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ABSTRACT

Marangoni, Matthew. M.S. C.E.G, Department of Computer Science and Engineering, Wright State
University, 2013. Low Cost Open Source Modal Virtual Environment Interfaces Using Full Body
Motion Tracking and Hand Gesture Recognition.

Virtual environments provide insightful and meaningful ways to explore data sets through

immersive experiences. One of the ways immersion is achieved is through natural interac-

tion methods instead of only a keyboard and mouse. Intuitive tracking systems for natural

interfaces suitable for such environments are often expensive. Recently however, devices

such as gesture tracking gloves and skeletal tracking systems have emerged in the consumer

market.

This project integrates gestural interfaces into an open source virtual reality toolkit us-

ing consumer grade input devices and generates a set of tools to enable multimodal gestural

interface creation. The AnthroTronix AcceleGlove is used to augment body tracking data

from a Microsoft Kinect with fine grained hand gesture data. The tools are found to be

useful as a sample gestural interface is implemented using them. The project concludes by

suggesting studies targeting gestural interfaces using such devices as well as other areas for

further research.
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Introduction

This section introduces the project, provides supporting contextual information to the reader

by surveying related works, the motivations behind this work, and introduces underlying

concepts. Related works are surveyed to establish the context for this project and why it

is important. Underlying concepts are then introduced to ensure that the reader is at least

familiar with components critical to this project.

1.1 Background

As computer hardware, applications, and devices evolve, mouse and keyboard interfaces

have increasing competition from devices such as the Microsoft Kinect and Nintendo Wii

Remote. Enhancing and improving the way that users interact with computers is increas-

ingly important as computers continue to expand their domain. Smart phones and tablets

have popularized touch-based gesture interfaces while the Microsoft Kinect has made full

body motion tracking and audio commands a common occurrence in the home. New in-

terfaces offer alternatives that collect user input in ways that feel natural to the user and

are more effective versus always using traditional input methods [6] [10]. Novel interfaces

such as these have proven popular for console gaming but also have many other applica-

tions. One notable application that has emerged is interacting with virtual environments.

Virtual environments offer users more engaging and enveloping experiences when in-

teracting with applications, especially large data visualizations [6] [10]. Large scale visu-
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alizations are often used for data sets that are unmanageable on standard desktop displays.

Such visualizations often utilize virtual environments as a way to explore data in three

dimensions and provide a more navigable visual interpretation of the data. This type of vi-

sualization allows users to take away more information and gain different insights into their

data [10].Taking a tour of a new house or of a high resolution CT scan are not impossible

on a standard monitor but navigating them where walking through a room is more directly

simulated, user movements are used as input, may prove to be a much more informative

and natural user experience. However, in order for the user to interact with the visualization

an interface must be used and that often entails using a controller or motion tracking. Often

setups like this are expensive but the Microsoft Kinect is able to offer a viable solution for

full body motion tracking at the price of a consumer gaming peripheral [6].

Researchers have utilized the Microsoft Kinect to offer a full range of movement track-

ing, discerning human actions, and even hand tracking and hand gesture recognition [6]

[12] [23] [24] [11]. These are significant advances and are creating substantial interest in

gestural interfaces especially ones with a Kinect base. Yet the methods used are based on

the hardware depth sensor data and image analysis performed on image data. If the user

steps out of the field of vision or conditions change in such a way to compromise the reli-

ability of the image analysis algorithms the user is left with an inaccessible system. This

means the user is still constrained not necessarily to their own viewable area but instead

constrained to the viewing area of the Kinect. Users are restricted in their movements by

these aspects.

The approach taken in this project is to augment the strongest inherent feature of the

Kinect - body tracking - with a glove that specializes in hand gesture recognition to create

a modal gestural interface.
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1.2 Related Work

There is a lot of research available covering both virtual environments and gesture-based

interfaces. The two areas are often linked, as virtual environments are an area that has

provided a natural use case for gesture based interfaces. Manipulation of immersive vi-

sualizations via gestural interfaces has gained substantial popularity as a result of recently

released devices. Video game consoles and smart phones have been accompanied with

novel ways of collecting user input. These different devices, such as the Nintendo Wii Re-

mote, PlayStation Move, and Microsoft Kinect, have been explored heavily by researchers

but most recently the Microsoft Kinect has received much attention due to its potential for

gestural interfaces.

Illustrating the usefulness of virtual environments for interacting with large data sets,

Kreylos et al. [10] provide a new set of tools to geoscientists in order to enhance their work

flow. Focusing on the geoscientists normal tasks of 3D mapping, measuring topological

changes, and investigating the movement of tectonic plates, the authors were able to tailor

a virtual environment specifically to their users. The navigation of the visualization, the

ability to draw and measure points in the data on to the visualization, the ability to be

machine agnostic yet maintain the virtual environment, and the real-time display of the data

were the functional goals. The results were that, without a formal study, the geoscientists

they had utilize the system were tasked with performing the same tasks in both their usual

work flow and the new virtual environment based one. Users were noted that without the

use of stereoscopic displays present in the virtual environment, 3D objects were harder to

recognize immediately. The virtual environment allowed a more natural identification of

the 3D objects versus relying on movement of the visualization to determine in which plane

a point exists. Another key result of the study is that the virtual environment succeeded in

aiding the users to identify and locate an error in a simulation which the previous work flow

tools were unable to assist the user. It is clear that the virtual environment was able to assist

in the exploration of data sets to scientists not specializing in such systems. The immediate
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adaptation to the 3D environment is an illustration of the need for more immersive, more

natural visualization tools and that need extends to the interfaces used for manipulating the

visualization as well.

The Nintendo Wii Remote and Microsoft Kinect are compared by Francese et al. in

using subjective terms such as usability and the user’s sense of envelopment by the interface

and experience [6]. Users were tasked with navigating a 3D environment using both input

devices. The study found that the Microsoft Kinect was preferred overall due to a feeling of

a natural interface and that users felt more connected with the device. Francese et al. noted

their awareness of a novelty factor influencing the results and also recognized that while the

Kinect was preferred the authors did not feel it was a viable solution for prolonged usage

due to fatigue. Fatigue was also noted by Host et al. as a problematic source which lead to

the suggestion of future systems focusing more on hand and finger recognition [7].

Kristensson et al., Ramirez-Giraldo et al., Li, and Ren et al. demonstrate methods

of using the Microsoft Kinect to recognize hand gestures [11] [23] [12] [24]. Kristensson

et al. focus on one and two handed gesture recognition. The users hand(s) must enter an

”input zone” that delimits when the beginning and end of a gesture have occurred [11].

Implemented using an adaptation of a pen stroke and touch screen recognition system, the

authors probabilistic continuous gesture recognition manages to achieve over 92.7 percent

accuracy with one and two handed motions. The hands are tracked via the skeleton data

retrieved from the Microsoft Kinect. Ramirez-Giraldo et al. propose and implement a sys-

tem that identifies hand gestures by employing kernel based machine learning mechanisms

to find relationships between hand trajectory samples [23]. Li proposes and implements a

system that identifies the hands, identifies the fingers, and then classifies the gesture. An

image of the hands is captured and RGB image pixels are mapped to each hand which is

then followed by contour tracing to identify the fingers and calculates the fingertips based

on the palm position and direction of each finger [12]. Gestures are then processed ac-

cording to the extended finger count, extended finger name, and finally vector matching to
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determine the final classification of a gesture. The method by Li was able to achieve, when

the same gesture was made with both hands, over 90 percent accuracy across a dictionary

of 9 gestures [12]. Ren et al. were able to achieve 90.6 percent mean accuracy utilizing the

depth sensor and a black belt to detect the hand in conjunction the Finger-Earth Mover Dis-

tance algorithm and some finger detection algorithms, to counteract the low resolution from

the Microsoft Kinect to determine a measurement for the hand and then matches against

the known gestures [24] [25] . Each methodology proposed differs, and in fact Ramirez-

Giraldo et al. are recognizing dynamic gestures versus static gestures being recognized

by Ren et al. and Li, yet each shares the commonality of utilizing the Microsoft Kinect

depth sensor to create an active distance field in which the hands should be operating for

detection. The results are more than just encouraging strides to the prospects of completely

hands-only gestural interfaces that recognize both static and dynamic (temporal) gestures.

