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ABSTRACT 

Cvetkov, T.L. Ph.D., Biomedical Sciences Ph.D. Program, Wright State University, 

2010. Cytochrome c Oxidase from Rhodobacter sphaeroides: Oligomeric Structure in the 

Phospholipid Bilayer and the Structural and Functional Effects of a C-Terminal 

Truncation in Subunit III. 

 

Cytochrome c oxidase (COX) of the mitochondrial electron transport chain 

catalyzes the reduction of oxygen to water while concomitantly translocating protons 

across the inner mitochondrial membrane. This two part dissertation is a structural and 

functional investigation of COX using the bacterial model system from Rhodobacter 

sphaeroides (R.sph.).  

First, the oligomeric structure of R.sph. COX within the lipid bilayer was 

investigated using discontinuous sucrose gradient ultracentrifugation. Utilizing this 

technique, liposomes containing R.sph. COX (pCOV) were separated from liposomes 

lacking enzyme (COV). The net buffering capacity and degree of light scattering per 

COX molecule were reduced in pCOVs, making them well suited for low buffer 

spectroscopic studies. Also, pCOVs maintained high oxygen reduction and proton 

pumping activities relative to COVs, indicating minimal damage induced by the 

centrifugation process. Quantitative lipid and protein concentrations were used to 

estimate the number of COX molecules per vesicle in the pCOVs. There was only one 

R.sph. COX molecule per vesicle, indicating that within the lipid bilayer, R.sph. COX 

exists in the monomeric state in contrast to the bovine enzyme which is dimeric. As a 

monomer, therefore, R.sph. COX is capable of maximal electron transfer and proton 

pumping efficiency. 
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Second, the structural and functional effects of a c-terminal subunit III truncation 

were characterized in R.sph. in order to gain insight into the critical role played by this 

subunit in proper COX functioning. The mutation was modeled after a human 

mitochondrial disease mutation which genetically truncates subunit III after the third of 

its seven helices (114 COX). In R.sph. cells,114 COX had lower expression levels 

and impeded rates of COX assembly. Altered levels of native in vivo processing of 

subunits II and IV were observed in 114 COX and in COX which had subunit III 

genetically removed (I-II COX). The truncated subunit III was incorporated into the COX 

complex with at least 70% stoichiometry and was subject to proteolytic processing at a 

specific cleavage site. Prior to enzymatic turnover induced inactivation, the proton 

pumping and oxygen reduction activities of 114 COX were half that of wildtype and 

equivalent to I-II COX at physiological pH. 114 and I-II COX had similar catalytic 

lifetimes in detergent micelle, but when supplemented with phospholipids from soybean, 

the catalytic lifetime of 114 COX was increased compared to I-II COX. Taken together, 

these results indicate that the c-terminal bundle of subunit III plays a role in the assembly 

of COX in R.sph. and in the native processing of subunits II and IV. They also highlight 

the role of the structural lipids within the v-shaped cleft of subunit III as being important 

for providing protection against turnover induced inactivation. 
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I. Introduction 

 

The Mitochondrial Electron Transport Chain  

The Mitochondrion 

 The processes of life utilize a myriad of biochemical reactions and interactions in 

order to maintain a state distinct from environmental equilibrium. These processes 

require a constant input of energy in a form readily useable by the enzymes which 

catalyze the constitutive reactions of life. The high energy phosphate bonds of adenosine 

tri-phosphate (ATP) have been harnessed as an anciently conserved mechanism for 

providing this requisite energy. As such, central to the sustenance of life is the ability of a 

cell to convert food energy into ATP, which in turn provides energy for the vast majority 

of that cell’s reactions and processes. The cellular organelle responsible for this vital 

energy conversion process is the mitochondrion. 

 The mitochondrion is the remnant of an ancient -proteobacterium which entered 

into a symbiotic relationship with a proto-eukaryotic host cell some two billion years ago 

(Gray et al., 1999; Wallace, 2005; Wallace and Fan, 2010). The proto-mitochondrion 

provided energy via its oxidative reactions to the host cell, which became the 

environment for the increasingly specialized organelle. Much of the genome original to 

the -protobacterium was co-opted by the host cell, which eventually became dependent 

on the mitochondrion for its energy needs (Wallace, 2007). The signatures of this ancient 

rendezvous are evident in the structure and genetics of the mitochondrion. 
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 The mitochondrion retains a small, double-stranded circular chromosome 

approximately 16 kb in size, for which the entire sequence is now known and confirms 

the evolutionary relatedness of mitochondria and -proteobacteria (Andrews et al., 1999; 

Gray et al., 1999; Tuppen et al., 2010). The genome contains 37 genes, 13 encoding for 

polypeptides which form many of the core subunits of the complexes in the 

mitochondrial electron transport chain (Tuppen et al., 2010). There are multiple copies of 

the genome per mitochondrion, and up to thousands of copies per cell (Holt et al., 2007). 

The mitochondrion replicates its DNA and undergoes division within the cell largely 

independent of the cell cycle (Owusu-Ansah et al., 2008; Tuppen et al., 2010). 

Mitochondrial function requires the concerted expression of both mitochondrial and 

nuclear-encoded proteins, the details of which are still being elucidated and are becoming 

an increasing interest area in biomedical research (Wallace and Fan, 2010). 

 The mitochondrion is a double membranous structure, which is often ellipsoid in 

shape and around one micron in length (Figure 1A)(Frey and Mannella, 2000). The outer 

membrane bounds the organelle as a semi-permeable membrane studded with porin 

proteins, allowing for the exchange of substrates and molecules used in the various 

mitochondrial functions (Bay and Court, 2002; Neupert and Herrmann, 2007). The highly 

impermeable inner membrane, depicted in Figure 1A as an extensively baffled structure, 

is actually composed of two distinct regions (Figure 1B), an inner membrane boundary 

(light blue) and the cristae membrane (yellow) which is joined to the inner membrane 

boundary by small, tubular openings called cristae junctions (Zick et al., 2009). These 

two regions of the inner membrane are enriched in different types of proteins. The inner 

membrane boundary is enriched primarily with proteins involved in protein translocation  
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Figure 1 

 

Structural compartmentalization of the mitochondrion. A) Schematic structure of the 

mitochondrion, indicating key structural components. The mitochondrion is a double 

membrane organelle, consisting of an outer and inner membrane. The outer membrane 

bounds the organelle. The inner membrane contains the aqueous matrix. The aqueous 

inner membrane space is enclosed between the two membranes. B) Three-dimensional 

electron tomographic reconstruction of the mitochondrion. The inner membrane is 

composed of two regions, the inner membrane boundary and the cristae membrane, 

which is joined to the inner membrane boundary by cristae junctions. Adapted from (Frey 

and Mannella, 2000).  
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and mitochondrial fusion. The cristae membrane houses the machinery of oxidative 

phosphorylation as well as proteins for protein translation, metabolite exchange and 

mitochondrial morphology (Vogel et al., 2006; Wurm and Jakobs, 2006; Zick et al., 

2009). The inner membrane encloses the matrix, leaving an inner membrane space 

between the inner and outer membranes. The morphology of the cristae membrane can be 

highly variable in a manner that is likely reciprocally linked to the respiratory state of the 

mitochondrion, however the exact relationships between mitochondrial function and the 

structure of the cristae membrane are still under investigation (Mannella, 2006; Zick et 

al., 2009). 

 Historically, the major thrust of mitochondrial research has focused on its role in 

metabolism, although the organelle now has proven involvement in a diverse array of 

functions (Zick et al., 2009; Tuppen et al., 2010). A critical mitochondrial process is 

oxidative phosphorylation, wherein an electrochemical gradient is created by the electron 

transport chain across the inner membrane and is harnessed to synthesize ATP (Saraste, 

1999). Other mitochondrial functions central to metabolism include the Krebs cycle, -

oxidation of fatty acids and the metabolism of various amino acids (Tuppen et al., 2010). 

The chemiosmotic potential of mitochondria has implications for additional 

mitochondrial functions, including calcium signaling and apoptosis (Tsujimoto and 

Shimizu, 2007; Walsh et al., 2009). The mitochondrion is also the site for heme 

biosynthesis and iron-sulfur cluster biogenesis (Zick et al., 2009; Tuppen et al., 2010). 
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The Mitochondrial Electron Transport Chain and Chemiosmotic Theory 

 Nearly fifty years ago, Peter Mitchell proposed an innovative hypothesis that has 

forever changed the way scientists view metabolism. In his 1961 Nature paper, he writes, 

“In the exact sciences, cause and effect are no more than events linked in sequence…The 

underlying thesis of the hypothesis put forward here is that…not only can metabolism be 

the cause of transport, but transport can be the cause of metabolism” (Mitchell, 1961). He 

hypothesized that the transport of protons across a charge-impermeable membrane in the 

mitochondrion resulted in an electrochemical gradient which drove the phosphorylation 

of ADP. Although initially controversial, the research that followed for the next several 

years lead to the establishment of his theory, resulting in his reception of the 1978 Nobel 

Prize in chemistry. 

The molecular machinery of mitochondrial oxidative phosphorylation consists of 

a series of inner membrane-bound proteins, localized primarily to the cristae membrane 

and collectively referred to as the electron transport chain (Figure 2). Upstream metabolic 

reactions result in the production of NADH and FADH2 from food sources (Wallace, 

2007; Ordys et al., 2010). Complexes I and II respectively oxidize these substrates and 

transfer the electrons to the membrane bound electron carrier ubiquinone (Q) (Cecchini, 

2003). Complex I conserves the energy of the oxidation reaction by pumping a proton 

across the inner membrane (Hirst, 2009). The complex Q-cycle catalyzed by Complex III 

results in ubiquinol oxidation, cytochrome c reduction, and proton translocation into the 

inner membrane space (Crofts et al., 2008). Complex IV uses the electrons from 

cytochrome c molecules and protons from the matrix to reduce oxygen to water, coupling 

the reaction to proton pumping (Hosler et al., 2006). The electrochemical gradient  
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Figure 2 

 

The mitochondrial electron transport chain. Schematic of the components of the 

electron transport chain. NADH and FADH
2
 are oxidized to NAD

+
 and FAD by 

complexes I and II, respectively. The electrons from this reaction are transferred to 

coenzyme Q, which reduces complex III. Complex III reduces the soluble electron carrier 

cytochrome c which is oxidized by Complex IV. Ultimately the electrons are used to 

reduce O
2
 to H

2
O. The reactions of Complex I, III and IV result in net translocation of 

protons from the matrix (or bacterial cytoplasm) to the innermembrane space (or bacterial 

periplasm). Complex IV, ATP synthase, harnesses the resulting electrochemical gradient 

to drive the synthesis of ATP from ADP and inorganic phosphate.  
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resulting from the proton pumping activities of Complexes I, III and IV is harnessed by 

Complex V to drive the synthesis of ATP from ADP and inorganic phosphate (von 

Ballmoos et al., 2009). 

Complex I, or NADH:quinone oxidoreductase, consists of 14 core subunits and 

up to 31 accessory subunits arranged into an L-shape, with an soluble domain extending 

into the mitochondrial matrix (Radermacher et al., 2006; Sazanov, 2007; Zickermann et 

al., 2009). The soluble domain contains a catalytic site for NADH oxidation, as well as a 

bound flavin nucleotide and a series of iron-sulfur centers for transferring the electrons 

from NADH to the integral membrane domain where ubiquinone (coenzyme Q) 

reduction and proton translocation occur (Hirst, 2009). A high resolution structure for the 

hydrophobic domain is still unavailable, which limits the understanding of the reactions it 

catalyzes. The net result is that for every two electrons extracted from NADH and 

donated to ubiquinone, four protons are translocated from the matrix to the inner 

membrane space (Zickermann et al., 2009). Given the low redox potentials of its metal 

cofactors, Complex I is also a major site of reactive oxygen species generation (Hirst, 

2009). 

Succinate:ubiquinone oxidoreductase, or Complex II, is involved in both the 

electron transport chain and in the Krebs cycle (Maklashina and Cecchini, 2010). As a 

part of the Kreb’s cycle, it catalyzes the oxidation of succinate to fumarate, which 

involves abstracting two electrons and two protons and transferring them to an internally 

bound FAD, forming FADH2. The electrons are then transferred to ubiquinone via the 

enzyme’s iron-sulfur clusters, and the protons are released back into the matrix (Sun et 
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al., 2005; Horsefield et al., 2006). Complex II thus increases the pool of ubiquinol within 

the membrane. 

Complex III, also called cytochrome bc1, catalyzes the oxidation of ubiquinol and 

the reduction of cytochrome c, coupling the reaction to proton translocation across the 

inner membrane (Crofts, 2004). The complete structure of the mitochondrial form of 

Complex III consists of 13 subunits, three of which form the catalytic core. The protein 

catalyzes many metal prosthetic groups for electron transfer, including two heme b 

molecules, a heme c molecule, and an iron-sulfer cluster (Iwata et al., 1998). The 

mechanism by which the oxidoreductive reactions are accomplished involves many 

catalytic sites and proton and electron transfer pathways (Crofts et al., 2008). The 

reaction results in two single-electron transfers to two cytochrome c molecules, the 

uptake of two protons from the matrix, and the release of four protons into the inner 

membrane space (Crofts, 2004). Reduced cytochrome c is oxidized by Complex IV, 

cytochrome c oxidase (COX) in a reaction driven by reduction of oxygen and coupled to 

proton pumping (Hosler et al., 2006). The structure and mechanism of COX is discussed 

in detail below. The net result of the electron transport activity is that for every two 

electrons transferred from NADH to ½ O2 there are ten protons pumped across the inner 

mitochondrial membrane. 

The fifth complex of the electron transport chain is ATP synthase. ATP synthase 

utilizes the electrochemical proton gradient generated by Complexes I, III and IV to drive 

the phosphorylation of ADP. ATP synthase is composed of a water soluble F1 protein 

complex and a membrane bound F0 protein complex, joined together by a central and 

peripheral stalk (von Ballmoos et al., 2009). The F0 complex facilitates proton transfer 
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from the inner membrane into the matrix, coupling the process to a physical rotation in a 

portion of the F0 complex. The F0 rotation forces a rotary motion of the F1 complex, 

which drives the synthesis of ATP at its nucleotide binding/catalytic sites (Nakanishi-

Matsui et al., 2010). The majority of a cell’s ATP is synthesized by this mechanism. 

Thus, the mitochondrial electron transport chain is of central importance to virtually 

every biochemical pathway and process of life. 

  

The Structure and Function of Cytochrome c Oxidase 

 Cytochrome c oxidase (COX) is the terminal oxidase of the mitochondrial 

electron transport chain and catalyzes the reduction of molecular oxygen to water while 

concomitantly translocating protons across the inner mitochondrial membrane. The 

resulting electrochemical proton gradient is used to drive the synthesis of ATP and 

various other mitochondrial functions. COX is thus indispensible for proper cellular 

function.  

  

Three Dimensional Structure of Cytochrome c Oxidase 

 Early structural studies of cytochrome c oxidase were complicated by difficulties 

in crystallization of membrane proteins and in an inability to conduct site-directed 

mutagenesis studies on the mitochondrially-encoded subunits which constitute the 

enzyme’s functional core. In more recent years, however, three-dimensional crystal 

structures of COX have been solved for a number of species (Tsukihara et al., 1996; 

Iwata et al., 2002; Svensson-Ek et al., 2002; Tsukihara et al., 2003). Shown in Figure 3 is 

the crystal structure of mitochondrial COX from bovine heart (PDB 1V54), which shares  
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Figure 3 

 

The three dimensional crystal structure of bovine heart COX. Mitochondrial COX is 

composed of 13 subunits. The functional core of the enzyme consists of the 

mitochondrial-DNA encoded subunits, SI (cyan), SII (orange) and SIII (pink). In addition 

there are ten nuclear-DNA encoded subunits (gray). The enzyme crystallizes and 

functions as dimer. Each monomer contains a Cu
A
-Cu

A
 center (green spheres), a heme a 

center (yellow), and a heme a
3
-Cu

B
 active site (yellow heme, green sphere Cu

B
). A) 

Bovine COX dimer viewed within the plane of the membrane. B) Bovine COX dimer 

viewed from the inner membrane space, perpendicular to the plane of the membrane. 

Prepared using Accelrys DS Viewer Pro. PDB 1V54 (Tsukihara et al., 2003).  
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98% sequence identity to human COX. The protein consists of 13 subunits with a 

combined molecular weight of 205 kDa. Subunits I, II and III are encoded by 

mitochondrial DNA and are considered the functional core of the enzyme, sharing 

structural and functional homology across a wide range of species (cyan, subunit I; 

orange, subunit II; pink, subunit III)(Tsukihara et al., 2003; Hosler, 2004). The functions 

of the ten remaining nuclear DNA-encoded subunits (shown in gray) are still under 

investigation with putative roles ranging from complex assembly and stability to 

regulation of enzymatic activity (Galati et al., 2009; Fornuskova et al., 2010). The bovine 

form of the enzyme crystallizes as a dimer, and cross-linking and gel filtration studies 

indicate that this is also its functional oligomeric structure (Estey and Prochaska, 1993; 

Lee et al., 2001; Sadoski et al., 2001; Musatov and Robinson, 2002). 

 The “functional core” of COX consists of the mitochondrially encoded subunits, 

which are experimentally difficult to mutate due to the thousands of mitochondria per cell 

which each contain their own genome (Brega et al., 2001; Wallace and Fan, 2010). It is 

therefore necessary to conduct site-directed mutagenesis studies in prokaryotic forms of 

the enzyme. The two model systems most widely used for such studies are the 124 kD 

COX from Parachocus denitrificans (P.dent.) and the 128 kD COX from Rhodobacter 

sphaeroides (R.sph.) (Cao et al., 1992; Hosler et al., 1992; Iwata et al., 2002; Svensson-

Ek et al., 2002). The three largest subunits of these four subunit bacterial enzymes are 

structurally and functionally homologous to their mitochondrial counterparts, the 

functional core of COX. The fourth prokaryotic subunit is not homologous to any 

mitochondrial subunit and its function is not known. The structural homology of the 

functional core is shown in Figure 4, a multiple structure alignment of subunits I, II and  
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Figure 4 

 

Multiple structure alignment of the functional core of cytochrome c oxidase. The 

aligned x-ray crystal structures of subunits I, II and III are shown for bovine (PDB 

1OCC, blue)(Tsukihara et al., 1996), P.dent. (PDB 1QLE, green)(Harrenga and Michel, 

1999) and R.sph. COX (PDB 1M56, red)(Svensson-Ek et al., 2002). Figure from (Geyer, 

2007).  
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III for bovine (blue, PDB 1OCC), P.dent. (green, PDB 1QLE), and R sph. COX (red, 

PDB 1M56). R.sph. COX is the form of the enzyme used in the studies described herein, 

as the validity of this model has been well established (Cao et al., 1992; Hosler et al., 

1992). 

 Figure 5 shows the x-ray crystal structure of R.sph. COX. The prokaryotic forms 

of COX crystallize as either a monomer (P.dent.) or as a head to tail dimer which would 

not be structurally possible in the membrane (R.sph.). Research suggests that they also 

function as monomers, although this has not been definitively demonstrated (Shinzawa-

Itoh et al., 2007). Subunit I (cyan) is a ~60 kD peptide with 12 transmembrane helices. It 

contains heme a (yellow) and the binuclear active site consisting of heme a3 (yellow) and 

CuB (green sphere). In addition, there are two conserved proton pathways coordinating a 

series of conserved water molecules which serve to shuttle protons to the active site and 

across the membrane. They are designated as the D-pathway (blue, D-pathway residues; 

red spheres, water molecules) and the K-pathway (magenta, K-pathway residues; pink 

spheres, waters molecules), named for the conserved residues D132 and K362 in the 

respective pathways (Brzezinski and Johansson, 2010; Ganesan and Gennis, 2010).  

Subunit II (Figure 5, orange) is about 30 kD and contains two transmembrane 

helices and a large globular beta structure which sits within the mitochondrial 

innermembrane space or the bacterial periplasm. The subunit II globular domain contains 

a binding pocket with a number of conserved acidic residues, which facilitate an 

electrostatic interaction with the conserved lysine residues of cytochrome c (Ferguson-

Miller et al., 1978). Ferrocytochrome c binds at this location and donates its electron to 

the CuA-CuA (green spheres) metal center also contained in subunit II. In contrast to the  
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Figure 5 

 

The x-ray crystal structure of R.sph. COX. Subunit I (cyan) consists of 12 

transmembrane helices and contains two heme centers (yellow), a Cu
B
 (green sphere), 

and the D-pathway and K-pathway for proton transfer. Subunit II (orange) has two 

transmembrane helices and a globular periplasmic domain which binds and oxidizes 

cytochrome c, receiving the electron onto its Cu
A
-Cu

A
 center (green double sphere). 

Subunit III (pink) consists of seven transmembrane helices which are separated by a v-

shaped cleft into two domains. Subunit IV is a single spanning transmembrane helix 

(blue). A) Side view in the plane of the membrane with the orientation of the metal 

centers  and proton pathways shown to the right. The blue stick structures and small red 

spheres are the residues and water molecules of the D-pathway. The magenta stick 

structures and magenta spheres are the residues and water molecules of the K-pathway. 

Heme iron is shown as a red sphere with the associated porphyrin ring in yellow. Green 

spheres are copper atoms. B) Side view showing the v-shaped cleft of subunit III. C) Top 

view as shown from the periplasmic space, perpendicular to the membrane. Prepared 

using Accelrys DS Viewer Pro (PDB 1M56)(Svensson-Ek et al., 2002).  
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other subunits of the bacterial COX enzyme, subunit IV (blue) is a single spanning 

transmembrane helix about 5.2 kD in molecular weight and has no homology to any of 

the mitochondrial subunits. 

Subunit III  (Figure 5, pink), a 30 kD peptide, shares an extensive interface with 

subunit I and is composed of seven transmembrane helices which are separated by a v-

shaped cleft into two -helical bundles ((Iwata et al., 2002; Svensson-Ek et al., 2002; 

Shinzawa-Itoh et al., 2007)).  At the n-terminus, two -helices of subunit III sit along an 

interface with subunit I in close proximity to the mouth of the D-pathway. There are a 

number of conserved histidine, acidic and hydrophobic residues on the n-terminus of 

subunit III that have been proposed to play a functional role (Gilderson et al., 2003; 

Hosler, 2004). The c-terminal bundle of subunit III, consists of 5 -helices also 

containing many conserved residues which seem to be of structural and functional 

importance (Mather and Rottenberg, 1998; Tiranti et al., 2000; DiMauro and Schon, 

2003; DiMauro et al., 2006).  

The v-shaped cleft between the two -helical bundles of subunit III contains two 

lipids which are resolved in a conserved orientation in the protein x-ray crystal structures 

of R.sph. and bovine COX (Figure 6A)(PDB 1V54  (Tsukihara et al., 2003), PDB 1M56 

(Svensson-Ek et al., 2002)). In the bovine structure, these lipids are phosphotidyl 

glycerols, and in the R.sph. structure they are phosphotidyl ethanolamines; the fatty acid 

tails are 18 carbons long and are singly unsaturated (Varanasi et al., 2006; Shinzawa-Itoh 

et al., 2007). These lipids are held tightly into place through a variety of ionic  
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Figure 6 

 

The x-ray crystal structure of R.sph. COX showing the resolved lipids contained 

within the v-shaped cleft of subunit III. Subunits I-IV are shown in the same color 

scheme as Figure 5. A) Within the v-shaped cleft of subunit III there are two phophotidyl 

ethanolamines (PL1, dark green; PL2, light green) resolved in the crystal structure. B) 

The conserved residues in subunits I and III which interact with the phospholipids. The 

headgroup of PL1 (dark green) is coordinated by R137 of subunit I, and its fatty acid tails 

interact with a variety of hydrophobic residues conserved in subunits I and III. The 

headgroup of PL2 (light green) is coordinated by R226 on helix 6 of subunit III, and its 

fatty acid tails interact with conserved residues  on helices 2 and 3 of subunit III. 

Prepared using Accelrys DS Viewer Pro (PDB 1M56)(Svensson-Ek et al., 2002).  
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interactions, hydrogen bonds and van der Waals contact with highly conserved residues 

in subunits I and III. One of the lipids, PL1, sits at the interface with subunit I with its  

phosphate headgroup being coordinated by R137 in subunit I (Figure 6B, dark green 

lipid). Its fatty acid tails come into van der Waals contact with several conserved residues 

on helix 2 and 3 of subunit III, as well as with some conserved residues in subunit I. The 

headgroup of the second lipid, PL2, forms a strong ionic and hydrogen bond interaction 

with R226, a highly conserved residue on helix 6 in the c-terminal bundle of subunit III 

(light green lipid). The fatty acid tail of PL2 forms hydrophobic interactions with several 

of the conserved residues in helix 2 and 3 of subunit III which also coordinate PL1 

(Tsukihara et al., 1996; Svensson-Ek et al., 2002; Shinzawa-Itoh et al., 2007; Varanasi 

2006). It has been noted that there is a chain of interactions involving three residues 

which extends about 16Å from the fatty acid tail of PL1 to H284 of subunit I which is a 

CuB ligand, providing a lipid-mediated structural link between the active site and both 

domains of subunit III (Varanasi et al., 2006). 

 

Proton and Electron Transfer in Cytochrome c Oxidase 

The two enzymatic activities of cytochrome c oxidase are to transfer electrons 

from ferrocytochrome c to oxygen and to pump protons across the mitochondrial inner 

membrane (Hosler et al., 2006; Brzezinski et al., 2008). The reaction stoichiometry is 

indicated in the following scheme:  

4 cytochrome c
2+

 + O2 + 8H
+
 → 2H2O + 4H

+
pumped + 4 cytochrome c

3+
. 

Subunits I and II contain the metal centers which are responsible for transferring 

the electrons necessary for oxygen reduction (Figure 7, blue arrows). Subunit II  
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Figure 7 

 

Electron and proton pathways in COX. The electron transfer pathway in COX is 

shown (blue arrows) as well as the D-pathway (red arrow), K-pathway (green arrow) and 

proton exit pathway (purple hash arrow). Subunit II contains the  Cu
A
-Cu

A
 center, which 

is the initial acceptor of the electron from cytochrome c. From here, the electron is 

transferred to subunit I, first to heme a and finally to the heme a
3
-Cu

B
 active site where 

molecular oxygen binds and is reduced to water. The D-pathway consists of a number of 

conserved subunit I residues (blue stick structures) which coordinate a series of water 

molecules (red spheres). The pathway starts at D132 and extends 27Å to E286 where 

protons are shuttle either to the active site or to a pump site and across the membrane 

through  an unknown exit pathway (purple hash arrow). The K-pathway starts at subunit 

II residue E101 and extend through conserved residues (magenta stick structure) and 

coordinated water molecules (magenta spheres) to the active site. Prepared using 

Accelrys DS Viewer Pro (PDB 1M56)(Svensson-Ek et al., 2002).  
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electrostatically binds and oxidizes cytochrome c
2+

, receiving the electron onto its 

bicupric center (CuA-CuA). From here, the electron is transferred to subunit I, first to 

heme a and finally to the heme a3-CuB active site where molecular oxygen binds and is 

reduced to water (Yoshikawa et al., 1998; Jancura et al., 2006). 

In addition to its two metal centers, subunit I contains pathways which shuttle 

protons to the active site and across the membrane (Hosler et al., 2006). The K-pathway 

provides the protons necessary for the initial reduction of the enzyme prior to oxygen 

binding (Figure 7, green arrow) (Lepp et al., 2008a; Ganesan and Gennis, 2010). The 

electrostatic alteration of the active site caused by its reduction drives the uptake of 1-2 

protons from the matrix through the K-pathway to the active site. The pathway starts at 

residue E101 of subunit II which is situated at the interface between subunits I and II. 

The pathway proceeds to the active site through a series of water molecules, which are 

coordinated by the conserved residues K362, S299 and Y288 of subunit I (magenta 

residues). These water molecules (magenta spheres) are resolved in conserved locations 

in the crystal structures across a range of species and are used to transfer the protons via a 

Grotthuss mechanism (Brzezinski and Johansson, 2010). 

The D-pathway provides from the matrix all protons used for pumping, as well 2-

3 of the protons needed to reduce oxygen to water (Figure 7, red arrows) (Lepp et al., 

2008b; Brzezinski and Johansson, 2010). The conserved aspartate residue in subunit I 

(D132) for which the D-pathway is named is putatively the initial proton acceptor of the 

pathway. An internal water chain extends from D132 approximately 27Å to E286, which 

is the branch point for protons to be shuttled to the active site or to be pumped to the 

opposite side of the membrane (Han et al., 2005; Lepp et al., 2008b). The residues which 
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coordinate this water chain are broadly conserved and are all within subunit I (blue 

residues). From E286, the protons are either transferred to the active site, or to a proton 

acceptor in the proton pumping exit pathway (purple hashed arrow). The initial acceptor 

for the pumped protons has not been identified, but it is thought to involve the heme a3 

propionates and/or H334 (Branden et al., 2005; Pisliakov et al., 2008; Egawa et al., 2009; 

Lee et al., 2009; Brzezinski and Johansson, 2010). 

The mechanism by which COX reduces dioxygen is complex and consists of 

multiple intermediates, each having characteristic spectroscopic absorbances 

corresponding to the various oxidation states of the metal centers (Figure 8). The R state 

is reduced at heme a3 and CuB, and binds O2 to form the A state with a time constant of  

=  10 s. Next, two electrons from heme a3, one electron from CuB and an electron and a 

proton from Y288 are transferred to oxygen, which undergoes molecular scission to form 

the P state ( = 200-300 s) (Gorbikova et al., 2008b). Then, an electron is transferred 

from heme a to the tyrosyl radical and the CuB the oxygen ligand is protonated from the 

D-pathway, resulting in the formation of the F state ( =  100 s) (Gorbikova et al., 

2008a). The P to F transition is also coupled to a proton pumping event, which involves a 

second proton uptake through the D-pathway. The decay from F to O is accomplished by 

a one electron reduction of heme a3 by heme a followed by a protonation of the heme a3 

oxygen ligand via the D-pathway and is coupled to a proton pumping event ( = 1.5 ms). 

Another proton is pumped during the subsequent O to E transition, which also involves a 

displacement of the water molecule at CuB, a protonation of Y288 by a K-pathway and a 

reduction of CuB (Adelroth et al., 1997; Jasaitis et al., 1999). The E to R transition is 

coupled to a proton pumping event and proton uptake through the K-pathway, which  
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Figure 8 

 

The oxygen reduction catalytic cycle of COX. The oxygen reduction cycle of COX is 

complex, consisting of multiple intermediates. The redox and ligand states of the heme 

a
3
-Cu

B
 active site are displayed within the boxes designated with one letter codes for the 

intermediates. Substrates indicated in blue are utilized or produced in oxygen chemistry. 

The red protons are those pumped across the membrane. Adapted from (Brzezinski and 

Johansson, 2010). 
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provides the proton to the remaining oxygen ligand on heme a3, allowing it to leave as 

water (Verkhovsky et al., 2006). The COX molecule has now cycled back to the reduced 

state and is capable of binding another oxygen molecule (Brzezinski and Gennis, 2008; 

Brzezinski and Johansson, 2010).  

It has been over thirty years since COX was empirically established as a proton 

pump (Wikstrom, 1977; Krab and Wikstrom, 1978). Since then, much progress has been 

made toward elucidating the molecular mechanism of the pumping function, although 

there are still many questions to resolve (Brzezinski and Gennis, 2008). In theory, there 

are four general components of the current model of the COX proton pump. Firstly, the 

active site supplies the driving force for proton translocation by the reduction of O2 to 

water via the reactions described above. Second, there is a proton loading site for pumped 

protons which is in some manner coupled to the driving force provided at the active site. 

Third are the proton pathways necessary to provide protons to the active site and to 

shuttle protons across the membrane. Finally, there must be a gating mechanism to 

prevent short circuiting or proton leaks (Brzezinski and Gennis, 2008). Current theories 

for the mechanism by which the O2 chemistry at the active site is coupled to the 

protonation of the proton pump site primarily involve the principle of electroneutrality 

(see Mitchell and Rich, 1994). In short, it is highly thermodynamically favorable for the 

negative charge of an electron introduced into the low dielectric environment of the 

protein interior to be compensated with a positively charged proton. According to this 

principle, when the electron from cytochrome c is transferred from CuA to heme a, it 

drives the transfer of a proton from the D-pathway to a pump site, which is in the vicinity 

of the active site. The subsequent transfer of the electron from heme a to heme a3-CuB 
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drives the transfer of a chemical proton to the active site which in turn expels the proton 

from the pump site to the exterior of the protein (Salomonsson et al., 2005; Wikstrom and 

Verkhovsky, 2007; Brzezinski and Gennis, 2008; Sharpe and Ferguson-Miller, 2008). 

