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ABSTRACT 

Billman, Steven John. M.S.Egr. , Department of Electrical Engineering, Wright State 
University, 2011. Design of a Low Power and Area Efficient Digital Down Converter 
and SINC Filter in CMOS 90-nm Technology. 

 

A digital down converter (DDC) typically receives a digital input that has been 

generated by an analog to digital converter (ADC) operating at intermediate frequency 

(IF) in an RF receiver chain.  The function of the DDC is to down convert the IF signal to 

baseband in phase (I) and quadrature (Q) signals and is a very important component in 

wireless receivers. A  Digital Down Converter (DDC) is developed based on square wave 

local oscillators facilitating a multiplier-less implementation with no constraints on the 

sampling frequency.   The DDC includes a pseudo multi-rate SINC low pass filter which 

exhibits better performance compared to the standard multi-stage SINC filter. The pseudo 

multi-rate SINC filter can be implemented with a unique cascaded integrator comb (CIC) 

filter to obtain the same improved performance.  A 90nm CMOS design takes 8 bit inputs 

centered at 25 MHz with a bandwidth of 30 MHz and is clocked at 400MHz.  The design 

demonstrates a flexible, very low power/size DDC architecture for single chip digital 

receiver applications. The layout area is 333.485um x 617.6um and the power 

consumption is 12.54mW when clocked at 400MHz. 
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1 Introduction 

An RF receiver chain is comprised of many subcomponents. The standard chain 

starts with the antenna and then is connected to a band pass filter (BPF) to filter out the 

noise not located within the bandwidth of the signal. The signal is then passed through a 

low noise amplifier (LNA) in order to boost the signal while limiting the noise output. 

Next the RF signal is multiplied by a local oscillator (LO) to down convert the signal to 

an intermediate frequency (IF). The signal is then sent through another band pass filter 

which filters out the higher frequency caused by the multiplication of the RF frequency. 

Once the frequency has been reduced to this lower IF frequency, an analog to digital 

converter (ADC) can accurately convert the IF analog signal into a digital signal. This IF 

signal is passed through a digital down converter (DDC) which converts the IF signal to 

baseband. The complex output which contains the in phase (I) and quadrature (Q) signals 

is then passed through a digital low pass filter which will filter out the high frequency 

caused by the DDC and leave only the baseband signal. The block diagram of this design 

can be seen in Figure 1.1 [12]. 

LNA

BP
Filter1

ADC

Down
Mixer1

BP
Filter2

Local
Oscillator1

DDC

Local
Oscillator2

LPF

LPF

I

Q

 

Figure 1.1 RF Receiver Chain 

Technology has advanced enough to have the fIF signal converted to a digital 

signal using an ADC. Using a DDC to take the fIF digital signal and convert it to 
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baseband allows for low powered and highly accurate designs to be implemented. 

Eventually the goal is to take the analog fRF coming in from the antenna and convert it 

directly to a digital signal using software in order to save space and power. In this case, 

the entire transceiver would be digital. However, current speeds restrict us to using 

analog designs to bring fRF down to fIF and then converting the signal to digital [7]. 

A DDC typically receives a digital input that has been generated by an ADC 

operating at an IF in an RF receiver chain.  The function of the DDC is to down convert 

the IF signal to baseband in phase (I) and quadrature (Q) signals as shown in the block 

diagram in Figure 1.2 [1,2,3,4,5]. This is accomplished by multiplying the incoming IF 

signal centered at fIF by in phase and quadrature sinusoid oscillator signals with 

frequency equal to fIF. The outputs of the complex multiplier are I and Q signals centered 

at DC and at 2fIF. The DDC includes low pass filters in the I and Q output paths to reject 

the signal centered at 2fIF and pass the signal centered at DC with the desired bandwidth. 

SIN

ADC

Complex Sinusoid
Generator

High Decimation
Filter

High Decimation
Filter

Low Pass FIR Filter

Low Pass FIR Filter

COS

I

Q

IF

 

Figure 1.2 A DDC showing the IF signal coming out of the ADC being multiplied by 
the Complex Sinusoid Generator and passed through the High Decimation Filters 

and the Low Pass FIR Filters resulting in the I and Q output. 