Rahman et al. demonstrate using the Kinect to recognize gestures in the car [22].

Using motion path recognition the user’s motions are compared against a map of gestures

representing multimedia device functionality. To play a random song, the user may shake

their hand. As this does not induce visual search as a dashboard button would, the driver

may keep their attention on the road. Motion recognition was measured as 89.2 percent

and higher by Rahman et al. across a 10 gesture pool [22]. Using gestures to control media

devices while driving could be a safer way to utilize systems in the car versus traditional

button and knob methods. Users were also reported to find the system useful and a pleasure

to use. Creating systems that utilize gestures in order to replace common interfaces, such as

buttons, have been spurred forth by the low cost abilities offered by the Microsoft Kinect.

Hoste et al. developed a multimodal system that assisted a user entering text using

speech [7]. The system allows users to speak the text input, increasing the usability over

standard controller based interfaces and keyboards to a hands-free system, and then perform

corrections on their input utilizing gestures. This system utilizes the Microsoft Kinect to

perform the recognition of body gestures such as moving an arm upward to seek towards the
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start of the alphabet and a downward arm gesture to seek towards the end of the alphabet.

The system performed better than the Microsoft Kinect exclusive interface and almost as

well as the virtual keyboard with exclusively speech recognition registering the highest

Words Per Minute (WPM). The authors however did note that the speech recognition was

frustrating at times due to incorrect recognition. Clearly frustrating the user is going to

dampen the experience and hinder any attempts at immersion. The results directed the

authors to aim future research towards smaller gestures and focusing on finger gestures

versus full body gestures due to fatigue and a very slow input speed versus traditional

controller-based methods [7].

1.3 Purpose

The objective of this project is to supplement full body motion tracking with hand gesture

recognition in order to provide the ability to create a modal gestural interface for a virtual

environment that is low cost and accessible. Combining the two tracking methods provides

high sensitivity to both fine motor movements of the hand (e.g. extending the index finger)

and full body motions (e.g. waving an arm). The utilization of Open Source Software

(OSS) and consumer grade devices in this project yields a low cost solution with high

accessibility for exploration, utilization, and future developments.

The Microsoft Kinect is able to provide a lot of useful tracking data but as many papers

cite, the device is not particularly well suited for fine grained hand and finger tracking or

hand gesture recognition due to the low resolution imagery both from the depth camera and

the image camera. This has lead researchers such as Kristensson et al., Ramirez-Giraldo

et al., Li, and Ren et al. to use image analysis and related techniques on the data retrieved

in order to perform such identification and distinctions [11] [23] [12] [24]. Many, if not

all, hand detection methods using the Microsoft Kinect rely on the depth sensor data to

create an invisible field between two distances in which the hands are active and generally
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assumed to be the only data present. In most cases this is manually tuned and though

automatically tuning it appears feasible, when a user turns around, moves their hands out

of the active zone by accident, or performs the same gesture but does not have their hand

facing the camera perfectly (sideways gesture perhaps) the recognition process may be

derailed. A device such as a mouse or the AnthroTronix AcceleGlove is not subject to such

restrictions; thus while the user may have to wear a glove, the user may also move around

in a less constrained manner and through an extended space.

The Microsoft Kinect creates an active zone which constrains the user. Such con-

straints on the user, both spatially and relating to their actions, must be compared against

current interface solutions; in this case, a traditional game controller is the standard and

such a device has recognition of input, hardware flaws notwithstanding, of approximately

100 percent. When input is incorrectly determined, it is generally not software recognition

failing - there is minimal to none involved in recognition - it is the fault of the user. Short of

inferring the user’s intent, this is a desirable state because the responsibility now is placed

squarely on the user. If a hand gesture recognition system achieved 99 percent accuracy and

was used to replace your steering wheel, 1 percent of the time when the driver attempted to

turn right the vehicle would not turn right. The example is extreme but the concept is the

the same. A game or computer that is frustrating to use due to the gestural interface, may

not be used at all. This is another reason this project moves the hand gesture recognition

responsibility to a device that is better suited for hand gesture data. By combining the two

devices, this project can relax some of the constraints on the user. The user is not required

to keep their hands at a specific distance but are required to make the correct hand gesture.

Tracking systems are often quite expensive but the advent of the Microsoft Kinect and

AnthroTronix AcceleGlove have brought low cost, accessible, and usable hardware into the

field. Making use of such hardware allows this project to maintain the low cost objective.

The software cost is negated by using OSS, further diminishing the overall project cost. A

low cost solution is important as it encourages others to experiment and further the research
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versus creating a prohibitively expensive entrance fee to the field. Students, researchers,

and hobbyists alike can reconstruct this entire project at minimal cost.
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Underlying Concepts

This section introduces concepts that are at the crux of this project. Virtual environments

are introduced as they are the primary visualization environment target of this project. Ges-

tural interfaces are covered as they are the primary form of interaction and control applied

to the visualizations. The hardware utilized in this project is introduced and the underlying

method for static gesture recognition, Support Vector Machines (SVM), is presented.

2.1 Virtual Environments

Virtual environments are highly immersive computer-based visualizations that allow users

to interact with a virtual world - a virtual reality. Virtual environments often incorporate

large 3D capable displays or head mounted displays, such as the upcoming Oculus Rift,

to give users a more immersive experience by surrounding them and placing them inside

the world [20]. Haptic feedback, surround sound systems, and body tracking may all be

integrated into such a system and any other elements that enhance the users a feeling of

being immersed inside a virtual world.

An interesting recent example of a complex system utilizing many sensory stimuli

somewhat outside of an academic context, including pain, is the ”Ultimate Battlefield 3

Simulator” shown on The Gadget Show [27]. The system presented allows users to play

a video game but have it monitor their movements via omni-directional treadmills and a

Microsoft Kinect. The system also reacts to users taking enemy fire by correspondingly
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firing paintballs at the user from approximately the appropriate direction. Combat simula-

tions such as these are just one example of how virtual environments can be used to heavily

enhance and create immersive interactive visualizations.

2.2 Gestural Interfaces

Human Computer Interaction has seen a lot of advancements in gestural interfaces. Re-

cently these advances have been fueled largely by video games and consumer media outlets

such as the Microsoft Xbox 360 and Microsoft Kinect. Users have taken to creating gestu-

ral interfaces as well as many other projects using the Microsoft Kinect. Gestural interfaces

are based on a user’s motion and position, actions that feel more natural instead of using

the mouse and keyboard or other traditional paradigm input devices. People often use ges-

tures in conversation to help convey their meaning. As a result, an interface that uses such

gestures is to some degree an extension of natural conversation dynamics. Such interfaces

do not require controllers and may not require fine motor movements thus they may be

immediately applicable to users who find that those interfaces are ineffective. Moreover,

gestural interfaces can assist with silent communication - whether the user is adept in sign

language or in scenarios where noise is unacceptable. Sign language is an example of a

gestural interface and there are devices, such as the AnthroTronix AcceleGlove used in

this project, that are able to collect data that allows a computer to interpret such gestures.

Examples of gestural interfaces are given by Kavakli et al. and Farhadi-Niaki et al. [8] [5].

See also 1.2.

