the minimum of the absolute difference between ΔAB(β) and 

ΔAB(β+π) with the pin position used to graph Centroid A and Centroid B (Figure 2-15). 

This was repeated two more times, yielding three values of βnormal: 3.0894 rad, 3.0888 

rad, and 3.0900 rad. The average of these were calculated, resulting in the values of 

βnormal to be 3.0894 rad (177.009
o
) and βnormal + π to be 6.231 rad (357.009

o
), with a 

standard deviation of 0.00062 rad (0.035
o
). After these gantry angles were determined, a 

translational scan was taken at βnormal + π/2 and βnormal – π/2. This results in Figure 2-16, 

where the intersection of the plots for Translation Scan 1 and Translation Scan 2 is at 

detector element 1286.185 and translation position 75.5753 mm. Therefore, the 

translation position of the source, where τ=0, is 75.5753 mm, and the detector element 

that represents E is 1286.185. 

 

 

 

Figure 2-14.  Difference between Centroid A and Centroid B at all projection angles. 
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Figure 2-15. Absolute difference of ΔAB(β) and ΔAB(β+π) for 0≤β<π. 

After τ = 0 and the value of E at this position were estimated, the remaining parameters of 

D and Ro were calculated given two more translational scans at βnormal  and βnormal + π. 

The difference in the translation positions, where the centroids of the pin at βnormal  and 

βnormal + π are at the detector element E, gave the result of 18.048 mm. Accordingly, the 

object-to-center distance (OC) is 14.552 mm / 2 = 7.2762 mm. The values of Δ1 and Δ2, 

determined from the slopes of the linear fits for Translation Scan 1 and Translation Scan 

2, are 39.76 elements/mm = 1.988 mm/mm and 36.21 elements/mm = 1.811 mm/mm, 

respectively. The parameter Ro was calculated by substituting OC, Δ1, and Δ2 into 

Equation 2.14. 
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Figure 2-16. Linear region of the projection of the pin vs. the translation position of the source for the 

translational scan at βnormal + π/2 (data1) and βnormal – π/2 (data2). 

 

After Ro was calculated to be 149.72 mm, Rd was subsequently determined by 

substituting OC, Δ1 and the previously calculated Ro into Equation 2.15. Rd is 134.02 

mm, and the sum of Ro and Rd yields the parameter D to be 283.75 mm. 

2.2 Detector Linearization 

Calibration of the detector is another important step in optimization of the fHRCT 

system. Each detector element of the solid state detector that is used in this system must 

be calibrated independently. The primary concern with an insufficiently calibrated 

detector is ring artifacts that appear in the reconstruction of a third-generation CT system 

[2, 3]. Ring artifacts are a result of miscalibration of a single, or multiple, detector 

elements that affect the projection at every angle of a rotation scan and, subsequently, the 
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reconstruction from these projections. This causes a ring or ripples to appear in the final 

image. Calibration by linearizing the detector effectively reduces or removes these 

artifacts. Linearization of the detector, also known as flat field correction, creates 

uniformity in the efficiency of the detector, such that the individual detector elements will 

show the same response when exposed to the same conditions [4]. 

2.2.1 Method for Detector Linearization 

For simplicity’s sake, the steps involved in detector linearization in the following will 

primarily discuss the process for a single element of the detector at row i and column j. 

The process is implemented concurrently for all other detector elements. At each source 

condition described, an average was taken by determining the mean of 100 readings at 

that condition. 

First, the dark current value of the element is defined as the average response of the 

detector at a source condition of 0 mA of current for 0.5 seconds. This value is subtracted 

from each of the other conditions. 

After the dark current value is established, the average data are collected at each current 

condition and a voltage of 46.875 kVp. Seventeen current conditions were used ranging 

from 0 mA to 1 mA, evenly incremented, all at a voltage of 46.875 kVp for 0.5 seconds. 

A second degree polynomial was fit through these 17 points, and the slope for the ideal 

linear response was estimated using the first 10 points of the data. The plot for these 

points along with the curve fit and the ideal linear response of the system can be seen in 

Figure 2-17. The quadratic fit shows a general increase in counts over the estimated ideal 

detector linear response due non-linearity. As this is a detector being operated in current 
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mode, the non-linearity can produce higher or lower detector readings at high photon 

flux.  

 

Figure 2-17. Graph showing the actual and ideal response of a representative detector element. 

For the flat field correction, the ideal linear response should be the same for all detector 

elements. Therefore if the slope of the detector’s i,j-th element ideal linear response is 

mi,j, then mavg is the average of mi,j at all detector elements i,j . Equation 2.15 shows the 

ideal number of counts, Y, as a function of the current, x. Equation 2.16 is the fit for the 

practical case where a(i,j)n are the coefficients of the quadratic fit for the detector element 

i,j. 

         (2.15) 
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By solving Equation 2.15 for x and substituting the results into Equation 2.16, the 

equation for correction of the value of y(i,j), the practical counts, to the value of Y, the 

ideal case, can be obtained. This is shown in Equation 2.17. 

 
       

       

    
 
   

       

    
          

(2.17) 

 

The real positive root of Equation 2.17 is the corrected value of y(i,j) to the ideal value of 

Y. 

Once the value of Y has been obtained and is inserted for the number of counts at each 

detector element, the detector data has been calibrated. This calibration is done for both 

the open field data No and the data for each projection N in a scan at source voltage 

46.875 kVp and current 0.9375 mA.  