The identity of the pump site is not known, but the most likely current candidates are His 

334 or the A-propionate group of heme a3 (Sharpe and Ferguson-Miller, 2008; Lee et al., 

2009; Brzezinski and Johansson, 2010). The gating or valve mechanism must establish 

unidirectional proton movement from the matrix to the inner membrane space and 

prevent leaks or short circuits. Multiple mechanisms have been proposed, and the 

mechanism may include many amino acid residues (Sharpe and Ferguson-Miller, 2008). 

Given current evidence, E286 which sits at the top of the D-pathway seems to play a 

predominate role. The mechanism seems to depend upon the proper orientation of water 

molecules in the vicinity of E286 and may involve a conformation change in the residue 

side chain (Xu et al., 2007; Sharpe and Ferguson-Miller, 2008; Brzezinski and Johansson, 

2010). 

 

The Functional Role of Cytochrome c Oxidase Subunit III 

Cytochrome c oxidase subunit III is a member of the 3 subunit functional core of 

the enzyme, although all of the protein’s metal centers and proton pathways are contained 

in subunits I and II.  The explicit function of subunit III is not fully understood, but it is 

highly conserved across all species, sharing 45% sequence identity between the R.sph. 

and human homologs (Saraste, 1990; Varanasi et al., 2006). The severity of in vivo 

mutations in subunit III is further evidence for its importance (Saraste, 1990; Mather and 

Rottenberg, 1998; Horvath et al., 2002; DiMauro and Schon, 2003; Horvath et al., 2005; 



32 

 

DiMauro et al., 2006), and it has been postulated to play roles in maintaining adequate 

proton transfer rates in subunit I, in the stabilization of the active site during catalytic 

turnover, in regulation of oxygen reduction activity, and in the assembly of the COX 

complex (Bratton et al., 2000; Lincoln et al., 2003; Mills et al., 2003; Mills and Hosler, 

2005). 

The importance of subunit III in proper COX functioning was demonstrated early 

on by removing the subunit from the bovine form of the enzyme (Puettner et al., 1985; 

Prochaska and Reynolds, 1986). The subunit III deficient enzyme had decreased electron 

transfer activity and its proton pumping efficiency was reduced to an even greater extent 

(Prochaska and Reynolds, 1986). A similar effect was also observed when the conserved 

subunit III residue E90 was labeled with DCCD (Prochaska et al., 1981). The deleterious 

effects caused by DCCD labeling were shown to be accompanied by a conformational 

change in subunit III which was likely caused by a disruption in hydrogen bonds within 

the subunit (Ogunjimi et al., 2000). 

In more recent years, the functional role of subunit III has been examined by 

studies that remove the subunit from the bacterial forms of the enzyme, R.sph. or P.dent. 

COX, leaving only subunits I and II of the functional core (I-II OX). The removal of 

subunit III results in a reduction of the enzyme’s catalytic lifetime to only about 0.5% of 

that of four subunit COX (Bratton et al., 1999; Gilderson et al., 2003; Hosler, 2004; Mills 

and Hosler, 2005; Varanasi et al., 2006). This shortened catalytic lifetime is the result of 

the phenomenon termed turnover-induced inactivation, which is a spontaneous and 

irreversible inactivation of the enzyme which takes place only during catalytic turnover 

and is accompanied by structural alteration of the heme a3-CuB active site. Specifically, 
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the heme a3 center of the inactivated enzyme is in a more flexible structural environment 

and CuB is depleted from the active site which displays decreased binding to oxygen-

intermediate analogs (Bratton et al., 1999). At low pH (6.5), the initial rate of O2 

reduction activity of I-II OX is unimpeded, however the pH dependence of its activity is 

altered such that at physiological pH it is only about half that of normal COX, 

corresponding to a decrease in the rate of proton uptake in the D-pathway from bulk 

solution through D132 to E286 (Gilderson et al., 2003). I-II OX also shows a decrease in 

proton pumping efficiency to about half that of normal COX, which could be due to 

impeded proton flow through the D-pathway and through the proton exit pathway and/or 

due to a structural alteration in the environment of subunit I E286, which could hinder its 

ability to protonate the pump site (Gilderson et al., 2003; Mills et al., 2003). The 

mechanism of turnover-induced inactivation is not known, but the impedance of D-

pathway proton uptake increases the lifetimes of the reactive oxoferryl intermediates P 

and F (see Figure 8), allowing for the possibility of a hydroxylation reaction in the 

vicinity of the active site (Mills et al., 2003; Mills and Hosler, 2005). 

The preceding results suggest a role for subunit III in maintaining adequate proton 

uptake through the D-pathway. Indeed, direct measurement of D-pathway proton uptake 

in the absence of subunit III shows a rate that is only about 3-4% of four subunit COX 

(Gilderson et al., 2003). One mechanism by which subunit III might facilitate D-pathway 

proton uptake is by the function of a putative proton antenna on its n-terminus. D132 is 

surrounded by a number of conserved protonatable residues in subunit III which are 

thought to collect protons and transfer them to D132 at a rate faster than simple diffusion 

from bulk solution allows, thus serving as a putative “proton collection antennae” (Mills 
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et al., 2003; Hosler, 2004; Adelroth and Hosler, 2006). In addition, the shift in pH profile 

of proton uptake through the D-pathway seen in the absence of subunit III suggests an 

alteration in a protonateable residue within the pathway, perhaps D132 itself. The n-

terminus of subunit III also contains a stretch of conserved hydrophobic residues which 

may play a role in fine tuning an optimal pKa of D132 for maximal D-pathway uptake 

(Gilderson et al., 2003; Hosler, 2004).  

Subunit III may also serve to stabilize the structure of the subunit I active site 

during catalytic turnover. Even when proton uptake through the D-pathway is completely 

abolished by the mutation of D132 to an alanine, the removal of subunit III from D132A 

still results in a 10 fold decrease in its catalytic lifetime (Mills and Hosler, 2005; Adelroth 

and Hosler, 2006). This suggests that there is an additional protective mechanism against 

turnover-induced inactivation provided by subunit III, such as structural stabilization, 

which does not depend upon the rate of proton uptake through the D-pathway. The 

presence of subunit III could decrease the degree of structural oscillations in the active 

site thereby lowering the probability of a hydroxylation reaction. Stabilization would be 

mediated via long range protein-protein interactions, and may be enhanced by the 

presence of the structural lipids within the v-shaped cleft of subunit III (Hosler, 2004; 

Varanasi et al., 2006). Mutagenesis of the conserved residues which bind the cleft lipids 

increases the propensity of the enzyme to undergo turnover-induced inactivation without 

slowing proton uptake through the D-pathway (Varanasi et al., 2006). It has been 

proposed that the structural lipids act as a “flexible buttress,” allowing small catalysis-

associated motions within the active site while preventing larger scale motions which 
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could increase the probability of turnover-induced inactivation (Hosler, 2004; Varanasi et 

al., 2006). 

Finally, subunit III might be involved in facilitating proper assembly of COX 

(Bratton et al., 2000; Tiranti et al., 2000). One of the early assembly intermediates of 

COX is a form of subunit I which contains a heme a center but not the heme a3-CuB 

active site. This form of subunit I, denoted subunit Ia, appears to accumulate in the 

membrane in the initial stages of assembly (Bratton et al., 2000; Fontanesi et al., 2008; 

Fernandez-Vizarra et al., 2009). The next step in assembly of R.sph. COX involves the 

insertion of the heme a3-CuB active site and requires the presence of subunit II and some 

additional assembly factors (Bratton et al., 2000; Smith et al., 2005). When subunit III 

has been genetically deleted from the R.sph. genome, COX subunits I and II are capable 

of folding correctly with proper insertion of all their metal centers. However, there is a 

significant enrichment of subunit Ia in these cells, suggesting that although subunit III is 

not required for proper assembly of subunits I and II, it does participate in the process, 

perhaps by increasing the rate of assembly by stabilizing an assembly intermediate 

(Bratton et al., 2000). Proper assembly of COX is also aided by various proteases which 

degrade improperly folded subunits (Stiburek and Zeman, 2010). These proteases are 

located in both the matrix and inner-membrane space and are conserved from prokaryotes 

to mammalian mitochondria (Tatsuta and Langer, 2009). 
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Specific Aims 

 The research designs of this dissertation are aimed at elucidating the structural 

and functional properties of Rhodobacter sphaeroides cytochrome c oxidase (R.sph. 

COX). The dissertation is divided into two parts, each with different aims: 

 

Specific Aim 1: To examine the functional oligomeric structure of R.sph. COX via 

discontinuous sucrose gradient ultracentrifugation. 

 Mitochondrial COX crystalizes as a dimer and has been shown to exist in the 

dimeric state under mild detergent concentration and within a phopholipid bilayer (Estey 

and Prochaska, 1993; Tsukihara et al., 1996; Nguyen et al., 2002). R.sph. COX does not 

crystallize in a functional dimeric state, and its oligomeric structure within a phospholipid 

bilayer is unknown (Svensson-Ek et al., 2002). In this aim, discontinuous sucrose 

gradient ultracentrifugation was used to purify phospholipid vesicles containing COX 

from those lacking protein. The biophysical and biochemical characterization of these 

purified vesicles containing R.sph. sheds insight into its oligomeric structure in a 

membrane environment. 

 

Specific Aim 2: To examine the structural and functional significance of a c-terminal 

truncation in subunit III of R.sph. COX. 

 A human mitochondrial disease resulting in severe lactic acidosis episodes has 

been shown to result from a mutation in which the four c-terminal helices of subunit III 

have been genetically deleted by a stop codon introduced into the mitochondrial DNA 

(Tiranti et al., 2000). In order to assess the structural and functional importance of the c-
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terminal domain of COX subunit III, the corresponding mutation was made in R.sph 

COX (114). This mutation removes the bulk of the c-terminal helical bundle while 

retaining the v-shaped lipid-binding cleft, the subunit I-subunit III interface, and the 

residues conserved in the putative D-pathway proton antenna of subunit III. The 

structural and functional properties of this mutant were compared to wildtype COX and 

to two forms of COX in which subunit III has been genetically or biochemically 

removed. Characterization of this mutant can shed insight into the functional importance 

of n-terminal and c-terminal domains of subunit III as well as into the importance of its 

lipid-binding cleft. 
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II. Materials and Methods 

 

Mutagenesis of R.sph. COX Subunit III 

 A c-terminal truncation of R.sph. COX subunit III was created to model a human 

mitochondrial disease mutation (Tiranti et al., 2000). Figure 9A shows the protein 

sequence alignment of R.sph. and human COX subunit III. The stop codon introduced in 

the human sequence at Q111 corresponds to I115 in R.sph. COX. Site-directed 

mutagenesis of subunit III was conducted using a Stratagene QuickChange kit.  Figure 

9B shows the DNA and protein sequences of R. sphaeroides COX subunit III, 

highlighting the location of I115 which was mutated to a stop codon to form 114 COX. 

The primers used to mutagenesis are shown in Figure 9C. The template DNA of subunit 

III used for mutagenesis was incorporated into a plasmid termed pMB301, shown in 

Figure 10A (Bratton et al., 2003). For mutagenesis, 20 ng of pMB301 was mixed with 

125 g of the forward and reverse primers in addition to reaction buffer, dNTP mix, and 

Pfu DNA polymerase provided with the Stratagene kit (50 L final volume). Following 

an initial 30 second melting phase at 95˚C, sixteen thermocycles were conducted in a 

PCR thermocycler, each consisting of a 30 second melting phase (95˚C), a 1 minute 

annealing phase (55˚C) and 5 minutes of polymerase extension (68˚C). Parental DNA 

was selectively degraded by adding the restriction enzyme DpnI and digesting at 37˚C for 

1 hour. This reaction was used to transform Stratagene XLI-Blue Supercompetent cells  
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Figure 9 

 

DNA, protein and primer sequences used for site-directed mutagenesis of R.sph. 

COX subunit III. A) Protein sequence alignment of the n-terminus of subunit III in 

R.sph. and human COX showing the location of the truncation in red. Human Q111 

aligns with I115 in the R.sph. sequence. B) The DNA and protein sequence of R.sph. 

COX subunit III. Pink shading indicates the binding region of the PCR primers used for 

site-directed mutagenesis. The residue mutated to a stop codon (I115) in the 114 

truncation mutation is shaded blue. B) The sequence of the forward and reverse primers 

used for site-directed mutagenesis. The underlined residues are mismatched from the 

original sequence. 
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A) 
 

R.sph.MAHAKNHDYHILPPSIWPFMASVGAFVMLFGAVLWMHGSGPWMGLIGLVVVLYTMFGWWS 60 

Human MTHQS-HAYHMVKPSPWPLTGALSALLMTSGLAMWFHFHSMTLLMLGLLTNTLTMYQWWR 59        

 

R.sph.DVVTES-LEGDHTPVVRLGLRWGFILFIMSEVMFFSAWFWSFFKHALYPMGPESPIIDGI 119 

Human DVTRESTYQGHHTPPVQKGLRYGMILFITSEVFFFAGFFWAFYHSSLAPT----PQLGGH 115  

 

B) 

 
atg gcc cac gcc aag aac cac gac tac cac atc ctg ccg ccc tcg atc tgg ccc 

M   A   H   A   K   N   H   D   Y   H   I   L   P   P   S   I   W   P18 

ttc atg gcc tcg gtc gga gcc ttc gtc atg ctg ttc ggc gcc gtg ctc tgg atg 

F   M   A   S   V   G   A   F   V   M   L   F   G   A   V   L   W   M36 

cac ggc tcg ggg ccc tgg atg ggg ctg atc ggg ctc gtc gtc gtg ctc tac acg 

H   G   S   G   P   W   M   G   L   I   G   L   V   V   V   L   Y   T54 

atg ttc ggc tgg tgg tcc gac gtg gtg acg gaa agc ctc gag gcg acc aca cgc  

M   F   G   W   W   S   D   V   V   T   E   S   L   E   G   D   H   T72 

cgg tgg tgc gtc tgg gcc tgc gct ggg gct tca tcc tct tca tc  atg tcc gag  

P   V   V   R   L   G   L   R   W   G   F   I   L   F   I   M   S   E90 

gtg atg ttc ttc tcg gcc tgg ttc tgg agc ttc ttc aag cac gcg ctc tat ccg  

V   M   F   F   S   A   W   F   W   S   F   F   K   H   A   L   Y   P108 

atg ggg ccc gag agc ccg atc atc gac ggg atc ttt ccg ccc gag ggg atc atc  

M   G   P   E   S   P   I   I   D   G   I   F   P   P   E   G   I   I126 
acc ttc gat ccg tgg cat ctg ccg ctc atc aac acg ctg atc ctg ctc tgc tcg  

T   F   D   P   W   H   L   P   L   I   N   T   L   I   L   L   C   S144 

ggc tgc gcg gcc acc tgg gcg cac cat gcg ctg gtg cat gag aac aac cgc cgc  

G   C   A   A   T   W   A   H   H   A   L   V   H   E   N   N   R   R162 
gac gtg gcc tgg ggg ctg gcg ctc gcc atc gcg ctc ggc gcg ctc ttc acg gtg 

D   V   A   W   G   L   A   L   A   I   A   L   G   A   L   F   T   V180  

ttc cag gcc tac gaa tac agc cac gcg gcc ttc ggc ttc gcg ggc aac atc tat 

F   Q   A   Y   E   Y   S   H   A   A   F   G   F   A   G   N   I   Y198 
ggc gcc aac ttc ttc atg gcg acg ggc ttc cac ggc ttc cac gtc atc gtg ggc 

G   A   N   F   F   M   A   T   G   F   H   G   F   H   V   I   V   G216 

acg atc ttc ctg ctc gtc tgc ctg atc cgg gtg cag cgc ggc cac ttc acc ccc 

T   I   F   L   L   V   C   L   I   R   V   Q   R   G   H   F   T   P234 

gag aag cat gtc ggc ttc gag gcg gcg atc tgg tac tgg cac ttc gtc gat gtg 

E   K   H   V   G   F   E   A   A   I   W   Y   W   H   F   V   D   V252 
gtc tgg ctg ttc ctc ttc gcc tcg atc tac atc tgg ggc cag taa 

V   W   L   F   L   F   A   S   I   Y   I   W   G   Q  STOP 

 

 

 

 

C) 
 

Forward 5’-GGGCCCGAGAGCCCGTAAATCGACGGGATCTTTC-3’ 

Reverse 3’-CCCGGGCTCTCGGGCATTTAGCTGCCCTAGAAAG-5’ 
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Figure 10 

Schematic of site-directed mutagenesis protocol for constructing R.sph. COX 

subunit III mutants. Site directed mutagenesis was conducted on COX subunit III using 

pMB301 as the template DNA. A) Mutated pMB301 and pMB307 were digested with 

XmaI, and the 0.9 kb fragment from pMB301 containing mutant subunit III was ligated 

into the linearized pMB301 vector. B) pMB307+III and pRK415 were digested with 

HindIII and EcoRI, and the 5.2 kb fragment from pMB307+III was ligated into the 

linearized pRK415 vector. C) The pRK415+COX plasmid contains genes for COX 

Subunit II, cox10, cox11, mutant subunit III, and COX subunit I with a poly histidine tag. 

Arrows indicate the direction of transcription.  
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which were subsequently spread onto LB plates containing 10 g/mL chloroamphenicol 

and incubated overnight at 37˚C. Resulting colonies were used to inoculate 3 mL LB 

cultures (10 g/mL chloro), which were grown with shaking for 12-16 hours at 37˚C. A 

Qiagen QIAprep Spin Miniprep kit was used to isolate the pMB301 plasmid, which was 

sequenced by Davis Sequencing (Davis, CA) for verification of the desired mutation. 

Mutated pMB301 (pMB301-114) and the plasmid pMB307 (see Figure 10A) 

were digested with XmaI for 45 minutes at 37˚C, and the digestion fragments were 

separated by 1% agarose gel electrophoresis (Tris-Acetate-EDTA buffer, 60 volts for 1 

hour). The 0.9 kb subunit III insert from pMB301-114 and the 7.9 kb linearized vector 

from pMB307 were purified by gel extraction using a Qiagen QIAquick Gel Extraction 

kit. Ligation was performed using a New England BioLabs Quick Ligation kit, using 

approximately 50 ng of vector and 500 ng of insert in a total volume of 20 L. The entire 

ligation reaction was used to transform Stratagene XL-10 Gold Ultracompetent cells, 

which were incubated overnight on LB plates at 37˚C (40 g/mL ampicillin). Colonies 

were used to inoculate 3 mL cultures (LB, 40 g/mL amp, 12-16 hours, 37˚C, shaking), 

and the pMB307-114 plasmids were isolated via miniprep. In order to screen for proper 

insertion orientation, pMB307-114 plasmid DNA was digested with XhoI for 1 hour at 

37˚C, and the fragments were separated by 1% agarose gel electrophoresis. Plasmids with 

the correct insertion orientation resulted in fragment sizes of 6.2 kb and 2.6 kb. 

 pMB307-114 and the broad-host range vector pRK-415 (see Figure 10B) were 

digested with EcoRI and HindIII for 40 minutes at 37˚C. The 6.2 kb fragment from 

pMB307-114 which contained COX subunits I, II and III-114 and two requisite 

accessory genes was purified via gel extraction. This insert was ligated into the gel 
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extracted 10.5 kb EcoRI/HindIII vector from pRK415. The ligation was conducted as 

above utilizing approximately 50 ng of vector and 250 ng of insert (20 L final volume). 

This ligation reaction was used to transform Stratagene JM109 cells, which were 

incubated overnight at 37˚C on LB plates containing 2.5 g/mL tetracycline. Resultant 

colonies were used to inoculate 3mL cultures grown as above, and the plasmids were 

isolated by miniprep and checked for proper ligation via an EcoRI/HindIII double digest 

and gel electrophoresis which yields fragments of 6.2 kb and 10.5 kb if correct. 

 Triparental conjugation was used to create a strain of R. sphaeroides that 

expressed the subunit III-114 mutant form of COX (Figurski and Helinski, 1979). 

JM109 cells containing pRK415-114 and HB101 cells containing the helper plasmid 

pRK2013 were grown for 16 hours at 37˚C in 3 mL LB cultures containing 2.5 g/mL 

tetracycline and 30 g/mL kanamycin, respectively. Concurrently, R. sphaeroides YZ-

200 cells – a strain in which the genes for subunits II and III have been deleted from the 

genome – were grown to an OD660 of 1.0-1.2 in 3 mL Sistrom’s media containing both 50 

g/mL spectinomycin and 50 g/mL streptinomycin (Sistrom, 1962; Zhen et al., 1998). 

Two milliliters of the YZ-200 culture, 1 mL of the JM109 culture, and 1 mL of the 

HB101 culture were separately spun down in sterile eppendorf tubes using a lab bench 

microcentrifuge. The pellets were each washed 3 times in 1 mL of sterile 1x Phos Buffer 

(30 mM potassium phosphate, pH 7.0) and then combined in 100 L of the same buffer. 

The mixture was pipetted onto a Peptone-Yeast Extract agar plate which contained no 

antibiotics and was incubated upside down 12-16 hours at 30-32˚C. The cells were 

collected, suspended in 100 L of sterile 1x Phos Buffer and spread onto a Sistrom’s agar 

plate containing 50 g/mL spectinomycin, 50 g/mL streptinomycin and 1 g/mL 
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tetracycline. Colonies began to develop after 3-4 days of incubation at 30-32˚C and were 

restreaked on fresh Sistrom’s plates containing the three antibiotics. Colonies that formed 

were used to overexpress COX-114 as described below. 

 

Expression and Purification of COX from R. sphaeroides 

 R. sphaeroides cytochrome c oxidase was expressed in a strain of the bacterium in 

which genomic subunit II and subunit III have been deleted (termed YZ-200). The strain 

also contains resistance genes to spectinomycin and streptomycin (Zhen et al., 1998). 

These cells are conjugated with a plasmid (pRK415, see Figure 10C) containing genes for 

subunit II, for the assembly accessory genes cox10 and cox11, for tetracycline resistance, 

for wildtype or mutant subunit III, and for subunit I, which has been genetically 

engineered to contain a 6 histidine tag at the c-terminus. A form of oxidase in which 

subunit III is genetically deleted (I-IIGD) can also be expressed by using the pRK415 

plasmid without the subunit III insertion. 

Three milliliters of Sistrom’s media was inoculated with 100 L of the 

appropriate YZ-200 glycerol stock, and the cells were grown in a shaking incubator at 

30-32ºC (300 rpm) to an OD660 of 0.8-1.0 in the presence of 50 g/mL spectinomycin, 50 

g/mL streptomycin and 1 g/mL tetracycline. Entire 3 mL cultures were used to 

inoculate 100 mL cultures, which were grown in baffled flasks under the same 

conditions. When the cultures reached an OD660 of 0.8-1.0, 12-15 mL were used to 

inoculate 250 mL cultures grown in 1 L baffled flasks. Cultures typically reached an 

OD660 of 1.0-1.2 within 20-24 hours at which point they were harvested by centrifugation 
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at 11,300 x g and stored at minus 80ºC after washing the pellet in 50 mM potassium 

phosphate, 1 mM EDTA, pH 7.2. 

 Frozen pellets were resuspended in BioNeb Buffer (10 mM Tris, 10 mM EDTA, 

10 mM MgCl2, 20% glycerol, pH 8.0). Phenylmethylsulfonylfluoride (PMSF, 1mM), 

lysozyme (25 mg/mL) and DNAse I (50 g/mL) were added, and the suspension was 

homogenized and passed through a Bio-Neb (Bio-Rad) apparatus 5-7 times at 100 psi. 

Centrifugation at 24,000 x g removed unlysed cells, and the supernatant was decanted 

and analyzed for heme aa3 concentration on a Hewlett Packard 8453 UV/Visible diode 

array spectrophotometer using the reduced minus oxidized spectrum, which has an 

extinction coefficient of  = 24,000 M
-
cm

-
  at 606-630 nm (van Gelder, 1966). The 

supernatant was supplemented with 100 L of 100 mM PMSF and subjected to 153,000 x 

g for 1.5 hours at 4ºC using a Ti50.2 rotor in a Beckman Optima LE-80K preparative 

ultracentrifuge. The resulting membrane pellet was washed in 50 mM potassium 

phosphate, 1 mM EDTA, pH 7.2, and the ultracentrifuge step was repeated after adding 

PMSF to 1 mM. The membrane pellet was stored at minus 80ºC after decanting the 

supernatant (Zhen et al., 1998). 

 Purification of R.sph. COX was accomplished via Ni
2+

-NTA chromatography 

utilizing the poly-histidine tag on subunit I. The membrane pellet was resuspended in 10 

mM Tris-KOH, 40 mM KCl, pH 8.0. Dodecyl maltoside (DM) was added to 2% and the 

mixture was stirred for 15 minutes at 4ºC and then centrifuged at 37,000 x g for 20 

minutes at 4ºC. The supernatant was transferred to a polycarbonate tube; imidazole was 

added to 10 mM, and 0.8 mL of Ni
2+

-NTA resin (Qiagen) was added per mg of COX. 

The mixture was rocked on a platform at 4ºC for 1 hour and then poured into a Bio-Rad 
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glass econo-column (0.7 cm inner diameter, 30-50 cm length) and allowed to settle 

without flow for 10-15 minutes. Gravity flow at a rate of 0.2-0.3 drops/second was used 

to pack the column after which it was washed with 5-10 bed volumes of running buffer 

(10 mM Tris-KOH, 40 mM KCl, 10 mM Imidazole, 0.1% DM, pH 8.0). Once the flow 

through was clear, 2-3 bed volumes of elution buffer was layered onto the column (10 

mM Tris-KOH, 40 mM KCl, 100 mM histidine, 0.1% DM, pH 8.0) and the flow rate was 

slowed to 0.1-0.2 drops/second in order to keep the enzyme concentrated. The green 

tinted fractions in the eluent were pooled and concentrated using 2 mL Millipore YM-100 

Centricon devices at 4ºC. Multiple dilution and concentration steps were employed to 

lower the histidine concentration below 1 mM using resuspension buffer (10 mM Tris-

KOH, 40 mM KCl, pH 8.0). 

 

Biochemical Depletion of Subunit III from R.sph. COX 

 In order to remove subunit III, purified R.sph. COX incorporating a subunit I 

histidine tag was incubated on a rotating platform at 4°C in 20 mM Tris, 150 mM KCl 

and 12-15% Triton X-100 for 30 minutes. The ratio of Triton X-100 to COX was 100 mg 

detergent to 1 mg protein. Imidazole was added to 10 mM and 0.8 mL of Ni
2+

-NTA resin 

(Qiagen) was added for each milligram of oxidase. The slurry was incubated at 4°C on a 

rocker platform for 15-30 minutes and then poured into an empty column and packed at a 

fast flow rate. The column was washed with 10 bed volumes of Triton wash buffer (20 

mM Tris, 150 mM KCl, 10 mM Imidazole, 0.05% Triton X-100, pH 7.5), and then 10 

bed volumes of DM wash buffer (20 mM Tris, 150 mM KCl, 10 mM Imidazole, 0.05% 

DM, pH 7.5). The enzyme was eluted with elution buffer (20 mM Tris, 150 mM KCl, 
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100 mM Histidine, 0.05% DM, pH 7.5), and the entire procedure was repeated. After the 

second elution, 2 mM EDTA was added to remove surface metal from the enzyme. To 

reduce the histidine concentration below 1 mM, the sample was repeatedly washed and 

concentrated in Millipore YM-100 Microcon filter devices using filtration wash buffer 

(20 mM Tris, 50 mM KCl, 0.05% DM, pH 7.5). The approximate yield of I-IIBD was 

35%. 

 

Two Dimensional PAGE of Wildtype and Mutant R.sph COX 

Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) was conducted 

using a modification of Schagger’s method for membrane protein complexes (Schagger 

and von Jagow, 1991). R. sphaeroides COX stock enzyme was diluted to 0.7 g/L in 

16% glycerol, and 7 g of sample was loaded per well onto a 4-15% gradient 

polyacrylamide gel (Bio-Rad Ready Gel Tris-HCl, pH 8.8, Mini-PROTEAN). 

Electrophoresis at 40 V for 30 minutes was followed by electrophoresis at 80 V for 4 

hours at 4°C, using a discontinuous buffer system (Cathode Buffer = 50 mM Tricine, 15 

mM BisTris, 0.002% Serva Blue, pH 7.0 at 4°C; Anode Buffer = 50 mM BisTris-HCl, 

pH 7.0 at 4°C). The Serva Blue contained in the cathode buffer induced a charge shift in 

the enzyme, so separation of the native enzyme forms was based primarily on size. 

Following electrophoresis, an image of the gel was taken on a Fuji LAS-4000 imager in 

precision mode. 

SDS-PAGE was used to separate the native bands into their denatured 

components along a second dimension. The selected bands, detected as areas of stain, 

were excised from the native gel with a razor blade and incubated in 2% SDS at 37°C for 
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30 minutes. The incubated bands were placed in a slot well within a 1 cm 6% stacking 

layer of a 16% polyacrylamide gel (pH 8.8) containing 6 M urea and secured with 1% 

agarose (Fuller et al., 1981). Electrophoresis was performed at 60 V for 25 minutes and 

then 120 V for 2.5 hours. The gel was then stained with Coomassie G-250 according to 

manufacturer’s directions (Bio-Rad) and subsequently silver stained according to the 

method described below. Images of the Coomassie stained and silver stained gels were 

captured on a Fuji LAS-4000 imager in the precision mode. 

 

Silver Staining Polyacrylamide Protein Gels 

 Silver staining of PAGE protein gels was used to visualize protein bands with 10 

ng/band sensitivity. In a glass container, the gels were soaked in 7% acetic acid for 7 

minutes followed by two 20 minute washes in 50% methanol and two 10 minute washes 

in Milli-Q water. The gels were soaked for 15 minutes in staining solution (0.8% silver 

nitrate, 0.36% NaOH, 0.2 M NH4OH) and then washed twice for 5 minutes each with 

Milli-Q water before swirling in developing solution (0.005% citric acid, 0.02% 

formaldehyde) until the bands were of the desired intensity (about 3 minutes). 

Development was stopped by three rinses in Milli-Q water. Gels were immediately 

imaged on a Fuji LAS-4000 imager in the precision mode. 

 

Estimating Subunit III Content of R.sph. 114 COX from Two Dimensional PAGE 

 Two dimensional PAGE was conducted on wildtype and mutant forms of COX as 

described above. Silver stained second dimension SDS-PAGE gels were used to estimate 
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the subunit III stoichiometry of the 114 truncation mutation. The density of the subunit 

bands were quantified using Fujifilm MultiGuage V2.2 software.  

 

Protein Immunoblotting of R.sph. COX Subunit III 

 In order to conduct immunoblot analysis of COX subunit III, a polyclonal 

antibody was raised against the peptide corresponding to residues 64-77 of subunit III. 

These residues are situated on the short loop between transmembrane helices 2 and 3 at 

the bottom of the v-shaped cleft and are retained in the 114 truncation mutation. The 

antibody was created as described previously (Geyer, 2007). 

 SDS-PAGE was conducted on wildtype and mutant COX using a 16% acrylamide 

(37.5:1 acrylamide:bis) gel containing 6 M urea and 0.1% SDS (Fuller et al., 1981). 