2.3 Accelerometer Equipped Glove

The AnthroTronix AcceleGlove is a hand position capturing device based on accelerom-

eters. It is a consumer grade product and collects movement and position data about the
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hand and fingers using the 6 accelerometers [1]. The glove is accompanied by a Software

Development Kit (SDK) which includes a Java library that enables developers to interact

with the glove and write their own applications. The provided SDK is compatible with the

three major platforms: Linux, Mac OSX, and Windows. The kit also comes with a visual-

ization tool that allows the recording, training, and testing of gestures [1]. The library that

interfaces with the glove is OSS and upon request (in this case it took multiple requests) the

code may be retrieved from AnthroTronix. The device is USB and/or Bluetooth with the

additional wireless module, and utilizes a virtual serial port for communication of sensor

data [1].

Figure 2.1: The reference axes for the AnthroTronix AcceleGlove

Figure 2.1 shows the glove and the orientation of the axes. The back of the hand is

shown, the thumb is at the far left. As displayed, the positive Z-axis is perpendicular to

the palm, the positive X-axis and positive Y-axis are perpendicular to each other as well as

the Z-axis. Correspondingly, Left handed gloves are also made and there are also 3 sizes
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of the glove. The wireless module of the glove utilizes Bluetooth, can be attached with an

included strap to the user, and is rechargeable using an included AC adapter.

There is a small circuit board above the back of the palm in a Velcro pocket to which

the sensors and communication interfaces are connected. Each of the sensors is positioned

on the back of each digit towards the tip of each finger and one on the back of the palm.

Each sensor reports 3 axes of data: X, Y, and Z which measure the position and motion of

the sensor. The data collection mode, format of the data reported, and other features may

be controlled by various commands that can be sent to the glove. When retrieving data

from the glove, 18 values are reported.

The AnthroTronix AcceleGlove was chosen for this project for a few reasons. The

primary reason is that the glove was outfitted for and targeted towards hand gesture recog-

nition. The demo software included with the glove performs recognition of American Sign

Language (ASL). The cost of the glove was low, 500 USD and the additional wireless

module was 500 USD which makes the glove available to consumers, especially without

the wireless module. The glove was readily accessible through the labs. There was also the

potential to retrieve the source code to the library utilizing the glove from AnthroTronix

which could be useful for other applications, debugging, and prototyping.

2.3.1 Data Accuracy

Two common areas of concern with accelerometers, especially lower cost accelerometers,

are noise and drift. These two issues are standard properties associated with accelerom-

eters and as such are present in specification sheets. Therefore drift and noise must be

anticipated, examined, and if necessary accounted for when using accelerometers.

In the context of our recognition system the noise could be mitigated using a low pass

filter or a smoothing filter, such as a Kalman filter. If there was substantial noise in the data

it could potentially increase the space occupied by the gesture thus having adverse affects

on the gesture recognition. For smaller gesture sets this may not prove problematic if the
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spaces occupied were separated by substantial and clear gaps. In this project’s use case,

gesture recognition needs to be able to switch between modalities, not necessarily offer an

optimal solution to gesture recognition as it can be replaced with a different algorithm.

Drift however would mean the sensors measurements degraded over time and this

would certainly lead to usability issues for long term sessions of visualizations and poten-

tially render the device useless in practical scenarios. A reasonable session would be thirty

to sixty minutes allowing for rests for user’s eyes and arms. A more taxing and thorough

goal would be eight hours assuming the user was utilizing this for an occupation and the

device was not reinitialized during this period.

As noted, normally a specification sheet for the accelerometer in question would be

provided and express such data about the device. As the model indicators on the accelerom-

eters inside the glove were removed, the seller was contacted and due to a potentially infi-

nite response time a simple experiment was designed and implemented.

A microcontroller would be connected to a servo in order to control it’s rotation. The

servo wheel would then have an arm attached to it and strings would be attached from

the arm to 2 fingers of a glove. More than one finger is used for this test to ensure that the

accelerometer was not an exception. Only 2 fingers were used in order to have some fingers

remaining relatively still. The fabric of the glove, movement in the string, and vibrations

would still impact the other sensors on the glove but as this is what would happen when a

user is using the glove it is an accurate approximation. Moreover, if the sensors experience

drift it will be noticeable despite those small discrepancies if it is significant enough to

impact the usability of the device.

When the servo moved, the arm would lift the fingers accordingly, and then the servo

reversed direction and would rest the fingers. Using this setup the same motion could be

simulated effectively for an extended period of time. The arm rotated 90 degrees, pulling

up the two digits, paused for 1 second, rotated negative 90 degrees, setting down the two

digits, and paused for 1 second, and repeated this sequence for a period of 4.097 days. Data
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from the glove was collected as fast as possible using the current development versions of

the libraries at the time.

The digits used in this experiment were the middle and pinky. This allowed ample

fabric space that the thumb would remain relatively stationary while the other fingers would

be impacted accordingly which is visible in the samples. At the end of the sample collection

period the data was graphed and examined. Overall it appears as though no significant drift

or noise variations occurred that would greatly influence the outcome of the system.

Figure 2.2: The first 8 hours of data collection per finger

(a) Thumb (b) Index (c) Middle

(d) Ring (e) Pinky (f) Palm

Graphs for 8 hours of sampling were generated and are presented in Figure 2.2. The

graphs show clear distinctions between axis values in some cases such as Figure 2.2a and

Figure 2.2b. In some cases, primarily the sensors which were near the moving areas, the

graphs do not have clear separation between axes and as a result, further graphs have been

generated per axis for some of the sensors. See Appendix B.1 for enlarged versions of

the graphs. The figures show that each accelerometer experienced a relatively constant

amount of noise during each time frame and that substantial drift was absent. From the
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data collection used in Figure 2.2, data for 4.097 days was collected and a total of 20286974

samples. This equates to a capture rate of approximately 57.31 Hz.

Figure 2.3: The first 8 hours of data collection from all accelerometers, colored by sample
number.

(a) 10 minutes (b) 60 minutes

(c) 8 hours

Another view of the same data provides a similar insight. A 3D plot of all the ac-

celerometer data is provided in Figure 2.3 at the sample intervals of 10 minutes in 2.3a, 60

minutes in 2.3b, and 8 hours in 2.3c. If the devices were susceptible to drift and noise that

would substantially impact their usage in this project, the image after 8 hours would exhibit

a much different point cloud shape than the image after 10 minutes. The data points are

also colored by the sample number, thus the points with dark colors are the oldest points

and the brighter colors are the newest data points. It is also likely that there would be more

darker colors visible than the large amount of bright colors if the readings were becoming

further distorted over the period of time. However, the general contour of the point cloud is

established in the 10 minute sample set and the rest of the images fill in the form with higher

point density but do not substantially expand the contour of the shape. See Appendix A.1

for enlarged versions of the graphs.

15



2.4 Microsoft Kinect

The Microsoft Kinect was released for the Microsoft Xbox 360 gaming console offering

fully body motion tracking. The device has subsequently seen many developments in ap-

plications outside of the console and instead using computers. Due to the low cost and

advanced functionality versus anything else on the market, the Microsoft Kinect provides

opportunities for novel gestural interfaces to be created for a wide array of applications.

Figure 2.4: The Microsoft Kinect

Figure 2.4 shows the Microsoft Kinect, courtesy of [18]. The Microsoft Kinect comes

outfitted with an RGB camera, an infrared (IR) depth sensor and IR emitter, four micro-

phones in an array, and a 3-axis accelerometer. From left to right in Figure 2.4, the first

lens is for the IR emitter, the second glass lens is for the RGB camera, and the third lens

is for the depth sensor. In the base of the device there is a motor that also allows for ±27◦

vertical tilt [16].