There are numerous applications for DDCs including software radios, smart 

antennas, cellular base stations, channelized receivers, and spectrum analysis [1,2,3,4]. 
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Sophisticated single chip DDC implementations are available which include complex 

signal synthesizers to generate the I and Q local oscillator (LO) signals in continuous 

wave (CW), frequency hopped, and chirped formats [3,4]. These commercially available 

chips provide the flexibility and processing power to meet a variety of applications; 

however, they are not suited for embedding in single chip solutions such as single chip 

software receiver or in an integrated single chip multichannel smart antenna receiver.  

FPGA designs of DDCs have the advantage of being reprogrammable and have 

the ease of designs being relatively uncomplicated to implement. However, FPGAs 

require a large amount of power and space for their designs. Some designs operate 

around 400mW [8]. This is not ideal for a very low powered chip design. So for small 

designs that require a very low power, the FPGA approach for the DDC is not 

recommended. 

A common approach for filter design is to design the filter in Matlab and multiply 

the signal by coefficients given. However, multiplication is a very expensive resource 

when it comes to power and area in a digital design. Because of this, there has been a lot 

of research done on how to make the multipliers smaller or how to approach the 

multiplication differently. Below in Figure 1.3, is the design of a DDC that uses 

coefficients as a filter. The design requires n multipliers for n coefficients.  
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h[n] h[n-1] h[1] h[0]

z^(-1) z^(-1) z^(-1) z^(-1)

IF input to DDC

OUTPUT

 

Figure 1.3 Low pass FIR Filter using coefficients 

Much discussion has been made on how to optimize the design of multiplier 

blocks for the coefficients of FIR filters. This has really advanced the size and speed of 

designing FIR filters using coefficients. [9] 

One approach to using coefficients for a FIR filter is to take the multiplication 

blocks and create one block and optimize it using graph representation. Graph 

representation starts with a one on the left hand side and uses vectors with associated 

positive or negative powers of two to calculate the desired integer. There can be multiple 

integers between the one located on the left hand side and the final value on the right 

hand side. The number associated with each vector is multiplied by the integer the vector 

is coming from. The integers throughout the graph, including the final value are the sum 

of the product of the end points of the vectors. Figure 1.4 shows an example of 

calculating 35 using graph representation. [10] This paper introduces the Bull-Horrocks 

algorithm which is used to reduce the complexity of the multiplier block. Another 

common type of algorithm used to simplify the multiplexer block is the n-dimensional 

reduced adder graph (RAGn) [9].  
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Figure 1.4 Graph Representation example for calculating 35 

 

Another way to optimize coefficients is to represent them using canonical signed 

digits (CSD). This representation uses 33% more zeros than two’s compliment or binary 

and therefore requires much less addition than the standard two’s complement or binary 

representation of numbers. CSD uses a ternery system. The three values a digit can have 

are 1, 0, or  -1. Also, a zero has to follow any non-zero number. This results in many 

more zeros representing the values. This brings obvious advantages when multiplying 

since a multiplication by zero doesn’t have to be done. One of the disadvantages to CSD 

is that one more bit is required to represent a number than standard binary. For example, 

if 7 were to be represented in binary, only three bits would be needed (111). However, if 

7 were to be represented in CSD, four bits would be required since consecutive 1s are not 

allowed. So using CSD seven would be 100-1 (23 + 0 + 0 – 20) which only has two 

nonzero values associated with it, compared to the three nonzero values used in binary, 
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but requires four bits to represent the number instead of three. Below in Table 1 is the 

comparison between binary and CSD values with their corresponding decimal values 

Table 1 Table showing binary and CSD values  

Dec and Bin  CSD and Dec 

7  111  100‐1  7 

6  110  10‐10  6 

5  101  0101  5 

4  100  0100  4 

3  011  010‐1  3 

2  010  0010  2 

1  001  0001  1 

0  000  0000  0 

Using Canoic signed Digit representation, an N-tap filter can be designed by 

using powers of two for the taps of the filter. This requires no multiplication and only 

requires additions, subtractions, and bit shifts. In this paper [11] 36 adders and 24 delay 

blocks were required for the 25-tap filter. 116 adders and 59 delay blocks were required 

for the 60 tap filter. The design discussed in this thesis uses 28 adders and 30 delay 