The current can be changed without the need to change the calibration; however, a 

change in the tube voltage will require a new calibration function, and a new value of 

mavg must also be calculated. Due to the slight fluctuations in tube output, even at a 

consistent current setting, the mean of an open field region of N (Navg) for each detector 

reading was compared to the mean of the same region in No (No,avg). The value of No was 

adjusted by multiplying it by the ratio of these two means, No′ = No×(Navg/No,avg). From 

here the value of ln(No′/N) is determined and subjected to the beam hardening correction 

before final reconstruction.  
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2.2.2 Detector Linearization Results 

The original raw data from the detector and the results of the linearization process for 

those raw data are shown for a single projection (Figure 2-18). Several variations from a 

flat field are evident in the image of the initial projection data, such as the gap between 

the detectors seen in the middle of raw data image (removed through interpolation in the 

linearization process), dead elements, and effects of the beam profile. The linearized 

projection has a considerably more uniform field, which is desired of an open field 

projection. The effect the linearization process has on the reconstructed image is shown 

in section 2.4 (Figures 2.22 and 2.23).  

 

 

 

 

 

Figure 2-18. Two images of the same open field projection shown as (top) the raw data image and (bottom) the 

image of the linearized data. The bright spot in the linearized data indicates a collection of dead pixels in the 

detector.  
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2.3 Beam Hardening 

In certain energy ranges, the linear attenuation coefficient for many materials decreases 

with energy. With a polychromatic x-ray beam, this causes the low-energy photons to be 

absorbed more readily, and the remaining beam has a greater proportion of high-energy 

photons [5]. Thus, as the beam passes through material, the average energy of the 

spectrum continues to increase. This causes larger numbers of photons to be incident on 

the detector than would be expected with a lower-energy mono-energetic beam. This 

phenomenon is known as beam hardening.  

For the correction method described here, a preprocessing technique is used after the 

detector is linearized and before the reconstruction is executed. In this technique the 

assumption is made that, under ideal conditions, the measurement ln(No/N) is linearly 

proportional to the thickness of a homogenous absorber, where No is the total number of 

photons entering the material and N is the number of photons exiting the material [5].  

2.3.1 Method for Beam Hardening Correction 

No was obtained from the average of all detector elements for an open field scan of 100 

readings at a source voltage of 46.875 kVp and a current of 0.9375 mA as used in the 

motion-correction sequence described later. The values for N were determined the same 

way after an appropriate amount of homogenous material was placed in the path between 

the source and detector. The homogeneous material used in this correction was 

aluminum. The undisturbed condition was assumed to be the slope produced from the 

line through the results for 0 mm and 1 mm of aluminum and is given the variable m in 

Equation 2.18, where F is the ideal case of ln(No/N) as a function of x, the total thickness 
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of aluminum (Figure 2-19). The actual values of ln(No/N) for up to 10 mm of aluminum 

by increments of 1 mm are shown as the practical case in Figure 2-19.  

The correction to each detector element was made by first fitting a curve through the 

results of the practical data. The best fit was calculated by forcing a 3
rd

 degree 

polynomial using a least squares fit through the 11 data points obtained from the 

increasing number of plates. Equation 2.19 shows a general 3
rd

 degree polynomial where 

f, the practical value of ln(No/N), is depicted as a function of x, the total thickness of 

aluminum, and an represent the coefficients of the polynomial fit. 

 

Figure 2-19. Graph of the actual and ideal response of the detector with increasing thickness of aluminum in the 

source-to-detector path. 
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         (2.19) 

 

After the coefficients of the polynomial have been determined, the correction for each 

detector element i,j at each source angle can then be calculated. Given the value of fi,j(x), 

the value of x is calculated to find the analogous amount of aluminum representing this 

value of f. This is done by finding the positive real root for the 3
rd

 degree polynomial. 

Finally, the calculated value of x is then inserted into Equation 2.18 to determine the 

value of F, the ideal value, to replace f at detector element i,j. This process is used for 

each detector element as the correction of the data for beam hardening.  

2.3.2 Beam Hardening Correction Results 

The beam hardening correction produced favorable results. While all projection values 

are affected by the correction method, it can be seen that the lower projection values (i.e. 

those below 0.5) are marginally affected by the correction method. The higher values, 

which are more likely affected by beam hardening, are increased by the method described 

earlier to compensate for the increased attenuation of lower energy photons through 

thicker and denser materials. Figure 2-20 shows the results of the correction for a single 

projection. The qualitative effects are more easily seen after reconstruction of the images 

and are shown in the following section (Figures 2-23 and 2-24).  
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Figure 2-20. Graph of the linearized data before and after correction for beam hardening. 

2.4 Reconstruction and Results 

To increase the field of view, the source position was intentionally moved to 84 mm 

causing an offset value τ of 8.4247 mm. After iteratively adjusting the value of E around 

1286.2, it was determined that changing the value of E from 1286.2 to 1289.2 

qualitatively improved the reconstruction image. Generally, the artifacts indicative of an 

incorrect parameter value (e.g. doubling of edges) was reduced, and overall sharpness of 

the image was improved. The fan-beam reconstruction algorithm for a midline displaced 

from the center-of-rotation was used to produce the images in Figures 2-21 through 2-24 

[6]. Overall, the optimization was determined to be acceptable. 
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2-21. Reconstruction of the image before geometric optimization, detector linearization, or beam hardening 

correction. 

 

Figure 2-22. Reconstruction of the image after geometric parameter optimization only. Ring artifacts are still 

very visible as are the beam hardening streak artifacts between the denser (brighter) objects. The combined 

effect of the gap between detectors and detector edge can be seen as the band encircling the whole object. 