The RGB camera can provide color RGB data at up to a resolution of 1280 x 960,

allowing the recording of video as well as photos of the Field of View (FOV). The FOV

provided is 43◦ x 57◦ (vertical x horizontal). The device also can provide 30 frames per

second (FPS) for both RGB camera data and IR depth sensor data at a resolution of 640 x

480 [14]. Table 2.1 shows the available formats for images from the RGB camera [14].
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Table 2.1: Microsoft Kinect RGB Camera Data Formats

Resolution Frames per second Data Type
(Width x Height in pixels)

640 x 480 30 Raw Bayer

640 x 480 30 RGB

640 x 480 15 Raw YUV

640 x 480 15 YUV

1280 x 960 12 Raw Bayer

1280 x 960 12 RGB

The IR depth sensor provides depth data at up to a resolution of 640 x 480. By pro-

jecting IR light from the emitter, reading the data back in through the depth sensor, and

then evaluating the results the Microsoft Kinect is able to give users access to the distance

of objects within the FOV relative to the device. The FOV provided is 43◦ x 57◦ (vertical x

horizontal) [15]. The depth sensor has an operating distance of 800mm-4000mm, and the

Kinect for Windows variant may go into ”Near Mode” decreasing the distance to 500mm-

3000mm [17]. Usable modes for depth data collection are shown in Table 2.2 [15]. There

is also a data stream that collects an image of the IR depth sensors view at a resolution of

640 x 480 at 30 frames per second [14].

Table 2.2: Microsoft Kinect IR Depth Sensor Data Formats

Resolution Frames per second
(Width x Height in pixels)

80 x 60 30

320 x 240 30

640 x 480 30

The Microsoft Kinect was chosen for this project for multiple reasons. The ability to

track the movement of a user with a single USB device and minimal hardware setup made

this device an immediate candidate for this project. At a price of 149.99 USD the device

lets this project maintain a low cost objective. At such a low price point and due to the

popularity of the gaming console, the Microsoft Kinect is also a well suited solution as

the user may in fact already own the device and if not, it can be readily purchased from
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multiple vendors.

2.5 Support Vector Machines

In order to determine when a user is making a hand gesture a method of recognition was

to be chosen. As the focus of this project is not on optimal gesture recognition, a viable

recognition method was sought versus developing an optimal one. Support Vector Ma-

chines (SVM), or Support Vector Networks as referenced by Cortes et al. are machine

learning methods utilized for pattern recognition [4]. SVMs are supervised and able to

perform linear and non-linear classifications efficiently. Having been heavily researched

starting in the 1990s, the Support Vector Machine is a well-known approach in the area of

machine learning [4]. The use of SVMs by Cortes et al. show that even early implementa-

tions are effective in performing hand writing recognition versus other methods at the time

[4].

Support Vector Machines or Support Vector Networks are a formalization of a very

intuitive approach to classification. Consider a binary classification problem. A set of

unknown data must be separated into two classes, Class 1 and Class 2 (it is common to

use ±1 as boundaries), based on features. SVMs attempt to create a maximal and optimal

boundary between the two sets of data based on their features [4]. This objective appears

intuitive when viewed in 2D (See Figure 2.5a) and may be extended to higher dimensions.

The line separating the two classes of data visible in Figure 2.5a is the optimal hy-

perplane that SVM seeks. There are many potential hyperplanes that separate the data, as

shown in Figure 2.5b. The 3 labeled hyperplanes also separate the two classes of data but

are non-optimal. As new data is processed, incorrect classifications will clearly occur due

to the unequal proximity between the hyperplane and a data class. In order to determine

the optimal hyperplane separating the data classes, it is clear that the distance between the

two classes should be maximal [4].
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Figure 2.5: SVM Hyperplane and Margin Optimization

(a) Optimal and Intuitive Hyperplane (b) Other Hyperplanes

(c) Margin Optimization and Support Vec-
tors

SVM determines this maximal separation by finding a hyperplane that is as far from

both data classes as possible. The points used in this calculation determine the placement

of the hyperplane and are called Support Vectors. The support vectors are identifiable in

Figure 2.5c as the points closest to lines SM1 and SM2 - the points that are closest to the

opposite class. These are Support Vectors as their removal would move the hyperplane

as opposed to removing other points which would not impact hyperplane placement. By

solving a quadratic programming problem maximizing the margin between support vectors,

an SVM model is able to represent the optimal hyperplane between classes [4]. At this
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stage input may be classified and where it falls relative to the hyperplane will determine its

classification.

In many cases data is not trivially separated, quite the opposite of Figure 2.5a which

is easily linearly separated (which is visually observable). In some cases data is heavily

meshed in the input space, some sets of data may be trivially separated in their input di-

mension whereas other sets, such as the gesture data shown in Figure 2.7 display meshing

that clearly causes issues. There may also be noise or valid data that does not conform to

the usual pedigree of the rest of the labeled data. Both of these situations need to be ad-

dressed. As a result, SVMs incorporate different features, such as kernel functions and soft

margins, in order to address data separability. Through the use of these elements SVMs are

afforded flexibility and gain substantial generalization [4] [13].

Similar to other methods that also utilize kernels, SVMs use kernel functions to map

low dimensional data into higher dimension spaces. The goal is to map the feature space

to a higher dimension in order to find linear separability in the data. Data that may not be

separable in the input space may be separable in a higher feature space. With a properly de-

signed kernel the mapping may be made implicit to the kernel and any explicit calculations

of the mapping are avoided completely by nature of the dependency of the linear classi-

fication on the dot product. The exploitation of this mathematical property is generally

referred to as the ”kernel trick” [13]. Such usage of kernels allows a SVM to classify data

that is not linearly separable but instead are non-linearly separable. This method is also

computationally advantageous as, through the kernel trick, calculations are not performed

in higher dimensions thus drastically reducing the calculations necessary.

A common example is using variations of the XOR problem to show that some data

can be linearly separated once mapped into a a different feature space. Another example

is shown in Figure 2.6. Figure 2.6a shows a graph of two 1D classes, C0 and C1, where

C0 = (−4,−3,−2, 2, 3, 4), C1 = (−1, 0, 1). It is visible that the data is not linearly

separable in 1D but through using a kernel that establishes x 7→ (x, x2), as shown in
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Figure 2.6b, the data becomes linearly separable in the higher feature space.

Figure 2.6: Non-linear Classification

(a) Input Space (1D) (b) Mapped Feature Space (2D)

Soft margins are a way to allow SVMs to cope with noisy data, making a better approx-

imation while accepting some errors. The idea is to reduce the influence of such outliers

on the placement of the hyperplane by excluding the points. A soft margin classifier may

then create an optimal hyperplane separating the training data without being incorrectly

influenced by noise [4].

SVMs have many applications with real world data. As real data often does not have

binary categories, SVMs have been adapted to perform multi-class classifications, which

is how they are used in this project. There are many schemes available to integrate multi-

class classifications into SVMs and the library chosen for this project supports such clas-

sifications [3]. This project only utilizes them in a common classification capacity. Other

applications are outside the scope of this paper however it is important to note that other

applications do exist.

An example of the data being analyzed using SVM for gesture recognition is shown

in 3D in Figure 2.7. Figure 2.7 shows the x,y, and z axis values of each sensor over a

series of samples, colored per gesture. It is clear to distinguish each sensor in this manner.

The SVM algorithm does not make the distinction between sensors but instead treats each
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gesture as a set of features (3 features from each sensor) for classification.

Figure 2.7: Plot of 3 Gestures Accelerometer Data Colored By Gesture
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Implementation

This section discusses the specifics of the implementation of the modal interface. Chal-

lenges that were faced in each area of the project are addressed and further notes and details

for each subsection are provided. How the devices in the system communicate is explored

and each of the input systems, hand gesture recognition and body tracking, are detailed.

Finally, the integration of the input devices with the virtual environment to create a usable

interface is discussed.

3.1 Device Communication

This section discusses the types of communication used when transporting tracking data.

The AnthroTronix AcceleGlove and Microsoft Kinect both require their own protocols.