blocks for the equivalent of a 25 tap filter.  The paper discusses how to faster search for 

optimal CSD values and compares them to the ideal values.  The CSD values that the 

algorithm finds has minimal losses in performance for fewer adders required in the 

design. One of the problems with using CSD for filters is that due to the amount of 

shifting required, the bit size of the signals has to drastically increase in order to fully 

support the design. This is easily implemented when using an FPGA or a software based 

design, however implementing this in schematic or on an ASIC is difficult. An increase 

in bits by a factor of three for a signal can cause a significant increase in size and can 

increase the complexity of routing. 
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Cascaded integrator comb (CIC) filters use delays and multi-rate processing to 

create a low pass filter. The CIC filter does not require any multipliers which is very 

beneficial in keeping the design low powered and small. The design of a CIC filter has 

two sections, comb stages and integrator stages. The order of the two stages does not 

matter. Each comb stage takes a previously delayed signal and subtracts it from the 

current signal. There are N stages in the comb section. The N comb stages have a sample 

frequency of  . For each integrator stage, the signal is summed by the delay of the 

previous sum. As with the comb section, there are N stages of the integrator section. The 

sample rate of the integrator stages is . The design of the CIC filter can be seen in 

Figure 1.5 where the integrator section comes before the comb section and it is a 4 stage 

filter. A CIC filter design has a frequency response that resembles a sinc function as seen 

in Figure 1.6. CIC filters have specific roll off responses for the pass band. This can be a 

disadvantage compared to other filters, since other FIR filters can be designed to have 

any roll off that is necessary. Also, CIC filters have high peaks after the initial drop off in 

the frequency response which causes the higher frequencies to not be filtered out as well 

as seen in Figure 1.6. Cascading this design makes the stop band lower since the high 

frequency peaks are lowered, but it decreases the pass band since the roll off is steeper.  

A SINC filter has the same frequency response as a CIC filter but a SINC filter averages 

inputs instead of decimating the sample rate. Since it can be difficult to decimate 

sampling frequency to certain values, a SINC filter can be valuable. By cascading SINC 

filters each with different design values, a more ideal filter with less peaks at high 

frequencies and a better roll off can be designed and is discussed and implemented in this 

thesis.  
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the ADC which provides flexibility for meeting bandwidth and filtering requirements for 

various embedded applications.  

The design in this thesis also includes a unique pseudo multi-rate SINC filter that 

has better performance than the standard cascaded multi-stage SINC filter [5]. Other filter 

designs that use coefficients are not optimal for a low power and space ASIC design. 

These filters rely on large bit shifts not being costly in order to work well in design which 

is not necessarily the case on an ASIC. The unique pseudo multi-rate SINC filter in this 

thesis builds upon the design of the cascaded SINC filter and optimizes it using very low 

power and low area. It is designed and implemented in CMOS 90-nm technology. 
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2 Digital Frequency Down Converter 

2.1 Architecture 

The block diagram of the multiplier-less DDC architecture is shown in Figure 2.1. 

As can be seen, the LO sinusoidal generator is replaced by a square wave LO.  If the LO 

is a sine wave, then restricting the sampling frequency to be 4fIF results in a cycle of the I 

and Q LO signals being represented by 1,0,-1,0 and 0,1,0,-1 respectively. This design is 

shown in Figure 2.2. If higher sampling frequencies are desired, the values of the I and Q 

LO signals must be generated with a sinusoidal synthesizer to produce the required 

values at the sample times and the DDC must execute complex multiplies.  For this 

implementation, the LO signals are square waves, so if the sampling frequency is 4fIF, 

then one cycle of the I and Q LO signals are represented by 1,1,0,0 and 1,0,0,1 

respectively.  If it is desired to have a sampling frequency equal to 16fIF, then one cycle 

of the I and Q LO signals are represented by 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0, 0 and 

1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1.  Thus, the sampling frequency of the DDC can be 

increased relative to the IF frequency while performing the DDC operation with only 

inverters and multiplexers.  
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 sin ∗ sin sin sin	   (1) 

A square wave of frequency F has frequency components located at F, 3F, 5F, 

7F, … with magnitudes of B, B/3, B/5, B/7,… .For the square wave LO, the output of the 

digital mixer will have frequency components centered at fLO-fIF, fLO+fIF, 3fLO-fIF, 

3fLO+fIF, 5fLO-fIF, 5fLO+fIF, …, due to the harmonics of the square wave at 3fLO, 5fLO, …  

So if fIF = fLO, then for the sine wave LO, the DDC output is the desired baseband signal 

centered at DC and the sum component centered at 2fIF. However, for the square wave LO,  

the DDC output signals are centered at baseband DC, 2fIF, 4fIF, 6fIF, …, with the 

baseband signal bandwidth of fbw. 