30 

 

 

Figure 2-23. Reconstruction of the image after geometric parameter optimization and detector linearization. 

Effects of the detectors’ gap were reduced by linear interpolation between the detectors. Beam hardening 

artifact’s can still be seen. 

 

 

Figure 2-24. Result of reconstructed test phantom after full optimization (linearization of detector and beam 

hardening correction).   
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3. Correction for Patient Translational Motion 

Patient motion during data acquisition in computed tomography scanners causes a 

decrease in the quality of an image known as motion artifact. This can lead to a decrease 

in resolution, and the detection of finer details could be missed.  One of the more 

noticeable types of motion is translation motion. There are currently several known 

methods for correction of this motion in both parallel-beam and fan-beam CT, many of 

which require the patient to wear objects to record the motion data. Almost all of these 

methods include the use of the sinogram. 

The sinogram represents perhaps the most sensitive data for determining the motion of 

the patient. These are the images of the projection data taken at each source position. The 

rotation of the source causes the image to appear as a series of several sinusoids of 

various intensities and widths.  Figure 3-1 shows a reconstructed image and its sinogram. 

In CT scanners, small, dense objects, called fiducial markers, are commonly used to track 

the patient motion [7, 8, 9]. These markers are superficially attached to the patient. In a 

sinogram image, these markers are easily identifiable due to their density. Variation of 

the markers from an ideal sinusoid represents motion data [8].   

. 
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Figure 3-1. Original Image (left) and its sinogram (right) for a parallel-beam scanner. For the sinogram image, 

the vertical axis shows the data position of the projection for a detector with 250 elements, and the horizontal 

axis shows the source position evenly incremented 250 times over 360o. 

For this experiment, a program was used to simulate the data of a 3
rd

 generation fan-beam 

CT scanner with a flat detector and an equivalent distance for the source to the center-of-

rotation and the center-of-rotation to the detector. In a fan-beam CT scanner, the 

sinogram image is slightly altered from perfect sinusoids by the geometry of the fan-

beam itself.  

Figure 3-2 shows the resulting geometry, where the position of the ray incident on 

detector p is given by the following trigonometric equations: 

                       (3.1) 

  

    
 

 

    
 , 

(3.2) 

where Ro is the distance from the source to the center-of-rotation, b is the distance from 

the center to the ray intersecting the x-axis, and β is the gantry angle of the source. 

Solving these equations for   gives the angle between the midline that passes through the 

center-of-rotation and the ray.  
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Figure 3-2. Geometry of a source ray incident on a detector for fan-beam CT 

 

 
        

     

 
  

(3.3) 

 

Using simple, right-triangle geometry, the position p of the ray incident on the detector 

can be given by Equation  3.4. 

             (3.4) 

 

where D is source-to-detector distance along the midline that it passes through the center-

of-rotation (shown as the dashed line in Figure 3-2). Using these results, we can see in 
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Figure 3-3 that the sinusoid-like curve used to create the sinogram images in fan-beam 

CT is slightly different compared to that of a true sinusoid used to create the sinogram 

images in parallel-beam CT. In the sinogram images themselves, these differences are not 

readily noticeable. However, the mathematical differences do affect the calculations of 

the center of mass of the objects. 

 

Figure 3-3. Variation in position of a single point between parallel-beam and fan-beam. 

 

Another difference between parallel-beam CT and fan-beam CT caused by this geometry 

is the integral curve seen as the sum of the intensities in the projections versus the source 

angle of the projection. For a parallel-beam CT scanner, the plot of the sum of intensities 

at each projection angle of an uncorrupted image would be seen as a straight line parallel 

to the x-axis, as the definite integral is constant at each angle of projection. However, for 

a fan-beam CT scanner, a motion-free plot of this should be seen as a perfect sinusoid. 
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Additional information about the translation-motion of an object can be derived from this 

sinusoid that would not be available from a plot for parallel-beam CT. This is because the 

distance between the source and the object will affect the number of source rays that pass 

through the object on their path to the detector (i.e., magnification). 

3.1 Methods for Translational Motion Correction  

3.1.1 Determination of Ideal Data for the Definite Integral and the Center of Mass 

of the Sinogram. 

To begin the correction for translation in the sinogram, the sum of the intensities was 

calculated at each projection from the sinogram and then plotted against the angle of that 

projection. For matrices with a small number of pixels, the resolution was increased by 

resizing the individual projections of the image through bi-linear interpolation. This 

created more data for a smoother calculation of the ideal integral and center of mass  

 

Figure 3-4. Rotating frame of reference, where r is equivalent to y and s is equivalent to x at the initial source 

position β=0o. 
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sinusoids. This plot gives information about the translational motion of the object parallel 

to the r-axis in the rotating frame of reference seen in Figure 3-4.  When compared to the 

ideal sinusoid, the definite integral will either increase as the object moves toward the 

source or decrease as it moves away from the source (i.e., increasing or decreasing 

magnification of the projection). Figure 3-5 shows a sample motion-encoded curve of 

projection integrals due to translational motion and the ideal curve for these data. 

 

Figure 3-5: Typical motion-encoded data from an object in translational motion and the ideal sinusoid for the 

definite integral at each projection angle in radians. Each peak in the motion-encoded data represents a motion 

increment. 