The glove utilizes a virtual serial port interface to report data in response to specific com-

mands. The Microsoft Kinect is able to transmit data via USB through the use of mid-

dleware like FAAST [26]. Using FAAST, VRUI is able to consume the data via TCP/IP

from the Microsoft Kinect into the virtual environment. Through the implementation of a

custom tool for VRUI the data from the AnthroTronix AcceleGlove is able to be read and

utilized in conjunction with the Microsoft Kinect data.
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3.1.1 Hand Position Data Retrieval

Hand position data is provided to the visualization system by the user via manipulating the

AnthroTronix AcceleGlove (See Section 2.3). The SDK that was paired with the glove was

written in Java and while it performed fine on the Linux based visualization systems, the

visualization environment utilizes C and C++. After some investigation, the use of Java

Native Interface (JNI) and other mechanisms to transfer data between the two languages

was abandoned. It would introduce another language and a layer of added complexity to the

overall system that was unnecessary. The glove could communicate via a virtual serial port

thus it was decided that an interface to the glove would be constructed and then utilized

to retrieve the data from the glove. The company was contacted in order to retrieve the

source code to get some idea of how the system worked as they had clearly researched the

problem already however at this time the source code was irretrievable. Inside of the user

guide however the serial connection information was present, commands were listed that

the glove would respond to, and substantial information about the data format was provided.

Enough information was given to create the interface. Based on that information, a serial

communications library (sport) and a library that interfaced with the glove (aglove) were

constructed. The aglove library uses sport to perform the sending and receiving of data

but conceals the serial interface from the developer. From the developers perspective they

are interfacing with the glove. Some issues were encountered, such as data format listings

being vague or incorrect in the manual however the manual that was being used was also an

earlier version than the one found in the updated user manual [1]. In the AnthroTronix User

Guide a second command protocol with more rigorous specifications is provided and the

conversion to this command protocol is an area for future development (See Section 4.2)

[1].

The libraries were designed to aid in rapid development in order to lower system inte-

gration efforts. In the current version of the glove interface, the code shown in Figure 3.1
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Figure 3.1: Glove Connection Code

1 #include "Glove.hpp"
2

3 int main(int argc, char * argv[]) {
4 Glove g;
5

6 while(g.isConnected()) {
7 g.binaryQuery();
8 Glove::HandPosition const * hp = g.getCur();
9 }

10

11 g.disconnect();
12 return 0;
13 }

is all that is needed to create a connection to the glove and retrieve a hand position.

3.1.2 Skeletal Position Data Retrieval

In order to retrieve data about the movement of a user, users skeletons are detected and

tracked using the Microsoft Kinect. The data about the movement of the skeleton is then

passed into the system and utilized for manipulating the virtual environment. In this system

the virtual environment does not support input from the Microsoft Kinect as-is - this is not

an uncommon issue by any means. There are many many games, especially those designed

for the PC realm that are not setup to ingest body tracking information.

In order to work around this issue, this project uses the Flexible Action and Articu-

lated Skeleton Toolkit (FAAST) which eases the integration of depth sensors that support

the OpenNI standard. By including a Virtual Reality Peripheral Network (VRPN) server,

FAAST is able to communicate the skeletal information it accesses from the Natural In-

terface Technology for End-User (NiTE), a middleware developed by PrimeSense that per-

forms body detection and tracking duties as well as other tasks, to the virtual environment

where it is then possible to use that data to manipulate the environment. This is possible

as the virtual environment used in this project is compatible with VRPN. FAAST also fea-
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tures the ability to emulate input devices based on user actions [26]. This feature however

proved problematic and as a result was not utilized. Using FAASTs VRPN server on a

Windows machine with a Kinect, the data is then transferred to a daemon running Linux

for the virtual environment and the inputs are made available to utilize in conjunction with

the glove data and gesture recognition system.

3.2 Gesture Recognition

Gesture recognition was part of the SDK that accompanied the glove. However, as it is

not being used, recognition needed to be implemented as part of the project (See Subsec-

tion 3.1.1). Previous research efforts had developed and experimented with gesture recog-

nition using the idea of identifying simple linear relationships, somewhat similar to linear

SVM. While considering multiple gesture recognition algorithms for this project, another

attempt to retrieve the source code from AnthroTronix for their glove SDK was made and

was successful. Upon examining their source code it was discovered that a SVM library

was being utilized to perform their gesture classifications. In the end, as SVM was what

was being used by the manufacturer of the glove and research lead to the conclusion that

SVM was a suitable gesture recognition approach, SVMs were chosen. Investigating viable

SVM libraries lead to libSVM [3].

Having placed well in competitions for machine learning, having sufficient documen-

tation, providing sample data sets for demos, being OSS, and being able to maintain the

low cost objective libSVM was an obvious candidate. LibSVM was found to have extended

SVM to offer probability estimates as well as containing supporting tools for accurate and

simple model generation, training, and prediction. These tools are used in order to generate

well-fitting recognition models from collected hand gesture data. Moreover, it is not the

goal of this project to provide a new gesture recognition algorithm but instead to create an

enhanced modal gestural interface based on augmenting the Microsoft Kinect with hand
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gesture data. This projects interface is such that another gesture recognition algorithm may

replace the SVM implementation or the library may offer multiple recognition algorithms.

In order to generate the SVM model used for gesture recognition, a tool was developed

that allows the user to input multiple gestures. Due to the need to regenerate the model each

time the collection is changed, an easy to use tool was useful. Using methods suggested by

Chang et al. with the accompanying Python scripts the data is scaled, trained using a model

supporting probabilities, and tested [2]. At this point the model and scaling files have been

generated and output. In order to perform prediction, these two files must be provided to

the glove interface library and the prediction can then be performed. While this process

can take some time, by using the tools provided the process is largely automated and has

the added benefit of giving insight as to the accuracy of the recognition model once testing

is completed. This process could be automated and integrated further, see Section 4.2. An

example of an application that performs continuous gesture recognition and retrieves the

label of the predicted class is shown in 3.2.

Figure 3.2: Glove Recognition Code

1 #include "GloveManager.hpp"
2

3 int main(int argc, char* argv[]) {
4 std::string devicePath(argv[1]);
5 std::string scalingFilePath(argv[2]);
6 std::string modelFilePath(argv[3]);
7

8 GloveManager * gm = new GloveManager(devicePath, ...
modelFilePath, scalingFilePath);

9

10 while (gm->getGlove()->isConnected()) {
11 gm->getGlove()->binaryQuery();
12 double predictedClassLabel = ...

gm->predict(*(gm->getGlove()->getCur()));
13 }
14

15 delete (gm);
16

17 return (0);
18 }
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3.3 Virtual Environment Integration

The virtual environment toolkit chosen for this project is Virtual Reality User Interface

(VRUI) version 2.2. A large advantage of this toolkit is it offers abstractions for input,

displays, and data sources [9]. When switching between virtual environments with different

display setups (e.g. a desktop monitor moving to a 3 wall environment) users are able to run

the same application made for VRUI and not compromise usability in the transfer. Also,

VRUI is readily available, OSS, maintains the low cost goal, and familiarity with VRUI

was present. The abstractions VRUI implements lends some extra flexibility that is utilized

in this project, specifically for input devices. The user level VRUI application usually

communicates with the VRDevicesDaemon - a daemon that input devices are connected to

and which serves the respective input data to the clients. At the client level, users may make

their own tools, and can configure them as they please. The tools consume the input data

served and respond as programmed. This decoupling means that multiple users may use the

same environment input devices but the way that the input manipulates the visualization can

differ per user. This project utilizes that decoupling in a way that is perhaps not intended

but serves the goals of this project.

Figure 3.3: System Data Flow

Figure 3.3 shows the data flow relationship between the elements involved in this

project. Both data sources are ingested in their respective ways into VRUI. Inside VRUI,

a custom tool has been created that reads the input from both input devices, the Microsoft
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Kinect from the device daemon and the AnthroTronix AcceleGlove via an instance of the

library created in this project, and acts upon them as the visualization is utilized.