2.2 Testing	

2.2.1 Matlab	

Figure 2.3 shows the DDC designed by having the fIF signal multiplied by the LO. 

The figure has been designed in Matlab and is used to simulate the DDC. Since fIF is 

located at 25MHz with a bandwidth of +/- 15MHz, the lowest possible input frequency to 

the DDC is 10 MHz and it is the first frequency simulated. The time domain results can 

be seen in Figure 2.4 and the frequency domain results can be seen in Figure 2.5.  From 

the time domain, it is difficult to tell what has happened to the signal. However, looking 

at the frequency domain it is clear that there is a strong signal at 15MHz, which is the 

difference between the 25MHz local oscillator and 10MHz input frequency, and at 

35MHz, which is the sum of the 25MHz oscillator and the 10MHz input frequency.  This 

is the worst case scenario for the DDC and filter due to the fact that it has useful 

information located at 15MHz and has to get rid of the signal only 20MHz higher at 

35MHz.  
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Figure 2.6 and Figure 2.7 are the time and frequency domain of the digital 

frequency down converter with a 25MHz input respectively. The output of these signals 

is located at 0Hz and 50MHz along with residual higher frequencies. However, it can be 

seen in the frequency response in Figure 2.7 that the power in at 0Hz is very low. The 

time domain in Figure 2.6 shows that the signal is only oscillating between 1 and 0. The 

input signal is from 1 to -1 so the output should also be from 1 to -1, similar to both 

Figure 2.4 and Figure 2.8. The reason it only oscillates from 1 to 0 is because there is a 

0Hz frequency in the signal that does not bring the higher frequency down to -1, instead 

the signal stays at a constant oscillation from 1 to 0. Since FFTs do not check whether or 

not a signal goes from 1 to -1 and only determines the oscillation of a signal, the 

frequency response does not show the full power located at 0Hz. The filter will easily 

filter out the signal at 50MHz since the stop band is at 35MHz. This will result in a DC 

signal being output from the filter. 

Figure 2.8 and Figure 2.9 show the time and frequency domain of the DDC with a 

40 MHz input. This simulates the highest input frequency (25MHz + 15MHz = 40MHz). 

The results show this also pushes the boundaries of the pass band for the filter, but the 

spike at 35MHz is a residual frequency due to the square wave LO and actually comes 

from  the 3fLO-fIR (75MHz- 40MH) = 35MHz and is therefore smaller than the 35 MHz 

that needs to be filtered with a 10 MHz input. The sum of the 40 MHz input and 25 MHz 

oscillator is located at 65 MHz and will easily be filtered out since it is well above the 

stop band. The useful information is located at 40MHz – 25MHz = 15MHz. 
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2.2.2 Schematic	

With the simulations complete in Matlab, the DDC is designed as a schematic in 

Cadence by using CMOS 90m technology. The input signal has eight bits, and is standard 

binary, however the output is converted to two’s complement before it is passed through 

the filter, the reason for this will be discussed later in the thesis. The DDC is designed to 

invert the input signal or let the input signal pass through, based on the state of the 25 

MHz clock that is used. Since the input signal is centered or offset at 128 out of 256 on 

the incoming 8 bits, inverting all of the bits will simply flip or invert the incoming signal 

around the offset.  Using a multiplexer and connecting the 25 MHz clock to the select pin 

of the multiplexer, a system can be designed for each bit where either the bit is passed 

through the multiplexer which in essence multiplies the bit by one, or it inverts the bit 

first and then passes the bit through the multiplexer which multiplies the bit by -1. The 

top level schematic design for this 8 bit DDC is given in Figure 2.10 which includes two 

8 to four multiplexers and eight inverters. The two select signals come from the same 

source which is a 25 MHz square wave.    
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system requires 8 bits instead of a single analog signal, so a simple sine wave input that is 

typically used in Cadence does not work. 10 MHz, 25 MHz, and 40 MHz signals are 

generated by Matlab and converted into eight txt files where each file represents each bit.. 