 

The ideal sinusoidal curve was determined by applying the Fourier transform to the 

motion-encoded data. By using the magnitude of the coefficient C0 as the DC value and 

the complex coefficient C1 for the amplitude and phase angle, the ideal sinusoid was 

found using the formula 
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                       , (3.5) 

   

where β is the source angle  and φ is the phase angle. 

Similar to the integral sinusoid, the center of mass of the projection at each angle also 

provides useful information about the motion of the object. The ideal plot of the center of 

mass as a function of the source angle also follows the basic form of a sinusoid. The 

center of mass curves of an ideal and a motion-encoded sinogram are shown in Figure 3-

6. 

 
Figure 3-6. Motion-encoded data from an object in translation motion and the ideal curve for the center of mass 

vs. projection angle in radians. The simulated motion is from the same projection data used for Figure 3-5. 

The ideal sinusoid for the center of mass was determined similarly to the ideal sinusoid 

for the integral. A Fourier transform was applied to the data. The detector element E was 

used instead of the magnitude of the coefficient C0 for the DC value. The complex 
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coefficient C1 was still used for the amplitude and phase angle of the ideal sinusoid. 

Equation 3.5 was used again to determine the best fit of a sinusoidal curve. However, the 

center of mass sinusoid was altered slightly as shown in Equations 3.1 through 3.4 

because of the fan-angle compared to the angle of the source. In the general case for a 

known centroid position of an object, Equation 2.1 (restated below for convenience) can 

be used to estimate the center of mass curve by assuming the center of mass is a single 

point at location (xo, yo). 

                                              (2.1) 

 

The position of (xo, yo) can be estimated by first calculating the maximum distance of f(β) 

from Co to determine r (the distance in polar coordinates). Figure 3-7 shows how the 

object space relates to the sinogram for a parallel-beam scan. With the small field of view 

for the fHRCT, a reasonable approximation for (xo, yo) can be obtained after first 

adjusting for the effect of the fan-beam magnification.  Multiplying r by the ratio Ro/D 

helps adjust for this magnification before the final calculation of xo and yo(Equation 3.6). 

           (3.6) 

 

Using this distance in conjunction with the phase angle from C1 (φ) to employ a polar-to-

Cartesian coordinate conversion, an approximation of (xo, yo) can be calculated; xo = 

r′×cosφ and yo = r′×sinφ . By inserting these values into Equation 2.1, a reasonable 

estimation of the ideal curve for the center of mass for an offset midline is given.  By 

comparing the motion-encoded data with the ideal data for the center of mass, motion 

parallel to the s-axis in the rotating frame of reference can clearly be shown.  
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Figure 3-7. The relationship between (a) a single point located in the object space (i.e., xy coordinate plane) and 

(b) the same point in the sinogram space from 0 ≤  β ≤ 2π (adapted from [10]). 

 

3.1.2 Correction of Sinogram Image 

Once the ideal sinusoids are estimated, the measured sinogram data can be corrected 

projection by projection. For each projection, the positions of the projection data in the 

sinogram matrix are adjusted based on the increase or decrease in magnification 

determined from the ratio of the integral calculated from the motion-encoded sinogram to 

the ideal integral determined from the FFT.  The positions are adjusted by expanding or 

compressing the distances of the individual projection points relative to the center data 

point of the projection data by a factor inverse to the ratio calculated. Therefore, a ratio 

greater than 1 suggests magnification of the projection, and steps are taken to reverse this 

magnification by converging the pixels toward the center pixel by a factor less than 1.  
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After correcting for magnification, each projection is then shifted up or down in the 

sinogram matrix based on the differences between the actual center of mass and the 

calculated ideal center of mass. Once this is done, the sinogram image is resized to its 

original resolution using bi-linear interpolation if necessary. 

3.2 Method for Determining Error between Motion-Free and Motion-Corrected 

Images 

Once the sinogram matrix is processed for translation motion correction using the 

procedures above, the image is reconstructed using filtered back projection. The 

quantitative comparison was made by determining the fractional difference between the 

original, motion-free image and the motion-corrected image, i.e., by calculating the sum 

of the absolute differences at each pixel between the motion-free and the motion-

corrected image and dividing by the sum of the intensity value of the pixels for the 

motion-free image. This was done after each image was processed by removing the 

background image and aligning the images so that the smallest percent difference was 

found. 

For the images created from the simulation program, the background of each image was 

removed so that pixel values of the reconstructed backgrounds would not influence the 

results for the important parts of the object. This was done by applying to each image, the 

motion-free and the motion-corrected image, an individual mask. The masks where 

created individually for each simulated image using the following procedure. First, the 

Sobel method for edge finding was applied to the image. This method allows for good 

results in finding the edges of the object in the reconstructed image at all angles. The 

edge lines were then turned into a binary gradient mask. This binary gradient mask was 
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then dilated three times, and holes between the edge lines were filled. The mask was then 

eroded three times to obtain a mask of the original size. Each of the final masks were 

multiplied with the respective reconstructed image to remove the background.  

For the experimentally measured images, the mask was created using a simple threshold 

to create a binary image. Edge finding was not as practical in the experimental image 

reconstructions because the gradients between the edges and the background were lower. 

Any holes were filled as described above using the procedure of a single opening, 

followed by filling, and then five dilations of the binary mask. This created a mask that 

was slightly larger than the object to insure that the relevant structures in the 

experimental images were preserved despite the lack of edge-finding techniques. 