While this methodology is an ”inelegant” method of adding a new input device to

VRUI, as the input is collected directly from the client instead of the device input daemon,

it is an appropriate solution in this scenario. By including the AnthroTronix AcceleGlove

connection code inside the tool, the user is able to connect multiple gloves to the same

machine, and it is determined per client giving extra flexibility for variation between clients.

This also means that in a classroom environment, students may modify their own tool

implementations yet still use the standard Microsoft Kinect setup available to them on the

lab machines. This also means that instead of recompiling both the device daemon on the

input machine as well as the visualization on the client machines, only the client machines

need recompilation when changes occur.

A modal interface is then programmed into the tool, thus when the user selects the tool

after initializing their visualization they enter a mode in which their body movements are

tracked by the Microsoft Kinect and the AnthroTronix AcceleGlove is tracking their hand

gestures. In testing, the glove was used to create the different modalities of ”pan”, ”rotate”,

and ”null” (or ”NOP”). A ”zoom” modality was also being added but had been postponed

in favor of the intuitiveness experienced using the Microsoft Kinect depth sensor. The

gestures associated with modalities were an upright closed fist, a thumbs up, and a high

five gesture.

Assume the user is wearing the glove on their right hand for the following explanation

of use cases for the modal gestural interface.

If the user makes a closed fist with the back of the palm parallel to their body (the

”upright closed fist” gesture) with their right hand, they enter the ”null” modality. In this

modality, no user actions are acted upon by the Microsoft Kinect until the user leaves this

modality by making another gesture. This modality was viewed as necessary to avoid the

user from accidentally entering a mode in which they had not intended. The probabilities
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for each gestures recognition are retrievable and may also be used to provide a minimum

acceptable probability to enter a mode.

If the user makes an open palm facing parallel to their body (the ”high five” gesture)

with their right hand, they enter the ”pan” modality. At this point any movements they make

with their left hand are tracked by the environment and interpreted as translations of the

visualization. If the user moves their hand left and right when facing the Microsoft Kinect,

the visualization translates left and right. The panning mode also utilizes the depth sensors

and if the user moves their left hand perpendicular to the device, the depth cameras register

this and correspondingly pan the visualization closer or farther away from the camera. As

a result, this may simulate a zoom or scaling affect yet it is still panning. Just as with a

mouse, if the user reaches the edge of the FOV for the Microsoft Kinect, they may make

the ”null” gesture and position themselves in the FOV, then make the high five gesture and

resume panning. This modality switch, after a small amount of time, becomes smooth,

similar to the switching between reverse, neutral, and drive in a car.

If the user makes a closed fist with their thumb pointing to the sky (the ”thumbs up”

gesture) with their right hand, they enter the ”rotate” modality. At this point any movements

the user makes with their left hand are translated to rotations. As the user moves their left

hand from right to left, the same rotation occurs in the virtual environment.

The accuracy of the gesture recognition relies on libSVM and the appropriateness of

the accelerometer data for characterizing gestures. As gesture sets may be different, model

parameters may be adjusted, and the training sets used to create a recognition model may be

insufficient or incorrect, recognition can vary wildly. Using a thumbs up and thumbs down

gesture may generate some confusion in recognition and yet a fist and a sideways thumbs

up (gesture between thumbs up and thumbs down, a 45◦ rotation) may provide excellent

separability for SVM. This is all able to be visualized and tested beforehand using provided

tools. Throughout the many gesture sets generated, most were achieving recognition on

test data sets in the 92 to 100 percent range and subsequently using the resulting interface
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reflected such high degrees of test data accuracy.
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Discussion

In this section the results of the project are discussed. The gestural interface, the tools

created, and overall project are presented within a context according to the purpose of this

project. Future development ideas in hardware and software which range from targeting

this project specifically to gestural interface systems in general are discussed.

4.1 Results

The purpose of this project was to develop an accessible, low cost, modal gestural interface

for virtual environments by supplementing full body motion tracking with hand gesture

recognition. This project utilizes OSS that is freely available almost exclusively, Microsoft

Windows (which is still highly accessible) on the tracking machine being the exception.

The libraries generated in this project will also be available as OSS. The reliance upon

OSS also has a direct impact on meeting the goal of a low cost implementation.

By utilizing free OSS such as VRUI, FAAST, and Linux as well as licensing the pro-

duced libraries as OSS the cost of replicating such an environment is dramatically reduced.

At the time of writing, from NewEgg.com, Microsoft Windows 7 Home Premium SP1 64-

bit is 99 USD, a 1080p 42 inch LCD TV is 469.99 USD, and a Microsoft Kinect is 149.99

USD. The AnthroTronix AcceleGlove cost 500 USD [19]. Generally, any standard com-

puter setup may be used that supports a relatively modern kernel and can run Windows 7 (it

is also possible that this may be done using Virtual Machines (VM)) due to the flexibility
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of VRUI and the devices are USB. Large screens such as a TV or projector may be used in

many cases. While the cost may vary significantly depending on screens acquired, comput-

ers owned, assuming the user has absolutely nothing and purchases two small laptops with

dedicated graphics cards at 399.99 USD each, the full system would cost 2018.96 USD

sans shipping and handling. If the user were to choose a 3D capable headmount such as

the Oculus Rift, the cost would be lowered by 169.99 USD (totaling 1848.97 USD) and

stereoscopic 3D would be added [20]. For comparison, the cost of OptiTracks Motive body

tracking software alone is 2499 USD and still requires purchasing of other hardware and

requires users to wear marker spheres [21].

The Microsoft Kinect and AnthroTronix AcceleGlove were successfully combined to

manipulate a virtual environment. An example gestural modal interface was implemented

in Section 3.3 and modal control of the virtual environment was achieved. The user is able

to switch modality by changing the gesture made with the glove. The user’s alternate hand

(the hand not wearing the glove) is tracked by the Microsoft Kinect and serves as a way to

provide input appropriate to the current modality. The libraries created substantially shorten

the time for a developer to quickly engineer their own gestural interface using the same

devices. Replacing the gesture recognition algorithm is also quite accessible. A simple

interface is provided for prediction such that previously constructed gestural interfaces may

not have to be adjusted if the recognition algorithm is replaced.

The presented sample gestural modality (See Section3.3) was tried with another user

to gauge the initial impression of the interface and a small idea if the recognition of the

gesture model would remain the same user to user. Recognition worked quite well through

the user swap. The user also was able to quickly adapt to use the interface. This is another

benefit of the implementation of the VRUI tool. It allows users to create their own control

schemes for visualizations using such a modal interface without interfering with other users

control schemes. If one user finds that a gestural interface is inadequate or unnatural, they

may simply modify their own tool and have a completely new interface for the same virtual
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environment. Further studies are necessary to gauge the potential reception of this device

to a broad user base (See Section4.2).

Dr. Thomas Wischgoll and Wright State University have provided students with ac-

cess to the visualization facilities and hardware needed to fully utilize this project. As this

project is OSS, students are now able to utilize a library that helps them make gestural inter-

faces, incorporate features into class projects, research gestural interaction, or experiment

however else they deem appropriate. They may also contribute to the libraries and improve

their efficacy.

4.2 Future Research and Improvements

In this section the potential for further research will be explored. The opportunity for

additional research is present in many elements involved in modal gestural interfaces. Each

area of potential research will be accompanied by a short description. The suggested areas

for future development are broadly classified as hardware, software, and gestural interface

usability. The scope of improvements will be both this project as well as in general for

modal gestural interfaces.