Seven g of COX were denatured in 3% SDS and Laemmli buffer (30 mM Tris-HCl, 

15% glycerol, 0.005% bromophenol blue, pH 6.8) and then loaded into the gel. After 

stacking in the 1 cm 6% stacking layer at 60 V for 20 minutes, the subunits could be 

adequately separated by electrophoresis at 120 V for 2.5 hours. The gel and two sheets of 

nitrocellulose were then soaked for 10-15 minutes in transfer buffer (10 mM CAPS, 10% 

methanol, pH 11.0). A sandwich was prepared consisting of a sheet of filter paper (Bio-

Rad), 2 sheets of nitrocellulose, the gel, and another sheet of filter paper. The sandwich 

was placed between two sponges and secured into a tank transfer apparatus (Bio-Rad) 

filled with transfer buffer. A constant 200 mA current was applied for 90 minutes, 

followed by 30 minutes at 500 mA. After transfer, the gel was stained with Coomassie G-

250 to evaluate transfer efficiency. The nitrocellulose sheets were briefly rinsed in Milli-

Q water before proceeding to immunoblotting. 
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 Non-specific binding was blocked by incubating the nitrocellulose membranes at 

room temperature on an orbital platform for 1 hour with 3 changes of Tris-Buffer-Saline 

(TBS-B: 50 mM Tris-HCl, 170 mM NaCl, 5% milk, pH 7.5). The cleft antibody was 

diluted 1:250 in 25 mL of TBS-B for each nitrocellulose membrane. Primary antibody 

incubation was conducted at room temperature for 1 hour on an orbital platform. The 

blots were subsequently washed 3 times for 10 minutes each in TBS-B. The secondary 

antibody was a Goat-Anti-Rabbit-IgG conjugated to Horse Radish Peroxidase used at a 

1:3000 titer (Bio-Rad). Secondary antibody incubation for 1 hour at room temperature 

was followed by washing the blots 3 times for 10 minutes each with TBS-B before 

placing them in 0.1% TBS-B. The blots were developed by soaking for 3 minutes in 

freshly prepared renaissance chemiluminescence reagent (100 mM Tris, 1.25 mM 

luminol, 0.2 mM p-coumaric acid, 0.03% H2O2, pH 8.5). The blots were transferred to a 

sheet protector and images were recorded on a Fuji LAS-4000 in increment mode. 

 

MALDI-TOF Mass Spectrometry of Wildtype and Mutant R.sph. COX 

 MALDI-TOF mass spectrometry was used to assess the purity and subunit 

composition of wildtype and mutant forms of COX. Samples were washed in 30 mM 

Tris, pH 8.8 and concentrated to 2-3 g/L using Millipore YM-100 Microcon filter 

devices. One microliter of sample was mixed with 1 L of the appropriate EAM matrix 

and spotted onto a Bruker MTP-384 Ground Steel Target Plate. A 10 mg/mL SPA-EAM 

matrix in 54% acetone/10% acetone/0.5% TFA was used to assess high molecular weight 

peptides (>15 kD). For lower molecular weight peptides (<15 kD), 1 mg/mL CHCA-

EAM matrix in 5.4% acetonitrile/10% acetone/0.5% TFA was used. A Bruker Autoflex 
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III MALDI-TOF/TOF mass spectrometer was used in the positive reflector mode to 

analyze the samples. 

 

Measuring the Activity and Catalytic Lifetime of R.sph. COX 

 To determine the maximum catalytic activity of solubilized R. sphaeroides COX, 

enzyme was diluted to 2-5 M in 50 mM potassium phosphate, pH 7.4 containing 0.1% 

DM and allowed to incubate on ice for at least 15 minutes prior to the assay. The rate of 

oxygen consumption was measured in a water jacketed chamber at 25°C with a Clark 

electrode (Yellow Springs Instrument Company Model 17372). The typical activity assay 

buffer used was 50 mM potassium phosphate, 0.1% DM, pH 7.4, although in some cases 

the assay buffer was supplemented with 1 mg/mL asolectin (L--phosphatidylcholine 

from soybean, Type II-S, Sigma), which was sonicated to clarity prior to adding the DM. 

Before enzyme addition, 50 M cytochrome c (type III), 18 mM ascorbate, and 0.6 mM 

TMPD were incubated in assay buffer for 2-3 minutes to determine the auto-oxidation 

rate of the reductants. Then, 2-10 picomoles of COX were added and the maximum rate 

of oxygen consumption was measured. When measuring the maximal catalytic activity of 

reconstituted COX in liposomes (COV), DM was omitted throughout. The auto-oxidation 

was recorded as above with the addition of 6 M valinomycin and 6 M CCCP, to 

dissipate the electrochemical gradient in the COVs. Then 2-10 picomoles of COVs were 

added to measure the maximum uncoupled rate of oxygen reduction. To determine the 

catalytic lifetime of forms of COX which undergo turnover induced inactivation, the 

solubilized or reconstituted activity was measured over the course of 10-15 minutes in 

order to record the entire inactivation curve. 
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Measurement of the pH Dependence of R.sph. COX Activity and Catalytic Lifetime 

 To determine the pH dependence of oxygen reduction activity, activity assays 

were conducted at pH values ranging from 6.0 to 10.0. Buffers suitable to the assay pH 

were selected (pH 6.0-6.5, 25 mM MES; pH 7.0-8.5, 25 mM HEPES; pH 9.0-10.0, 25 

mM CHES). Each buffer contained 0.1% DM and in some cases 1 mg/mL asolectin. The 

ionic strength of the buffers was adjusted to I = 100 mM using an appropriate amount of 

KCl as determined using an online buffer calculator 

(http://www.liv.ac.uk/buffers/buffercalc.html). Solubilized enzyme was diluted to 2-5 

M in 25 mM HEPES, 0.1% DM, I = 100 mM, pH 7.5, and was incubated on ice for at 

least 15 minutes prior to the assays. Auto-oxidation rates using the appropriate buffer 

were measured as described above for solubilized COX, and the amount of COX 

subsequently added was adjusted for each pH value (2-30 picomoles) so as to maintain a 

linear instrument response throughout the range of activity. Activity was measured for 

10-15 minutes after adding COX to obtain the complete inactivation curve of those forms 

of COX subject to turnover induced inactivation. 

 

Calculating Turnover Induced Inactivation of Mutant R.sph. COX  

The solubilized or reconstituted COX activity was measured over the course of 

10-15 minutes in order to determine the catalytic lifetime of COX mutants which undergo 

turnover induced inactivation. The increasing proportion of inactivated enzyme was 

reflected by an exponential decay in the catalytic activity with respect to time.  The 

enzyme’s CC50 is defined as the number of catalytic turnovers undergone before the rate 

reaches half maximal activity, and it was calculated as diagrammed in Figure 11 (also  

http://www.liv.ac.uk/buffers/buffercalc.html
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Figure 11 

 

Calculation of CC
50

 value for R.sph. COX mutants undergoing turnover induced 

inactivation. The auto-oxidation rate obtained in the absence of COX is extrapolated 

(line 1), and a parallel line along the decay curve is drawn (line 2). This tangent intersects 

the decay curve at the point of complete enzyme inactivation (point A). From point A, a 

line is drawn vertically to intersection with line 1 (point B). The magnitude of line AB is 

bisected (at point m), and a line perpendicular to line AB is drawn to the intersection with 

the decay curve (point C). A vertical line is drawn from C to the intersection with line 1 

(point D). The magnitude of line CD is used to calculate the number of catalytic 

turnovers undergone before the enzyme population reaches half maximal activity. This 

value, CC
50

, is the catalytic lifetime of the enzyme.  
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see (Bratton et al., 1999; Mills et al., 2003; Mills and Hosler, 2005)). Briefly, the tangent 

parallel to the extrapolated auto-oxidation rate was drawn along the exponential decay 

curve. This tangent intersects the curve at the point of complete enzyme inactivation 

(point A). A vertical line from point A to the extrapolated auto-oxidation rate (point B) 

was bisected (at point m) and a perpendicular line was drawn from m to intersection with 

the decay curve. This is the point of half maximal activity (point C). The magnitude of 

the vertical line from half maximal activity to the extrapolated auto-oxidation rate (line 

CD) is proportional to the number of moles of oxygen consumed, and it is used to 

calculate the number of catalytic cycles the enzyme has undergone before reaching half 

maximal activity, given that one catalytic turnover consumes one molecule of O2. 

 

Reconstitution of R.sph. COX into Small Unilamellar Phospholipid Vesicles 

 R. sphaeroides COX was reconstituted into small unilamellar vesicles using the 

cholate dialysis technique diagrammed in Figure 12 (Wilson and Prochaska, 1990). 

Soybean asolectin (80 mg/mL, Sigma) was dispersed into 56 mM HEPES, pH 7.2, 7.2% 

cholate (3x re-crystallized) using a Branson Sonifier 250 at a 50% duty cycle and 50% 

power output for 7-10 cycles of 1 minute each. The lipids were kept on ice and the 

sonicator tip was allowed to cool between cycles. The clarified phospholipid/cholate 

mixture was centrifuged at 20,000 x g for 10 minutes to remove traces of titanium 

fragments from the sonicator tip. COX was incubated on ice in Triton X-100 for 15-20 

minutes to make the preparation monodisperse (3 mg detergent per mg COX). Then, 500 

L of phospholipid/cholate was added to the COX incubation, followed by the addition  
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Figure 12 

 

Cholate dialysis technique for reconstituting COX into small unilamellar vesicles 

(COV). R. sphaeroides COX was incubated with Triton X-100 (3 mg Triton/mg COX) on 

ice for 15-30 minutes to achieve a monodisperse population of COX. Asolectin (80 

mg/mL), cholate (7.2%) and HEPES (56 mM, pH 7.2) were sonicated to clarity, forming 

mixed detergent/lipid micelles. The pre-incubated COX was mixed with the lipid mixture 

and then an equal volume of 100 mM HEPES, pH 7.2 was added. Dialysis against 100 

mM HEPES (pH 7.2) using a 10-14 kD molecular weight cutoff membrane removed the 

cholate and drove the formation of COX vesicles (COV’s) which have an intravesicular 

volume containing 100 mM HEPES, pH 7.2.  
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of 500 L of 100 mM HEPES, pH 7.2. The solution was injected into a Slide-a-Lyzer 

dialysis cassette (10,000 kD cut off) and dialyzed against 100 mM HEPES, pH 7.2 for 4 

hours, resulting in cytochrome c oxidase vesicles (COV) with an intravesicular buffer of 

100 mM HEPES, pH 7.2. External buffer was exchanged by a series of buffer changes: 1) 

10 mM HEPES, 50 mM Sucrose, 50 mM KCl pH 7.2 (6-8 hours), 2) 1 mM HEPES, 50 

mM Sucrose, 50 mM KCl pH 7.2 (12 hours), and if necessary, 3) 50 M HEPES, 50 mM 

Sucrose, 50 mM KCl pH 7.2 (16 hours) (Cvetkov and Prochaska, 2007). 

 

Respiratory Control Ratios of Reconstituted R.sph. COX 

 The respiratory control ratio (RCR) is a measure of the endogenous proton 

permeability of the COVs (DiBiase and Prochaska, 1985; Wilson and Prochaska, 1990). 

To measure the RCR of wildtype COVs, cytochrome c (50 M), ascorbate (18 mM) and 

50 mM potassium phosphate (pH 7.4) were incubated with stirring for 2-3 minutes in the 

water jacketed chamber of a Clark type oxygen electrode apparatus (Yellow Springs 

Instruments). This rate of oxygen consumption in the absence of COVs, the auto-

oxidation rate, was subtracted from all subsequent rates. Then 5-10 pmole of COVs were 

added and the controlled rate was measured for 2 minutes. The addition of valinomycin 

(6 M) allowed the valinomycin-stimulated rate to be measured for 2 minutes. Finally, 

CCCP (6 M) was added and the fully uncoupled rate was measured. The RCR was 

calculated as the ratio of the fully uncoupled rate (valinomycin and CCCP added) to the 

rate in the controlled state wherein no ionophores are added. RCRval is the ratio of the 

fully uncoupled rate to the valinomycin-stimulated rate (Wilson and Prochaska, 1990; 

Cvetkov and Prochaska, 2007). 
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 In COX forms that undergo turnover induced inactivation, the RCR was measured 

in three separate assays. The controlled rate was measured by incubating only 

cytochrome c (50 M) and ascorbate (18 mM) in the reaction chamber during the auto-

oxidation measurement. 5-10 pmole COVs were added and the controlled rate was 

measured. The valinomycin-stimulated rate was measured by adding valinomycin (6 M) 

in addition to cytochrome c and ascorbate during the auto-oxidation measurement. The 

same amount of COVs as used for the controlled rate measurement was added to obtain 

the valinomycin-stimulated rate. Finally, the fully uncoupled rate was obtained in a third 

assay by adding both valinomycin and CCCP (6 M) to the cytochrome c and ascorbate 

auto-oxidation measurement. The same amount of COVs was added as before, and the 

fully uncoupled rate was measured. RCR and RCRval were calculated from the rates as 

described above after subtracting the auto-oxidation rates. 

 

Stopped Flow Measurement of R.sph. COV Proton Pumping Efficiency 

 An Applied Photophysics SV.20 Stopped-Flow Absorbance Analyzer was used to 

measure the proton pumping efficiency of wildtype and mutant cytochrome c oxidase. 

COX was reconstituted as described previously, and the external buffer was exchanged 

via dialysis to low pumping buffer (50 M HEPES, 50 mM Sucrose, 50 mM KCl, pH 

7.2) (Cvetkov and Prochaska, 2007). Stopped flow absorbance spectroscopy allowed 

millisecond absorbance changes to be monitored upon mixing equal volumes of solutions 

containing COVs or ferrocytochrome c. The electron transfer induced pH changes due to 

proton pumping were monitored by inclusion of the membrane-impermeable, pH-

sensitive dye, phenol red. Specifically, the COVs were diluted with low pumping buffer 
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to a heme aa3 concentration of 0.1 M, and phenol red was added to 100 M. A separate 

solution of ferrocytochrome c (1.6 - 4 M) was prepared in low pumping buffer and 100 

M phenol red. The solutions were titrated with 10-50 mM NaOH to a pH of 7.200 ± 

0.005 using an Scientific Instruments IQ240 pH meter equipped with a stainless steel 

probe. To monitor the extravesicular acidification due to proton pumping, 5 M 

valinomycin was added to both solutions in order to dissipate the membrane potential. 

The samples were loaded into two separate syringes and injected into the sample 

handling unit of the stopped flow analyzer, and the absorbance at 558 nm through a 2 mm 

path length cell was monitored upon sample mixing (an isosbestic point for 

ferrocytochrome c oxidation). Averages of 10 reaction traces were taken per sample. The 

magnitude of the decreases in dye absorbance due to acidification is proportional to the 

number of protons pumped in the reaction. In order to calibrate the magnitude of the pH 

changes, a separate set of samples were prepared which contained both 5 M CCCP and 

5 M valinomycin. This dissipates both the charge and the proton gradients, so the 

magnitude of the alkalinization changes observed is proportional to the number of 

electrons consumed in the reaction (in order to reduce oxygen, one proton and one 

electron is consumed). The proton pumping ratio (H
+
/e

-
 ratio) indicates the number of 

protons pumped for each input electron, with a theoretical value of 1.0. This value is 

calculated as the ratio of the magnitude of the acidification traces (only valinomycin 

present) to the magnitude of the alkalinization traces (both valinomycin and CCCP 

present) (see Cvetkov and Prochaska, 2007). 
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Discontinuous Sucrose Gradient Ultracentrifugation of R.sph. COX Vesicles 

 Discontinuous Sucrose Gradient Ultracentrifugation was used to separate 

liposomes containing protein (pCOV) from vesicles devoid of COX. Solutions of varying 

sucrose concentration were made in 10 mM Tris-HCl, pH 7.4, and correct sucrose 

concentration was verified by their refractive indices. Two milliliters of cold 13% sucrose 

solution was placed in the bottom of a Beckman centrifuge tube (13 x 51 mm), and 1 mL 

of 12% sucrose, then 1 mL of 11% sucrose, and finally 1 mL of COV sample were 

layered on top. The tubes were placed in a Beckman SW 50.1 swinging bucket rotor and 

subjected to 300,000 x g for 22 hours at 4°C in a Beckman Optima LE-80K 

Ultracentrifuge. Centrifugation resulted in the formation of two distinct bands: a 

yellowish band near the bottom of the 13% layer (pCOV), and a white, cloudy band in 

the 12% sucrose layer (Light COV) (see Figure 13). These bands were separately 

collected with a blunt end needle (Cvetkov and Prochaska, 2007). 

 

Estimation of the Number of R.sph. COX Molecules per Phospholipid Vesicle 

 Small unilamellar vesicles containing COX (pCOV) were separated from 

liposomes devoid of enzyme via discontinuous sucrose density ultracentrifugation. The 

pCOV fraction was analyzed for its heme and lipid content in order to estimate the 

number of COX molecules per vesicle. The concentration of COX was calculated from  

the reduced minus oxidized absorbance at 605 nm using an extinction coefficient of 

24,000 M
-
cm

-
 (van Gelder, 1966). To determine the lipid concentration, the pCOV 

fraction was digested in 70% perchloric acid at 100°C for 1 hour. The inorganic 
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Figure 13 

 

Purification of COV’s using discontinuous sucrose gradient ultracentrifugation. Two 

milliliters of ice-cold 13% sucrose was placed in the bottom of a Beckman centrifuge 

tube. Upon this layer, 1 mL of 12% sucrose and then 1 mL of 11% sucrose were carefully 

layered. All sucrose solutions contained 10 mM Tris-HCl, pH 7.2. Finally, 1 mL of COVs 

was layered on top of the sucrose gradient. The sample was subjected to 300,000 x g for 

22 hours at 4°C. Two bands resulted: a yellowish band in the 13% sucrose layer (pCOV), 

and a white, cloudy band in the 12% layer (light COV). The bands were collected with a 

blunt-tipped needle. 
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phosphate concentration was then measured via a colorimetric assay (Organisciak and 

Noell, 1976; Nguyen et al., 2002; Cvetkov and Prochaska, 2007).  

 Small unilamellar vesicles made via cholate dialysis have diameters ranging from 

250 to 300 Å (Muller and Azzi, 1985). Given headgroup sizes for phospholipids in the 

outer (74 Å) and inner (61 Å) monolayer (Huang and Mason, 1978), the number of lipids 

per vesicle was calculated to be between 4250 (250 Å vesicle) and 6450 (300 Å vesicle). 

The number of COX molecules per vesicle was calculated by dividing the aa3 

concentration by the lipid concentration and then multiplying by the number of lipids per 

vesicle. 
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III. Results 

 

Part One: Biophysical and Biochemical Characterization of Purified R.sph. COX 

Vesicles 

 

 Measurement of the vectorial proton pumping activity of COX requires 

reconstituting the enzyme into phospholipid vesicles using techniques which typically 

result in preparations containing an excess number of liposomes devoid of enzyme. 

Discontinuous sucrose gradient ultracentrifugation was used to separate these empty 

liposomes from those containing R.sph. COX, and the purified COX vesicles (pCOV) 

were characterized for their biophysical and biochemical properties. 

 

Purification of R.sph. COV via Discontinuous Sucrose Gradient Ultracentrifugation 

 When reconstituting COX into phospholipid vesicles, an excess lipid to COX 

stoichiometry is used to maximize reconstitution efficiency. This results in a 

heterogeneous preparation consisting of both proteoliposomes and also many liposomes 

devoid of enzyme. These liposomes lacking enzyme can cause technical problems such 

as light scattering and increased net buffering capacity of the solution. In previous work, 

liposomes lacking enzyme were removed from bovine COVs by discontinuous sucrose 

density ultracentrifugation (Nguyen et al., 2002). In this study, the suitability of the 

technique for R.sph. COVs was assessed and found to be applicable. Following 

ultracentrifugation on a discontinuous sucrose gradient, two bands resulted from the 
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R.sph. COV sample (see Figure 13). The yellowish band in the 13% sucrose layer 

(pCOV) contained 80% of the COX recovered, while the white cloudy band in the 12% 

sucrose layer (Light COV) contained some COX and lipid concentrations 6-8 fold higher 

than the pCOV band. The total enzyme yield for R.sph. COVs was about 40%, compared 

to a 60% yield obtained for bovine COVs. The R.sph. pCOV band was also more diffuse 

than that seen for bovine. Overall, however, the data demonstrates that sucrose gradient 

ultracentrifugation is a viable means of separating R.sph. COVs from empty liposomes 

(see Discussion). 

 

Functional and Biophysical Properties of R.sph. COV and pCOV 

 The usefulness of the purification technique requires minimal disruption of the 

functional properties of COX and of the biophysical properties of the liposomes. These 

properties were therefore assessed in the purified fraction of R.sph. COX liposomes 

(pCOV) and compared to liposomes which had not undergone purification (COV). 

Unpurified COVs displayed a steady-state activity of 708 ± 180 sec
-1

 (see Table I). The 

pCOV fraction maintained steady-state activity at ~75% of the COV (535 ± 130 sec
-1

), 

similar to the percent activity maintained for bovine pCOV (Nguyen et al., 2002). 

Therefore, electron transfer rates were largely maintained in the pCOV preparations 

relative to COVs. 

 Potential damage to the phospholipid vesicles caused by ultracentrifugation was 

assessed by measuring the respiratory control ratio of pCOVs and COVs. The respiratory 

control ratio is a measure of the endogenous proton permeability of COX vesicles  
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Table I  
 

Functional and Biophysical Properties of Unpurified (COV) and Purified (pCOV) 

R.sph. COX Phospholipid Vesicles  

 

 

 

 R.sph. COV R.sph. pCOV 

TN (s
-1

)
 a

  708 ± 180 535 ± 130 

RCR
b
  8.6 ± 1.6 6.0 ± 1.3 

RCRval
c
  3.5 ± 0.7 2.4 ± 0.4 

H
+
/e

-
 (20 e

-
)
 d

  0.9 ± 0.2 0.7 ± 0.2 

H
+
/e

-
 (40 e

-
)
e
  0.9 ± 0.1 0.5 ± 0.1 

 

 
a
  The maximum rate of electron transfer at pH 7.4 (e

-
/s*mol COX) was measured 

polarographically by an oxygen electrode under saturating substrate conditions and in the 

presence of uncoupling ionphores (50 M cytochrome c, 18 mM ascorbate, 6 M CCCP, 

6 M valinomycin). 
b
  The ratio of the uncoupled activity (valinomycin and CCCP included) to the controlled 

activity (in the absence of ionophores). 
c
  The ratio of the uncoupled activity to valinomycin-stimulated activity. 

d
  Proton pumping stoichiometry (H

+
/e

-
) indicates the number of protons pumped per 

electron transferred to COX. To achieve 5 catalytic turnovers, 20 electrons/COX are 

supplied (0.05 M COX, 1 M ferrocytochrome c). 
e
  40 electrons/COX results in 10 catalytic turnovers (0.05 M COX, 2 M 

ferrocytochrome c). 
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(Wilson and Prochaska, 1990). It is calculated as the ratio of the uncoupled rate of 

electron transfer (in the presence of valinomycin and CCCP) to the rate of electron 

transfer in the presence of an electrochemical proton gradient (no ionophores included). 

A higher ratio can indicate vesicles which are more impermeable to protons, or less 

“leaky” (Wilson and Prochaska, 1990). Unpurified COVs had RCR values of 8.6 ± 1.6 

(see Table I). This value was maintained at ~70% in the pCOV fraction (6.0 ± 1.3). The 

RCRval is the ratio of the uncoupled activity to the valinomycin-stimulated rate and 

reflects the proton permeability of the membrane under the conditions used for proton 

pumping (Wilson and Prochaska, 1990). Unpurified COVs had RCRval values of 3.5 ± 

0.7, and pCOV maintained this value at ~70% (2.4 ± 0.4). As will be discussed further, 

these results indicate that ultracentrifugation does not severely damage the ability of the 

phospholipid vesicles to maintain an electrochemical gradient. 

 Finally, the proton pumping activity of pCOV was compared to unpurified COVs 

by stopped-flow absorbance spectroscopy. The traces displayed in Figure 14 show that 

the proton pumping activity of pCOV is maintained to a high degree relative to 

unpurified COVs. The pH-induced absorbance changes at a cytochrome c isosbestic point 

(556 nm) are monitored by the inclusion of phenol red in the assay buffer. The magnitude 

of the decreases in absorbance (acidification) is proportional to the number of protons 

pumped during the reaction, while the magnitude of the increases in dye absorbance 

(alkalinization) is proportional to the number of electrons used (see Materials and 

Methods). The proton pumping efficiency (H
+
/e

-
) is calculated by the ratio of the 

absorbance decrease to that of the absorbance increase and has a theoretical value of one 

(Krab and Wikstrom, 1978). The H
+
/e

-
 ratios for R.sph. COVs and pCOVs are presented  
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Figure 14 

 

Proton pumping traces of R.sph. COV and pCOV. Proton pumping activity was 

measured by stopped-flow absorbance spectroscopy on an Applied Photophysics SV.20 

reaction analyzer. The reaction commenced upon mixing reconstituted COX with reduced 

cytochrome c. Phenol red was included as a pH indicator to monitor pH-induced changes 

in absorbance at 556 nm, an isosbestic point for cytochrome c reduction. Acidification 

induced by the proton pumping activity of reconstituted COX in the presence of 

valinomycin is shown in the lower traces. The alkalinization phase (upper traces) results 

from the consumption of protons when reconstituted COX undergoes turnover in the 

presence of CCCP and valinomycin. This trace is proportional to the number of electrons 

transferred to COX. The H
+
/e

-
 ratio is calculated from the extents of the lower and upper 

traces. Displayed are representative traces for a 5 turnover experiment (0.05 M COX, 1 

M ferrocytochrome c, 5 M CCCP and/or 5 M valinomycin, pH 7.2). A) unpurified 

COX vesicles (COV) had H
+
/e

-
 ratios of 0.9 ± 0.2 (5 turnovers). B) purified COX 

vesicles (pCOV) had H
+
/e

-
 ratios of 0.7 ± 0.1 (5 turnovers).  
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in Table I. The unpurified COVs had H
+
/e

-
 ratios of 0.9 ± 0.2 when the enzyme was 

supplied with enough electrons for both 5 and 10 enzymatic turnovers (5 turnovers = 20 

electrons/COX, 10 turnovers = 40 electrons/COX). When pCOVs were supplied with 

enough electrons for 5 catalytic turnovers, the H
+
/e

-
 ratio relative to COVs was 

maintained at ~80% (0.7 ± 0.1). When pCOVs underwent 10 catalytic turnovers, they 

maintained about 55% the efficiency of unpurified COVs (0.5 ± 0.1). This reduction in 

proton pumping efficiency will be discussed, but the substantial pumping efficiency 

maintained in low turnover experiments demonstrates the usefulness of 

ultracentrifugation purification. 

Two incentives for removing the liposomes devoid of enzyme are that their 

presence increases the buffering capacity of the solution and that they increase light 

scatter. Proton pumping assays are conducted in low buffer solution in order to monitor 

pH changes caused by proton pumping. Given an equal number of turnovers, the extent 

of the absorbance changes observed will depend on the buffering capacity of the solution. 

In a less buffered solution, pH can change more easily and corresponding absorbance 

changes will be greater. Therefore, it is notable that the absorbance change in the upper 

trace of Figure 14 is greater for pCOV (B) than it is for the COVs (A), suggesting a 

decrease in the buffering capacity resulting from the removal of the empty liposomes. 

The degree of light scatter was analyzed by absorbance spectroscopy, and pCOV 

scattered 50% less light at 550nm than did unpurified COVs. These results indicate the 

usefulness of ultracentrifugal purification for decreasing the lipid-induced buffering 

capacity and light scatter of solution. 
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Estimation of the Number of COX Molecules per pCOV 

 In previous work, characterization of bovine pCOV revealed that there were on 

average 2-3 COX molecules per liposome, a result consistent with the evidence that 

bovine COX dimerizes in the membrane (Nguyen et al., 2002). The oligomeric state of 

R.sph. in the membrane had not been previously examined, so the number R.sph COX 

molecules per vesicles was estimated in the pCOV fraction. To do so, the COX and lipid 

concentrations were determined by analysis of heme aa3 and inorganic phosphate 

content, respectively. Liposomes made by the cholate dialysis technique have known 

vesicular diameters (250-300 Å) and lipid packing constraints (Huang and Mason, 1978; 

Muller and Azzi, 1985), which allows the number of COX molecules per vesicle to be 

estimated. The results displayed in Table II indicate that R.sph. pCOV contained 

approximately one COX molecule per phospholipid vesicle, in contrast to the 2-3 bovine 

COX molecules estimated for bovine pCOV isolated by the same technique. This result 

sheds insight into the oligomeric state of R.sph. in the lipid membrane, as will be 

discussed. 
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Table II  
 

Estimation of the Number of COX Molecules per Phospholipid Vesicle in Purified 

Liposomes
a 

 

 

 

 R.sph. pCOV  Bovine pCOV
b
  

COX/COV 250Å
 
 0.72 ± 0.19  1.84 ± 0.36  

COX/COV 300Å
b
  1.09 ± 0.28  2.88 ± 0.56  

 

 
a
  Calculation was based on lipid and COX concentrations and known vesicular 

curvatures and sizes (250-300 Å). COX concentration was determined by heme aa
3
 

absorbance at 606 nm using an extinction coefficient of 24 mM
-1

cm
-1

. Lipid 

concentration was determined by digesting pCOV in perchloric acid and then using a 

colometric assay to determine phosphate concentration with nanomolar sensitivity. N = 6 
b
  These measurements are in agreement with published values (Nguyen et al., 2002).  
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Part Two: Structural and Functional Characterization of R.sph. 114 COX 
 

A pathogenic mitochondrial DNA mutation resulting in severe, episodic lactic 

acidosis introduces a premature stop codon in COX subunit III at residue Q111 after the 

third helix of subunit III (Tiranti et al., 2000). Protein sequence alignments indicate that 

human Q111 aligns with I115 in the R. sphaeroides COX (see Figure 9A). A stop codon 

was introduced at position 115 of subunit III in R.sph. COX, creating R.sph. 114 COX 

to model the mitochondrial mutation. As shown in Figure 15, this mutation removes the 

four c-terminal helices of subunit III while retaining the v-shaped lipid-binding cleft, the 

subunit I-subunit III interface, and the residues conserved in the putative D-pathway 

proton antenna of subunit III. The structural and functional properties of this mutant were 

compared to wildtype COX and to two forms of COX in which subunit III has been 

genetically or biochemically removed (I-IIGD and I-IIBD COX, respectively). 

Characterization of this mutant shed insight into the functional importance of n-terminal 

and c-terminal domains of subunit III as well as into the importance of its lipid-binding 

cleft. 

 

Expression and Purification of R.sph. 114 COX 

  R.sph. COX subunit III was mutated by replacing the codon for I115 with a stop 

codon in order to truncate the subunit after 114 residues (114). The mutation was 

modeled after a human mitochondrial disease mutation in which the four c-terminal 

helices of the seven-helical subunit III are genetically removed (Tiranti et al., 2000). The  
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Figure 15 

 

The x-ray crystal structure of R.sph. COX showing the truncation of subunit III in 

the 114 COX mutant. Subunit I (cyan) is shown with heme centers in yellow and the 

mouth of the D-pathway indicated by D132 (red structure), surrounded by conserved 

subunit III residues putatively acting as a proton antenna (pink structures). Subunit II is in 

orange and subunit IV is in blue. Copper atoms are green spheres. The three n-terminal 

helices of subunit III which are retained in the 114 mutant are shown in pink. In gray 

are the helices of subunit III which are removed in the mutation (beginning with I115). 

F101 is indicated in magenta at the top of subunit III helix 3. The 13 amino acid stretch 

between F101 and I115 is colored in magenta. Within the v-shaped cleft of subunit III are 

two phosphotidyl ethanolamine molecules designated PL1 (light green) and PL2 (dark 

green). A) Side view in the plane of the membrane B) Top view shown from the 

periplasmic space perpendicular to the membrane. Prepared using Accelrys DS Viewer 

Pro (PDB 1M56 (Svensson-Ek et al., 2002)). 
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mutated plasmid pRK415, designed for COX overexpression, was introduced into R.sph. 

cells, and the protein was expressed and purified. 

The bacterial growth rates and COX expression levels were compared between 

R.sph. cells containing overexpression vectors for wildtype COX, 114 COX or I-IIGD 

COX, in which subunit III has been genetically deleted. The strains of R.sph. cells 

overexpressing 114 or I-IIGD COX grew at similar rates to cells which overexpressed 

wildtype COX. After reaching an OD660 of 1.0, the cells were harvested and disrupted. 