Once the background was removed, the images needed to be aligned. Alignment is 

necessary because the object in the motion-corrected image may not have been in the 

same position as the object in the motion-free image. This was done by shifting the 

motion-corrected image matrix up and down and calculating the difference from the 

motion-free image matrix at each shift. The motion-corrected image matrix was then set 

to the shifted position with the lowest difference. This process was repeated by shifting 

the motion-corrected image matrix left and right to find the minimum difference between 

the two image matrices. Additional up/down and left right shifts eventually led to 

optimally aligned images. In our case, a total of three iterations of up/down and left right 

shift pairs were sufficient. 
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3.3 Results 

For the quantitative and qualitative analysis, the simulated object shown in Figure 3-8 

was used. This figure consists of a 2.7 cm diameter reconstruction area. The source-

detector assembly was rotated 360 degrees with 500 evenly spaced source positions and a 

detector size of 1024 elements. The uncorrupted sinogram image of the projections is 

shown in Figure 3-9.  

3.3.1 Qualitative Analysis 

Simulated and experimental results were obtained to qualitatively observe the 

effectiveness of the motion-correction method. 

3.3.1.1 Simulated Qualitative Analysis 

Figure 3-10 shows the motion-encoded sinogram image due to translational motion of the 

object throughout the scan. This included negative x and negative y-direction motions 

with distances ranging from 0 to 5 mm from the center at random times from the start of 

the scan. The reconstructed image from this sinogram is shown in Figure 3-11. The object 

is barely recognizable due to the large amount of motion. After applying the translational 

motion correction method described earlier to the motion-encoded sinogram (Figure 3-

10), a much smoother sinogram results (Figure 3-12). It can be seen that sinograms in 

Figures 3-9 and 3-12 have substantially smoother transitions than the motion-encoded 

sinogram seen in Figure 3-10.  
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Figure 3-8. Reconstruction of the simulated image, uncorrupted by motion. 

 

 

Figure 3-9. Simulation of the motion-free sinogram of the projections for the object shown in Figure 3-8. 
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Figure 3-10. Simulated motion-encoded sinogram image due to translational motion of the object during the 

scan. The motion-encoded sinogram contains a randomly assigned projection at each source position from 11 

different sinograms obtained from 11 different translation positions with up to 5 mm offset. 

 

 

 

Figure 3-11. Reconstructed image of the simulated motion-encoded sinogram matrix (Figure 3-10). 
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Figure 3-12. Sinogram image after applying the translational motion correction method to the sinogram shown 

in Figure 3-10. 

 

 

Figure 3-13. Simulated motion-corrected reconstructed image of the motion-corrected sinogram matrix. 
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The reconstructed image from the motion-corrected sinogram matrix (Figure 3-12) can be 

seen in Figure 3-13. The object is well recognizable and shows qualitatively little 

difference to the original image (Figure 3-8). There are, however, small differences in the 

boundaries, highlighted by subtracting the two images from each other (Figure 3-14).  

 

Figure 3-14. Visual representation of the point-by-point absolute value differences between the simulated 

reconstructed motion-free and motion-corrected images (Figures 3-8 and 3-12, respectively). The image has been 

inverted and contrast/brightness was adjusted to further highlight the differences. 

3.3.1.2 Experimental Qualitative Analysis 

For the simulation analysis in the previous section, an object was created that closely 

reproduced the characteristics (e.g. dimensions, densities, etc.) of the experimental 

phantom (reconstruction shown in section 2.4, Figure 2-24). The sinogram of the 

experimental phantom positioned at the center-of-rotation can be seen in Figure 3-15.  
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Figure 3-15. Motion-free sinogram of the experiment phantom shown in Figure 2-24. 

 

The motion produced for the experimental data was structured specifically to study the 

different types of translational motion (e.g. x-axis and y-axis motion). Figure 3-16 is an 

example of a sinogram created from profiles of two full, experimental scans, one with a 4 

mm offset, and combining profiles from each to simulate a 4 mm motion initially along 

the r-axis toward the source (i.e. sinogram of the 4 mm offset along the negative x-axis at  

90
o
 ≤ β < 270

o
). 

The reconstruction of the uncorrected sinogram shows the amount of motion between the 

initial position and the offset position. The 4 mm offset is nearly 25% of the diameter of 

the large, outermost disk of the experimental phantom. 
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Figure 3-16. Motion-encoded sinogram simulating abrupt r-axis motion at β = 90o. 

 

Figure 3-17. Reconstructed image of the motion-encoded sinogram (Figure 3-16). 
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The motion-encoded sinogram was then subjected to the motion-correction method, the 

result of which is shown in Figure 3-18. The reconstructed image of this corrected 

sinogram is shown in Figure 3-19. Again, the image is recognizable. Though small 

qualitative differences are apparent, it is hard to discern any large differences between the 

motion-free and the motion-corrected images. The most noticeable effects from the 

motion-correction can be seen near the structure edges. These effects are highlighted in 

Figure 3-20. 

 

 
Figure 3-18. Motion-corrected sinogram of the motion-encoded sinogram (Figure 3-16). 
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Figure 3-19. Reconstructed image of the motion-corrected sinogram (Figure 3-18). 

 

Figure 3-20. Visual representation of the point-by-point absolute value differences between the experimental 

reconstructed motion-free and motion-corrected images (Figures 2-24 and 3-19, respectively). The image has 

been inverted, and contrast/brightness was adjusted to further highlight the differences. 
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For qualitative comparison, the angle of the 4 mm offset was initiated so that the breaks 

in the sinogram occurred along the s-axis direction. Figure 3-21 is an example of a 

sinogram created, using the same process as for Figure 3-16, to simulate a 4 mm motion 

initially along the negative s-axis (i.e. 4 mm motion in the negative x-axis direction at 

180
o
 ≤ β <360

o
).  