4.2.1 Hardware

This project exists in part because of the shortcomings of the Microsoft Kinect. Low res-

olution images, low resolution depth sensors, and a limited field of view lead to image

analysis and inferring hand positions as well as constrained user interactions. If the hard-

ware is improved, substantially higher resolution data is provided, then it may be possible

to replace a traditional controller with a Microsoft Kinect. Hardware level implementations

of tracking algorithms may also prove fruitful.

As shown in Appendix A, the data that is retrieved from low cost accelerometers is
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noisy. While this level of noise is acceptable in many applications that is not to say that

many applications would not benefit from reduced noise and that other applications may

become feasible with reduced noise. Cheaper high quality accelerometers would certainly

be a welcome development.

4.2.2 Software

Adding a different mode that converts the values that are used for gesture recognition to

rotation invariant measurements could potentially improve the interface substantially in

terms of usability. It seems quite possible to convert the positions of the fingers to offsets

after taking into account the position of the palm sensor. Once this is done, the palm

sensor may be ignored for gesture recognition and only the fingers used as features for

SVM. As it stands, the data used is the position base data from the glove without any

such offset calculations which means that flipping the hand over while still using the same

finger gesture can potentially change the gesture. If this were successfully implemented

the resulting system could then also use the gloved hand movement data as well as that of

the associated arm from the Microsoft Kinect as further input. This would restore two hand

interactions instead of the current state where one hand is used for mode selection and the

other hand is used for manipulation with respect to the current modality.

Implementation of a filter to help reduce the noise may increase the accuracy and sta-

bility of the SVM predictions. The filter that was discussed most frequently for this purpose

was a Kalman filter as it should be robust enough to provide smoothed data while remain-

ing responsive and efficient. While smoothing out the data may reduce the sensitivity to

extremely minute movements, it must be examined if it will cause problems or not and may

be heavily dependent upon the gesture library that is being tested against.

Dynamic (temporal) hand gesture recognition has been heavily researched. Adding

an implementation for use with this project would add another modality of user input. Dy-

namic gestures could be recognized using either the Microsoft Kinect or the AnthroTronix
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AcceleGlove.

While American Sign Language (ASL) is a standardized set of gestures, their appli-

cation to virtual environments is not natural. A formal standardized set of natural gestures,

similar to those present on touch screen applications, for navigating virtual environments

would be extremely useful. If such a standard were also supplemented with data sets of

those gestures being performed it would then be much easier to perform meaningful mea-

surements on recognition systems and the usability of interfaces.

The library which was created to interact with the AcceleGlove uses an older simple

communication format, the newer advanced communication format is supported by both

the wireless and wired devices. Implementing this would create a unified communication

protocol and simplify programming level details.

The development of tools to aid in the use and creation of gestural interfaces would

also be quite useful. Displaying the user’s current modality would be an extremely helpful

aid for users. Developing tools that allowed the user to enter a modality to record new

gestures with sufficient samples for usable accuracy, regenerate the recognition model, and

then reinitialize the gestural interface and allow the user continue in the virtual environment

with their new gestures are also interesting ideas. The collection of a sufficient number of

samples as well as the optimization of model generation would be interesting research

problems.

4.2.3 Gestural Interfaces

From experiences with gestural interfaces using the Microsoft Kinect, it would be interest-

ing to see multiple studies of a significant group of users for a prolonged period of time that

are required to use a gestural interface. Often in research and media gestural interfaces are

hailed as the future for Human-Computer Interaction and replacements for the mouse and

keyboard. It would be interesting to see a study that removes the novelty and perceived ef-

fectiveness of the interface and then evaluates the users perceptions, especially quantifying
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factors such as fatigue or the potential for Repetitive Stress Injuries (RSI).
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Conclusion

The objective of this project was to provide the capability of using gestural interfaces to

manipulate virtual environments at minimal cost and with high accessibility. Using the

Microsoft Kinect as a body motion tracker and an AnthroTronix AcceleGlove as input de-

vices, the body movements of a user were used to control a gesture in a specific modality

while hand gestures were recognized as changes in modality. Through the use of this con-

sumer grade hardware and additional open source software the cost of the project was kept

at a low level. The use of readily available hardware and software also leads to high ac-

cessibility, allowing anyone to recreate such an environment and proceed to create gestural

interfaces or further the research. Using this project a gestural interface was created and

the initial suggestion is that the software provides a useful set of tools to create gestural

interfaces and that such interfaces are useful. Formal studies of the usability of specific

gestural interfaces are needed. The distinction must be made when evaluating this project,

between the libraries and software being useful versus the specific implemented gestural

interface for that test. A complete study where users compare when they think they are

making a gesture versus what the recognition system recognizes at that time may provide

a useful metric for usability. Areas for future research and improvement were discussed.

This project achieved its goals and was able to successfully integrate gestural interfaces

with a virtual environment.

38



Bibliography

[1] AnthroTronix, “Acceleglove user guide,” AnthroTronix, January 2011, version 1.1.1.

[Online]. Available: http://www.acceleglove.com/AcceleGloveUserGuide.pdf

[2] C.-C. Chang, C.-W. Hsu, and C.-J. Lin, “A practical guide to support vector

classification,” April 2010. [Online]. Available: http://www.csie.ntu.edu.tw/∼cjlin/

papers/guide/guide.pdf

[3] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,” ACM

Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–27:27, May 2011. [Online].

Available: http://doi.acm.org/10.1145/1961189.1961199

[4] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,

no. 3, pp. 273–297, 1995. [Online]. Available: http://dx.doi.org/10.1007/BF00994018

[5] F. Farhadi-Niaki, R. GhasemAghaei, and A. Arya, “Empirical study of a

vision-based depth-sensitive human-computer interaction system,” in Proceedings

of the 10th asia pacific conference on Computer human interaction, ser. APCHI

’12. New York, NY, USA: ACM, 2012, pp. 101–108. [Online]. Available:

http://doi.acm.org/10.1145/2350046.2350070

[6] R. Francese, I. Passero, and G. Tortora, “Wiimote and kinect: gestural

user interfaces add a natural third dimension to hci,” in Proceedings of the

39

http://www.acceleglove.com/AcceleGloveUserGuide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://doi.acm.org/10.1145/1961189.1961199
http://dx.doi.org/10.1007/BF00994018
http://doi.acm.org/10.1145/2350046.2350070


International Working Conference on Advanced Visual Interfaces, ser. AVI

’12. New York, NY, USA: ACM, 2012, pp. 116–123. [Online]. Available:

http://doi.acm.org/10.1145/2254556.2254580

[7] L. Hoste, B. Dumas, and B. Signer, “Speeg: a multimodal speech- and gesture-based

text input solution,” in Proceedings of the International Working Conference on

Advanced Visual Interfaces, ser. AVI ’12. New York, NY, USA: ACM, 2012, pp.

156–163. [Online]. Available: http://doi.acm.org/10.1145/2254556.2254585

[8] M. Kavakli, M. Taylor, and A. Trapeznikov, “Designing in virtual reality

(desire): a gesture-based interface,” in Proceedings of the 2nd international

conference on Digital interactive media in entertainment and arts, ser. DIMEA

’07. New York, NY, USA: ACM, 2007, pp. 131–136. [Online]. Available:

http://doi.acm.org/10.1145/1306813.1306842

[9] O. Kreylos, “Environment-independent vr development,” in Advances in Visual

Computing, ser. Lecture Notes in Computer Science, G. Bebis, R. Boyle, B. Parvin,

D. Koracin, P. Remagnino, F. Porikli, J. Peters, J. Klosowski, L. Arns, Y. Chun,

T.-M. Rhyne, and L. Monroe, Eds. Springer Berlin Heidelberg, 2008, vol. 5358, pp.

901–912. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-89639-5 86

[10] O. Kreylos, G. Bawden, T. Bernardin, M. I. Billen, E. S. Cowgill, R. D. Gold,

B. Hamann, M. Jadamec, L. H. Kellogg, O. G. Staadt, and D. Y. Sumner,

“Enabling scientific workflows in virtual reality,” in Proceedings of the 2006 ACM

international conference on Virtual reality continuum and its applications, ser.