The cytoplasmic membranes were collected, washed and analyzed for heme content via 

absorbance spectroscopy. The reduced minus oxidized spectrum of the purified 

membranes had peaks at 550 nm, 560 nm, and 605 nm corresponding to heme c, heme b 

and heme a content, respectively (Bratton et al., 2000). The ratio of the peak heights at 

560 nm and 605 nm is proportional to the relative expression levels of b-type 

cytochromes and COX. There are a number of cytochromes containing heme b which are 

expressed in R. sphaeroides. In addition to the electron transport chain complex III 

(cytochrome bc1) which contains cytochrome b, two of the alternate terminal oxidases 

expressed R. sphaeroides contain heme b, namely cytochrome cbb3 and a quinol bd-type 

oxidase (Mackenzie et al., 2001). Cytochrome cbb3 is expressed in high and low oxygen 

concentrations, and quinol bd oxidase is expressed when O2 is limited or when electron 

flow to COX is interrupted (Mouncey et al., 2000).  Table III shows the heme b:COX 

ratios for wildtype, 114 and I-IIGD cytoplasmic membranes. The elevated ratio for 114 

and I-IIGD relative to wildtype indicated a lower proportion of COX in these membranes 

as compared to cytochromes containing heme b, suggesting either impairment in COX 

expression or higher expression of alternative oxidases containing heme b. A similar  
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Table III  
 

Relative Expression Levels of Wildtype, 114 and I-II
GD

 COX in R.sph. Purified 

Membranes  

 

 

 

 A
(560nm)

/A
(605nm)

a 
 

R.sph. Wildtype  1.2 ± 0.2  

R.sph. 114  2.4 ± 0.9  

R.sph. I-II
GD

b

 
         1.8  

 

 

a
  Purified cytoplasmic membranes from R.sph. cells overexpressing either wildtype, 

114 or I-II
GD

 COX were analyzed for their heme content. The ratio of the reduced minus 

oxidized absorbance at 560 nm to that at 605 nm indicates the relative expression levels 

of heme b to heme a (COX). A lower ratio indicates higher relative COX expression. 
b
  A similar value has been reported in the literature (Bratton et al., 2000).  
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result had been observed previously for R.sph. cells overexpressing I-IIGD COX (Bratton 

et al., 2000). 

 Ni
2+

-NTA chromatography using a histidine tag engineered onto the c-terminus of 

subunit I (Mitchell and Gennis, 1995) was used to purify COX from the cytoplasmic 

membranes after they were solubilized with DM (Zhen et al., 1998). The 114 

preparations consistently had reduced protein yields for nickel column purification 

(~25% yield versus ~75% yield for wildtype). The loss of enzyme occurred during the 

packing step of chromatography, suggesting impairment in the protein’s ability to bind 

the nickel column. The packing flow through containing unbound 114 COX was 

analyzed by absorbance spectroscopy and had a reduced minus oxidized -peak at 606 

nm, indicating no significant disruption in the protein environment surrounding the heme 

centers. A repeated chromatography attempt was made with the unbound 114 protein in 

the packing flow, but it was almost completely unable to stick to the column (1% yield). 

A single preparation of I-IIGD COX had a ~40% yield for nickel column purification. The 

presence of a 114 truncation in COX subunit III therefore decreases both the expression 

level of the protein and its ability to bind to a nickel column (see Discussion). 

 

Optical Absorbance Analysis of R.sph 114 COX 

 The spectral absorbance properties of purified 114 COX were compared to 

wildtype, I-IIGD and I-IIBD in order to assess the protein environment surrounding the 

subunit I heme centers, and the results are summarized in Table IV. In the reduced 

spectrum, the Soret and  peaks of 114 were respectively blue shifted by 2 and 1 nm 

relative to wildtype, which absorbs at 445 nm and 605 nm when reduced. There was a 2  
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Table IV  
 

Optical Absorbance Parameters of Purified Wildtype, 114, I-II
GD

 and I-II
BD

 COX.  

 

 

Reduced Spectrum
a 

 

 

 Soret
max

b

 
 

max
 
c
  A

(soret)
/A



 d


 

R.sph. Wildtype  445 nm  605 nm  5.4 ± 0.1  

R.sph. 114  443 nm  604 nm  4.6 ± 0.2  

R.sph. I-II
GD

e

 
 443 nm  603 nm      4.5 

R.sph. I-II
BD 

 445 nm  605 nm      5.3 

 

Reduced minus Oxidized Spectrum
f
  

 

 Soret
max 

 
max

  

R.sph. Wildtype  446 nm  606 nm  

R.sph. 114  446 nm  606 nm  

R.sph. I-II
GD 

 446 nm  605 nm 

R.sph. I-II
BD

 446 nm  606 nm 

 

a
  The dithionite-reduced spectra of Ni

2+
-NTA-purified COX

 
 

b
  Maximal absorbance wavelength of the soret peak. 

c
  Maximal absorbance wavelength of the -peak. 

d
  Ratio of the maximal absorbance of the soret to -peak, indicating an increase in the 

ratio of heme a to heme a
3
 content. 

e
  Similar values are published (Bratton et al., 2000). 

f
  The dithionite-reduced minus ferricyanide-oxidized spectra of Ni

2+
-NTA-purified COX.
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nm blue shift for both the Soret and peak in the reduced spectrum of I-IIGD. The 

reduced spectral peaks of I-IIBD were not shifted compared to wildtype. The amplitude of 

the Soret to  peak for wildtype was 5.4 ± 0.1, and a similar value was observed for I-

IIBD (5.3). The ratio of the two peaks was decreased in the reduced 114 spectrum to 4.6 

± 0.2, similar to the value observed for I-IIGD (4.5), which is in agreement with what has 

been observed in other labs (Bratton et al., 2000).  

The spectral changes described have been shown to result from the presence of 

free subunit Ia in the preparation (Bratton et al., 2000). This is a non-reduceable, inactive 

form of subunit I which does not contain heme a3. Heme a and heme a3 absorb at 

different intensities in the -peak and Soret peaks such that the presence of subunit Ia, 

which contains heme a but not heme a3, decreases the ratio of the Soret to -peak 

absorbance (Vanneste, 1966; Bratton et al., 2000). Bratton et al. have removed the free 

subunit Ia from I-IIGD preparations and found that fully purified I-IIGD has wildtype 

spectral properties (Vanneste, 1966; Bratton et al., 2000). Therefore, the altered spectral 

properties of the heterogeneous preparations of I-IIGD and 114 are not indicative of 

misfolding in subunit I but rather to the presence of free subunit Ia, which is inactive and 

does not disrupt activity. 

 Since the Fe
3+

 of heme a in free subunit Ia does not reduce, its spectral effects 

should be minimized in a reduced minus oxidized (R-O) spectrum. Indeed, the R-O 

spectrum of 114 exhibited a Soret peak at 446 nm and an peak at 606 nm, the same 

values as were observed for wildtype and I-IIBD COX. The R-O spectral properties of I-

IIGD were also closer to those of wildtype, displaying only a 1 nm blue shift in the peak. 

Figure 16 compares the shape of the R-O -peak for the different COX forms. Wildtype  
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Figure 16 

 

Reduced minus oxidized -peak of purified wildtype, 114, I-II
GD

 and I-II
BD

 COX. 

Samples were diluted to about 1 M heme aa
3
 in 50 mM potassium phosphate, pH 6.5. 

After the addition of ferricyanide, an oxidized spectrum was recorded on a Hewlett 

Packard diode array spectrometer. Dithionite was added and a reduced spectrum was 

recorded. The reduced minus oxidized spectra were normalized to 1 M heme aa
3
 for 

comparison of the different COX forms. Wildtype, 114 and I-II
BD

 have a maximum at 

606 nm, and the I-II
GD

 peak is blue shifted 1 nm. Both 114 and I-II
GD

 have a shoulder 

on the blue side of the peak.  
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(black) and I-IIBD (red) have similar peak shapes, but 114 (green) and I-IIGD (blue) both 

have a shoulder on the blue side of the peak. This R-O spectral feature is also indicative 

of the presence of free subunit Ia (Bratton et al., 2000). Therefore, R.sph. cells expressing 

COX with either a genetic deletion or a 114 truncation of subunit III have increased 

levels of free subunit Ia, which is purified in the preparations due to the presence of the 

histidine tag on subunit I. Implications of this result will be presented in the Discussion, 

although it is important to emphasize here that the presence of free subunit Ia does not 

affect the functional properties of the enzyme because it is incapable of redox activity. 

 

SDS-PAGE and Immunoblot Analysis of R.sph. 114 COX 

 The purity and subunit composition of 114 was analyzed by SDS-PAGE and 

immunoblotting. These experiments were conducted for a variety of reasons. Firstly, 

mutations of COX subunit III have in some cases resulted in a partial or nearly complete 

loss of subunit III from the COX complex, so confirmation of the presence of SIII-114 

was necessary (Tiranti et al., 2000; Varanasi et al., 2006; Geyer, 2007). In addition, a 

truncation mutation in which the seventh -helix of subunit III was removed resulted in 

what appeared to be proteolytic degradation of the subunit, perhaps as a result of 

improper subunit III folding (Geyer, 2007). 114 COX needed to be assessed for a 

similar process. Finally, the spectral properties of 114 suggested the presence of free 

subunit Ia in the preparation. The approximate quantity of free subunit Ia could be 

estimated by the relative intensities of the subunit I bands in an SDS-PAGE gel of 114 

and wildtype. Therefore, SDS-PAGE and protein immunoblotting were used to address 

these issues. 
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A representative Coomassie-stained SDS-PAGE gel comparing 114 and 

wildtype COX is shown in Figure 17A. Consistently, the 114 preparations had more 

intense staining in bands corresponding to impurities, a result which was further analyzed 

by two-dimensional PAGE as described below. The staining intensity of the subunit I 

band in 114 preparations was typically about 20-30% more intense than the subunit I 

band in wildtype COX, after normalizing these values by the intensities of their 

respective subunit II doublet bands. This suggests that for every 3-5 assembled, active 

COX molecules in the 114 preparations, there is about 1 molecule of free subunit Ia 

which is not assembled with subunit II and is missing its active site. A similar enrichment 

in free subunit Ia was observed for I-IIGD COX. Finally, in the 114 preparations there 

were two bands which ran with an apparent molecular weight of ~10-15 kD (indicated by 

arrows). These bands are likely candidates for the 114 truncation of subunit III (SIII-

114), a hypothesis which was further analyzed by both immunoblotting and MALDI-

TOF mass spectrometry. 

  The putative SIII-114 doublet band observed in SDS-PAGE gels was assessed 

by protein immunoblotting for its reactivity to a subunit III-specific polyclonal antibody. 

The primary antibody was raised against a peptide corresponding to residues 64-77 of 

subunit III, which are located in the short loop at the bottom of the subunit’s v-shaped 

cleft. Figure 17B shows the protein immunoblot of wildtype and 114 COX. Due to the 

different migration rates of full length subunit III and the putative truncation bands, a 

sandwich of blotting membranes was used during the transfer. Shown are the blots 

selected from the sandwich which were most enriched in each of the three bands 

observed to have specific immunoreactivity. The bands at the top of the blots are due to  
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Figure 17 

 

SDS-PAGE and immunoblot analysis of wildtype and 114 COX.  A) An SDS-PAGE 

gel comparing wildtype and 114 COX. Seven g of COX were denatured with 3% SDS 

in Laemmli buffer for 45 minutes at 37°C. Electrophoresis was conducted at 120 V for 

2.5 hours on a 16% acrylamide gel containing 6 M urea and 0.1% SDS, pH 8.8. The gel 

was stained with Bio-Rad Coomassie G-250 and an image was taken on a Fuji analyzer. 

The 114 gels showed more impurities, had SI:SII band density ratios 1.2-1.3 times 

greater than wildtype, and had a doublet around 10-15 kD. B) Protein immunoblot of 

wildtype and 114 COX using a SIII-specfic antibody. Protein bands in SDS-PAGE gels 

were transferred using a Bio-Rad tank transfer apparatus onto a sandwich of 2-3 

nitrocellulose membranes (200 mA for 1.5 hrs, 500 mA for 0.5 hrs). The sandwich was 

necessary due to differing transfer rates of full length and truncated subunit III. A 

polyclonal antibody raised against residues 64-77 of subunit III was used to probe for 

subunit III (Geyer, 2007). Wildtype had an immunoreactive band corresponding to full 

length subunit III. 114 had an immunoreactive doublet which migrated within the 

expected region for the truncation mutation.  
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nonspecific binding, as was previously shown by competitive immunoblotting using the 

purified peptide as a binding competitor (Geyer, 2007). A single band immunoreactive to 

the subunit III antibody was observed in wildtype COX at the expected migration 

distance of subunit III (22 kD). An immunoreactive band at this migration distance was 

not observed in 114 COX, confirming the absence of full length subunit III in this 

mutant. Notably, both bands in the putative 114 doublet were immunoreactive to the 

subunit III antibody. These bands are shown on two different blots of the membrane 

sandwich, as they had different transfer rates. These results confirm the presence of a 

truncated form of subunit III in 114 COX and suggest the possibility of limited 

proteolytic activity upon the truncated subunit. 

 

MALDI-TOF Mass Spectral Analysis of R.sph. 114 COX 

 Immunoblot and SDS-PAGE analysis confirmed the presence of a truncated form 

of subunit III in 114 COX, which migrated in the gel at a rate corresponding to a 

molecular weight of ~10-15 kD. There was an additional immunoreactive band within 

this same region, which could have resulted from post-translational, proteolytic 

processing of subunit III-114. MALDI-TOF mass spectrometry was employed to 

determine the exact molecular weights of these two forms of truncated subunit III in 

order to better understand the extent and nature of the putative proteolytic activity. In 

addition, the native processing of subunits II and IV in 114, wildtype and I-IIGD COX 

was analyzed. 

 The mass spectra in Figure 18 show peaks within the mass range expected for the 

subunit III truncation, comparing 114, I-IIGD and wildtype COX. Two peaks were  
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Figure 18 

 

MALDI-TOF mass spectral analysis of R.sph. COX SIII-114 content in R.sph. 

wildtype, 114 and I-II
GD

 COX. Two g of sample were diluted 1:1 in a CHCA matrix, 

spotted onto a Bruker stainless steel plate, and analyzed on a Bruker Autoflex III 

MALDI-TOF/TOF mass spectrometer. 114 COX samples consistently exhibited peaks 

at 11462 ± 8.9 m/z and 12919 ± 8.5 m/z, which were not observed in wildtype or I-II
GD

. 

The expected mass of SIII-114 is 12919 Da, and residues 2-101 of subunit III have a 

calculated mass of 11461 Da.  
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Table V  
 

Summary of Subunit Peaks Observed in MALDI-TOF Mass Spectra of R.sph. 

Wildtype, 114 and I-II
GD

 COX.  

 

Subunit  Expected  

Mass (Da)  

Observed 

WT (m/z)  

Observed 

114 (m/z)  

Observed  

I-IIGD (m/z)  

SIVA’
a 

 5272  5271 ± 4.1  N.O.
b
  5279 ± 9.1  

SIV’(-AE)
c
  6039  6032 ± 3.4  6033 ± 4.4  6031 ± 5.3  

SIII [2-101]
d
  11461  N.O.  11462 ± 8.9  N.O.  

SIII [2-114]
e
  12915  N.O.  12919 ± 8.5  N.O.  

SIIA
f
  29122  29415 ± 61  29402 ± 64  29433 ± 88  

SIIC
g
  30660  30628 ± 76  30612 ± 64  30608 ± 79  

SII full
h 

(?)  32930  31966 ± 30  31985 ± 51  32006 ± 65 

SIII’
i
  30041  30029 ± 71  N.O.  N.O. 

 
a
  Subunit IV which has been processed by removal of its 11 n-terminal amino acids. 

b
  N.O. = Not observed. 

c
  Subunit IV which has been process by removal of its 3 n-terminal amino acids. 

d
  The portion of subunit III corresponding to residues 2-101. 

e
  The portion of subunit III corresponding to residues 2-114. 

f
  Subunit II which has been processed to remove its 25 n-terminal and 15 c-terminal 

amino acids. 
g
  Subunit II which has been processed to remove its 25 n-terminal amino acids. 

h
  Full length subunit II, notice the sizeable difference between observed and expected. 

This peak could alternatively be an impurity 
i
  Subunit III with the n-terminal Met removed 
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consistently observed in 114, one at 12919 ± 8.5 m/z and one at 11462 ± 8.9 m/z. These 

peaks were absent from wildtype and I-IIGD COX spectra. The expected mass for a 

subunit III truncation after residue 114 is 12915 Da, given that the n-terminal methionine 

residue is cleaved from subunit III (Distler et al., 2004). The 12919 m/z peak, therefore, 

was assigned to the truncation in subunit III resulting from the genetic introduction of a 

stop codon at position 115 (SIII-114). The peak observed 1457 m/z units smaller than 

SIII-114 (at 11462 m/z) is consistent with the expected molecular weight of subunit III 

residues 2-101 (11461 m/z). This suggests that the 13 c-terminal amino acids of SIII-

114 can sometimes be cleaved from the truncated subunit, and the 11462 m/z peak was 

assigned to SIII-[2-101] accordingly (see Table V). The cleavage would occur after F101, 

which is located at the top of helix three at the phospholipid bilayer interface. The 13 

amino acids putatively removed are the beginning of what would be in full length subunit 

III a large periplasmic loop extending 30 amino acids to the next helix (four) in the R.sph. 

COX structure (Svensson-Ek et al., 2002). 

 In R.sph. COX, subunit II undergoes native, post-translational proteolytic 

processing, resulting in the removal of its 25 n-terminal amino acids and its 15 c-terminal 

amino acids (Distler et al., 2004). The functional purpose of this processing is unknown, 

but it results in a heterogeneous preparation of enzyme upon purification. In particular, 

subunit II is present primarily in two forms. In subunit IIA, the processing has occurred at 

both termini resulting in a mass of 29122 Da, but for subunit IIC, processing has only 

occurred at the n-terminus to yield a mass of 30660 Da. Unprocessed subunit II can also 

be present in the preparation, having a mass of 32930 Da. These processing differences 

have not been observed to affect the activity of the protein (Hosler et al., 1992; Hiser et 
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al., 2001; Distler et al., 2004). All three processing forms of subunit II were observed in 

114, wildtype and I-IIGD preparations, as depicted in Figure 19 (see Table V). 

Specifically, peaks near the expected mass of subunit IIA were observed in wildtype 

(29415 ± 61 m/z), 114 (29402 ± 64 m/z) and I-IIGD (29433 ± 88 m/z), and subunit IIC 

were also assigned for wildtype (30628 ± 76 m/z), 114 (30612 ± 64 m/z), and I-IIGD 

(30608 ± 79 m/z). A peak about 900-1000 m/z less than the expected mass of full length 

subunit II was observed in wildtype (31966 ± 30 m/z), 114 (31985 ± 51 m/z), and I-IIGD 

(32006 ± 65 m/z), but the sizeable difference from the expected value should be noted. As 

expected, a peak corresponding to the expected mass of subunit III (30041 Da) was 

observed only in wildtype COX (30029 ± 71 m/z). 

 An examination of the relative peak areas in Figure 19 of the subunit II forms 

revealed that in the 114 and I-IIGD preparations subunit IIA peak areas were ~3-4 fold 

less than the area of the subunit IIC peaks. On the other hand, in wildtype COX the peak 

areas corresponding to fully processed subunit IIA were ~5-7 fold greater than the peak 

areas for partially processed subunit IIC. This same pattern was observed in SDS-PAGE 

gels, as shown for 114 and wildtype COX in Figure 20. The relative band densities of 

subunit IIA and IIC were determined from these gels. For 114, the less processed 

subunit IIC band was ~3-5 times more intense than the fully processed subunit IIA band, 

similar to the result seen for I-IIGD COX. However, in wildtype COX, the fully processed 

subunit IIA band was ~7-9 fold more intense than the subunit IIC band, which was also 

the case for I-IIBD COX. Therefore, when subunit III is absent or truncated after its third 

helix, the native in vivo processing of subunit II appears to be altered. It should be  
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Figure 19 

 

MALDI-TOF mass spectral analysis of subunit II and III content in R.sph. wildtype, 

114 and I-II
GD

 COX. Two g of sample were diluted 1:1 in a SPA matrix, spotted onto 

a Bruker stainless steel plate, and analyzed on a Bruker Autoflex III MALDI-TOF/TOF 

mass spectrometer. Wildtype samples contained peaks assigned to subunit III and to three 

forms of subunit II (subunit II, IIA, IIC). 114 and I-II
GD

 samples did not contain a 

subunit III peak but did contain three forms of subunit II. The peak areas for IIC were 

consistently greater than those of IIA in 114 and I-II
GD

 COX preparations, contrary to 

the pattern observed in wildtype COX 
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Figure 20 

 

SDS-PAGE analysis of subunit IIA and IIC in R.sph. wildtype and 114 COX. 1-10 

g COX samples were denatured with 3% SDS in Laemmli buffer for 45 minutes at 

37°C. Electrophoresis was conducted at 120 V for 3.0 hours on a 16% acrylamide gel 

containing 6 M urea and 0.1% SDS, pH 8.8. The gel was stained with Bio-Rad 

Coomassie G-250 and an image was taken on a Fuji analyzer. The subunit II doublet in 

114 had more intense staining in the slower migrating form (IIC) compared to the faster 

migrating form (IIA). In 114 COX, the IIC band was 3-5 more intense than the IIA 

band, as estimated using Accelrys Multigauge software. In wildtype, IIA was 7-9 more 

intense than IIC.  
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Figure 21 

 

MALDI-TOF mass spectral analysis of subunit IV content in R.sph. wildtype, 114 

and I-II
GD

 COX. Two g of sample were diluted 1:1 in a CHCA matrix, spotted onto a 

Bruker stainless steel plate, and analyzed on a Bruker Autoflex III MALDI-TOF/TOF 

mass spectrometer. In wildtype and I-II
GD

 COX, two forms of natively-processed subunit 

IV were observed consistently (IVA’ and IV’(-AE)). In 114 preparations, the IV’(-AE) 

form was present, but the IVA’ form was not observed.  
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emphasized, however, that the differentially processed forms of subunit II do not have an 

observed affect on the steady state activity of COX.  

 Subunit IV has also been observed in a variety of different forms in wildtype 

COX (Distler et al., 2004). The expected mass range for subunit IV peaks is shown in 

Figure 21. Two forms of subunit IV were observed in the spectra (see Table VI). Subunit 

IVA’ has its n-terminus cleaved after Met11, has an expected mass of 5272 Da, and is the 

form most abundant in wildtype COX (Distler et al., 2004). This form of the subunit 

could also result from using the Met11 codon as the translation start site rather than Met1. 

A subunit IVA’ peak was observed in wildtype (5271 ± 4.1) and I-IIGD (5279 ± 9.1), but 

it was not observed in 114 COX. The subunit IV’(-AE) form has its first three n-

terminal residues cleaved and has a mass of 6039 Da. A peak at this mass was observed 

in wildtype (6032 ± 3.4), 114 (6033 ± 4.4) and I-IIGD (6031 ± 5.3). These results 

indicate that the truncation of subunit III after its third helix alters the native processing 

of subunit IV as well as subunit II. Subunit IV has not been shown to have a functional 

role in COX activity. 

 

Two Dimensional PAGE Analysis of R.sph. 114 COX 

Certain subunit III mutations result in a disruption of the subunit III interaction 

with subunit I such that subunit III is partially depleted from the complex (Bratton et al., 

2000). In particular, a truncation of subunit III after its sixth helix resulted in depletion of 

subunit III by up to 70% (Geyer, 2007). Since 114 COX could have different functional 

properties than I-II COX, it was important to determine the stoichiometry of SIII-114 in 

the COX complex. Two dimensional PAGE was employed to this end. 



102 
 

Figure 22A shows a blue native PAGE gel of wildtype, 114 and I-IIGD COX. 

The majority of wildtype COX migrates in two bands, which, as analyzed by a second 

SDS-denaturing dimension (Figure 22B), correspond to 4 subunit COX (a) and a small 

amount of COX containing only subunits I and II (b). Both 114 and I-IIGD COX migrate 

in three bands on the native gel, with the I-IIGD bands running faster than those of 114. 

The 114 native bands, denoted c, d and e, were denatured in SDS and run on a 

second dimension in order to quantitate their purity and COX subunit content (Figure 

22B). About 45% of the total 114 COX enzyme migrated in the native band d as 

determined by its denser subunit II band in the 2D gel relative to the subunit II densities 

of lanes c and e. The strikingly dark band corresponding to SIII-114 in the second 

dimension of band d extends through 75% of the lane width. It was therefore assumed 

that this portion of the band had COX with full incorporation of SIII-114. The 114 

native band d also had a noticeable amount of impurities whose staining densities were a 

third of the total staining density of the second dimension lane. Native band c, the slower 

migrating band, contained an even greater amount of impurities; the 2D gel showed this 

band consisted of 70% impurities and about 30% COX, which contained SIII-114. 

Native band e contained the least amount of impurities (20% of the total lane density), 

and some COX with SIII-114. The stoichiometry of SIII-114 incorporation for the 

COX contained in native bands c and e was determined by comparing the density of their 

subunit II bands in the 2D gel to density of their SIII-114 bands, using lane d as 

calibration. Thus, bands c and e were found to incorporate SIII-114 with 65%  
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Figure 22 

 

Two-dimensional PAGE analysis of wildtype, 114 and I-II
GD

 COX. A) Seven g of 

COX were diluted in 16% glycerol and electrophoresis was conducted at 80 V for 4 hours 

at 4°C on a 4-15% gradient acrylamide gel, pH 8.8. A discontinuous buffer system was 

used which employed Serva Blue in the cathode buffer to induce a charge shift in the 

enzyme preparations (Schagger and von Jagow, 1991). Wildtype migrated primarily in 

two bands (a, b), and both 114 (c-e) and I-II
GD

 (f-h) migrated in three bands. B) Bands 

from the native gel were excised and incubated in 2% SDS for 30 min at 37°C. The bands 

were fixed with 1% agarose to a 16% polyacrylamide gel containing 0.1% SDS and 6 M 

urea (pH 8.8), and electrophoresis was conducted at 120 V for 2.5 hours. The gels were 

silver stained and band intensity was analyzed. The composition of the native wildtype 

bands contained 4 subunit COX (a) and a small amount of I-II COX (b). The 114 lanes 

all contained COX with ~70% stoichiometry of SIII-114 and varying degrees of 

impurities. The I-II
GD

 lanes all contained I-II COX and varying degrees of impurities.  
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stoichiometry. The overall percentage of COX containing subunit III-114 was estimated 

by a weighted average, given the percentage of COX migrating in the particular band and 

its estimated SIII-114 incorporation. The results indicate that 65-75% of COX contains 

SIII-114. This calculation is summarized in Table VI. It should be noted that possible 

saturation was not accounted for in the SIII-114 2D band used for calibration, making 

these lower level estimates of SIII-114 incorporation. 

Figure 22B shows the 2D lanes corresponding to the native gel bands for I-IIGD 

COX. Similar to 114, these bands have decreasing amounts of impurity correlated to 

increasing migration rates on the native gel. The total amount of impurity appears to be 

less for I-IIGD than it is for 114. As expected, no subunit III band is present in I-IIGD.  

 These results indicate that the 114 preparations have a higher degree of impurity 

as compared to wildtype and I-IIGD COX. The enrichment of impurities relative to 

wildtype and I-IIGD was observed in SDS-PAGE gels for all three different purification 

preparations of 114, despite following the same purification protocol used for wildtype 

and I-IIGD. The molecular weights of these impurities were estimated by SDS-PAGE as 

shown in Figure 23. The left panel shows a Coomassie stained SDS-PAGE gel of R.sph. 

wildtype and 114 as well as bovine COX. The bovine COX subunits were used as 

calibration, as their migration rates relative to their apparent molecular weights are 

known (Kadenbach et al., 1983). The right panel is the silver stained second dimension 

SDS gel of lane c from Figure 22B, the 114 band most enriched in impurities. The four 

major impurities are labeled 1 through 4. The apparent molecular weights of these 

impurities based on migration distances were calculated and the results are summarized  
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Table VI 
 

Summary of Two-Dimensional PAGE Analysis of 114 COX 
 

 Slow band
a
  Middle band

b
  Fast band

c
  

Impurties:COX
d
  2.3  0.3  0.2  

% of Total COX
e
  25%  45%  30%  

114 stoichiometry
f
  65%  75%  65%  

 

a
  Slowest migrating band in the native PAGE gel (see Figure 22, band c). 

b
  Middle band on the native PAGE gel (Figure 22, band d). 

c
  Fastest migrating band in the native PAGE gel (Figure 22, band e). 

d
  A second SDS dimension was employed to determine the subunit components of the 

three native gel bands observed for 114 COX. Silver staining density was determined 

using Accelrys Multiguage software. The staining intensity due to impurities was divided 

by the staining intensity of the sum of the COX subunits.  
e
  The percentage of total COX which migrated within the specified native gel band, as 

determined from the second dimension SDS gel. The sum of the staining density due to 

COX subunits within the specified 2D lane divided by the total staining density of COX 

subunits in all 2D lanes. 
f
   The percentage of COX which contained subunit III-114, as determined from the 

second dimension SDS gel. The second dimension of the middle native gel band had an 

intense SIII-114 band covering 75% of the lane width. This portion was assumed to 

have full incorporation of SIII-114, and was used to calibrate the SIII-114 

stoichiometry of the other two bands.  

 

 

 

 

  



107 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 

 

SDS-PAGE analysis of impurities contained in 114 COX preparations. An SDS-

PAGE Coomassie-stained gel with wildtype, 114 and bovine COX (A) is aligned with a 

second dimension SDS silver-stained gel of the slowest migrating 114 native gel band 

(B). This 2D band is the most enriched in impurities, which are enumerated 1-4 (see 

Figure 22, band c). The bovine subunit migration distances were used to as calibration in 

estimating the apparent molecular weight of impurity 1 (39 kD), 2 (33 kD), 3 (22 kD) and 

4 (19 kD).  
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Table VII  
 

Summary of Masses of the Impurities Observed in 114 Preparations  

 

 

Impurity
a 
 Apparent MW

b
  MS peak

c
  

1  38.7 kD  -  

2  33.0 kD  
~34.8 m/z 

or 
32000 m/z 

d 
 

3  22.0 kD  22931 m/z  

4  18.9 kD  19496 m/z  
 
a
  Four predominant impurities which are enriched in 114 preparations (see Figure 23). 

b
  The apparent molecular weight calculated by migration distances on SDS-PAGE using 

bovine COX subunits as calibrating standards. 
c
  Peaks routinely observed in MALDI-TOF mass spectra which correspond to the 

molecular weights estimated from SDS-PAGE. 
d
  This peak was also tentatively assigned to full length subunit II, although it is nearly 

1000 m/z less than the expected molecular weight of subunit II.  
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in Table VII. Also included in Table VII are comparable impurity peaks routinely 

observed in the MALDI-TOF spectra of wildtype and 114 COX. A mass corresponding  

to the ~38.7 kD impurity (1) was not observed in MALDI-TOF mass spectra. The ~ 33 

kD impurity (2) could either be a protein of 34.8 m/z or an enrichment of full length 

subunit II in the preparation (~32000 m/z). A mass potentially corresponding to the ~22 

kD  impurity (3) was routinely observed around 22930 m/z. And the ~19 kD impurity (4) 

could be assigned to the 19490 m/z peak frequently observed. The identity of proteins 

with these masses is not obvious. Their enrichment in the 114 preparations will be 

discussed further. 