Figure 2.11 and Figure 2.12 show the time and frequency domain of the schematic with 

an input of 10MHz. Figure 2.11 and Figure 2.12 demonstrate that both the schematic and 

layout simulations are very accurate compared to the Matlab simulations. The next two 

figures, Figure 2.13 and Figure 2.14 show the results for the layout designs of the DDC 

with the same 10MHz input. Since the layout design is also digital, very similar results to 

the schematic design is expected and achieved. Figure 2.15through Figure 2.22 show the 

time and frequency domains of the output when the schematic and layout have an input 

of 25MHz and 40MHz. These results also coincide with the results from Matlab.  
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signal and the 25MHz signal are input into an XOR gate and the output is a 25MHz 

signal with a 90 degree phase shift. Figure 2.23 shows the result of the XOR of the 50 

MHz signal and 25 MHz signal.  Later on in the thesis the output for the full DDC and 

SINC Filter are shown with both the I and Q output signals. The XOR Q signal is used as 

the LO for the DDC with the Q output.  

25MHz
I

50MHz

XOR
Q  

Figure 2.23 Design to use fLO and have create the Q values. The XOR is the same 
frequency as the 25MHz I signal but it is shifted 90 degrees to give the Q signal.   

2.3 Layout 

The layout for the DDC has a very small area, since the DDC is a combination of 

only inverters and multiplexers that down converts the frequency of the incoming signal. 

The layout is designed to have the inputs on the left and the outputs on the right for easy 

data flow from left to right.  The power consumption of the DDC with the clock 

frequency at 25MHz and the input frequency operating at 400MHz is 4.57uW. The size 

of the layout for the digital mixer is 3.735um x 118.745um. The elements for the DDC 

also were designed so that the vdd and vss lines are compatible with the layout elements 

of the low pass filter.  
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3 Digital Filter 

3.1 Requirements 

The low pass digital filter is designed to allow the signal at baseband to pass 

through but to stop the higher frequencies. In this design, a specific implementation for a 

smart antenna requires fIF=25MHz with a signal bandwidth of +/-15MHz (30MHz). The 

worst case input signal is when the input is 10MHz (25MHz–15MHz). This results in an 

output signal with frequencies located at 15MHz (25MHz–10MHz) and 35MHz 

(25MHz+10MHz).  The fIF signal has a bandwidth of 30MHz so the pass band is at 

15MHz and a stop band at 35MHz. This allows for the baseband signal to pass through 

without any losses and eliminates all of the high frequency signals created by the DDC 

that will be present in the down converted signal.  

3.2 Design 

With a square wave LO, we would expect to see the digital outputs centered at 

DC, 50MHz, 100MHz, 150MHz, … with bandwidths of +/- 15MHz. If we give an IF 

input of 10MHz we can expect a spectrum with outputs at 15MHz, 35MHz, 65MHz, 

85MHz, 115MHz, … with the baseband signal at 15MHz.  The 15MHz IF input results in 

the undesired harmonic having the lowest frequency of 35MHz, so the stop band 

frequency for the low pass filter design is set at 35MHz for this example.  The pass band 

frequency is set at 15MHz to give the desired bandwidth of 30MHz centered at DC. For 

this application, the sampling frequency is set at 16fIF; however, with the square wave 

oscillator, the sampling frequency can be set to any value up to the maximum frequency 

of the ADC. As will be discussed below, if the sampling frequency is constrained to 4fIF, 
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then the desired stop band frequency of 35MHz can not be met with the use of multiplier-

less cascaded integrator comb (CIC) or FIR SINC filters. 