 

 

Figure 3-21. Motion-encoded sinogram of experimental data simulating abrupt s-axis motion at β = 180o using 

experimental data. 

 

The motion-encoded sinogram was again subjected to the motion-correction reduction 

method, resulting in Figure 3-23. The reconstructed image is shown in Figure 3-24. 

Residual effects of the motion after motion-correction are more apparent in Figure 3-24 

than in Figure 3-19, despite the same distance and duration of the offset motion. The 
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differences between the uncorrupted and the motion-corrected images (Figures 2-24 and 

3-24, respectively) are again highlighted in Figure 3-25. 

 

Figure 3-22. Reconstructed image of the simulated motion-encoded sinogram matrix (Figure 3-21). 

 

 

 

Figure 3-23. Sinogram image after applying the translational motion-correction method to the sinogram (Figure 

3-21). 
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Figure 3-24. Simulated motion-corrected reconstructed image of the motion-corrected sinogram matrix (Figure 

3-23). 

 

Figure 3-25. Visual representation of the point-by-point absolute value differences between the experimental 

reconstructed motion-free and motion-corrected images (Figures 2-24 and 3-24, respectively). The difference 

image has been inverted. 

Motion-Encoded Sinogram Image
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3.3.2 Quantitative Analysis 

The percent error between the motion-corrected image in Figure 3-13 and the original 

image Figure 3-8 was calculated to determine the quantitative difference between them. 

This was determined by using the sum of the absolute values of the differences in image 

values and dividing by the sum of the intensities in the uncorrupted image. A value of 

0.198 (19.8%) was calculated as the difference between the two images compared to a 

value of 0.707 (70.7%) for the uncorrected image (Figure 3-11) to the image in Figure 3-

8. These values include the effect of the background, as the amount of motion in Figure 

3-11 was not easily masked. The rest of the analysis was done using the masked images 

as described earlier, giving the fractional value of 0.0678 (6.78%) as the overall 

difference between the motion-corrected image (Figure 3-13) and the original image 

(Figure 3-8). 

Generally speaking, a true baseline value for the quantitative error is difficult to 

determine, as even a motion-free reconstructed image at position A will rarely be a 100% 

match with another motion-free reconstructed-image at position B given that A ≠ B. 

Figure 3-26 is a graph that illustrates the differences between motion-free images of the 

object at various offset distances for both the simulated and experimental scanner data. 

The average error was taken to be the mean of the errors where the offset ≠ 0 mm. It can 

be seen that the experimental data have a higher error than the simulated data. Some 

causes of the higher error include: more background is included in the error calculation 

due to the slightly larger mask for the experimental images, variation of the amount of 

photons that are incident on the detector due to noise, inaccuracies in the scanner 
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optimization, etc. This should be apparent given that even the experimental 

reconstructions at the same position (i.e., offset = 0) have an error of 0.0743(7.43%), as 

opposed to an error of 0% for the simulated results. The averages of these errors are 

0.0515 with a standard deviation of 0.0040 and 0.1599 with a standard deviation of 

0.0017 for the simulated and experimental data, respectively.  

 

Figure 3-26. Differences of motion-free images of the object at various offset distances for both the simulated 

and experimental scanner data. 

Aside from a random reassembly of sinograms taken from the object at varying 

translation positions, a more meticulous method was used to show the effects of the 

motion-correction method on the quality of the image. The various sets of motion-

encoded sinograms include the distance of offset, angle at which the offset occurred, and 

the ratio of the sinograms involved. Figure 3-27 shows an example of a sinogram 

assembled from segments of two sinograms at differing positions to simulate a x-axis 
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motion from 0
o
 ≤ β < 180

o
. The motion starts as an abrupt s-axis motion and transitions 

to a primarily r-axis motion back to an s-axis motion as the object maintains its position 

in the x-axis offset for 180
o
. 

 

Figure 3-27. Construction of a sinogram to simulate motion using segments of 2 sinograms. 

To study the effect of the offset distance on the motion-correction algorithm, we 

combined 50% of the sinogram for the object used as the relative starting position (i.e., 0 

mm offset) with 50% of the sinogram for the object at offset distances of 1 mm - 4 mm 

for the experimental data and 1 mm - 5 mm for the simulated data. The sinograms were 

reassembled consistently, utilizing profiles from two scans, such that the motion 

simulated by an offset causes a continuity break primarily in the s-axis (i.e. parallel to the 

plane of the detector) and ended after 180
o
 rotation. If we assume the source position at β 

= 0
o
 to be at the top of the positive y-axis (Refer to Figure 3-4), and the motion in the xy-
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coordinate plane to be along the x-axis, then the replacement of 250 offset projections 

can occur from either 0
o
 ≤ β < 180

o
 or 180

o
 ≤ β <360

o
. Figure 3-27 is an example of the 

construction of the motion-encoded sinogram for the latter. Figure 3-28 shows the results 

as fractional differences due to increasing distance of the object from the initial position 

for 50% of the sinogram. Figure 3-27 was corrected for motion and corresponds to the 5 

mm offset for the simulated case in Figure 3-28. Figure 3-21 shows the experimental 

sinogram that was motion corrected and corresponds to the 4 mm offset in Figure 3-28. 

 

Figure 3-28. Fractional differences between motion-free and motion-corrected images with 50% of the scan 

taken at increasing offset distances of the phantom. The designation x’ indicates that the motion was in the x-

direction and occurred when the majority of this motion was along the s-axis. 