 

Steady State Catalytic Activity of R.sph. 114 COX 

 When subunit III is removed from COX, the enzyme has a lower steady-state 

activity at physiological pH (Gilderson et al., 2003). A closer examination reveals that the 

pH dependence of steady-state activity is significantly altered in I-II COX. At low pH, 

the activity of I-II COX is close to that of wildtype, but the activity plummets sharply 

with increasing pH, displaying a pKa around 7.2 (Gilderson et al., 2003). For wildtype, 

high steady-state activity levels are maintained, having a pKa around 8.5. The impaired 

activity at physiological pH has been explained as a decreased ability of I-II COX to take 

up protons through the D-pathway (Gilderson et al., 2003). The steady-state activity at 

physiological pH and the pH dependence of activity were examined in 114 to determine 

the functional effects of removing the four c-terminal helices of subunit III.  
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The steady state catalytic activity of 114 at pH 7.4 was compared to wildype, I-

IIGD and I-IIBD COX, and the results are depicted in Figure 24 and summarized in Table 

VIII. The assay was conducted under three different conditions: in 0.1% DM 

(“detergent,” black bars), in 0.1% DM supplemented with 1 mg/mL asolectin (“lipid,” 

light gray bars) and when COX was incorporated into phospholipid vesicles (“COV,”  

medium gray bars). In detergent, wildtype COX displayed a steady state turnover of 1830 

± 160 sec
-1

 at pH 7.4. The activity at physiological pH for 114 (860 ± 110 sec
-1

), I-IIGD 

(845 ± 100 sec
-1

) and I-IIBD (1050 ± 205 sec
-1

) were statistically equivalent to each other 

and about 50% that of wildtype. When the assay was conducted in lipid, the activity of 

wildtype increased 15% to 2190 ± 185 sec
-1 

(statistically significant increase). Inclusion 

of lipid in the assay did not statistically change the activity in 114 (890 ± 105 sec
-1

), I-

IIGD (900 ± 125 sec
-1

) or I-IIBD (1140 ± 220 sec
-1

). Reconstituting COX into phospholipid 

vesicles resulted in a decrease of steady state turnover for wildtype to 1160 ± 165 sec
-1

, 

and a similar decrease was also observed for 114 (630 ± 30 sec
-1

), I-IIGD (575 ± 35 sec-1) 

and I-IIBD (760 ± 75 sec
-1

). These results indicate that the catalytic activity of 114 is 

about half that of wildtype and is statistically equivalent to COX forms which do not 

contain subunit III. 

 Figure 25 depicts the pH dependence of catalytic activity for wildtype, 114 and 

I-IIBD COX. Wildtype (black) displays a decrease in activity with increasing pH. The data 

can be fitted to a sigmoidal curve with a single pKa of 8.7 ± 0.1, a value in agreement 

with published results (Gilderson et al., 2003). The pKa of I-IIBD COX steady-state 

activity was decreased to 7.1 ± 0.2 (red), as expected. Similarly, the pKa of 114 COX  
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Figure 24 

 

Maximum steady state activity of R.sph. wildtype, 114, I-II
GD

 and I-II
BD

 COX. The 

maximum rate of electron transfer at pH 7.4 was measured polarographically by an 

oxygen electrode in saturating substrate conditions (50 M cytochrome c, 18 mM 

ascorbate, 0.6 mM TMPD). The assay was conducted in 50 mM potassium phosphate, pH 

7.4 which included 0.1% DM (black bars) or 0.1% DM and 1 mg/mL asolectin (light gray 

bars). The enzyme was reconstituted into phospholipid vesicles and the activity was 

determined in buffer without detergent and with 6 M valinomycin and 6 M CCCP 

included (medium gray bars). For each assay condition, 114, I-II
GD

 and I-II
BD

 COX 

activities were statistically equivalent to each other and about 50% of wildtype. The 

presence of lipid did not alter the activity (as shown by multiple paired t tests). 

Reconstitution into COVs uniformly reduced activity in all COX forms. N = 12.  
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Table VIII  
 

Summary of Functional Properties of Wildtype, 114, I-II
BD  

and I-II
GD 

COX.  

 

 Wildtype  114  I-II
GD 

 I-II
BD 

 

Activity (s
-1

)
a 
     

    Detergent  1830±160  860±110  845±100  1050±205  

    Lipid  2190±185  890±105  900±125  1140±220  

    COV  1160±165  630±30  575±35  760±75  

    pKa
 b

  8.7±0.1  7.4±0.1
c
  -  7.1±0.2  

TIA (#TN) 
d
      

    Detergent  ~3×10
6 e 

 11470±1240  9340±440  10670±1070  

    Lipid  -  24270±3050  16090±2750  13160±220  

    COV  -  24110±2160  21000±2030  23160±1020  

    pKa 
f
  -  6.5±0.2

g
  -  6.1±0.5  

H
+

/e
- h 

 0.74±0.2  0.32±0.1  0.36±0.1  -  

 
a
  Maximum steady state activity at pH 7.4 

b
  pKa of the sigmoidal curve fit (single pKa fit) of steady state activity data taken from 

pH 6 to 10. 
c
 pKa of 114 steady state activity in presence of lipid = 7.3±0.1 

d
  Turnover induced inactivation CC

50
 values: the number of turnovers undergone before 

steady state activity reaches half maximum 
e
  see (Varanasi et al., 2006) 

f
  pKa of the sigmoidal curve fit to TIA data taken from pH 6 to 10. 

g
 pKa of 114 TIA in presence of lipid = 6.5±0.1 

h
  Proton pumping stoichiometry: the number of protons pumped per electron transfer to 

COX. 
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Figure 25 

 

pH dependence of steady state activity in R.sph. wildtype, 114, and I-II
BD

 COX. 

The steady state activity was measured polarographically by an oxygen electrode in 

saturating substrate conditions (50 M cytochrome c, 18 mM ascorbate, 0.6 mM TMPD). 

Buffers suitable to the assay pH were selected (pH 6.0-6.5, 25 mM MES; pH 7.0-8.5, 25 

mM HEPES; pH 9.0-10.0, 25 mM CHES). Each buffer contained 0.1% DM and the ionic 

strength of the buffers was adjusted to I=100 mM using KCl. The results are plotted as 

fraction of maximum activity with the fractional error indicated. A sigmoidal curve with a 

single pKa provided the best fit for the data. Wildtype (black) had a pKa of 8.7 ± 0.1, and 

114 (royal blue, 7.4 ± 0.1) and I-II
BD

 (red, 7.1 ± 0.2) both exhibited a decrease in pKa 

by 1.5 units. For 114, the assay was also conducted with 1 mg/mL asolectin included in 

the assay buffers (light blue, 7.3 ± 0.1). No shift in the pKa was observed relative to the 

detergent-only assay. N = 3.  
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decreased to 7.4 ± 0.1 (royal blue), within statistical equivalence of the pKa of I-IIBD 

COX. Adding 1 mg/mL asolectin to the assay buffer did not significantly alter the pH 

dependence of activity for 114 COX (light blue). Therefore, 114 COX shows a similar 

pH dependence of steady-state activity to COX without subunit III. This profile is  

significantly altered compared to wildtype COX, and the inclusion of lipid does not 

ameliorate the deleterious effects on activity. 

 

Turnover Induced Inactivation of R.sph. 114 COX 

 When subunit III is removed from COX, either through genetic or biochemical 

means, the enzyme undergoes turnover induced inactivation, which is an irreversible 

inactivation event occurring only during catalytic turnover (Bratton et al., 1999). The 

catalytic lifetime of the enzyme can be quantified as a CC50 value, the number of catalytic 

turnovers undergone before the activity reaches half maximum, assuming a first order 

decay process (see Methods). Other investigators have determined the CC50 values of 

wildtype (~3.0×10
6
 turnovers) and found that the I-II COX catalytic lifetime dropped to 

about 10,000 turnovers, only 0.2-0.5% of wildytpe (Bratton et al., 1999; Gilderson et al., 

2003; Mills et al., 2003; Mills and Hosler, 2005). Furthermore, turnover induced 

inactivation displays a pH dependence such that at low pH, the catalytic lifetime is 

increased. As pH increases, the catalytic lifetime drops off, displaying a pKa around 6-

6.5 for I-II COX (Adelroth and Hosler, 2006). This suggests that turnover induced 

inactivation is related to the slowed proton uptake observed in the absence of subunit III 

(Gilderson et al., 2003; Mills et al., 2003; Mills and Hosler, 2005; Adelroth and Hosler, 

2006). In addition to facilitating D-pathway proton uptake, subunit III has been proposed 
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to play a role in structurally stabilizing subunit I to protect it from inactivation (Mills and 

Hosler, 2005). The PL1 and PL2 lipids bound in the cleft region of subunit III  (see 

Figure 15) have suggested involvement in this stabilization (Varanasi et al., 2006). 

Turnover induced inactivation in 114 was measured in the presence and absence of 

exogenous lipid and compared to I-IIGD and I-IIBD COX in order to assess the role that 

lipid and the three n-terminal helices of subunit III may play in protecting against 

inactivation. 

The previously published value for turnover induced inactivation of I-II COX was 

reproduced for I-IIGD (9340 ± 440 turnovers) and I-IIBD (10670 ± 1070 turnovers) when 

the assay was conducted in 0.1% DM at pH 7.4 (Figure 26, black bars, also see Table 

VIII). The catalytic lifetime of 114 COX was statistically equivalent to I-IIBD and I-IIGD 

in the detergent assay (11470 ± 1240 turnovers). When the assay buffer was 

supplemented with 1 mg/mL asolectin, the catalytic lifetime of 114 increased 2.1 fold to 

24270 ± 3050 turnovers. This result was statistically different (p < 0.001) than the more 

modest increases observed for I-IIGD (1.7 fold increase) and I-IIBD (1.2 fold increase), 

which had catalytic lifetimes in lipid micelles of  16090 ± 2750 turnovers and 13160 ± 

220 turnovers, respectively (light gray bars). The catalytic lifetime of 114 was not 

further increased relative to the lipid micelle assay when the enzyme was reconstituted 

into phospholipid vesicles and measured in the presence of ionophores (24110 ± 2160 

turnovers). However, reconstitution into lipid vesicles increased the catalytic lifetimes of 

both I-IIBD (23160 ± 1020 turnovers) and I-IIGD (21000 ± 2030 turnovers) to statistical 

equivalence with the catalytic lifetime of 114 achieved in lipid micelle (medium gray 

bars). These results indicate that the presence of subunit III-114 provides a protective  
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Figure 26 

 

Catalytic lifetimes of R.sph. 114, I-II
GD

 and I-II
BD

 COX. Turnover induced 

inactivation of COX can be quantitated by the CC
50

 value, which is the number of 

catalytic turnovers undergone by an enzyme population before reaching half maximal 

activity. The catalytic lifetimes were measured polarographically by an oxygen electrode 

in saturating substrate conditions (50 M cytochrome c, 18 mM ascorbate, 0.6 mM 

TMPD). The assay buffer was 50 mM potassium phosphate, pH 7.4 and included 0.1% 

DM (black bars) or 0.1% DM and 1 mg/mL asolectin (light gray bars). The enzyme was 

reconstituted into phospholipid vesicles and assays were conducted in buffer without 

detergent and with the addition of 6 M valinomycin and 6 M CCCP (medium gray 

bars).  

In the detergent assay (black bars), 114, I-II
GD

 and I-II
BD

 lifetimes were statistically 

equivalent to each other at about 10,000 turnovers. The presence of lipid (light gray bars) 

increased the catalytic lifetime of 114 to 24270±3050, more than 2 fold. There were 

more modest lipid-induced increases in the catalytic lifetimes of I-II
GD

 (1.7 fold) and I-

II
BD

 (1.2 fold), but these changes were statistically smaller than the increase observed for 

114 (p < 0.001). Reconstitution into COVs (medium gray bars) did not significantly 

alter the catalytic lifetime of 114 relative to its lipid-protected lifetime. The lifetimes of 

reconstituted I-II
GD

 and I-II
BD

 COX were increased to levels statistically equivalent to the 

lipid-protected 114 lifetime. These results indicate that the lipid micelle provides a 

protection against inactivation for 114 which can only be achieved for I-II
GD

 and I-II
BD

 

COX in the lipid bilayer. N = 12.  

 

 

 

 

  



120 
 

 

 

 

 

 

 

 

 

  



121 
 

effect against turnover induced inactivation in lipid micelles that can only be achieved for 

I-II COX when the enzyme is in the more constrained, lipid-saturated environment of a 

lipid vesicle. The implications of this significant result will be expounded further. 

The pH dependence of turnover induced inactivation for 114 and I-IIBD COX is 

displayed in Figure 27 (see Table VIII). The data for I-IIBD COX (red) fit to a sigmoidal 

curve with a pKa of 6.1 ± 0.5, in agreement with literature values (Adelroth and Hosler, 

2006). The pH dependence of inactivation of 114 was somewhat shifted to the alkaline  

 (royal blue, 6.5 ± 0.2), although not to a statistically significant degree. Supplementing 

the assay buffer with 1 mg/mL asolectin did not modify the pH dependence of 114 

inactivation (light blue, 6.5 ± 0.1). These results suggest that the protection effect 

provided by 114 COX in the presence of lipid is probably not due to improved D-

pathway proton uptake but rather to structural stabilization of the enzyme (see 

Discussion). 

 

Proton Pumping Activity of R.sph. 114 COX 

 Removing subunit III from COX decreases its proton pumping efficiency to one 

half that of wildtype COX (Mills et al., 2003). This effect could be due to the impaired 

proton uptake in the D-pathway and/or due to a minor structural change in the vicinity of 

E286 in subunit I, the point in the D-pathway at which the proton is transferred either to 

the active site or to the pump site (Gilderson et al., 2003; Brzezinski and Johansson, 

2010). The proton pumping activity of 114 COX was compared to wildtype and I-IIGD 

COX in order to assess the importance of the three n-terminal helices for the proton 

pumping activity of COX. 



122 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 

 

pH dependence of the catalytic lifetimes in R.sph. 114, and I-II
BD

 COX. The 

catalytic lifetime (CC
50

) was measured polarographically by an oxygen electrode in 

saturating substrate conditions (50 M cytochrome c, 18 mM ascorbate, 0.6 mM TMPD). 

Buffers suitable to the assay pH were selected (pH 6.0-6.5, 25 mM MES; pH 7.0-8.5, 25 

mM HEPES; pH 9.0-10.0, 25 mM CHES). Each buffer contained 0.1% DM and an ionic 

strength adjusted to I=100 mM using KCl. The results are plotted as fraction of maximum 

catalytic lifetime with the fractional error indicated. A sigmoidal curve with a single pKa 

provided the best fit for the data. The pKa values for 114 (royal blue, 6.5 ± 0.2) and I-

II
BD

 (red, 6.1 ± 0.5) were statistically equivalent. For 114, the assay was also conducted 

with 1 mg/mL asolectin and 0.1% DM in the assay buffers (light blue, 6.5 ± 0.1). No shift 

in the pKa was observed relative to the detergent-only assay. N = 3.  
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Figure 28 

 

Proton pumping activity of R.sph. wildtype, 114 and I-II
GD

 COVs. Proton pumping 

activity was measured by stopped-flow absorbance spectroscopy on an Applied 

Photophysics SV.20 Reaction Analyzer. Phenol red was used as a pH indicator to monitor 

acidification-induced absorbance changes caused by the proton pumping activity of 

reconstituted COX in the presence of valinomycin (lower traces). The alkalinization 

phase (upper traces) results from the consumption of protons for O
2
 reduction observed 

when reconstituted COX undergoes turnover in the presence of CCCP and valinomycin. 

This absorbance change is proportional to the number of electrons transferred to COX. 

The H
+
/e

-
 ratio is calculated from the extents of the lower and upper traces. Displayed are 

averaged traces for a 5 turnover experiment (0.05 M COX, 1 M ferrocytochrome c, 5 

M CCCP, and/or 5 M valinomycin, pH 7.2). The COVs had RCR values of 6-10 and 

RCR
val 

values of 2-2.5.
 
 

Wildtype COVs (black) had an H
+
/e

-
 ratio of 0.74 ± 0.2. The H

+
/e

-
 ratios of 114 COVs 

(blue, 0.32 ± 0.1) and I-II
GD

 COVs (green, 0.36 ± 0.1) were statistically equivalent and 

about 50% less than wildtype.  
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The proton pumping activities of wildtype, 114 and I-IIGD COVs were measured by 

stopped flow absorbance spectroscopy, and the traces are shown in Figure 28. The upper 

traces have been normalized, allowing a comparison of the pumping efficiencies of 

wildtype (black), I-IIGD (green) and 114 (blue). The proton pumping efficiency of 114 

(0.32 ± 0.1 H
+
/e

-
) is equivalent to I-IIGD (0.36 ± 0.2 H

+
/e

-
) and is about half the efficiency 

of wildtype, which had an H
+
/e

-
 of 0.74 ± 0.2 (see Table VIII). These results indicate that 

the n-terminal region of subunit III is not sufficient to prevent the deleterious effects on 

proton pumping that are seen in the absence of subunit III, a result which will be further 

discussed. 
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IV. Discussion 

Biophysical and Biochemical Characterization of R.sph. pCOV Sheds Insight into 

the Oligomeric Structure of R.sph. Cytochrome c Oxidase 

 

 Discontinuous sucrose gradient ultracentrifugation was used to separate 

proteoliposomes containing R.sph. COX from liposomes devoid of enzyme. The purified 

fraction containing COX (pCOV) was analyzed for its functional and biophysical 

properties and compared to unpurified COVs. It was found that the purification technique 

reduced the excess lipid concentration resulting in a decrease in the net buffering capacity 

of the solution. Light scattering was also reduced, making pCOV better suited for low 

buffer spectroscopic studies. The oxygen reduction and proton pumping activities of 

pCOVs were maintained to a high degree relative to COVs, indicating that the technique 

does not significantly damage the liposomes. Finally, the number of COX molecules per 

vesicle was estimated by the lipid and protein concentration of the pCOV fraction and the 

known size of the vesicles. It was found that there is only one R.sph. COX molecule per 

liposome. A similar study conducted on bovine pCOV estimated the number of bovine 

COX per vesicles was two or three. Taken together, these results indicate that maximally 

functional R.sph. COX exists in the monomeric state when in the lipid bilayer, contrary to 

the bovine enzyme which is dimeric. 

 

 

 



128 
 

Discontinuous Sucrose Gradient Ultracentrifugation and Biophysical and Biochemical 

Characterization of pCOV 

 

Previous work on reconstituted bovine COX showed that discontinuous sucrose 

gradient ultracentrifugation is a technique by which liposomes containing enzyme can be 

purified away from liposomes devoid of enzyme (Nguyen et al., 2002). Unpurified 

liposomal preparations (COV) typically contain about 6–7 liposomes devoid of enzyme 

to every COX-containing liposome, so the need for such a purification method is critical 

due to increased net buffering capacity from the phospholipid headgroups, deleterious 

binding interactions between cytochrome c and the excess lipids (Choi and Dimitriais, 

2004; Gorbenko et al., 2006), and due to light scattering which can complicate 

spectroscopic measurements in the unpurified COV preparation. Since mutagenesis 

studies in the bovine form of the enzyme are not easily performed and are inefficient 

(Hosler et al., 2006), the structural and functional models for mutagenesis studies of COX 

are bacterial oxidases, such as Rhodobacter sphaeroides and Paracoccus denitrificans 

COX (Cao et al., 1992; Hosler et al., 1992; Hosler et al., 2006; Lee et al., 2009; 

Brzezinski and Johansson, 2010). It was therefore important to ensure that the sucrose 

ultracentrifugation technique would yield similar results for the R.sph. enzyme.  

The results showed that R.sph. COX behaved somewhat differently in the gradient 

than did bovine COX. R.sph. pCOV yields were somewhat lower (40% versus 60%) and 

the bands were more diffuse than those seen for bovine COVs. This could be due to 

increased protein–protein or protein–lipid interactions during the sedimentation process. 

An attempt to disrupt ionic interactions revealed, however, that the sedimentation pattern 

did not change in salt concentrations as high as 100 mM KCl. In any case, the bands were 

tight enough and the yields were high enough for satisfactory purification of pCOVs. 
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It was found that the purification procedure reduced the lipid concentration 6-8 

fold in the pCOV fraction. The net buffering capacity of the solution was decreased as 

evidenced by 30% greater extents of pH-induced absorbance changes, as monitored by 

phenol red absorbance in proton pumping assays. Also, the light scatter of the pCOV 

solutions was reduced by about half compared to unpurified COVs. The reduction in 

buffer capacity and light scattering makes pCOVs more suited for low buffer 

spectroscopic studies such as proton pumping assays. 

Following ultracentrifugation, there was a decrease in maximum steady-state 

turnover, in RCR values and in the H
+
/e

-
 ratios of the pCOVs relative to unpurified 

COVs. These decreases mirror the results seen in the bovine pCOVs (Nguyen et al., 

2002). A factor potentially contributing to the reduction in the functional activities could 

be the high hydrostatic pressure (1500 atm) experienced by the COVs during 

centrifugation. This pressure could cause physical damage to the enzyme, leakage of 

intravesicular buffer, or cause the vesicles to break and reseal with complete exchange of 

intravesicular buffer. Previous work presents evidence which suggests that vesicular 

breakage is not a major cause for concern (Nguyen et al., 2002). Following 

ultracentrifugation, the orientation of the cytochrome c binding face was assayed, and it 

was found that proper orientation was equivalent in bovine COVs and pCOVs (85-90% 

facing external). Furthermore, bovine pCOV were made with rhodamine labeled 

phospholipids and found to migrate to the same position when recentrifuged on a fresh 

gradient without significant loss of labeled phospholipid. Together, these tests suggest 

that the vesicles are not breaking and resealing; no loss of lipid, no change in protein 

density, and no alteration of the orientation of the COX molecules were observed. 



130 
 

The effects of high hydrostatic pressure on detergent-solubilized bovine COX 

have been examined elsewhere. At hydrostatic pressures above 2000 atm, the monomeric 

form of bovine COX experienced dissociation of subunits VIa, VIb, III and VIIa and a 

loss of electron transport activity (Stanicova et al., 2004; Stanicova et al., 2007). The 

dimeric form of the enzyme was significantly more resistant to these high pressures and 

did not undergo subunit dissociation. For bovine pCOV, SDS–PAGE analysis with 

Coomassie staining of the lysed pCOV enzyme showed no such loss in subunit content 

following discontinuous sucrose gradient ultracentrifugation (Nguyen and Prochaska, 

unpublished results). Since the R.sph. enzyme lacks the nuclear subunits, the most likely 

candidate for subunit dissociation under elevated hydrostatic pressures would be subunit 

III, as the binding interaction between subunits I and II is more substantial (Thompson 

and Ferguson-Miller, 1983; Qin et al., 2006). The fact that R.sph. COX undergoes 

turnover induced inactivation in the absence of subunit III can be used as to test for 

subunit III dissociation (Bratton et al., 1999; Gilderson et al., 2003; Mills et al., 2003; 

Mills and Hosler, 2005). No evidence of turnover induced inactivation was observed in 

the electron transfer activity assays of R.sph. pCOV, indicating that the enzyme is still 

intact. 

Elevated hydrostatic pressures have been shown to induce transient shape changes 

in lipid vesicles which can cause intravesicular water leakage by an undefined 

mechanism (Beney et al., 1997; Perrier-Cornet et al., 2005). It is possible that the 

mechanism could involve transient pore formation, which could allow intravesicular 

buffer to leak as well (Perrier-Cornet et al., 2005). In other words, the hydrostatic 

pressures experienced by the pCOV during ultracentrifugation could potentially result in 
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the loss of some intravesicular buffering capacity, although the use of zwitterionic 

HEPES reduces this likelihood. To test this possibility, the intravesicular buffering 

capacity was measured for bovine pCOVs and compared to unpurified COVs. The pCOV 

fraction maintained about 70% of the buffering capacity of unpurified COVs (data not 

shown). This minimal intravesicular buffer leakage could explain why proton pumping 

experiments utilizing 10 enzymatic turnovers have decreased H
+
/e

-
 pumping 

stoichiometries relative to experiments using 5 catalytic turnovers (see Table I). The 

decrease in the H
+
/e

-
 ratio is not likely due to a decrease in the proton pumping capability 

of the enzyme, but rather to the diminished intravesicular source of protons for pumping. 

Taken together, these results indicate that our purification technique results in a pCOV 

preparation suitable for low turnover studies; enzymatic activity, vesicle proton 

impermeability and proton pumping capabilities are sufficiently retained. 

The number of R.sph. COX molecules per lipid vesicle was found to be one, 

contrary to the results for bovine COX which had 2-3 COX molecules per vesicle. The 

manner in which this value was estimated assumes a uniform distribution of protein 

molecules in the vesicles of the pCOV band. To test the validity of this assumption, 

COVs were purified in sucrose concentrations as high as 17%. If the distribution of the 

protein in the liposomes were not uniform, the liposomes containing more protein 

molecules would have a greater density and therefore migrate farther through the 

gradient, forming additional bands. A single band was still observed in the higher sucrose 

concentrations, indicating that the R.sph. COX molecules are distributed uniformly in the 

liposomes. Therefore, each pCOV typically contains only one COX molecule, which 
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sheds insight into the oligomeric structure of R.sph. COX as will be further discussed 

below. 

Alternative procedures have been used to purify COX-containing liposomes from 

those devoid of enzyme. These procedures include cytochrome c affinity chromatography 

for the beef heart enzyme (Madden and Cullis, 1985) and nickel affinity chromatography 

using the R.sph. enzyme with a poly-histidine tag located on the outward facing c-

terminus of subunit II (Hiser et al., 2001). Anion exchange chromatography of bovine 

COVs resulted in a preparation of COX-containing liposomes with the proper orientation 

of the cytochrome c binding face. However, the resulting preparations were very dilute, 

of very low yield (less than 20% recovery), and were found unsuitable for proton 

pumping experiments. R.sph. COX with a poly-histidine tag on subunit II was engineered 

by Hiser et al. (Hiser et al., 2001). Nickel affinity chromatography of these COVs yielded 

a purified preparation with complete retention of respiratory control and both electron 

transfer and proton pumping activity (Hiser et al., 2001), results qualitatively similar to 

those we observed with our technique, although the yield of the pCOV from the starting 

COV was not discussed. They also estimated that 5–20 molecules of R.sph. COX were 

incorporated per liposome based upon previously published electron microscopy 

estimations of the number of bovine COX molecules in 300 Å diameter unpurified 

liposomes (Tihova et al., 1993). Our results, based on direct measurement, indicate that 

there is only one R.sph. COX molecule per liposome. In addressing this potential 

contradiction it should be noted that our estimation was based on direct measurements of 

the lipid and protein concentration. Hiser et al. estimated the number of COX molecules 

based on electron microscopy of bovine liposomes and then assumed a similar number 



133 
 

for R.sph. It is physically unlikely for 5–20 molecules of COX (dimensions of 44 by 76 Å 

in the plane of the bilayer) to fit into a liposome only 300 Å in diameter, especially due to 

the high radius of curvature of the bilayer. In addition, our direct measurements of vesicle 

lipid and protein content have at most 20% error, not 5 to 20 fold error. Thus, the electron 

microscopy result is most likely an overestimate of the number of COX molecules per 

pCOV. 

To summarize, discontinuous sucrose gradient ultracentrifugation was found to be 

a useful method for separating R.sph. COX-containing vesicles from liposomes devoid of 

enzyme. Decreased external buffering capacity of solution and reduced light scattering 

were two positive effects of this purification procedure. The decreases in activities 

following ultracentrifugation were minimal and could be explained by slight damage 

caused by hydrostatic pressure to the enzyme and to the vesicles. The intravesicular 

buffering capacity of the pCOV was maintained to a degree adequate for low turnover 

proton pumping studies. It was found that the proteoliposomes contained one molecule of 

R.sph. COX per vesicle. 

 

The Oligomeric Structure of R.sph. COX in the Lipid Membrane 

The oligomeric structure of bovine COX has been the subject of investigation for 

some years. Early on, ultracentrifugal sedimentation velocity and gel filtration studies 

indicated the enzyme was monomeric in DM detergent and had maximal electron transfer 

and proton pumping activity as a monomer (Suarez et al., 1984; Thompson et al., 1985). 

However, it was later shown that the bovine enzyme dimerizes when it is introduced into 

the membrane environment, and it was proposed that dimerization was necessary for full 
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proton pumping efficiency (Finel and Wikstrom, 1986). Chemical cross-linking 

experiments were used to further validate that bovine COX exists in the dimeric state 

when reconstituted into lipid vesicles (Estey and Prochaska, 1993). When the three-

dimensional x-ray crystal structure was obtained, bovine COX crystallized in the dimeric 

state (Tsukihara et al., 1996). In the crystal structure, the monomer–monomer contacts 

are largely via subunits VIa and VIb, which are lacking in the bacterial forms of the 

enzyme (Lee et al., 2001). Musatov and Robinson confirmed that the presence of subunits 

VIa and VIb were necessary for dimerization of the bovine enzyme and provided further 

evidence that the bovine enzyme has a strong, intrinsic propensity to dimerize in the 

phospholipid bilayer (Musatov and Robinson, 2002). It was also shown that when bovine 

COX was converted to the monomeric form by exposure to Triton X-100 or alkaline pH, 

the rate of the F to O step in the catalytic cycle was altered (Sadoski et al., 2001). Since 

this reaction step is coupled to proton uptake and translocation, it was proposed that the 

oligomeric structure of the enzyme plays some role in these functions. Taken together, 

these results indicate that bovine COX dimerizes in the membrane and that the dimer 

might be necessary for maximal proton pumping efficiency.  

The oligomeric states of the bacterial COX forms have not been intensely studied, 

so the oligomeric structure of R.sph. COX was unknown. Since R.sph. COX lacks 

subunits VIa and VIb, it has been suggested to be monomeric, as it also crystallizes 

essentially as a head to tail dimer, which is structurally impossible in the bilayer (Lee et 

al., 2001; Svensson-Ek et al., 2002; Qin et al., 2006). Furthermore, it was shown that 

cytochrome bo3 from E. coli was monomeric when in detergent micelle (Musatov et al., 

1999). Cytochrome bo3 is an ubiquinol oxidase belonging to the same heme-copper 
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oxidase family as cytochrome c oxidase, catalyzing oxygen reduction coupled to proton 

translocation. The four subunit E. coli ubiquinol oxidase has substantial structural 

similarities to bacterial cytochrome aa3 oxidases (Chepuri et al., 1990; Abramson et al., 

2000). By analogy, it is therefore likely that R.sph. COX is also monomeric in detergent 

micelle. However, given the evidence that the lipid membrane environment induces 

bovine COX to dimerize, it is important to address whether a similar process could be 

dimerizing R.sph. COX upon reconstitution into lipid vesicles. If R.sph. COX retains its 

monomeric state in the lipid bilayer, this result could shed insight into whether or not 

dimerization is critical to the proton pumping function of COX. 

The results of this dissertation indicate that there is only one R.sph. COX 

molecule per liposome. For the bovine enzyme, 2–3 COX molecules per liposome were 

observed, consistent with the proposal that bovine COX experiences a driving force for 

dimerization upon reconstitution into lipid vesicles (Musatov and Robinson, 2002; 

Nguyen et al., 2002). No such driving force is apparent for R.sph. COX. The enzyme 

appears to be in the monomeric state when reconstituted into lipid vesicles, suggesting 

that the functional form of R.sph. COX is monomeric in vivo as well. This result further 

highlights the role that the nuclear subunits play in facilitating dimerization, as their 

absence in R.sph. COX is the predominant structural difference between the bacterial and 

mitochondrial forms of the enzyme (Tsukihara et al., 1996; Iwata et al., 2002; Svensson-

Ek et al., 2002). Furthermore, the results indicate that the monomeric form of R.sph. 

COX is capable of maximal electron transfer and proton pumping activity. This is a novel 

result in that COX has not been definitively shown to be capable of maximal proton 

pumping activity when in the monomeric state. Dimerization is therefore unlikely to be 



136 
 

required for maximal proton pumping activity of mitochondrial COX, and the 

dimerization behavior observed for bovine COX must play an alternate role such as 

regulation or added stability, as has been previously proposed (Sadoski et al., 2001; 

Stanicova et al., 2007; Fornuskova et al., 2010). 