For this implementation, we need a LPF with pass band of 15MHz and stop band 

at 35MHz with stop band attenuation of at least 30dB. The low pass filter is typically 

implemented with a CIC filter or cascaded FIR SINC averaging filter [3].  A four stage 

CIC filter and four stage FIR averaging filter are shown in Figure 3.1 and Figure 3.2. The 

transfer function for both filters is given by 

∑  (2) 

In Equation 2, D represents the decimation of the sampling frequency for a CIC 

filter or the number of delays in a SINC filter. N represents the number of stages of the 

filter. The filters in Figure 3.1 and Figure 3.2 have N=4 and D=10. The CIC filter in 

Figure 3.1 does not decimate the sampling frequency after the integrator stages on top 

and prior to the comb stages on the bottom since the application required no decimation.  

The CIC filter can be implemented with a decimation of fs/D for the combs. The 

magnitude of the frequency response for both filters is given by 

| |  (3) 

Both filters have nulls at each multiple of fs/D.  For our implementation example, 

we desire a stop band frequency of 35MHz, so with a sampling frequency of 400MHz, 

we could implement a filter with D=10 to give a first null at 40MHz. With N=4, then the 

frequency response that is obtained is shown in Figure 3.3. If the sampling frequency was 

constrained to 4fIF (100MHz), the filters would have nulls at 100MHz/D, which does not 
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10dB down at
15MHz

40dB down
at 50MHz

 

Figure 3.3 Frequency Response for CIC or FIR SINC Filter (D=10 and N=4) 

It is noted from Figure 3.3 that the stop band attenuation does not reach the 

desired 35dB for this case (e.g. 50MHz). Instead it has a stop band of (40dB-10dB) 30dB. 

The response can be improved by implementing a pseudo multi-rate CIC or FIR 

averaging filter with four cascaded sections with D1=10, D2=9, D3=7, and D4=6.  The 

transfer function is given by 

 (4) 

The magnitude frequency response is 

| | 	

	

	

	

	

	

	

	
 (5) 

Changing the values of D for each comb of the CIC filter or for each stage of the 

FIR filter changes the null frequencies to fs/D1, fs/D2, fs/D3, and fs/D4, which has the 

effect of changing the sampling frequency. The frequency response obtained for the 

modified filters is shown in Figure 3.4. 
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6dB down at
15MHz

45dB down
at 35MHz

Linear Phase
Response

 

Figure 3.4 Frequency Response (top) and phase (bottom) for Pseudo Multi-rate 
SINC Filter with Four Cascaded Sections 

It is seen from Figure 3.4(top) that the desired stop band attenuation of about 

39dB is obtained and also that the linear phase response (bottom) is maintained in the 

pass band and even just past the stop band (40MHz).  It is noted that the droop in the pass 

band of 15MHz is 6dB for the Pseudo Multi-rate SINC Filter Figure 3.4 compared to 

10dB for the standard CIC Figure 3.3 or standard SINC averaging filter with D=10 and 

N=4. Thus the FIR compensation filter, which would be added for most applications to 
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3.3 Testing	

3.3.1 Matlab	

One of the strategies in picking the D values for the SINC filters is to try to 

eliminate the stop band peaks from the previous filter by choosing a D value that has 

zeros where the previous filter had peaks. From Figure 3.6 it can be seen that the 10 delay 

filter is a pass filter for 15MHz but once it gets to 35MHz filter it has gotten close to the 

null located at fs/D = 400MHz/10 = 40MHz in the frequency response. The next filter in 

Figure 3.7 has 9 delays and has a larger pass band than the first filter. This is not a 

problem because the 10 delay filter will filter out the stop band. The second filter’s null 

position is located at 400MHz/9 = 44.44MHz which is slightly higher than the null of the 

first filter and works to cancel out part of the peaks of the first filter. Figure 3.8 shows the 

7 delay SINC filter. It has a higher frequency for its first null than the 9 delay filter 

located at 400MHz/7 = 57.14MHz which contributes to canceling out the peaks in the 

first filter. Figure 3.9 shows the frequency response of the final filter of the four cascaded 

SINC filters, the 6 delay SINC filter. This filter has a higher frequency for its first null 

than the first two filters, yet is still at a lower frequency than the second null of the first 

10 delay filter. The first null of the 6 delay filter is located at 400MHz/6 = 66.7MHz. 