The effect of the angle at which the offset occurred was studied by combining 50% of the 

sinogram for the object used at the relative starting position (i.e., 0 mm offset) with 50% 

of the sinogram for the object at offset distances of 1 mm - 4 mm (1 mm - 5 mm for the 

simulated data), but now varying the starting projection for the offset sinogram position. 

This simulates motions with respect to the s-axis direction, r-axis direction, or a 
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combination thereof. Figure 3-29 shows the results as fractional differences due to the 

angle at which the 50% offset motion started. The 4 mm offset data in Figure 3-28 

correspond to the 180
o
 data for both experimental and simulated scans in Figure 3-29. We 

also show that the start offset angles between 0
o
 and 90

o
 have similar errors as those 

between 90
o
 and 180

o
. The 90

o
 data correspond to the motion-correction shown in 

Figures 3-16 through 3-20. The r-axis motion produces better qualitative results and also 

lower quantitative errors. 

 

Figure 3-29. Fractional difference between motion-free and motion-corrected images with 50% of the scan taken 

at an offset distance of 4 mm of the phantom occurring at different times of the scanning process. 

Finally, the effect of differing ratios of the scan of a moved object was produced by 

combining an increasing percentage of the sinogram for the object at an offset of 4 mm 

with the complementary percentage of the sinogram from the relative starting position 

(i.e., 0 mm offset). The increment of the 4 mm-offset sinogram ranged from 0 to 100% at 

10% increments. The sinograms were reassembled consistently such that the motion 
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simulated always started primarily in the s-axis (i.e. x-axis motion at 180
o
) and ended 

after the appropriate number of projections dependent on the ratio (e.g., 50 projections for 

10%, 100 projections for 20%, etc.). Figure 3-30 shows the results as fractional 

differences due to increasing differing percentages of the 4 mm offset motion from the 

relative starting position. The 4 mm offset data from Figure 3-28 (and by extension the 

180
o
 data from Figure 3-29) corresponds to the error for 50%.   

 

Figure 3-30. Fractional difference between motion-free and motion-corrected images with a 4 mm offset distance 

of the phantom for increasing amounts of motion-subjected times during the scan. 
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4. Conclusion 

Several steps were taken to reduce the various artifacts that were present in the 

reconstructed image obtained from the fHRCT system. These artifacts could be broken 

into two categories: those due to system error and those due to subject motion. The 

artifacts due to the former were minimized by optimizing the scanner through geometric 

system parameter calculations and centering of the system, detector linearization, and 

beam hardening correction. The artifacts due to subject motion were minimized through 

the development of a motion-correction algorithm that reduced artifacts due to 

translational motion. 

4.1 Scanner Optimization 

The overall optimization of the scanner provided very good results. The initial parameters 

that were calculated were only slightly modified to improve the qualitative results of the 

image and provide a larger usable field of view. Some of the likely causes of these errors 

included, but were not limited to, incorrect assumptions for the position of the center row 

of the detector and the effects of mechanical and electrical noise within the system itself 

(seen in Figures 2-13 through 2-16).  

The central row is the row of detector elements that represent the fan of the x-rays within 

the cone-beam, from which the projections can be reconstructed by a simple fan-beam 

reconstruction algorithm. Thus, if the assumptions for this row are incorrect or the 
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detector is not seated properly, so that the detector elements are not in the same plane 

defined by the rotational path of the source, the rest of the calculations for the scanner 

parameters will also be incorrect.  

If detector element E is the central detector of the central row, the distance between the 

source and detector E is supposed to be the minimum compared to that of all detectors of 

the central row.  Any error in the location of the detector E will increase the source-to-

detector distance, and, consequently, the source-to-center and/or the center-to-detector 

distances calculated will also increase.  To further complicate the calculations, the small 

mechanical and/or electrical imperfections in the system also caused small movements in 

the source-detector system, causing data detected by the detector elements to be incorrect. 

Therefore, the images were analyzed qualitatively as well, and a small change to the 

position of detector element E was applied to improve the images. 

In general, success of the geometric parameter calculation process described is highly 

dependent on the accuracy of the calculation for the angle βnormal. Accuracy of this angle 

is mostly dependent on the angle increment between each projection. For the fHRCT 

system, even an error in βnormal as low as 0.0126 rad (0.72
o
) can have a significant effect 

on the subsequent calculation for source position τo and location of detector element E. 

Thus, steps should be taken to achieve the greatest number of projections, even 

artificially through interpolation if necessary, so that the angle increment can be as small 

as possible.  

The usable field of view was largely limited by the size of the gap between the detectors, 

making only one of the detectors useful for image reconstruction, as any object that 
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spanned across this gap would miss part of the projections. Therefore, only projection 

data from the detector on which the midline was incident were used to reconstruct the 

final image. The other detector was used only to determine Navg and No,avg (the means of 

the open field regions) to adjust for current fluctuations in the linearization process 

described in section 2.2.1.  

The calibration of the detector through linearization was quite effective, demonstrated by 

the reduction of the ring artifacts. The use of the extra detector to adjust the open field 

data No based on No′ = No×(Navg/No,avg) means that the open field data can be taken on a 

more intermittent basis (rather than before every scan) to maintain accuracy.  

The beam hardening correction reduces, but does not eliminate, beam hardening artifacts. 