 

Structural and Functional Characterization of R.sph. 114 COX Sheds Insight into 

the Role of Subunit III in the Proper Assembly and Function of COX 

 

 

 Cytochrome c oxidase subunit III is a member of the three subunit functional core 

of the enzyme, although the explicit role of this subunit has not been fully elucidated. A 

human mitochondrial disease has been shown to be due to a genetic truncation of subunit 

III after only three of its seven helices. This mutation was modeled in R.sph. COX in 

order to gain insight into the structural and functional significance of subunit III. The 

114 mutation is ideally suited for studying any specific roles of the n-terminus, the v-

shaped cleft and the c-terminal bundle of the subunit (see Figure 15). When expressed in 

R.sph. cells, the 114 COX mutant had lower levels of expression and seemed to impede 

the rate of COX assembly. The enzyme incorporated the truncated subunit III with at 

least 70% stoichiometry, and the subunit was subject to only minor proteolytic processing 

at one specific cleavage site. Additionally, the native processing of subunits II and IV 

was altered in the 114 and I-II COX forms. The proton pumping and oxygen electrode 

activities were about half that of wildtype at physiological pH and were about equivalent 

to I-II COX forms. Finally, 114 COX underwent turnover induced inactivation at a 

similar rate as I-II COX. However, when the assay buffer was supplemented with 

asolectin, the catalytic lifetime was statistically greater than that of I-II COX forms. 
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Taken together, these results indicate that the c-terminal bundle of subunit III plays a role 

in maximizing the assembly efficiency of COX and optimizing the native processing of 

subunit II. Furthermore, the importance of the structural lipids within the v-shaped cleft is 

highlighted as being important in providing protection against turnover-induced 

inactivation. 

 

The Role of Subunit III in the Assembly of R.sph. COX 

 Subunit III has been proposed to play a role in the proper assembly of COX. 

Bratton et al. conducted a study in which the genes for subunit III and/or subunit II were 

deleted from an overexpression vector which also contained the gene for subunit I with a 

poly histidine tag (Bratton et al., 2000). In the absence of subunits II and III, a form of 

subunit I was purified which contained heme a but not the heme a3-CuB active site 

(subunit Ia). This suggested that subunit II is required for proper metal insertion of the 

heme a3 active center. Indeed, when the genes for subunits I and II but not III were 

present, a heterogeneous preparation resulted which had I-II COX with proper metal 

center insertion and also a noticeable amount of free subunit Ia. This indicated that 

subunit III was not required for the proper assembly of subunit I and II, but it did 

participate in the process, as evidenced by the pooling of the subunit Ia assembly 

intermediate in the absence of subunit III (Bratton et al., 2000). Free subunit Ia has been 

shown to be an early assembly intermediate in COX assembly, both in prokaryotic and 

mitochondrial forms of the enzyme (Bratton et al., 2000; Fontanesi et al., 2008; 

Fernandez-Vizarra et al., 2009). 
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The data presented here support the conclusion that subunit III is involved in 

assembly and extend the argument by highlighting the necessity of the c-terminal domain 

in this process. In both I-IIGD and 114 COX preparations, there was an enrichment of 

free subunit Ia as compared to the wildtype preparations, and lower levels of COX were 

noted in the membranes, suggesting assembly was hindered. A similar result was also 

observed for a truncation mutation in subunit III which removed the seventh c-terminal 

helix to form 238 COX (Geyer, 2007). It is not entirely clear what role the c-terminal 

domain of subunit III could be playing in the proper assembly of COX. Since I-II COX 

can form in the absence of subunit III, it is not a required component of the assembly 

process, but its absence or truncation seems to present a bottleneck in the process such 

that the assembly intermediate upstream accumulates. Therefore, it is likely to provide 

stabilization which increases the rate of an assembly step (Bratton et al., 2000). Along 

these lines, subunit III could be stabilizing an interaction between subunit I and surf1. 

Surf1 is a COX assembly protein conserved from mammals to prokaryotes and is 

involved in the insertion of heme a3 into subunit I (Smith et al., 2005; Stiburek and 

Zeman, 2010). Heme a3 insertion seems to enhance the binding of subunit I to subunit II 

(Stiburek and Zeman, 2010), so an impedance in the rate of heme a3 insertion would 

result in a pooling of subunit I which would be devoid of heme a3 and unable to interact 

with subunit II – in other words, free subunit Ia. Surf1 is a ~30 kD protein composed of 

two transmembrane domains and a large globular domain extending into the periplasm or 

inner membrane space (Stiburek and Zeman, 2010). The c-terminal domain of subunit III 

could enhance a binding interaction between Surf1 and COX subunit I. If Surf1 bound to 

helix 6 or 7 of subunit I – helices surrounding the subunit I heme a3 center – the c-
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terminal domain of subunit III would be ideally situated to foster the Surf 1 – subunit I 

interaction. Subunit III would not be required for the interaction, but would stabilize it 

and enhance the rate of heme a3 insertion and subsequent binding of subunit II. In R.sph., 

putative COX assembly intermediates have also been isolated consisting of only subunits 

I and III, so this type of interaction could be possible (Hiser and Hosler, 2001). There is 

still much to be elucidated concerning the assembly process of COX, so there are many 

other possible ways in which subunit III could be involved in the process. This example 

highlights the type of role subunit III could putatively play.  

 

The Role of Subunit III in the Native Processing of Subunit II 

Early in the development of COX bacterial model systems, COX from P.dent. and 

R.sph. were observed to undergo native processing in subunit II at the n- and c-termini 

(Steinrucke et al., 1987; Cao et al., 1991). The reason for this processing is unknown, 

although it could be to remove a targeting peptide (Cao et al., 1991). R.sph. COX which 

has been purified by Ni
2+

-NTA chromatography contains three forms of subunit II – a 

32930 Da form which is unprocessed, a 30660 Da form (IIC) which is only processed at 

its n-terminus, and a 29122 Da form (IIA) which is fully processed at both termini 

(Hosler et al., 1992; Zhen et al., 1998; Hiser et al., 2001; Distler et al., 2004). Hosler et 

al. used DEAE-5PW chromatography to separate these three forms of COX and found 

that they had equivalent rates of electron transfer (Hosler et al., 1992). Further analysis 

by Hiser et al. confirmed equivalent steady state activity between a preparation with a 

mixture of subunit II forms and a preparation of the purified fully-processed form (IIA). 

Upon closer examination, however, evidence was revealed that the presence of the 
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unprocessed form of subunit II might slightly elevate the KM of cytochrome c binding, 

although the increase was close to the error in the measurements (Hiser et al., 2001). In 

this dissertation, it was observed that I-IIGD and 114 COX had noticeably elevated 

levels of the partially processed form of subunit II (form IIC) as compared to wildtype 

preparations. This suggests that subunit III might participate in maintaining optimal rates 

of proteolytic processing in subunit II, a step that could be required for optimal COX 

activity in a limited substrate environment. This putative role for subunit III involves the 

entire c-terminal domain, as 114 COX showed the same proteolytic processing patterns 

in subunit II as I-IIGD COX. Steady-state levels of activity were not affected in I-IIGD and 

114 COX as compared to I-IIBD COX.  I-IIBD has the same ratios between the subunit II 

forms as wildtype COX, due to the fact that for I-IIBD, subunit III is removed 

biochemically from wildtype COX.  Therefore, this demonstrates that the reduction in 

steady-state activity of I-IIGD and 114 COX compared to wildtype COX was due to a 

mechanism other than elevated levels of unprocessed subunit II.  

At limiting levels of cytochrome c, the relative enrichment of the unprocessed 

form of subunit II in the 114 and I-IIGD preparations might have a greater effect on 

COX activity, providing a selective pressure for subunit II processing. However, it should 

be noted that although both P. denitrificans and R. sphaeroides undergo subunit II 

processing, the cleavage site at the n-terminus is not identical, suggesting that the 

processing mechanism is not highly conserved (Hiser et al., 2001). Evidence for a similar 

process in mitochondrial COX has not been observed, as subunit II from bovine COX 

routinely runs as a single band on SDS-PAGE gels (Kadenbach et al., 1983; Ogunjimi et 

al., 2000). Indeed, the protein coding sequence of bovine COX at the c-terminus 
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terminates 20 amino acids shorter than R.sph., immediately after its last surface-exposed 

helix, so the subunit appears to be translated devoid of the sequence that is usually 

subsequently removed from the prokaryotic forms of COX (Tsukihara et al., 1996; Hiser 

et al., 2001). This observation raises interesting evolutionary questions regarding the 

different strategies of mammalian and prokaryotic COX assembly and native proteolytic 

processing. 

 

The Role of Subunit III in D-pathway Proton Uptake 

 In the absence of subunit III, steady-state activity, proton pumping efficiency and 

the catalytic lifetime of COX decrease. It has been proposed that these effects are due to 

decreased proton uptake through the D-pathway and due to a loss of structural support of 

subunit I provided by subunit III (Gilderson et al., 2003; Mills and Hosler, 2005; 

Adelroth and Hosler, 2006). In the 114 COX mutation, the four c-terminal helices of 

subunit III have been removed, but the three n-terminal helices are retained, a region 

which contains a putative proton antenna and the v-shaped cleft which binds lipids of 

proposed functional importance. A functional analysis of this mutant is of value for 

further elucidating the structural features of subunit III which allow it to confer its 

protective effect to COX during catalytic turnover. 

 It has been proposed that subunit III helps maintain proton uptake through the D-

pathway by acting as a proton antenna and/or by fine turning the pKa of subunit I residue 

D132 to a value optimal for its role as the primary proton acceptor in the D-pathway 

(Gilderson et al., 2003; Adelroth and Hosler, 2006). The subunit III residues thought to 

be responsible for these proposed roles are located on its n-terminus. Specifically, the 
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conserved histidines at positions 7 and 10 could act as a proton reservoir by virtue of the 

fact that their pKa values are likely to be in the physiological range. Their presence could 

serve to increase the local concentration of protons in order to maximize the rate of 

proton uptake (Gilderson et al., 2003; Hosler, 2004). In addition, there are four 

hydrophobic residues on the n-terminus of subunit III – Ile 11, Leu 12, Pro 13 and Pro 14. 

These residues form part of a ring around the shallow well in which D132 is located. It 

has been proposed that they could be acting to raise the pKa of D132 by partially 

shielding it from the aqueous phase (Gilderson et al., 2003; Hosler, 2004). All of these 

residues are retained in 114 COX but missing in I-II COX, so the 114 COX mutant 

provides an opportunity to test these proposed roles for the n-terminus of subunit III. 

 Despite the presence of the n-terminal region of subunit III in the 114 mutant, 

the rate of proton uptake through the D-pathway and the apparent pKa of D132 in 114 

COX are similar to that of I-II COX. Firstly, the catalytic lifetimes were observed to be 

equivalent in the I-II COX forms and 114 COX at physiological pH in DM (see Table 

VIII). The catalytic lifetime as measured by the CC50 value has been shown to be a 

qualitative measure of the rate of proton uptake through the D-pathway (Adelroth and 

Hosler, 2006). The equivalent CC50 values of 114 and I-II COX indicates that the rate of 

proton uptake through the D-pathway is similar in the two enzyme forms. There was an 

elevated catalytic lifetime seen for 114 in lipid micelle compared to I-II COX, but the 

fact that this was not observed in detergent implies that this lipid-mediated effect results 

from a mechanism other than the action of the putative proton antenna region, as will be 

discussed below. Secondly, the apparent pKa of the D-pathway is equivalent in 114 and 

I-II COX, as monitored by steady-state electron transfer activity (Figure 25, Table VIII). 
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When D-pathway proton uptake is impaired, the rate limiting step in the reaction cycle is 

proton uptake through the D-pathway during the F  O transition (Adelroth and Hosler, 

2006). The pKa of steady-state activity under impaired uptake conditions is therefore 

closely related to the apparent pKa of a critical D-pathway residue, putatively D132 

(Gilderson et al., 2003; Mills and Hosler, 2005; Adelroth and Hosler, 2006). In the case 

of wildtype, proton uptake through the D-pathway is not rate limiting, so the pH profile 

of wildtype steady-state activity also reflects a large contribution from E286 (Adelroth 

and Hosler, 2006). The equivalent pH profiles of I-II COX and 114 suggests that the 

subunit III n-terminal residues are not altering the apparent pKa of the D-pathway as had 

been previously proposed.  

 The results do not entirely dismiss the proton antenna and/or hydrophobic tuning 

roles for subunit III, however. As already articulated, the lipid-mediated link between the 

c-terminal bundle and the n-terminal bundle seems to be of functional significance. It is 

possible that the c-terminal bundle serves to properly position the n-terminus of subunit 

III so as to maximize its function as a proton antenna or as a shield from aqueous 

solution. In other words, it could be that the reason no evidence was seen for n-terminal 

proton collection or elevation in the pKa of D132 was because the n-terminus cannot 

properly align for such functions without the c-terminal bundle. 

 The yield and purity of Ni
2+

-NTA purified 114 COX provides some evidence for 

improper folding of subunit III-114. Protein yields for Ni
2+

-NTA purification were only 

about 25% for 114 COX, compared to 75% yields typically obtained for wildtype COX. 

The 114 COX protein that did not bind to the nickel column had normal spectral 

properties indicating that subunit I was properly folded, however it never bound to the 
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column despite repetitive recycling attempts. It could be that the truncated subunit III was 

misfolded and facilitated aggregation that masked the histidine tag and prevented binding 

and subsequent purification. It should be noted that if this is the case, then the majority of 

the misfolded subunit III would not be purified, and perhaps the portion that was purified 

had a properly folded subunit III-114.  

It was also the case that the 114 preparations had greater enrichment in the 

impurities often noticed in R.sph. COX preparations. The molecular weights of these 

impurities were measured (see Table VII), but no obvious protein candidates could be 

identified from known assembly factors or proteases which might be specifically 

interacting with subunit III if it were misfolded. These impurities could be present due to 

non-specific interactions with partially misfolded subunit III-114. 

 Although subunit III-114 might be somewhat misfolded, there are a few reasons 

why this structural disruption is probably not severe. Firstly, the specific protection 

provided by the lipids against turnover induced inactivation for 114 COX would require 

binding to a three-dimensional protein structure that is not significantly perturbed. 

Secondly, subunit III-114 binds well to subunit I. It was estimated by two dimensional 

PAGE that at least 70% of COX had subunit III-114 incorporated (see Figure 22B, 

Table VI). This was a much higher stoichiometry of subunit III incorporation than was 

observed for another truncation in subunit III which removed only the last c-terminal 

helix, 238 COX. The 238 mutant was suspected of extensive folding problems as it 

seemed to be undergoing significant proteolytic degradation in vivo (Geyer, 2007). The 

high level of subunit III-114 binding to subunit I, therefore, suggests that this 

interaction is not significantly perturbed by improper folding. Related to this point is the 
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fact that 114 did not seem to be undergoing extensive proteolytic degradation of the 

truncated subunit III. Only one proteolytic product of SIII-114 was observed (see 

Figures 17 and 18, Table V), and this product resulted from the removal of the 13 n-

terminal amino acids of SIII-114 which would form part of a periplasmic loop in 

wildtype COX (Svensson-Ek et al., 2002). Disorder in this small stretch of SIII-114 

would be expected, so its proteolytic removal is not indicative of systemic misfolding of 

SIII-114. 

 Although severe misfolding of subunit III is not likely to be the case, it is possible 

that minor structural alterations of the n-terminus of subunit III could prevent it from 

performing its proposed roles in proton collection and in shielding of D132 from the 

aqueous environment thereby raising its pKa. This hypothesis could be tested by a series 

of mutational experiments in the n-terminal region of subunit III. Firstly, the conserved 

histidines His7 and His10 could be mutated to non-protonatable residues. If these 

residues are critical to maintaining rapid D-pathway proton uptake, mutating them should 

decrease the catalytic lifetime of the protein. Secondly, the conserved hydrophobic patch 

– Ile11 and Leu12 – could be mutated to more polar residues to examine their 

contribution to rapid proton uptake. If a shift in the pKa of steady-state turnover is 

observed, it is likely that the residues are important for elevating the pKa of D132. 

Finally, the conserved proline residues at positions 13 and 14 could be mutated to glycine 

residues. The two adjacent prolines introduce a sharp turn in the structure and may orient 

the n-terminus in an optimal position for proton collection and hydrophobic tuning of 

D132’s pKa. These proline mutations would shed insight into the conformational 

sensitivity of the n-terminal region. If deleterious effects were noted for the histidine 
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and/or hydrophobic mutants, the putative roles of proton collection and pKa fine tuning 

would be more firmly established. Then, if deleterious effects were also noted for the 

proline mutations, it could help to explain why the proton antenna and hydrophobic tuner 

functions were not observed in 114 COX and could highlight the importance of the c-

terminal domain in aligning the n-terminus of subunit III. 

 

The Role of Subunit III and Its Cleft Lipids in Stabilizing the D-pathway and Active Site 

Subunit III has been proposed to stabilize the proper structure of the ordered 

water molecules that compose the D-pathway, thereby facilitating maximum proton 

uptake through the D-pathway and preventing turnover induced inactivation (Hosler, 

2004). A comparison of the x-ray crystal structures for wildtype and I-II COX revealed a 

difference in the water arrangement of the D-pathway when subunit III was absent (Qin 

et al., 2006). Proton transfer through the D-pathway is accomplished by the Grotthuss 

mechanism, which requires a reorientation of the water molecules after each proton 

transfer event (Nagle and Tristram-Nagle, 1983; Hosler, 2004). An optimal flexibility in 

the proton pathway would allow the water molecules to reorient but not to diffuse to 

different locations. Subunit III, in combination with its putative structural lipids has been 

proposed to play such a role in providing the optimal structural support for the D-

pathway (Hosler, 2004; Varanasi et al., 2006). 

 The results of this dissertation are consistent with the hypothesis that subunit III 

and its cleft lipids aid in stabilizing the D-pathway to prevent turnover induced 

inactivation. The catalytic lifetime of 114 COX was statistically equivalent to both 

forms of I-II COX when the assay was conducted in DM detergent (see Table VIII). 
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However, upon supplementing the assay buffer with 1 mg/mL asolectin, the catalytic 

lifetime of 114 increased 2.1 fold, a value statistically greater than the more modest 

increases observed for the two different I-II COX forms. The catalytic lifetime of 114 

was not further increased relative to the lipid micelle assay when the enzyme was 

reconstituted into phospholipid vesicles and assayed in the presence of ionophores. 

However, reconstitution into lipid vesicles increased the catalytic lifetimes of both forms 

of I-II COX to statistical equivalence with the catalytic lifetime of 114 achieved in lipid 

micelle. The presence of subunit III-114 and excess lipid, therefore, seems to provide a 

protective effect against turnover induced inactivation that can only be achieved for I-II 

COX when the enzyme is in the more constrained environment of a lipid vesicle. 

 The elevated protection against turnover induced inactivation provided by SIII-

114 and lipid suggests a specific binding effect of the lipid to subunit III-114. The 

114 truncation of subunit III retains all but one of the conserved amino acids which bind 

the lipids (see Figure 6). Specifically, all the residues associated with PL1 are present 

(amino acids R137, L145, L196 and L203 of subunit I; amino acids W58, W59, M55, 

F86 and F93 of subunit III), and all of the residues in van der Waals contact with the fatty 

acid tails of PL2 are also present (amino acids W59, M55 and F86). The only subunit III 

lipid-associated residue which is missing in 114 COX is R226, which coordinates the 

head group of PL2 by an ionic and h-bond interaction between its guanidinium nitrogens 

and the negatively charged phosphate head group (Svensson-Ek et al., 2002; Varanasi et 

al., 2006). R226 is located on helix 6 of subunit III and therefore fosters a lipid-mediated 

connection between the c-terminal and n-terminal domains of subunit III. The interaction 

with R226 is the strongest single protein interaction for PL2 (Varanasi et al., 2006), so its 
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absence might cause PL2 to be partially depleted from the enzyme. In the R.sph. crystal 

structure, the bound cleft lipids are phosphatidyl ethanolamines with oleic acid tails 

(18:1) (Svensson-Ek et al., 2002; Varanasi et al., 2006), a lipid which is present in 

asolectin (Varanasi et al., 2006). Therefore, in the assay in which asolectin is present in 

the buffer, the high lipid concentrations could be increasing the likelihood that a lipid will 

bind in the potentially vacated PL2 site. 

It is therefore proposed that the elevated catalytic lifetime seen in the presence of 

excess lipid results from a lipid binding in the PL2 position and conferring added 

structural support to help maintain the proper orientation of the D-pathway waters. 

Several of the conserved residues in subunit III interact with both lipids. For instance, Trp 

59 on helix 2 intercalates between the fatty acid tails of PL1 and PL2, and F86 on helix 3 

makes contact with both lipids as well. The presence of PL2 would therefore confer 

greater stability to the entire protein-lipid-protein structure which bridges the v-shaped 

cleft of subunit III. PL1 binds on the opposite face of subunit I helices 3 and 4, which 

contain most of the conserved residues coordinating the water molecules of the D-

pathway (N139, S197, S200, S201, N207). On these same subunit I helices are residues 

which interact with portions of the fatty acid tail of PL1 (L196, L203). Also, the subunit I 

residue which coordinates the PL1 headgroup (R137) is only two amino acids removed 

from the conserved D-pathway residue N139 (Svensson-Ek et al., 2002; Hosler, 2004; 

Varanasi et al., 2006). As such, there is a strong potential for a structural link between the 

lipids in the v-shaped cleft and the coordination of the water molecules in the D-pathway. 

When the two different I-II COX forms were reconstituted into phospholipid 

vesicles, they had protection against turnover induced inactivation at levels similar to 
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what 114 COX achieved in lipid micelle. In an attempt to decipher whether the 

increased lifetime was due to a biophysical property of the phospholipid bilayer or due to 

a lipid binding interaction with I-II COX, the asolectin concentration was increased 10 

fold in the solubilized assay. The catalytic lifetime of I-IIGD COX was not increased when 

asolectin concentrations were as high as 10 mg/mL in solution, suggesting that the 

molecular mechanism for the protection effect observed in 114 COX in lipid micelle is 

impaired or absent in forms of COX that have subunit III removed (I-II COX). Since 

114 COX has the three n-terminal helices of subunit III containing most of the 

conserved lipid-associated amino acids, this observation strengthens the proposal that the 

cleft lipids are bound in conserved locations in order to provide structural support which 

protects COX from inactivation. The increased lifetime observed upon reconstitution of I-

II COX is likely caused by a biophysical property of the phospholipid bilayer, rather than 

by a lipid binding in a specific location within the three-dimensional structure of the 

protein, as is proposed for 114 COX. Phospholipid bilayers have been shown to 

laterally compress and decrease the conformational dynamics of transmembrane proteins 

(Dan and Safran, 1998; Kusnetzow et al., 2006). As such, the bilayer could serve to 

reduce deleterious structural oscillations in I-II COX by a lateral compression 

mechanism, thereby reducing the likelihood of turnover induced inactivation to levels 

similar to those achieved by 114 COX through the proposed binding in the v-shaped 

cleft of a phospholipid molecule from the lipid micelle. 

Some phospholipids have been shown to increase the rate of proton uptake 

through the D-pathway by serving as proton donors via ionizable phospholipid 

headgroups (Adelroth and Hosler, 2006). The pH profiles of steady-state activity and 
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turnover induced inactivation are not altered for 114 COX when they are conducted in 

the presence or absence of lipid. This suggests that the partial lipid protection against 

inactivation is not due to the introduction of an additional proton donor to the D-pathway. 

Rather, the protection seems to be structural in nature. 

Given this proposed role, it is of particular interest that subunit III labeling with 

DCCD perturbs the tails of the lipids within the v-shaped cleft (Shinzawa-Itoh et al., 

2007). Prochaska et al. showed that subunit III can be specifically labeled at position E90 

with DCCD, a modification which decreases proton pumping efficiency as well as 

steady-state activity (Prochaska et al., 1981). E90 is flanked by F86 and F93, two of the 

amino acids which are in van der Waals contact with the fatty acid tails of PL1 

(Svensson-Ek et al., 2002; Varanasi et al., 2006). The x-ray crystal structure of bovine 

COX labeled at E90 with DCCD shows that the tails of the cleft lipids are perturbed by 

the bulky cyclohexyl groups (Shinzawa-Itoh et al., 2007). The positions of the lipids in 

bovine and R.sph. COX are conserved, so it is of relevance that one of the tails of PL1 

which is perturbed by DCCD has a conserved structural connection extending 16 Å to 

H284, which is a ligand of CuB –  the active site copper which is depleted from enzyme 

that has undergone turnover induced inactivation (Svensson-Ek et al., 2002; Tsukihara et 

al., 2003; Varanasi et al., 2006). To add further weight, our lab has recently shown that 

turnover induced inactivation occurs in bovine and R.sph. COX when they are labeled 

with DCCD (unpublished results). Perhaps the deleterious effects of DCCD labeling on 

COX pumping, steady-state activity and catalytic lifetime are in part due to structural 

perturbation of the subunit III cleft lipid tails. 



151 
 

The structural support putatively offered by the cleft lipids of subunit III is not 

sufficient to maintain adequate rates of proton uptake for maximal function in the 

absence of the c-terminal bundle. Upon truncation of the four c-terminal helices, activity 

levels and proton pumping are diminished to I-II COX levels, even in the presence of 

lipid. Additionally, the more than two fold increase in the catalytic lifetime of 114 COX 

afforded by excess lipid still increases the lifetime to only about 1% of the lifetime of 

wildtype COX, highlighting the importance of the c-terminal bundle. Mutations in full 

length subunit III which disrupt the binding interactions of the lipids have been shown to 

result in turnover induced inactivation as well (Varanasi et al., 2006). This suggests that 

both full length subunit III and the cleft lipids are necessary for maximal protection from 

turnover induced inactivation. 

The importance of the c-terminal bundle for maintenance of native proton 

pumping stoichiometries may also be partially mediated by the subunit III cleft lipids. In 

this work, it was found that 114 COX pumped with the same stoichiometry as I-IIGD 

COX, which was about half the efficiency of wildtype (see Figure 28, Table VIII). As 

stated previously, the only conserved lipid-binding residue which is truncated in 114 is 

R226 on helix 6 of subunit III. A point mutation has been made in subunit III which 

converts R226 to an alanine, thereby abolishing the interaction it forms with the head 

group of PL2 (Varanasi et al., 2006). Remarkably, the R226A mutant pumps with only 

about 50% the efficiency of wildtype COX, similar to the efficiency seen when the bulk 

of the c-terminal domain is removed entirely (this work; Varanasi et al., 2006). These 

results point to the importance of the lipid-mediated interaction between the n- and c-

terminal bundles of subunit III for maintaining maximal proton pumping efficiency. 
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In short, structural and functional studies on R.sph. 114 COX have provided 

further evidence for the importance of the subunit III cleft lipids and for the criticalness 

of the lipid-mediated interactions within subunit III. R.sph. 114 COX was observed to 

have an increased catalytic lifetime when in lipid micelle, an effect which seems to result 

from the specific binding of lipid. It was proposed that a lipid binds in the PL2 position 

and serves to increase the protein-lipid interactions within the cleft. An examination of 

the crystal structure reveals that this could have a fairly direct stabilizing effect on the 

coordination of D-pathway water molecules and on the stability of the subunit I active 

site via a CuB ligand. The limitedness of the stabilizing effect, however, points to the 

importance of the c-terminal bundle and to the importance of intra-subunit interactions 

between the n- and c-terminal bundles. 

 

R.sph. 114 COX and Human Mitochondrial Disease 

 The R.sph. 114 COX mutation was modeled after a mutation in human 

mitochondrial cytochrome c oxidase subunit III which results in a disease state typified 

by severe lactic acidosis episodes and neuromuscular impairments (Tiranti et al., 2000). 

When the corresponding mutation was made in the simpler R.sph. form of the enzyme, 

the protein was found to have electron transfer and proton pumping activities that were 

reduced to about half that of wildtype COX. The 114 COX protein was also subject to 

turnover induced inactivation, suggesting that proton uptake through the D-pathway was 

impaired. Furthermore, evidence of early assembly intermediate pooling suggested that 

the rate of COX assembly was not optimal, and that there were lower levels of COX 

protein in the membranes as compared to alternative terminal oxidases. These results can 
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be gleaned for insight into the molecular mechanisms of the diseased state and into some 

of the differences between mitochondrial and bacterial COX forms. 

 The pathological condition that resulted from the truncation in subunit III COX 

was reported by Tiranti et al. (Tiranti et al., 2000). A stable cell line homoplasmic for the 

mutation was created using the fibroblasts from a patient. Western blot analysis of Blue 

Native PAGE gels of the mitochondrial fraction of digitonin-treated cells indicated that 

fully assembled COX was absent and that COX assembly intermediates were 

accumulated. The investigators did not find evidence of a subunit III peptide resulting 

from the confirmed presence of the mutated mRNA transcript for subunit III, although 

they were limited by a lack of a specific antibody for subunit III. From pulse-chase 

experiments with [
35

S] methionine, they concluded that truncated subunit III was not 

being translated. This however, is likely to be a premature and faulty conclusion; an 

examination of the polyacrylamide gel of the translation products showed multiple bands 

in the region where truncated subunit III runs in our SDS-PAGE gels of purified R.sph. 

114 COX. The band is likely to be faint, given that 3 of the 10 methionines are removed 

when subunit III is truncated and that the band for full length subunit III was already faint 

in the control cell lines as compared to other COX subunits (Tiranti et al., 2000). It is 

likely that the faint band corresponding to truncated subunit III is occluded by the 

multiple translation products of similar molecular weight. To add to this argument, the 

BN-PAGE gels of the mutant mitochondrial cells displayed a shift in the band position of 

one of the assembly intermediates. The authors attributed this to a “qualitative 

abnormality of COX assembly,” but given that truncated subunit III-114 incorporated in 

the bacterial COX with high stoichiometry, the shift observed in the BN-PAGE of the 
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mitochondrial COX assembly intermediates is likely to be due to incorporation of the 

truncated form of subunit III. 

 The assembly of mitochondrial COX is more complicated than it is for bacterial 

COX, as there are 10 nuclear-encoded subunits incorporated into the complex (Tsukihara 

et al., 1996; Fontanesi et al., 2008; Fornuskova et al., 2010; Stiburek and Zeman, 2010). 

The initial assembly intermediate is subunit Ia, similar to the case for the R.sph. system 

(Bratton et al., 2000; Fontanesi et al., 2008). Next, the nuclear subunits IV and Va bind to 

subunit I to form intermediate 2 (Fernandez-Vizarra et al., 2009). Subunit II binds to 

intermediate 2, followed by subunit III. The binding of subunit III initiates a cascade of 

nuclear subunit binding (Fontanesi et al., 2006; Fernandez-Vizarra et al., 2009). Tiranti et 

al. postulated that downstream assembly of the nuclear encoded subunits was impaired 

due to the absence of subunit III (Tiranti et al., 2000). As already noted, it is debatable 

that truncated subunit III was missing from the mitochondrial COX complex, as the 

authors did acknowledge in their discussion. The results described in this dissertation 

highlight the necessity of a more thorough investigation of the presence of truncated 

subunit III in the mitochondrial COX mutant cell lines. Furthermore, they provide 

evidence that the truncation of subunit III can also affect what is thought to be upstream 

assembly of COX. Whether or not this is also the case in the mitochondrial enzyme 

remains to be tested, as assembly is likely to be more stringent and regulated for 

mitochondrial COX (Hiser and Hosler, 2001; Fontanesi et al., 2006; Fontanesi et al., 

2008; Fornuskova et al., 2010).  

 Functional assays of the human mitochondrial COX mutant with truncated 

subunit III were limited due to the fact that the protein was not purified. The rate of 
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oxygen reduction in the mutant cell lines was reduced to about 15% of the control cell 

lines when the assay was conducted in whole mitochondria (Tiranti et al., 2000). These 

assays were normalized to the activity of citrate synthase, which is a marker enzyme for 

the relative number of mitochondria. Since they were not normalized to the concentration 

of COX, it is difficult to interpret the meaning of this result. The authors assumed the 

decreased activity was due to presumed lower levels of COX protein rather than to a 

decrease in the activity of mutated COX. The functional studies of the R.sph. 114 COX 

mutant provide a better glimpse into the deleterious functional effects of the subunit III 

mutation. It is likely that the mitochondrial subunit III truncation resulted in a similar loss 

of electron transfer and proton pumping activity. Furthermore, our lab has recently shown 

that bovine COX also undergoes turnover induced inactivation in the absence of subunit 

III (A. Kaliappan, unpublished results). Since the R.sph. 114 COX mutant demonstrated 

that the full length of subunit III is required for prevention of inactivation, it is possible 

that turnover-induced inactivation of COX is occurring in the diseased mitochondria. 