These filters combine together to get rid of all of the resonating peaks in the filters 

besides the main low pass area. The final filter response in Matlab shown in Figure 3.10 

makes it clear that the residual peaks in the SINC filters have been flattened out and that 

the pass band and stop band are close to 50 dB apart.  
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system is not fast enough for the signal to propagate through the entire system in one 

clock cycle. The registers in the design cause an output delay of 46 clock cycles. 

However, the minimum amount of delay, assuming that the signal took no time to 

propagate through the adders, would be 32 since the SINC filter requires delays in order 

to operate. So pipelining the system introduces a delay in the system by 14 clock cycles 

which is 35ns with the 400MHz clock.  

The filter design uses two’s complement to represent the signal. Using two’s 

complement instead of standard binary, where all values are positive numbers, allows 

division or multiplication while keeping the center of the signal constant. If all positive 

bits are used, there is an arbitrary offset of the signal. This causes a division or 

multiplication to also divide or multiply the offset of the signal and thus moves the signal. 

However, when two’s compliment is used, the signal is centered at zero and a divide or 

multiply does not move the signal’s offset, it only affects the size of the signal. The input 

bits come in as standard binary and have to be converted to two’s compliment. In order to 

do this, the most significant bit is flipped. Table 2 is a three bit example of both binary 

numbers and two’s complement numbers with the associated decimal representation. As 

can be seen by referencing Table 2, when the MSB of a binary bit is flipped and the 

number is then represented in two’s compliment, zero is then moved to the middle of the 

numbers represented. Since the amount of numbers represented by bits is always even, (2, 

4, 8, 16….) zero is actually half a bit higher than the middle of the bits represented. This 

is not a problem with eight bits since a half bit shift is only 0.2% of the 256 bits 

represented.  
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Table 2 Representation of Binary and Two’s complement compared by flipping the 
MSB of the binary bit.  

Dec and Bin Two's and Dec 
7 111 011 3 
6 110 010 2 
5 101 001 1 
4 100 000 0 
3 011 111 -1 
2 010 110 -2 
1 001 101 -3 
0 000 100 -4 

 

A clock tree was designed so that the clock does not have a significant load on it. 

This was done by having an inverter drive four inverters and have the size of the inverters 

increase throughout the fan out. The inverters were spread out to drive equal loads as well 

as to have similar distance from the origin of the clock signal in order to maintain a 

consistent clock signal throughout the design. 

Testing the schematic to see the frequency response is very difficult due to the 

fact that the design uses an 8 bit input. Standard procedures for testing the frequency 

response in cadence use analog signals. Because of this there is no frequency response 

plot for the filter design in schematic. Instead the 10MHz frequency that was passed 

through the DDC is used to test the filter. The design used can be seen in Figure 3.12 

which is also the final schematic design of the system shown later in Figure 3.35. This 

will show the worst case scenario for the DDC and SINC filter combination since the two 

strongest frequencies that are output from the DDC are 15MHz and 35MHz. The 15MHz 

is on the edge of the pass band of the filter and the 35MHz is right at the stop band for the 

filter. The time domain result can be seen in Figure 3.13. A clear sine wave can be seen 
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to be inserted throughout each of the filters. The clock drivers are placed close to the 

location of the blocks which they need to drive. The size of the 10-delay filter is 

82.325um x 296.645um. The size of the 9-delay filter is 65.93um x 296.645um. The size 

of the 7-delay filter is 54.635um x 296.645um. The size of the 6-delay filter is 52.93um x 

302.98um. The schematic and layout of each of the SINC filters can be seen in Figure 

3.30 through Figure 3.34. The schematic designs are all individual figures while the 

layouts have been all placed side by side in one figure. The placement of the blocks in the 

layout is similar to where they are placed in the schematic design.  
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4 System	Analysis	
 

The SINC filter uses fewer adders and delay blocks than other designs such as a 

FIR filter using coefficients. When using Matlab’s filter design tool to create coefficients, 

the SINC filter discusses in this thesis would require 25 taps if it were a coefficient filter. 

An FIR filter using coefficients with 25 taps represented by CSD was discussed in the 

introduction and required 36 adders and 24 delay blocks (registers). The SINC filter 

designed in this thesis uses 28 adders and 30 registers. Since registers and adders require 

nearly the same amount of power and area they can be counted as an equal expense and 

the SINC filter requires two less blocks than the coefficient design. Also, the SINC filter 

does not have any complex routing compared to large shifts required in filters using 

coefficients. The ability to have such a low power, small area filter, allows the filter to be 

implemented on any ASIC chip without having space or heat be an issue is very useful. 