This is probably due to the type of beam hardening correction implemented, which 

utilizes a homogenous correction-calibration material, for correcting a heterogeneous 

phantom. Improvement of the beam hardening correction would include the use of a 

different type or additional filters to harden the beam before it interacts with the object 

and thus to minimize the effect of beam hardening [3]. Also, incorporating a material-

selective beam hardening correction that utilizes the materials used in the phantom for a 

heterogeneous calibration material would further improve the resulting images [11].    

4.2 Patient Motion Correction 

The method of translational motion correction was determined to be sufficient for the 

maximum amount of subject motion that could occur and still remain within the field of 

view. This is approximately 11 mm for the 15.8 mm diameter phantom if placed near the 

edge of the 27 mm diameter field of view and moved to the exact opposite side of the 
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field of view. The errors were reduced, though not completely removed. However, by 

comparing the error after correction to the baseline established from Figure 3-26, the 

method performed very well for the small amounts of motion up to 4 mm (5 mm for the 

simulation). Even for the maximum fractional error of 0.1642 obtained for the 

experimental case (the peak error in Figures 3-28, 3-29, and 3-30), the value was not 

significantly different from the baseline error of 0.1599, with only a 2.7% increase. In 

many instances of the experimental case, the error is less than the baseline error. This can 

occur because the photon count deviation is a factor in the experimental case, and the 

motion-correction algorithm has a similar effect as that of a median filter on the 

projection data. Thus, when the amount of error due to photon variation is the more 

prominent error (i.e., when the amount of motion-correction is low), a lower error than 

the baseline value can result.  

For motion offsets over 1 mm, the increase in error is directly proportional to an increase 

in motion distance that remained after the algorithm was implemented on the projections 

(Figure 3-28). The amount of error still present in the corrected images is also dependent 

on the direction of the motion (Figure 3-29), where motion along the r-axis creates less 

error than that along the s-axis. This means that the correction algorithm is more reliable 

in correcting for changes in magnification.  

The accuracy of the algorithm also depends on the homogeneity of the uncorrected 

projections with each other, and, by consequence, the projections’ overall proximity to 

the calculated ideal curves. For instance, when the projections from the phantom at two 

positions are involved in creating a motion-encoded sinogram, the motion-correction 

algorithm works best when profiles from one of the positions is more prevalent when 
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used in the calculation for ideal curves, rather than equal influence. Therefore it can be 

seen in Figure 3-30 that the greatest error occurs when the number of projections used to 

create the simulated motion are equivalent (i.e. 250 projections from the object at 

position A, 250 from the object at position B). These two positions equally affect the fit 

for the ideal curves, and the homogeneity between the positions (position A, B, and the 

ideal position calculated) is low.   

Errors in correction were seen as streaks and blurring artifacts in the motion-corrected 

images. Several failures in the algorithm could explain these artifacts. Some of the most 

likely reasons for the artifacts include, but are not limited to, the following: 

 Equidistant linear detectors produce unequal angles between adjacent rays. The 

larger the shift in the sinogram, the greater the error between the angles for the 

original rays and those for the new rays used for the reconstruction. In other 

words, an object at the center of the fan-beam is subjected to smaller 

magnification than an object at the periphery of the fan-beam. 

 r-axis and s-axis motions are, for the most part, co-dependent for fan-beam 

equidistant-detector scanner systems. Only if the s-axis motion occurs when the 

centroid is along the fan-beam midline (i.e., the centroid position will not be 

shifted because of magnification) are they not co-dependent. Therefore, rarely 

will the projection data for the center of mass change without a change in the 

integral and vice versa. Practically, however, they cannot be simultaneously 

corrected in the sinogram space. 

 The center of mass curve is not as accurate as the integral curve. Since the center 

of mass does not create the ideal sinusoid that the integral curve does, an 
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adjustment must be made from the Fourier sinusoid fit to a sinusoid-like curve fit 

using Equation 2.1. This means that the centroid location (xo, yo) must be 

estimated before an ideal fit can be calculated. Errors occur because the fit 

requires an estimate for the centroid location (xo, yo) based on the polar-to-

Cartesian conversion of r and φ obtained after the Fourier sinusoid fit and 

magnification adjustment. Due to the geometric properties of the fan-beam, the 

value of r tends to be slightly overestimated, and the angle φ may be either over- 

or underestimated. This is the primary cause of error in the fit, and the estimate of 

(xo, yo) increases in error as the actual distance of the centroid from the center-of-

rotation increases. This leads to a less accurate fit than the one acquired for the 

integral, though this method creates a better fit than a simple sinusoid fit. 

Future work of the motion-correction algorithm will involve attempting to fix the above 

issues. The method proposed for correcting motion can only realistically be improved by 

modifying the reconstruction algorithm, as further development for corrections made in 

the  sinogram space are limited. Modifying the reconstruction algorithm could also lead 

to simultaneous correction of errors in the r-axis and s-axis direction. Lastly, 

improvement of the calculation for the ideal center of mass curve will be considered by 

further utilizing Equation 2.1 to determine the centroid location (xo, yo) by the chi-square 

reduction of this equation after the system parameters are already calculated. 

Both the parameter-calculation and motion-correction algorithms can be further improved 

for transition from 2D fan-beam image reconstruction to 3D cone-beam image 

reconstruction. For the fHRCT parameter calculation, a method to find the optimal center 

along the z-axis must also be developed and implemented. In a similar fashion, the 
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method for motion correction must be improved to account for the addition of a potential 

z-axis motion. This means additional calculations must be made to determine the sum of 

intensities and the center of mass location in a 2D space (as opposed to a 1D space) for 

each projection. 
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