 In summary, modeling the human mitochondrial disease by the R.sph. 114 COX  

mutation has served to provide a more full view of what could be occurring in the 

mutated mitochondrial COX. This work points to the necessity of a more robust assay for 

the presence of truncated subunit III in the mutated mitochondrial COX complex. It also 

raises the possibility of upstream impairment in COX assembly. Finally, it provides 

evidence that the mutated mitochondrial COX is likely to be hindered in its electron 

transfer and proton pumping capacities and to be subject to turnover induced inactivation. 

Continued investigation of the mitochondrial and bacterial COX mutation has the 

potential to shed further insight into the structural features of subunit III which enable it 
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to play roles in COX assembly and maximal function and into the differences between 

the mitochondrial and bacterial systems. 



157 
 

 

 

V. Conclusions 

 

 Discontinuous sucrose gradient ultracentrifugation was found to be a suitable 

technique for removing liposomes lacking protein from those containing R.sph. COX. 

The reduced lipid concentrations resulted in lower net buffering capacity and decreased 

light scattering, making the technique useful for low buffer spectroscopic studies. It was 

found that there is only one R.sph. COX molecule per liposome. The enzyme therefore 

appears to be in the monomeric state when reconstituted into lipid vesicles, suggesting 

that the functional form of R.sph. COX is monomeric in vivo as well. The results show 

that monomeric R.sph. COX is capable of maximal turnover and proton pumping activity. 

This is a novel result in that COX has not been definitively shown to be capable of 

maximal proton pumping activity when in the monomeric state. 

Structural and functional characterization of a c-terminal subunit III truncation 

mutation have provided further evidence that subunit III and its cleft lipids aid in 

stabilizing the D-pathway to prevent turnover induced inactivation. This mutant removes 

the four c-terminal helices of subunit III, leaving the three n-terminal helices which form 

a v-shaped cleft containing a conserved binding region for two lipids. The mutant with 

truncated subunit III provided greater protective effects against turnover-induced 

inactivation when assayed in lipid micelle as compared to COX with subunit III removed 

either by biochemical or genetic means. The exogenous lipid used in the assay is 

proposed to bind in the potentially vacated lipid site contained in truncated subunit III. 
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An examination of the crystal structure reveals that the bound lipid could have a fairly 

direct stabilizing effect on the coordination of D-pathway water molecules and on the 

stability of the subunit I active site. The stabilizing effect is limited in that the mutant 

does not support wildtype activities, which points to the importance of the c-terminal 

bundle and to the importance of intra-subunit interactions between the n- and c-terminal 

bundles. The c-terminal bundle of subunit III was also found to play roles in maximizing 

the assembly of COX and in optimizing the native processing of subunit II. Since the 

truncation mutation is modeled from a human mitochondrial disease mutation, these 

findings can be used to further understand the molecular mechanisms of that disease state 

and to shed insight into the differences between mitochondrial and bacterial COX forms. 
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Appendix 

 

Probing the Dynamic Conformation of R.sph. COX Subunit III with Thiol-Reactive 

Fluorophores 

 

The role of subunit III in the structure and function of cytochrome c oxidase is a 

matter of continued investigation. In this dissertation, a role for subunit III in stabilizing 

the D-pathway and subunit I active site was investigated. It is possible that this 

stabilization role could be affected through redox-linked conformational changes. These 

conformational changes could also serve to regulate the catalytic activity of the enzyme. 

Site-directed antibodies bound to subunit III of bovine COX have been shown to increase 

the rate of electron transfer, perhaps by locking the enzyme into a more active 

conformation (Lincoln et al., 2003). In addition, specific peptides within the three-

dimensional structure of COX subunit III have been identified which have altered solvent 

accessibility in the various catalytic intermediate states, indicating that structural 

conformational changes in subunit III could be occurring during the catalytic cycle of 

COX (Busenlehner et al., 2006). These putative conformational changes have not been 

completely described, and the possibility of a link between the conformation of subunit 

III and activity at the subunit I active site is still being investigated. The experiments 

described in this appendix are aimed at testing the hypothesis that redox-linked 

conformational changes occur in COX subunit III. These putative conformational 

changes could play a regulatory or stabilization role for COX.  
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Site-specific fluorescence spectroscopy is a method by which protein 

conformational dynamics can be studied. Thiol-reactive fluorophores can be conjugated 

to the cysteine residues in proteins (Haughland, 2002). The local environment of the 

protein surrounding the probe will influence the fluorescent properties of the probe 

(Haughland, 2002; Lakowicz, 2006). For example, changes in the hydrophobicity or 

flexibility of the environment will alter the emission wavelength/intensity or the 

anisotropy of the probe’s emission (Hudson and Weber, 1973; Haughland, 2002). 

Therefore, if a conformational change in the protein alters the location of the fluorophore 

such that it is in an environment with altered hydrophobicity or flexibility, the 

conformational change will influence the measureable fluorescence properties of the 

probe (Hibbs et al., 2005; Bell et al., 2006).  The long term goal of these studies is to 

direct fluorescent probes to specific locations in the three dimensional structure of COX 

subunit III by preparing single cysteine mutants. Conformational changes in these 

specific locations can then be assessed through a variety of fluorescence experiments. 

This appendix described the progress made toward creating and characterizing single 

cysteine mutants and toward developing protocols for assaying conformational dynamics. 

 

Methods 

Mutagenesis of R.sph. COX Subunit III to Create Single Cysteine Mutants 

  A pRK415-CA1CS3 plasmid was received from Robert Gennis at the University 

of Illinois, Champaign-Urbana. This plasmid is a broad host range overexpression vector 

used for expressing COX in R.sph. The plasmid contained a subunit I gene in which the 

two native cysteines (C64, C88) were mutated to alanines and which had a polyhistidine 
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tag engineered onto the c-terminus. In addition, the subunit III gene in the plasmid had its 

three native cysteines mutated to serines (C143, C146, C223). Also contained in the 

plasmid were a subunit II gene and two accessory proteins for COX assembly. The 

CA1CS3 COX protein expressed from this plasmid has no cysteine residues available for 

bioconjugation. 

 The subunit III gene from the pRK415-CA1CS3 plasmid was engineered into the 

pMB301 vector and used as the template DNA for introducing single cysteines into 

subunit III by replacing non-conserved amino acids. Two single cysteine mutants were 

created using the protocols described (see Methods). The mutants were sequenced by 

Davis Sequencing to verify correct mutagenesis. The A4C mutant was created to analyze 

the conformational dynamics at the n-terminus of subunit III (mutagenesis primer 

sequence: 5’-GGG AAC CAT GGC CCA CTG CAA-3’). The S187C mutant was created 

to study the conformation dynamics of the periplasmic loop which extends from helix 5 

to helix 6 in subunit III (mutagenesis primer sequence: 5’-CAG GCC TAC GAA TAC 

TGC CAC GCG GCT TTC-3’). The conformation of this loop is suspected of playing a 

regulatory role for COX activity; a site-directed antibody bound on this loop in bovine 

COX increased the catalytic activity of the enzyme (Lincoln et al., 2003). These mutants 

were expressed and purified and their functional properties were assessed according to 

protocols described in the Methods section.  

 

Bioconjugation of R.sph. Wildtype COX with Thiol-Reactive Fluorophores 

 R.sph. COX contains three native cysteines in subunit III which can be conjugated 

to thiol-reactive flourophores. For labeling with 5-((((2-iodoacetyl)amino)ethyl)amino) 
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naphthalene-1-sulfonic acid (IAEDANS), a stock solution of 1-2 mM IAEDANS was 

prepared in 20 mM HEPES, pH 8.0, and its concentration was verified spectroscopically 

using an extinction coefficient of 5,700 M
-1

cm
-1

 at 336 nm (Haughland, 2002). COX 

samples were diluted to 1-5 M in 20 mM HEPES, pH 8.0. IAEDANS was added at 

COX:IAEDANS stoichiometry of 1:10, and the reaction was incubated in the dark at 

room temperature for 1 hour. A 100 molar excess of DTT was used to quench unreacted 

IAEDANS, which was then removed by successive washes in Millipore YM-100 

Microcon filter devices. In the second wash step, 20 mM ferricyanide was added to 

oxidize the enzyme. Wash steps were repeated approximately four times until the flow 

through buffer was free of DTT, ferricyanide and IAEDANS as analyzed by UV and 

fluorescence spectroscopy. 

 For labeling with MIANS (2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid), 

1-2 mM stock solutions were made in methanol and the concentration was verified 

spectroscopically using an extinction coefficient of 27,000 M
-1

cm
-1

 at 322 nm 

(Haughland, 2002). COX samples were diluted to 1-5 M in 20 mM HEPES, 0.1% DM, 

pH 7.5. MIANS was added at COX:MIANS stoichiometry of 1:5. Total methanol 

concentrations did not exceed 0.5%. The reaction was incubated in the dark at room 

temperature for 1 hour. A 100 molar excess of DTT was used to quench unreacted 

MIANS, which was then removed by successive washes as described above. 

 

Labeling Stoichiometry and Subunit Localization of R.sph. COX-AEDANS 

 The subunit localization of the AEDANS and MIANS probes in conjugated COX 

was determined via SDS-PAGE. Labeled COX was denatured in 3% SDS, Laemmli 
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sample buffer (Bio-Rad) and run on a 16% polyacrylamide (37.5:1 acrylamide:bis) gel 

containing 6 M urea and 0.1% SDS (Fuller et al., 1981). The fluorescence signal of the 

gel was captured using a Fuji LAS-4000 Imager with a UV box for excitation, a 515 nm 

cutoff filter and an exposure time of 5-15 seconds. The gels were stained with Coomassie 

G-250 and an image of the protein bands was recorded on a Fuji LAS-4000 imager. 

 To determine the stoichiometry of probe labeling, the extinction coefficients of 

oxidized R.sph. COX at 336 nm (43,000 M
-1

cm
-1

) and 322 nm (37,000 M
-1

cm
-1

) were 

determined using the known extinction coefficient for the reduced minus oxidized peak at 

606 nm (24,000 mM
-1

cm
-1

, see (van Gelder, 1966)). The extinction coefficient of 

IAEDANS at 336 nm is 5,700 M
-1

cm
-1

, and MIANS has an extinction coefficient of 

27,000 M
-1

cm
-1

 at 322 nm (Haughland, 2002). COX concentration was determined from 

the reduced minus oxidized spectrum (van Gelder, 1966), and the absorbance of the 

oxidized COX spectrum at 336 nm or 322 nm was used to determine the concentration of 

AEDANS or MIANS after correcting for the absorbance contribution from oxidized 

COX at this wavelength. The labeling stoichiometry was calculated by dividing the probe 

concentration by the COX concentration. To verify the spectroscopic result, MALDI-

TOF mass spectrometry was conducted on COX-AEDANS and the mass peaks of the 

subunits were compared to wildtype. 

 

Trapping R.sph. COX in the PM State 

 The PM state was prepared by exposing oxidized COX to a mixture of carbon 

monoxide (CO) and air at a pH of 8.0 (Junemann et al., 2000; Rich et al., 2002). 

Conjugated, oxidized COX (1 M COX in 20 mM HEPES, 0.1% DM, pH 8.0) was 
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sealed in a quartz cuvette and connected to a vacuum/gas line inserted through the septum 

cap. Oxidized COX was exposed to 3 cycles of vacuum (10 seconds) and CO (5 

seconds). CO was of ultra high purity (Weiler Gases and Welding Supplies). After CO 

exposure, the septum was briefly punctured with a needle to allow exposure to air. The 

kinetics of PM formation were followed via absorbance spectroscopy on Hewlett Packard 

8453 UV/Visible diode array spectrophotometer. The PM minus O spectrum has 

characteristic absorbance features at 441 nm and 607 nm (peaks) and 417 nm (trough). 

The amount of PM formation was calculated using an extinction coefficient of 10,400 M
-

1
cm

-1
 at 607-630 nm in the PM minus O spectrum (Rich et al., 2002). The PM state was 

formed with 90-95% yield and within 2-3 minutes ( = 1.3 min), as shown in Figure A-1. 

 

Fluorescence Characterization of R.sph. COX-AEDANS in the O and PM States 

The fluorescence properties of COX-AEDANS in the O and PM states were 

measured on a Varian Cary Eclipse fluorescence spectrometer. The emission spectrum of 

oxidized 1 M COX-AEDANS in 20 mM HEPES, 0.1% DM, pH 8.0 was obtained using 

a PMT setting of 850 V and excitation and emission slit widths of 5 nm each (excitation 

 = 336 nm). An average of five spectra was taken per sample. The anisotropy of O state 

COX-AEDANS was measured using a Varian manual polarizer accessory. An average of 

five anisotropy readings were taken using an excitation wavelength of 336 nm, an 

emission wavelength of 471 nm, and the same PMT and slit width settings as for the 

emission spectral measurements. Anisotropy values were corrected for the G factor of the 

instrument which was determined using Aldrich Ludox TM-50 colloidal silica suspension 

as a light scattering agent. 
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Figure A-1 

 

Formation of the PM state of R.sph. COX. The P
M

 state was prepared by exposing 

oxidized COX to a mixture of carbon monoxide (CO) and air at a pH of 8.0 (Junemann et 

al., 2000; Rich et al., 2002). Conjugated, oxidized COX (1 mM COX in 20 mM HEPES, 

0.1% DM, pH 8.0) was sealed in a quartz cuvette and connected to a vacuum/gas line 

inserted through the septum cap. Oxidized COX was exposed to 3 cycles of vacuum (10 

seconds) and CO (5 seconds). CO was of ultra high purity (Weiler Gases and Welding 

Supplies). After CO exposure, the septum was briefly punctured with a needle to allow 

exposure to air. The kinetics of P
M

 formation were followed via absorbance spectroscopy 

on a Hewlett Packard 8453 UV/Visible diode array spectrophotometer. A) P
M

 minus O 

spectra with respect to time. The arrows indicate direction of absorbance changes. The P
M

 

minus O spectrum has characteristic absorbance features at 441 nm, 607 nm and 417 nm. 

B) Kinetics of P
M

 formation (P
M

 minus O absorbance at 607 – 630 nm). The P
M

 state was 

formed with 90-95% yield. A time constant was derived from a single exponential fit of 

the data ( = 1.3 min).  
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After exposing the sample to CO and air, as described above, the changes in 

emission intensity at 471 nm were monitored with respect to time using the Varian 

kinetics software provided with the instrument and the same instrumental parameters  

used for the emission spectrum. After complete formation of the PM intermediate (15 

minutes), five emission spectra were recorded and averaged. The anisotropy readings 

were then recorded for the PM state as described above. 

 

Results and Discussion 

 The long term goal of this project is to study the conformational dynamics of 

COX subunit III by site-directed fluorescence spectroscopy. Single cysteine mutants of 

subunit III will be used to study conformational dynamics within specific regions of the 

subunit. After labeling the mutants with thiol-reactive fluorophores, the fluorescence 

properties of the probes will be characterized during assays in which COX is undergoing 

putative conformational changes. Toward this end, two single cysteine mutants were 

created and their functional properties were assessed and found to be similar to wildtype 

COX. In addition, wildtype COX was used to develop protocols for labeling the enzyme 

with flourophores and for developing conformational dynamics assays. It was found that 

the native cysteines in subunit III could be specifically and efficiently labeled with 

MIANS or IAEDANS fluorophores. Developing assays for conformational dynamics 

proved difficult due to inner filter effects caused by COX and substrates and due to 

instrumental limitations. The approach which best minimized the inner filter effect was to 

trap the labeled enzyme in the O and PM intermediate states and to comparatively 

characterize the fluorescent properties of these states. The fluorescence properties of 
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wildtype COX-AEDANS were found to be equivalent in the O and PM states; the 

maximal emission wavelength and anisotropy were statistically equal. The shapes of the 

emission spectra were also similar. The only statistically significant difference between 

the two states was that the PM state had a lower maximal intensity than the O state. 

However, due to the large bandwidth that was required for the fluorescence experiments, 

this difference cannot be distinguished from an inner filter effect. Since the native 

cysteines in subunit III are located on helices 4 and 6 of COX subunit III, results indicate 

that these regions of the subunit do not move when the enzyme proceeds from the O state 

to the PM state. A positive control and heightened instrumental sensitivity are necessary 

in order to draw definitive conclusions and to pursue these studies further. 

 

Functional Properties of R.sph. COX Subunit III Cysteine Mutants 

 The functional properties of three cysteine mutants were tested in order to assess 

their suitability for use in site-directed fluorescence studies of COX. A cysteine-free 

mutant was created by mutating the cysteines in subunit I to alanines and the cysteines in 

subunit III to serines (CA1CS3). The plasmid for this mutant was given to us by Robert 

Gennis and was used to create two single cysteine mutants in subunit III, namely 

CA1CS3-A4C and CA1CS3-S187C. The cells expressing these mutants grew similar to 

wildtype and the purified proteins had spectral properties identical to wildtype (not 

shown), indicating that the mutations did not alter the protein environment surrounding 

the heme centers. SDS-PAGE analysis revealed that all the subunits of the mutants were 

present in approximately stoichiometric amounts. The electron transfer activities of all 

mutants were statistically equivalent to wildtype (Table A-I). Furthermore, the proton  
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Table A-I 

 

R.sph. Wildtype and Cysteine Mutant COX Maximal Catalytic Activities  
 

 
Activity (s

-1
)
a 

 

Wildtype  1370 ± 130  

CA1CS3
b 

 1390 ± 140  

CA1CS3-A4C  1320 ± 150  

CA1CS3-S187C  1260 ± 120  
 

a 
Maximum catalytic activity measured via oxygen electrode (50 mM potassium 

phosphate, pH 7.4; 0.1% DM; 50 M cytochrome c, 18 mM ascorbate, 0.6 mM TMPD).
 
 

b
 Cysteine-free mutant. The cysteines in subunit I and III were replaced with alanines and 

serines, respectively. 
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Figure A-2  

 

Proton Pumping Traces for R.sph. Wildtype and Cysteine-Free COX. Proton 

pumping activity was measured by stopped-flow absorbance spectroscopy on an Applied 

Photophysics SV.20 Reaction Analyzer. The reaction commenced upon mixing 

reconstituted COX with reduced cytochrome c. Phenol red was included as a pH indicator 

to monitor pH-induced changes in absorbance at 556 nm, an isosbestic point for 

cytochrome c reduction. Acidification induced by the proton pumping activity of 

reconstituted COX in the presence of valinomycin is shown in the lower traces. The 

alkalinization phase (upper traces) results from the consumption of protons when 

reconstituted COX undergoes turnover in the presence of CCCP and valinomycin. This 

trace is proportional to the number of electrons transferred to COX. The H
+
/e

-
 ratio is 

calculated from the extents of the lower and upper traces. Displayed are representative 

traces for a 5 turnover experiment (0.05 M COX, 1 M ferrocytochrome c, 5 M CCCP  

and/or 5 M valinomycin, pH 7.2). A) Wildtype COX vesicles had H
+
/e

-
 ratios of 0.9 ± 

0.2 (5 turnovers). B) Cysteine-free (CA1CS3) COX vesicles had H
+
/e

-
 ratios of 0.9 ± 0.1 

(5 turnovers).  
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pumping H
+
/e

-
 ratio of CA1CS3 (0.9 ± 0.1) was equivalent to wildtype (0.9 ± 0.2) as 

shown in Figure A-2. These preliminary results indicate that these mutants are likely to 

be suitable for site-directed fluorescence studies, having functional properties similar to  

wildtype. These mutants are of value for directing thiol-reactive probes to the n-terminus 

of subunit III (CA1CS3-A4C), and for studying the conformation of the subunit III 

periplasmic loop which may be linked to the redox activity of the enzyme (CA1CS3-

S187C). 

 

Labeling Wildtype COX Subunit III with Thiol-Reactive Fluorophores 

Wildtype R.sph. COX was used to develop fluorophore labeling protocols by 

virtue of the fact that subunit III contains three native cysteines and the native cysteines 

in the other subunits are substantially less reactive, being involved in disulfide bonds or 

metal ligation. COX contains internal chromophores, so the fluorophores used for site-

directed labeling must have spectroscopic properties that do not overlap with those of 

COX (Yonetani, 1961; Vanneste, 1966; Lambeth et al., 1973). Other factors to consider 

when selecting fluorophores are as follows: 1) smaller probes are less likely to be 

excluded from the reaction site due to stearic interference and will be more confined to a 

discrete, localized area, 2) probes with faster and more specific thiol-reactivity will have 

reduced cross-reactivity with amine groups, and 3) the hydrophobicity of a probe 

determines whether it will react with buried or solvent-accessible residues. Due to their 

conformity to the above criterion and their use in other protein conformation studies, two 

fluorescent probes were identified as candidates for these experiments. IAEDANS  is a 

hydrophilic probe which undergoes spectral shifts and changes in emission intensity in 
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response to alterations in aqueous solvation (Hudson and Weber, 1973; Haughland, 

2002). It also has a relatively long fluorescence lifetime making it suitable for anisotropy 

experiments (Haughland, 2002).  MIANS is a hydrophobic probe with emission 

properties highly sensitive to changes in ionic strength and hydrophobicity (Abbott et al., 

2000; Haughland, 2002). 

Both IAEDANS and MIANS were found to react efficiently and specifically with 

the native cysteines contained in COX subunit III. When labeled COX-AEDANS and 

COX-MIANS were denatured and run out on an SDS-PAGE gel, the fluorescence signal 

was localized to the subunit III band (Figure A-3). Absorbance spectroscopy revealed 

that COX-MIANS contained 2-3 MIANS molecules per COX molecule and that COX-

AEDANS contained two AEDANS molecules per COX (Table A-II). The subunit III 

peak in the MALDI-TOF mass spectrum of COX-AEDANS was shifted by a mass 

equivalent to two AEDANS molecules (615 Da). Given that the subunit contains three 

native cysteine residues, these results indicate specific and efficient labeling of COX 

subunit III. 

Two of the subunit III cysteines (C143 and C146) are located on helix 4 about 

half way through the bilayer. The other cysteine (C223) is located on helix 6, about a 

quarter of the way into the bilayer on the cytoplasmic side. The environment surrounding 

C223 is more hydrophobic than helix 4, and so it is possible that the hydrophilic 

IAEDANS probe labels the two cysteines on helix 4, and that the more hydrophobic 

MIANS probe labels both helix 4 and 6. 
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Figure A-3  

 

Bioconjugation of R.sph.wildtype COX with IAEDANS and MIANS fluorophores. 

A)  Wildtype COX labeled with IAEADANS. COX samples were diluted to 1-5 M in 

20 mM HEPES, pH 8.0. IAEDANS was added at COX:IAEDANS stoichiometry of 1:10, 

and the reaction was incubated in the dark at room temperature for 1 hour. A 100 molar 

excess of DTT was used to quench unreacted IAEDANS, which was then removed by 

successive washes in Millipore YM-100 Microcon filter devices. Seven g of COX-

AEDANS were denatured with 3% SDS in Laemmli buffer for 45 minutes at 37°C. 

Electrophoresis was conducted at 120 V for 2.5 hours on a 16% acrylamide gel 

containing 6 M urea and 0.1% SDS, pH 8.8. An image of the fluorescence emission was 

recorded on a Fuji LAS-4000 imager (left panel). The gel was then stained with 

Coomassie G-250 and an image was recorded (right panel). B) Wildtype COX labeled 

with MIANS. Labeling protocol was the same as for IAEDANS, except the buffer was 20 

mM HEPES, pH 7.5, 0.1% DM, and a COX:MIANS stoichiometry of 1:5 was used.  
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Table A-II 

 

Stoichiometry of Flourophore Labeling in R.sph. Wildtype COX  
 

 PROBE:COX 

UV-Vis
a
 

PROBE:SIII 

Mass Spec
b
 

COX-AEDANS 2.1 ± 0.3 2 

COX-MIANS  2.5 ± 0.4 - 

 
a 

Number of probe molecules per COX determined by UV-Vis spectroscopy using 

extinction coefficients for oxidized COX and for the probe at 336 nm (IAEDANS) or 322 

nm (MIANS), as described in the text. 
b
 MALDI-TOF mass spectrometry was conducted on COX-AEDANS and the subunit 

peaks were compared to  those of wildtype. The subunit III peak was shifted by the mass 

of two AEDANS molecules.  
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Characterizing the Fluorescent Properties of COX-AEDANS in the O and PM States 

 The fluorescence properties of COX-AEDANS were compared in the O and the 

PM states in order to assess any putative conformational changes taking place during the 

transition between these catalytic states during the redox cycle of COX. The emission of  

AEDANS is highly sensitive to the degree of aqueous solvation; spectral shifts and 

intensity changes are observed corresponding to the hydrophobicity of the probe’s 

environment (Hudson and Weber, 1973). The maximal emission wavelength of COX-

AEDANS in the O state (471 ± 2 nm) did not change when the enzyme was converted to 

the PM state (Table A-III). The shapes of the emission spectra in the O and the PM states 

were also similar (Figure A-4A). First derivative plots of the emission spectra did not 

elucidate any differences (Figure A-4B), indicating that there were no spectral shifts in 

AEDANS fluorescence when COX was in the O versus the PM state.   This indicates that 

the hydrophobicity of the environment surrounding the probes was not different in the O 

and PM states. 

 Fluorescence anisotropy is a measure of the degree of rotational freedom allowed 

to a fluorophore (Haughland, 2002; Lakowicz, 2006). When a probe is conjugated to a 

protein, the anisotropy of the probe is influenced by the flexibility of that region of the 

protein. The anisotropy of COX-AEDANS in the O and PM states was assessed in order 

to probe for changes in protein flexibility. The anisotropy of AEDANS did not change 

when COX was in the O state (0.21 ± 0.01) versus the PM state (Table A-III), which 

indicates that the protein environment surrounding the probe had about the same degree 

of flexibility in the two states. 
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Table A-III 

 

Emission and Anisotropy Properties of COX-AEDANS in the O and P
M

 States.  

 

 O State
a 
 P

M
 State

b
  


MAX

c 
 471 ± 2  471 ± 1  

I
MAX

d

 
 286 ± 6  262 ± 16  


e
 0.21 ± 0.01  0.21 ± 0.02  

 
a 

The O state was formed by exposing COX-AEDANS to potassium ferricyanide and then 

washing in 20 mM HEPES, pH 8.0 to remove excess reagent. 
b
 The P

M
 state was formed by exposing oxidized COX-AEDANS to carbon monoxide 

and air at pH 8.0. 
c
 The wavelength of maximal emission intensity. 

d
 Fluorescence emission intensity at the maximal emission wavelength. 

e
 The anisotropy of the sample at 

MAX 
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Figure A-4  

 

Fluorescence Properties of COX-AEDANS in the O and P
M

 State. A) Emission 

spectra of the O (black) and P
M

 (red) states. Oxidized COX-AEDANS was diluted to 1 

M in 20 mM HEPES, 0.1% DM, pH 8.0. The emission spectrum was recorded using an 

excitation wavelength of 336 nm, a PMT setting of 850 V and slit widths of 5 nm for both 

excitation and emission. The sample was then exposed to CO and air and allowed to sit 

for 15 minutes to form the P
M

 state. The emission spectrum were then recorded for the P
M

 

state. B) A first derivative plot of the emission spectra of the O (black) and P
M

 (red) states 

of COX-AEDANS. C) Emission intensity at 471 nm during the transition from the O to 

the P
M

 state. This is an example trace of the emission intensity following exposure of 

oxidized COX-AEDANS to CO and air. The decrease in fluorescence observed was 

biphasic. The first phase was not always observed and had a time constant of  = 0.6 min. 

The second phase had a time constant of  = 526 min. Total decreases in fluorescence 

intensity ranged from 2-16%, which could be correlated to an inner filter effect, i.e. 

changes in absorbance of the sample at the excitation and emission wavelengths resulted 

in a decrease in emission intensity.  
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There was a statistically significant decrease in AEDANS emission intensity when COX 

was in the PM versus the O state (Table A-III, Figure A-4A). The kinetics of the 

fluorescence emission decrease were monitored during the O to the PM state following 

exposure to CO and air (Figure A-4C). The decrease was biphasic, although the initial 

fast phase was not reproducible. Neither of the time constants ( = 0.6 min,  = 526  

min) matched the kinetics of the O  PM transition as measured by absorbance 

spectroscopy, which was a monophasic process (of  = 1.3 min). Since there were no 

corresponding spectral shifts, this decrease in emission cannot be attributed to a change in 

the hydrophobicity surrounding the probe. It could be due to either the introduction of a 

quenching species or due to an inner filter effect. An inner filter effect is a change in the 

sample absorbance at the excitation and/or emission wavelength (Yappert and Ingle, 

1989; Puchalski et al., 1991; Kubista et al., 1994). If the absorbance at 336 and/or 471 nm 

of COX-AEDANS is increased in the PM versus the O state, this will filter the excitation 

and emission light and decrease the fluorescence emission. This would not be reflective 

of a change in fluorescence properties of the probe. The changes in emission intensity 

expected from the inner filter effect were calculated from the absorbance changes at 336 

and 471 nm of the COX-AEDANS sample in the O and the PM states, taking into account 

that the bandwidth used for fluorescence measurements was five times larger than the 

bandwidth used for measuring the absorbance at these wavelengths (Yappert and Ingle, 

1989; Puchalski et al., 1991; Kubista et al., 1994). The expected changes due to the inner 

filter effect were such that the emission changes observed between the O and the PM 

states could be attributed to the inner filter effect. 
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 Taken together, these results indicate that there are no differences in the 

hydrophobicity or flexibility of COX subunit III in the regions surrounding the probes on 

helix four and possibly six. It may be that there are conformational changes occurring 

that the experimental technique cannot measure. For instance, the helices could be 

moving vertical to the plane of the membrane, which would not necessarily result in 

altered hydrophobicity or flexibility. To test for this kind of motion, a single cysteine 

should be introduced at the top or bottom of the transmembrane helix. If a vertical motion 

is occurring in the helix, the probe may move in or out of the membrane, which would 

alter its fluorescence properties. The CA1CS3-S187C mutant introduces a single cysteine 

into subunit III on the periplasmic side of helix five at the bilayer interface. Conducting 

these experiments on that mutant could be of benefit. 