This design is very specific to its pass band and stop band using the 400MHz sampling 

frequency. However, the same idea for the design can be easily implemented for other 

filter specifications.  

Most filters are designed to have the pass band only down 3dB and the stop band 

down closer to 60dB. One of the reasons that this filter does not have ideal pass band or 

stop band results is because the original design was for an input with a 24MHz bandwidth 

instead of a 30MHz bandwidth. With these specifications the filter performs optimally 

and has a 3dB pass band and a 60dB stop band when simulated in Matlab. If the filter in 

this thesis was redesigned specifically for the current specifications required, there would 
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probably be a different number of stages and each stage would have different values in 

order to have the stop band and pass band be more ideal.  

The schematic frequency response for the filter gives a dynamic range of 34dB 

while the ideal case shown in the Matlab design shows a dynamic range of 39dB. The 

change in dynamic range can be attributed to two things. The simulation in Matlab uses 

an ideal sine wave to represent the IF signal. The actual implementation in Cadence uses 

an 8-bit wave. The other reason there is a difference in the dynamic range is because of 

the truncation of the LSB throughout the filter implementation. The value is not being 

represented as a bit value in Matlab so it does not need to truncate any values when 

adding to keep an 8-bit system throughout the design. The combination of these two 

differences between the Matlab and Cadence design account for the difference in the 

dynamic range of the signals.  
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5 Conclusion	

In any modern RF receiver chain, a DDC and digital low pass filter are necessary. 

Designing these systems to be low powered and low area is important in advancing 

technology. The DDC design described in this thesis uses a square wave as the LO in 

order to minimize power and area. Using a square wave in the design also gives the 

advantage of easily producing an I and Q signal by delaying the square wave by 90 

degrees. The characteristic of a DDC produce high frequency outputs that need to be 

filtered out. This means a low pass filters is required. Low pass filters commonly use 

multipliers which are a very expensive. The design of the SINC filter in this thesis is 

based off of a CIC filter is multiplier-less. The cascaded SINC filter uses only adders and 

registers and is specifically designed so that each stage of the filter compliments the other 

stages. The combination of both the DDC and SINC filter is used to take the digital IF 

signal from the ADC and produce two baseband signals, I and Q.  

The design and implementation of the efficient DDC and SINC filter discussed in 

this thesis consumes very low power, 12.54mW at 400MHz and has a total area of 

333.485um x 617.6um. The combination of these two convert the IF signal to a baseband 

signal and stop any higher frequencies from being output. The layout of the design is 

small and can be easily implemented behind an ADC in an RF receiver chain. The ability 

to have such a low power and small area DDC and filter design allows for an ASIC to 

contain a significant portion of the RF receiver chain all on one chip.  

The DDC is extremely small 3.735um x 118.745um. The implementation is also 

very dynamic, since the design can use any frequency up to the sampling frequency of the 

system as its local oscillator. The square wave design does not inhibit the application at 
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all since all of the harmonics that come from the square wave are located outside of the 

stop band of the filter. Also, the square wave design makes the I and Q signals very easy 

to generate.  

The design of both the DDC and SINC filter is not only limited to ASIC 

implementations but also can be implemented both in FPGAs and in software designs as 

well. The low power and small area implementation of the DDC and SINC filter is very 

useful as it is an important component in any RF receiver chain. 
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6 Future	Work	

The SINC filter designed in this thesis is very specific to the requirements needed 

in the design. An algorithm could be designed to calculate what specific values and what 

order of filter are needed to match the requirements for a different system. This algorithm 

would be able to take in pass band, stop band, and sample frequency in order to calculate 

the filter values needed for the design.   

A compensation filter could be designed to raise the pass band to the standard 

3dB instead of the 6dB that the current filter has.  

The entire design has been implemented in layout using CMOS 90nm technology 

and fabricated. However, since the DDC and filter design is part of a larger system the 

DDC and filter responses can not be tested directly. Future work could include 

fabricating a chip that only contains the DDC and filter on it in order to be able to test the 

design.   
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