VRCIA ’06. New York, NY, USA: ACM, 2006, pp. 155–162. [Online]. Available:

http://doi.acm.org/10.1145/1128923.1128948

[11] P. O. Kristensson, T. Nicholson, and A. Quigley, “Continuous recognition of

one-handed and two-handed gestures using 3d full-body motion tracking sensors,”

40

http://doi.acm.org/10.1145/2254556.2254580
http://doi.acm.org/10.1145/2254556.2254585
http://doi.acm.org/10.1145/1306813.1306842
http://dx.doi.org/10.1007/978-3-540-89639-5_86
http://doi.acm.org/10.1145/1128923.1128948


in Proceedings of the 2012 ACM international conference on Intelligent User

Interfaces, ser. IUI ’12. New York, NY, USA: ACM, 2012, pp. 89–92. [Online].

Available: http://doi.acm.org/10.1145/2166966.2166983

[12] Y. Li, “Hand gesture recognition using kinect,” in Software Engineering and Service

Science (ICSESS), 2012 IEEE 3rd International Conference on, 2012, pp. 196–199.

[13] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Information

Retrieval. Cambridge University Press, 2008. [Online]. Available: http:

//www-nlp.stanford.edu/IR-book/

[14] Microsoft, “Colorimageformat enumeration,” 2013. [Online]. Available: http:

//msdn.microsoft.com/en-us/library/microsoft.kinect.colorimageformat.aspx

[15] ——, “Depthimageformat enumeration,” 2013. [Online]. Available: http://msdn.

microsoft.com/en-us/library/microsoft.kinect.depthimageformat.aspx

[16] ——, “Kinect for windows sensor components and specifications,” 2013. [Online].

Available: http://msdn.microsoft.com/en-us/library/jj131033.aspx

[17] ——, “Kinect sensor,” 2013. [Online]. Available: http://msdn.microsoft.com/en-us/

library/hh438998.aspx

[18] ——, “Press image of the microsoft kinect,” 2013. [Online]. Available:

http://www.microsoft.com/en-us/news/imagegallery/products/default.aspx

[19] NewEgg, April 2013. [Online]. Available: http://www.newegg.com

[20] Oculus VR, “The oculus rift,” 2013. [Online]. Available: http://www.oculusvr.com/

[21] OptiTrack, “Motive:body unified optical tracking architecture.” April 2013. [Online].

Available: http://www.naturalpoint.com/optitrack/products/motive/body/

41

http://doi.acm.org/10.1145/2166966.2166983
http://www-nlp.stanford.edu/IR-book/
http://www-nlp.stanford.edu/IR-book/
http://msdn.microsoft.com/en-us/library/microsoft.kinect.colorimageformat.aspx
http://msdn.microsoft.com/en-us/library/microsoft.kinect.colorimageformat.aspx
http://msdn.microsoft.com/en-us/library/microsoft.kinect.depthimageformat.aspx
http://msdn.microsoft.com/en-us/library/microsoft.kinect.depthimageformat.aspx
http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://msdn.microsoft.com/en-us/library/hh438998.aspx
http://msdn.microsoft.com/en-us/library/hh438998.aspx
http://www.microsoft.com/en-us/news/imagegallery/products/default.aspx
http://www.newegg.com
http://www.oculusvr.com/
http://www.naturalpoint.com/optitrack/products/motive/body/


[22] A. M. Rahman, J. Saboune, and A. El Saddik, “Motion-path based in car

gesture control of the multimedia devices,” in Proceedings of the first ACM

international symposium on Design and analysis of intelligent vehicular networks

and applications, ser. DIVANet ’11. New York, NY, USA: ACM, 2011, pp. 69–76.

[Online]. Available: http://doi.acm.org/10.1145/2069000.2069013

[23] D. Ramirez-Giraldo, S. Molina-Giraldo, A. Alvarez-Meza, G. Daza-Santacoloma,

and G. Castellanos-Dominguez, “Kernel based hand gesture recognition using kinect

sensor,” in Image, Signal Processing, and Artificial Vision (STSIVA), 2012 XVII Sym-

posium of, 2012, pp. 158–161.

[24] Z. Ren, J. Meng, J. Yuan, and Z. Zhang, “Robust hand gesture recognition with kinect

sensor,” in Proceedings of the 19th ACM international conference on Multimedia,

ser. MM ’11. New York, NY, USA: ACM, 2011, pp. 759–760. [Online]. Available:

http://doi.acm.org/10.1145/2072298.2072443

[25] Z. Ren, J. Yuan, and Z. Zhang, “Robust hand gesture recognition based on

finger-earth mover’s distance with a commodity depth camera,” in Proceedings

of the 19th ACM international conference on Multimedia, ser. MM ’11.

New York, NY, USA: ACM, 2011, pp. 1093–1096. [Online]. Available:

http://doi.acm.org/10.1145/2072298.2071946

[26] E. Suma, B. Lange, A. Rizzo, D. Krum, and M. Bolas, “Faast: The flexible action and

articulated skeleton toolkit,” in Virtual Reality Conference (VR), 2011 IEEE, 2011,

pp. 247–248.

[27] The Gadget Show, “Ultimate battlefield 3 simulator - build & test (full video) - the

gadget show,” October 2011. [Online]. Available: http://youtu.be/eg8Bh5iI2WY

42

http://doi.acm.org/10.1145/2069000.2069013
http://doi.acm.org/10.1145/2072298.2072443
http://doi.acm.org/10.1145/2072298.2071946
http://youtu.be/eg8Bh5iI2WY


Appendix A

A.1 Noise and Drift 3D Graphs: All Sensors

Figure A.1: Graph of all sensors after a time period, colored by sample number (time).

(a) 10 minutes
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(b) 60 minutes

(c) 8 hours
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Figure A.1: Graph of all sensors after a time period, colored by sensor.

(a) 10 minutes

(b) 60 minutes
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(c) 8 hours
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Appendix B

B.1 Noise and Drift 2D Graphs: 8 hours elapsed

Figure B.1: Graph of thumb data over 8 hours

(a) Graph of thumb data over 8 hours
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(b) Graph of thumb x-axis data over 8 hours

(c) Graph of thumb y-axis data over 8 hours
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(d) Graph of thumb z-axis data over 8 hours
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Figure B.2: Graph of index finger data over 8 hours

(a) Graph of index finger data over 8 hours

(b) Graph of index finger x-axis data over 8 hours
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(c) Graph of index finger y-axis data over 8 hours

(d) Graph of index finger z-axis data over 8 hours
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Figure B.3: Graph of middle finger data over 8 hours

(a) Graph of middle finger data over 8 hours

(b) Graph of middle finger x-axis data over 8 hours
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(c) Graph of middle finger y-axis data over 8 hours

(d) Graph of middle finger z-axis data over 8 hours
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Figure B.4: Graph of ring finger data over 8 hours

(a) Graph of ring finger data over 8 hours

(b) Graph of ring finger x-axis data over 8 hours
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(c) Graph of ring finger y-axis data over 8 hours

(d) Graph of ring finger z-axis data over 8 hours
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Figure B.5: Graph of pinky finger data over 8 hours

(a) Graph of pinky finger data over 8 hours

(b) Graph of pinky finger x-axis data over 8 hours
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(c) Graph of pinky finger y-axis data over 8 hours

(d) Graph of pinky finger z-axis data over 8 hours
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Figure B.6: Graph of palm data over 8 hours

(a) Graph of palm data over 8 hours

(b) Graph of palm x-axis data over 8 hours
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(c) Graph of palm y-axis data over 8 hours

(d) Graph of palm z-axis data over 8 hours
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