 The sensitivity of these experiments is limited by the broad bandwidth that is 

required to receive an adequate signal. The 10 nm bandwidth used makes the technique 

less sensitive to spectral shifts and it augments the inner filter effect. One way of 

circumventing this problem would be to use a probe with a higher extinction coefficient 

at the excitation wavelength. This proves to be difficult given that COX has internal 

chromophores and that the probes must have spectroscopic properties which do not 

overlap with COX absorbance. Another option for reducing the bandwidth is to use a 

more sensitive instrument. The feasibility of conducting these experiments on an ISS PC1 

photon counting spectrophotometer is being assessed.  
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Conclusions 

 Definitive evidence for conformational movement in COX subunit III was not 

observed when the native cysteines of subunit III were labeled with AEDANS and the 

fluorescence properties of the O and PM state were compared. The probes are most likely 

localized within the bilayer on helix four and possibly six. Vertical motion within the 

plane of the bilayer would not be easily assessed by probe in these locations, so 

conformational changes in this vicinity cannot be ruled out. The techniques developed 

should be useful for examining potential motion in other areas of subunit III which are 

more likely to undergo conformational change. Toward that end, the single cysteine 

mutants A4C and S187C were constructed and their functional properties were found to 

be similar to wildtype, making them suitable candidates for these studies. The minor 

absorbance changes in COX at the excitation and emission wavelengths of the probe are 

magnified by the broad bandwidth required for these experiments. In order to detect 

potentially small fluorescence changes, an instrument with higher sensitivity is required. 
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LIST OF ABBREVIATIONS 

 

A560   Absorbance measured at 560 nm 

A605   Absorbance measured at 605 nm 

aa3   Hemes a and a3 of cytochrome c oxidase 

ATP   Adenosine 5’-triphosphate 

BN-PAGE  Blue native polyacrylamide gel electrophoresis 

bp   Basepair 

CAPS   N-cyclohexyl-3-aminopropanesulfonic acid 

CCCP   Carbonyl cyanide m-chlorophenylhydrazone 

CHCA   α-cyano-4-hydroxysuccinnamic acid 

CHES   N-cyclohexyl-2-aminoethanesulfonic acid 

CO   Carbon monoxide 

COV   Phospholipid vesicles containing cytochrome c oxidase 

COX   Cytochrome c oxidase 

Da   Dalton 

DCCD   N, N’-dicyclohexylcarbodiimide 

DM   Dodecyl-β-D-maltoside 

DNA   Deoxyribonucleic acid 

DNAse  Deoxyribonuclease 

dNTP   Deoxy nucleotide triphosphate 

EAM   Energy absorbing matrix 
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EDTA   Ethlenediaminetetraacetic acid 

F State   An oxyferryl intermediate of cytochrome c oxidase 

FAD
+
   Flavin adenine dinucleotide 

FADH2  Reduced flavin adenine dinucleotide 

H
+
/e

-
   Ratio of protons translocated to electrons transferred 

H-bond  Hydrogen bond 

HEPES  N-(2-hydroxyethyl) piperazine-N’-2-ethanesulfonic acid 

IAEDANS  5-((((2-iodoacetyl)amino)ethyl)amino) naphthalene-1-sulfonic acid 

I-II COX Cytochrome c oxidase in which subunit III is removed either 

biochemically or genetically 

I-IIBD COX Cytochrome c oxidase in which subunit III is biochemically 

depleted 

I-IIGD COX  Cytochrome c oxidase in which subunit III is genetically deleted 

kb   Kilobase 

kD   Kilodalton 

LB   Luria-Bertani 

m/z   Mass to charge ratio 

mA   Milliamps 

MALDI-TOF  matrix assisted laser desorption time of flight 

MIANS  2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid 

NAD
+
   Nicotinamide adenine dinucleotide 

NADH   Reduced nicotinamide adenine dinucleotide 

O State   The oxidized state of cytochrome c oxidase  

OD660   Optical density measured at 660 nm 

P.dent.   Paracoccus denitrificans 
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pCOV Cytochrome c oxidase vesicles purified by discontinuous sucrose 

gradient ultracentrifugation 

PDB   Protein databank 

pH   -log [H
+
] 

PL1 The phospholipid bound in the v-shaped cleft of subunit III at 

position 1 

PL2 The phospholipid bound in the v-shaped cleft of subunit III at 

position 2  

PM State  An oxyferryl intermediate of cytochrome c oxidase 

PMSF   Phenylmethylsulfonylfluoride 

R State   The reduced state of cytochrome c oxidase 

R.sph.   Rhodobacter sphaeroides 

RCR   Respiratory control ratio 

RCRval    Respiratory control ratio relative to the valinomycin rate  

R-O   Reduced minus oxidized 

SDS   Sodium dodecyl sulfate 

SDS-PAGE  Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

SI   Subunit I 

SII   Subunit II 

SIII   Subunit III 

SIII-114  Subunit III genetically truncated after residue 114 

SIV   Subunit IV 

SPA Sinapinic acid 

TBS-B Tris buffered saline containing 5% powdered milk 

TFA Trifluoroacetic acid 
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TMPD N, N, N’, N’, -tetramethyl-p-phenylenediamine 

TN Turnover number (number of electrons transferred per second per 

mole of cytochrome c oxidase 

 

Tris Tris (hydroxymethyl) aminoethane 

Val Valinomycin 

WT Wild-type Rhodobacter sphaeroides cytochrome c oxidase  

114 COX Cytochrome c oxidase in which subunit III is genetically truncated 

after residue 114 



188 

 

 

 

LIST OF REFERENCES 

Abbott, M. B., Gaponenko, V., Abusamhadneh, E., Finley, N., Li, G., Dvoretsky, A., 

Rance, M., Solaro, R. J. and Rosevear, P. R. (2000) Regulatory domain conformational 

exchange and linker region flexibility in cardiac troponin C bound to cardiac troponin I. 

J. Biol. Chem. 275, 20610-20617.  

Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., 

Puustinen, A., Iwata, S. and Wikstrom, M. (2000) The structure of the ubiquinol oxidase 

from Escherichia coli and its ubiquinone binding site. Nat Struct Biol 7, 910-7.  

Adelroth, P. and Hosler, J. (2006) Surface proton donors for the D-pathway of 

cytochrome c oxidase in the absence of subunit III. Biochemistry 45, 8308-18.  

Adelroth, P., Mitchell, D. M., Gennis, R. B. and Brzezinski, P. (1997) Factors 

determining electron-transfer rates in cytochrome c oxidase: studies of the FQ(I-391) 

mutant of the Rhodobacter sphaeroides enzyme. Biochemistry 36, 11787-96.  

Andrews, R. M., Kubacka, I., Chinnery, P. F., Lightowlers, R. N., Turnbull, D. M. and 

Howell, N. (1999) Reanalysis and revision of the Cambridge reference sequence for 

human mitochondrial DNA. Nat. Genet. 23, 147.  

Bay, D. C. and Court, D. A. (2002) Origami in the outer membrane: the transmembrane 

arrangement of mitochondrial porins. Biochem. Cell Biol. 80, 551-562.  

Bell, S. P., Curran, P. K., Choi, S. and Mindell, J. A. (2006) Site-directed fluorescence 

studies of a prokaryotic ClC antiporter. Biochemistry 45, 6773-6782.  

Beney, L., Perrier-Cornet, J. M., Hayert, M. and Gervais, P. (1997) Shape modification of 

phospholipid vesicles induced by high pressure: influence of bilayer compressibility. 

Biophys. J. 72, 1258-1263.  

Branden, G., Branden, M., Schmidt, B., Mills, D. A., Ferguson-Miller, S. and Brzezinski, 

P. (2005) The protonation state of a heme propionate controls electron transfer in 

cytochrome c oxidase. Biochemistry 44, 10466-74.  

Bratton, M., Mills, D., Castleden, C. K., Hosler, J. and Meunier, B. (2003) Disease-

related mutations in cytochrome c oxidase studied in yeast and bacterial models. Eur J 

Biochem 270, 1222-30.  



189 

 

Bratton, M. R., Hiser, L., Antholine, W. E., Hoganson, C. and Hosler, J. P. (2000) 

Identification of the structural subunits required for formation of the metal centers in 

subunit I of cytochrome c oxidase of Rhodobacter sphaeroides. Biochemistry 39, 12989-

95.  

Bratton, M. R., Pressler, M. A. and Hosler, J. P. (1999) Suicide inactivation of 

cytochrome c oxidase: catalytic turnover in the absence of subunit III alters the active 

site. Biochemistry 38, 16236-45.  

Brega, A., Narula, J. and Arbustini, E. (2001) Functional, structural and genetic 

mitochondrial abnormalities in myocardial diseases. J Nucl Cardiol 8, 89-97.  

Brzezinski, P. and Gennis, R. B. (2008) Cytochrome c oxidase: exciting progress and 

remaining mysteries. J. Bioenerg. Biomembr. 40, 521-531.  

Brzezinski, P. and Johansson, A. L. (2010) Variable proton-pumping stoichiometry in 

structural variants of cytochrome c oxidase. Biochim. Biophys. Acta 

doi:10.1016/j.bbabio.2010.02.020 

Brzezinski, P., Reimann, J. and Adelroth, P. (2008) Molecular architecture of the proton 

diode of cytochrome c oxidase. Biochem. Soc. Trans. 36, 1169-1174.  

Busenlehner, L. S., Salomonsson, L., Brzezinski, P. and Armstrong, R. N. (2006) 

Mapping protein dynamics in catalytic intermediates of the redox-driven proton pump 

cytochrome c oxidase. Proc Natl Acad Sci U S A 103, 15398-15403.  

Cao, J., Hosler, J., Shapleigh, J., Revzin, A. and Ferguson-Miller, S. (1992) Cytochrome 

aa3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. The 

coxII/coxIII operon codes for structural and assembly proteins homologous to those in 

yeast. J. Biol. Chem. 267, 24273-8.  

Cao, J., Shapleigh, J., Gennis, R., Revzin, A. and Ferguson-Miller, S. (1991) The gene 

encoding cytochrome c oxidase subunit II from Rhodobacter sphaeroides; comparison of 

the deduced amino acid sequence with sequences of corresponding peptides from other 

species. Gene 101, 133-7.  

Cecchini, G. (2003) Function and structure of complex II of the respiratory chain. Annu. 

Rev. Biochem. 72, 77-109.  

Chepuri, V., Lemieux, L., Au, D. C. and Gennis, R. B. (1990) The sequence of the cyo 

operon indicates substantial structural similarities between the cytochrome o ubiquinol 

oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases. J Biol 

Chem 265, 11185-92.  

Choi, E. J. and Dimitriais, E. K. (2004) Cytochrome c adsorption to supported, anionic 

lipid bilayers studied via atomic force microscopy. Biophys. J. 87, 3234-3241.  

http://dx.doi.org/10.1016/j.bbabio.2010.02.020


190 

 

Crofts, A. R. (2004) The cytochrome bc1 complex: function in the context of structure. 

Annu. Rev. Physiol. 66, 689-733.  

Crofts, A. R., Holland, J. T., Victoria, D., Kolling, D. R., Dikanov, S. A., Gilbreth, R., 

Lhee, S., Kuras, R. and Kuras, M. G. (2008) The Q-cycle reviewed: How well does a 

monomeric mechanism of the bc(1) complex account for the function of a dimeric 

complex? Biochim. Biophys. Acta 1777, 1001-1019.  

Cvetkov, T. L. and Prochaska, L. J. (2007) Biophysical and biochemical characterization 

of reconstituted and purified Rhodobacter sphaeroides cytochrome c oxidase in 

phospholipid vesicles sheds insight into its functional oligomeric structure. Protein Expr 

Purif 56, 189-196.  

Dan, N. and Safran, S. A. (1998) Effect of lipid characteristics on the structure of 

transmembrane proteins. Biophys. J. 75, 1410-1414.  

DiBiase, V. A. and Prochaska, L. J. (1985) Characterization of electron transfer and 

proton translocation activities in trypsin-treated bovine heart mitochondrial cytochrome c 

oxidase. Arch. Biochem. Biophys. 243, 668-677.  

DiMauro, S., Hirano, M. and Schon, E. A. (2006) Approaches to the treatment of 

mitochondrial diseases. Muscle Nerve 34, 265-283.  

DiMauro, S. and Schon, E. A. (2003) Mitochondrial respiratory-chain diseases. New 

England Journal of Medicine 348, 2656-2668.  

Distler, A. M., Allison, J., Hiser, C., Qin, L., Hilmi, Y. and Ferguson-Miller, S. (2004) 

Mass spectrometric detection of protein, lipid and heme components of cytochrome c 

oxidase from R. sphaeroides and the stabilization of non-covalent complexes from the 

enzyme. Eur J Mass Spectrom (Chichester, Eng) 10, 295-308.  

Egawa, T., Lin, M. T., Hosler, J. P., Gennis, R. B., Yeh, S. R. and Rousseau, D. L. (2009) 

Communication between R481 and Cu(B) in cytochrome bo(3) ubiquinol oxidase from 

Escherichia coli. Biochemistry 48, 12113-12124.  

Estey, L. A. and Prochaska, L. J. (1993) Detection of bovine heart mitochondrial 

cytochrome c oxidase dimers in Triton X-100 and phospholipid vesicles by chemical 

cross-linking. Biochemistry 32, 13270-6.  

Ferguson-Miller, S., Brautigan, D. L. and Margoliash, E. (1978) Definition of 

cytochrome c binding domains by chemical modification. III. Kinetics of reaction of 

carboxydinitrophenyl cytochromes c with cytochrome c oxidase. J Biol Chem 253, 149-

59.  



191 

 

Fernandez-Vizarra, E., Tiranti, V. and Zeviani, M. (2009) Assembly of the oxidative 

phosphorylation system in humans: what we have learned by studying its defects. 

Biochim. Biophys. Acta 1793, 200-211.  

Figurski, D. H. and Helinski, D. R. (1979) Replication of an origin-containing derivative 

of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. 

U. S. A. 76, 1648-1652.  

Finel, M. and Wikstrom, M. (1986) Studies on the role of the oligomeric state and 

subunit III of cytochrome oxidase in proton translocation. Biochim Biophys Acta 851, 99-

108.  

Fontanesi, F., Soto, I. C. and Barrientos, A. (2008) Cytochrome c oxidase biogenesis: 

new levels of regulation. IUBMB Life 60, 557-568.  

Fontanesi, F., Soto, I. C., Horn, D. and Barrientos, A. (2006) Assembly of mitochondrial 

cytochrome c-oxidase, a complicated and highly regulated cellular process. Am. J. 

Physiol. Cell. Physiol. 291, C1129-47.  

Fornuskova, D., Stiburek, L., Wenchich, L., Vinsova, K., Hansikova, H. and Zeman, J. 

(2010) Novel insights into the assembly and function of human nuclear-encoded 

cytochrome c oxidase subunits 4, 5a, 6a, 7a and 7b. Biochem. J. 428, 363-374.  

Frey, T. G. and Mannella, C. A. (2000) The internal structure of mitochondria. Trends 

Biochem. Sci. 25, 319-324.  

Fuller, S. D., Darley-Usmar, V. M. and Capaldi, R. A. (1981) Covalent complex between 

yeast cytochrome c and beef heart cytochrome c oxidase which is active in electron 

transfer. Biochemistry 20, 7046-7053.  

Galati, D., Srinivasan, S., Raza, H., Prabu, S. K., Hardy, M., Chandran, K., Lopez, M., 

Kalyanaraman, B. and Avadhani, N. G. (2009) Role of nuclear-encoded subunit Vb in the 

assembly and stability of cytochrome c oxidase complex: implications in mitochondrial 

dysfunction and ROS production. Biochem. J. 420, 439-449.  

Ganesan, K. and Gennis, R. B. (2010) Blocking the K-pathway still allows rapid one-

electron reduction of the binuclear center during the anaerobic reduction of the aa(3)-type 

cytochrome c oxidase from Rhodobacter sphaeroides. Biochim. Biophys. Acta, in press, 

doi:10.1016/j.bbabio.2010.03.012  

Geyer, R. R. (2007) Investigating the Role of Subunit III in the Structure and Function of 

Rhodobacter sphaeroides Cytochrome c Oxidase.  

Gilderson, G., Salomonsson, L., Aagaard, A., Gray, J., Brzezinski, P. and Hosler, J. 

(2003) Subunit III of cytochrome c oxidase of Rhodobacter sphaeroides is required to 

http://dx.doi.org/10.1016/j.bbabio.2010.03.012


192 

 

maintain rapid proton uptake through the D pathway at physiologic pH. Biochemistry 42, 

7400-9.  

Gorbenko, G. P., Molotkovsy, J. G. and Kinnunen, P. K. J. (2006) Cytochrome c 

interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipid 

protonation. Biophys. J. 90, 4093-4103.  

Gorbikova, E. A., Belevich, I., Wikstrom, M. and Verkhovsky, M. I. (2008) The proton 

donor for O-O bond scission by cytochrome c oxidase. Proc. Natl. Acad. Sci. U. S. A. 

105, 10733-10737.  

Gorbikova, E. A., Wikstrom, M. and Verkhovsky, M. I. (2008) The protonation state of 

the cross-linked tyrosine during the catalytic cycle of cytochrome c oxidase. J. Biol. 

Chem. 283, 34907-34912.  

Gray, M. W., Burger, G. and Lang, B. F. (1999) Mitochondrial evolution. Science 283, 

1476-1481.  

Han, D., Morgan, J. E. and Gennis, R. B. (2005) G204D, a mutation that blocks the 

proton-conducting D-channel of the aa3-type cytochrome c oxidase from Rhodobacter 

sphaeroides. Biochemistry 44, 12767-74.  

Haughland, R. P. (2002) Handbook of fluorescent probes and research chemicals, 

Molecular Probes Inc., Eugene, OR.  

Hibbs, R. E., Johnson, D. A., Shi, J., Hansen, S. B. and Taylor, P. (2005) Structural 

dynamics of the alpha-neurotoxin-acetylcholine-binding protein complex: hydrodynamic 

and fluorescence anisotropy decay analyses. Biochemistry 44, 16602-16611.  

Hirst, J. (2009) Towards the molecular mechanism of respiratory complex I. Biochem. J. 

425, 327-339.  

Hiser, C., Mills, D. A., Schall, M. and Ferguson-Miller, S. (2001) C-terminal truncation 

and histidine-tagging of cytochrome c oxidase subunit II reveals the native processing 

site, shows involvement of the C-terminus in cytochrome c binding, and improves the 

assay for proton pumping. Biochemistry 40, 1606-15.  

Hiser, L. and Hosler, J. P. (2001) Heme A is not essential for assembly of the subunits of 

cytochrome c oxidase of Rhodobacter sphaeroides. J Biol Chem 276, 45403-7.  

Holt, I. J., He, J., Mao, C. C., Boyd-Kirkup, J. D., Martinsson, P., Sembongi, H., Reyes, 

A. and Spelbrink, J. N. (2007) Mammalian mitochondrial nucleoids: organizing an 

independently minded genome. Mitochondrion 7, 311-321.  

Horsefield, R., Yankovskaya, V., Sexton, G., Whittingham, W., Shiomi, K., Omura, S., 

Byrne, B., Cecchini, G. and Iwata, S. (2006) Structural and computational analysis of the 



193 

 

quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism 

of electron transfer and proton conduction during ubiquinone reduction. J. Biol. Chem. 

281, 7309-7316.  

Horvath, R., Scharfe, C., Hoeltzenbein, M., Do, B. H., Schroder, C., Warzok, R., 

Vogelgesang, S., Lochmuller, H., Muller-Hocker, J., Gerbitz, K. D., P.J., O. and Jaksch, 

M. (2002) Childhood onset mitochondrial myopathy and lactic acidosis caused by a stop 

mutation in the mitochondrial cytochrome c oxidase subunit III gene. Journal of Medical 

Genetics 39, 812-816.  

Horvath, R., Schonser, B. G., Muller-Hocker, J., Volpel, M., Jaksch, M. and Lochmuller, 

H. (2005) Mutations in mtDNA-encoded cytochrome c oxidase subunit genes causing 

isolated myopather or severe encephalomyopathy. Neuromuscular Disorders 15, 851-

857.  

Hosler, J. P. (2004) The influence of subunit III of cytochrome c oxidase on the D 

pathway, the proton exit pathway and mechanism-based inactivation in subunit I. 

Biochim Biophys Acta 1655, 332-9.  

Hosler, J. P., Ferguson-Miller, S. and Mills, D. A. (2006) Energy transduction: proton 

transfer through the respiratory complexes. Annu. Rev. Biochem. 75, 165-87.  

Hosler, J. P., Fetter, J., Tecklenburg, M. M., Espe, M., Lerma, C. and Ferguson-Miller, S. 

(1992) Cytochrome aa3 of Rhodobacter sphaeroides as a model for mitochondrial 

cytochrome c oxidase. Purification, kinetics, proton pumping, and spectral analysis. J. 

Biol. Chem. 267, 24264-72.  

Huang, C. and Mason, J. T. (1978) Geometric packing constraints in egg 

phosphatidylcholine vesicles. Proc. Natl. Acad. Sci. U.S.A. 75, 308-310.  

Hudson, E. N. and Weber, G. (1973) Synthesis and characterization of two fluorescent 

sulfhydryl reagents. Biochemistry 12, 4154-4161.  

Iwata, S., Lee, J. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., 

Ramaswamy, S. and Jap, B. K. (1998) Complete structure of the 11-subunit bovine 

mitochondrial cytochrome bc1 complex. Science 281, 64-71.  

Iwata, S., Ostermeier, C., Ludwig, B. and Michel, H. (2002) Structure at 2.8 Å resolution 

of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660-669.  

Jancura, D., Antalik, M., Berka, V., Palmer, G. and Fabian, M. (2006) Filling the 

catalytic site of cytochrome c oxidase with electrons: reduced CuB facilitates internal 

electron transfer to heme a3. J. Biol. Chem. 281, 20003-20010.  

Jasaitis, A., Verkhovsky, M. I., Morgan, J. E., Verkhovskaya, M. L. and Wikstrom, M. 

(1999) Assignment and charge translocation stoichiometries of the major electrogenic 



194 

 

phases in the reaction of cytochrome c oxidase with dioxygen. Biochemistry 38, 2697-

2706.  

Junemann, S., Heathcote, P. and Rich, P. R. (2000) The reactions of hydrogen peroxide 

with bovine cytochrome c oxidase. Biochim. Biophys. Acta 1456, 56-66.  

Kadenbach, B., Jarausch, J., Hartmann, R. and Merle, P. (1983) Separation of 

mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel 

electrophoretic procedure. Anal. Biochem. 129, 517-521.  

Krab, K. and Wikstrom, G. (1978) Proton-translocating cytochrome c oxidase in artificial 

phospholipid vesicles. Biochim. Biophys. Acta 504, 200-214.  

Kubista, M., Sjoback, R., Eriksson, S. and Albinsson, B. (1994) Experimental correction 

for the inner-filter effect in fluorescence spectra. Analyst 119, 417-419.  

Kusnetzow, A. K., Altenbach, C. and Hubbell, W. L. (2006) Conformational states and 

dynamics of rhodopsin in micelles and bilayers. Biochemistry 45, 5538-50.  

Lakowicz, J. R. (2006) Principles of Fluorescence Spectroscopy, Third ed., Springer, 

New York.  

Lambeth, D. O., Campbell, K. L., Zand, R. and Palmer, G. (1973) The appearance of 

transient species of cytochrome c upon rapid oxidation or reduction at alkaline pH. J Biol 

Chem 248, 8131-8136.  

Lee, H. J., Ojemyr, L., Vakkasoglu, A., Brzezinski, P. and Gennis, R. B. (2009) 

Properties of Arg481 mutants of the aa3-type cytochrome c oxidase from Rhodobacter 

sphaeroides suggest that neither R481 nor the nearby D-propionate of heme a3 is likely to 

be the proton loading site of the proton pump. Biochemistry 48, 7123-7131.  

Lee, S. J., Yamashita, E., Abe, T., Fukumoto, Y., Tsukihara, T., Shinzawa-Itoh, K., Ueda, 

H. and Yoshikawa, S. (2001) Intermolecular interactions in dimer of bovine heart 

cytochrome c oxidase. Acta Crysallogr. D57, 941-947.  

Lepp, H., Salomonsson, L., Zhu, J. P., Gennis, R. B. and Brzezinski, P. (2008a) Impaired 

proton pumping in cytochrome c oxidase upon structural alteration of the D pathway. 

Biochim. Biophys. Acta 1777, 897-903.  

Lepp, H., Svahn, E., Faxen, K. and Brzezinski, P. (2008b) Charge transfer in the K 

proton pathway linked to electron transfer to the catalytic site in cytochrome c oxidase. 

Biochemistry 47, 4929-4935.  

Lincoln, J. A., Donat, N., Palmer, G. and Prochaska, L. J. (2003) Site-specific antibodies 

against hydrophilic domains of subunit III of bovine heart cytochrome c oxidase affect 

enzyme function. Arch Biochem Biophys 416, 81-91.  



195 

 

Mackenzie, C., Choudhary, M., Larimer, F. W., Predki, P. F., Stilwagen, S., Armitage, J. 

P., Barber, R. D., Donohue, T. J., Hosler, J. P., Newman, J. E., Shapleigh, J. P., Sockett, 

R. E., Zeilstra-Ryalls, J. and Kaplan, S. (2001) The home stretch, a first analysis of the 

nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70, 19-41.  

Madden, T. D. and Cullis, P. R. (1985) Preparation of reconstituted cytochrome oxidase 

vesicles with defined trans-membrane protein orientations employing a cytochrome c 

affinity column. Biochim Biophys Acta 808, 219-224.  

Maklashina, E. and Cecchini, G. (2010) The quinone-binding and catalytic site of 

complex II. Biochim. Biophys. Acta, in press, doi:10.1016/j.bbabio.2010.02.015. 

Mannella, C. A. (2006) The relevance of mitochondrial membrane topology to 

mitochondrial function. Biochim. Biophys. Acta 1762, 140-147.  

Mather, M. W. and Rottenberg, H. (1998) Intrinsic uncoupling of cytochrome c oxidase 

may cause the maternally inherited mitochondrial diseases MELAS and LHON. FEBS 

Lett 433, 93-97.  

Mills, D. A. and Hosler, J. P. (2005) Slow proton transfer through the pathways for 

pumped protons in cytochrome c oxidase induces suicide inactivation of the enzyme. 

Biochemistry 44, 4656-66.  

Mills, D. A., Tan, Z., Ferguson-Miller, S. and Hosler, J. (2003) A role for subunit III in 

proton uptake into the D pathway and a possible proton exit pathway in Rhodobacter 

sphaeroides cytochrome c oxidase. Biochemistry 42, 7410-7.  

Mitchell, D. M. and Gennis, R. B. (1995) Rapid purification of wildtype and mutant 

cytochrome c oxidase from Rhodobacter sphaeroides by Ni(2+)-NTA affinity 

chromatography. FEBS Lett 368, 148-50.  

Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a 

chemi-osmotic type of mechanism. Nature 191, 144-148.  

Mitchell, R. and Rich, P. R. (1994) Proton uptake by cytochrome c oxidase on reduction 

and on ligand binding. Biochim. Biophys. Acta 1186, 19-26.  

Mouncey, N. J., Gak, E., Choudhary, M., Oh, J. and Kaplan, S. (2000) Respiratory 

pathways of Rhodobacter sphaeroides 2.4.1(T): identification and characterization of 

genes encoding quinol oxidases. FEMS Microbiol. Lett. 192, 205-210.  

Muller, M. and Azzi, A. (1985) Morphology of proteoliposomes containing fluorescein-

phosphatidylethanolamine reconstituted with native and subunit III-depleted cytochrome 

c oxidase. J. Bioenerg. Biomembr. 17, 385-393.  

http://dx.doi.org/10.1016/j.bbabio.2010.02.015


196 

 

Musatov, A., Ortega-Lopez, J., Demeler, B., Osborne, J. P., Gennis, R. B. and Robinson, 

N. C. (1999) Detergent-solubilized Escherichia coli cytochrome bo3 ubiquinol oxidase: a 

monomeric, not a dimeric complex. FEBS Lett 457, 153-6.  

Musatov, A. and Robinson, N. C. (2002) Cholate-induced dimerization of detergent- or 

phospholipid-solubilized bovine cytochrome c oxidase. Biochemistry 41, 4371-4376.  

Nagle, J. F. and Tristram-Nagle, S. (1983) Hydrogen bonded chain mechanisms for 

proton conduction and proton pumping. J. Membr. Biol. 74, 1-14.  

Nakanishi-Matsui, M., Sekiya, M., Nakamoto, R. K. and Futai, M. (2010) The 

mechanism of rotating proton pumping ATPases. Biochim. Biophys. Acta, in press, 

doi:10.1016/j.bbabio.2010.02.014.  

Neupert, W. and Herrmann, J. M. (2007) Translocation of proteins into mitochondria. 

Annu. Rev. Biochem. 76, 723-749.  

Nguyen, X. T., Pabarue, H. A., Geyer, R. R., Shroyer, L. A., Estey, L. A., Parilo, M. S., 

Wilson, K. S. and Prochaska, L. J. (2002) Biochemical and biophysical properties of 

purified phospholipid vesicles containing bovine heart cytochrome c oxidase. Protein 

Express. Purif. 26, 122-30.  

Ogunjimi, E. O., Pokalsky, C. N., Shroyer, L. A. and Prochaska, L. J. (2000) Evidence 

for a Conformational Change in Subunit III of Bovine Heart Mitochondrial Cytochrome c 

Oxidase1. J Bioenerg Biomembr 32, 617-26.  

Ordys, B. B., Launay, S., Deighton, R. F., McCulloch, J. and Whittle, I. R. (2010) The 

Role of Mitochondria in Glioma Pathophysiology. Mol. Neurobiol., in press, 

doi:10.1007/s12035-010-8133-5.  

Organisciak, D. and Noell, W. (1976) Hereditary retinal dystrophy in the rat: lipid 

composition of debris. Exp. Eye Res. 22, 101-113.  

Owusu-Ansah, E., Yavari, A., Mandal, S. and Banerjee, U. (2008) Distinct mitochondrial 

retrograde signals control the G1-S cell cycle checkpoint. Nat. Genet. 40, 356-361.  

Perrier-Cornet, J. M., Baddouj, K. and Gervais, P. (2005) Pressure-induced shape change 

of phospholipid vesicles: implication of compression and phase transition. J. Membrane 

Biol. 204, 101-107.  

Pisliakov, A. V., Sharma, P. K., Chu, Z. T., Haranczyk, M. and Warshel, A. (2008) 

Electrostatic basis for the unidirectionality of the primary proton transfer in cytochrome c 

oxidase. Proc. Natl. Acad. Sci. U. S. A. 105, 7726-7731.  

http://dx.doi.org/10.1016/j.bbabio.2010.02.014


197 

 

Prochaska, L. J., Bisson, R., Capaldi, R. A., Steffens, G. C. and Buse, G. (1981) 

Inhibition of cytochrome c oxidase function by dicyclohexylcarbodiimide. Biochim. 

Biophys. Acta 637, 360-373.  

Prochaska, L. J. and Reynolds, K. A. (1986) Characterization of electron-transfer and 

proton-translocation activities in bovine heart mitochondrial cytochrome c oxidase 

deficient in subunit III. Biochemistry 25, 781-787.  

Puchalski, M. M., Morra, M. J. and von Wandruszka, R. (1991) Assessment of inner 

filter effect corrections in fluorimetry. Fres. J. Anal. Chem. 340, 341.  

Puettner, I., Carafoli, E. and Malatesta, F. (1985) Spectroscopic and functional properties 

of subunit III-depleted cytochrome oxidase. J. Biol. Chem. 260, 3719-3723.  

Qin, L., Hiser, C., Mulichak, A., Garavito, R. M. and Ferguson-Miller, S. (2006) 

Identification of conserved lipid/detergent-binding sites in a high-resolution structure of 

the membrane protein cytochrome c oxidase. Proc. Natl. Acad. Sci. U.S.A. 103, 16117-

16122.  

Radermacher, M., Ruiz, T., Clason, T., Benjamin, S., Brandt, U. and Zickermann, V. 

(2006) The three-dimensional structure of complex I from Yarrowia lipolytica: a highly 

dynamic enzyme. J. Struct. Biol. 154, 269-279.  

Rich, P. R., Rigby, S. E. and Heathcote, P. (2002) Radicals associated with the catalytic 

intermediates of bovine cytochrome c oxidase. Biochim. Biophys. Acta 1554, 137-146.  

Sadoski, R. C., Zaslavsky, D., Gennis, R. B., Durham, B. and Millett, F. (2001) Exposure 

of bovine cytochrome c oxidase to high triton X-100 or to alkaline conditions causes a 

dramatic change in the rate of reduction of compound F. J. Biol. Chem. 276, 33616-20.  

Salomonsson, L., Faxen, K., Adelroth, P. and Brzezinski, P. (2005) The timing of proton 

migration in membrane-reconstituted cytochrome c oxidase. Proc. Natl. Acad. Sci. U. S. 

A. 102, 17624-17629.  

Saraste, M. (1999) Oxidative phosphorylation at the fin de siecle. Science 283, 1488-

1493.  

Saraste, M. (1990) Structural features of cytochrome oxidases. Quarterly Reviews of 

Biophysics 23, 331-339.  

Sazanov, L. A. (2007) Respiratory complex I: mechanistic and structural insights 

provided by the crystal structure of the hydrophilic domain. Biochemistry 46, 2275-2288.  

Schagger, H. and von Jagow, G. (1991) Blue native electrophoresis for isolation of 

membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223-

231.  



198 

 

Sharpe, M. A. and Ferguson-Miller, S. (2008) A chemically explicit model for the 

mechanism of proton pumping in heme-copper oxidases. J. Bioenerg. Biomembr. 40, 

541-549.  

Shinzawa-Itoh, K., Aoyama, H., Muramoto, K., Terada, H., Kurauchi, T., Tadehara, Y., 

Yamasaki, A., Sugimura, T., Kurono, S., Tsujimoto, K., Mizushima, T., Yamashita, E., 

Tsukihara, T. and Yoshikawa, S. (2007) Structures and physiological roles of 13 integral 

lipids of bovine heart cytochrome c oxidase. EMBO J. 26, 1713-1725.  

Sistrom, W. R. (1962) The kinetics of the synthesis of photopigments in 

Rhodopseudomonas spheroides. J. Gen. Microbiol. 28, 607-616.  

Smith, D., Gray, J., Mitchell, L., Antholine, W. E. and Hosler, J. P. (2005) Assembly of 

cytochrome-c oxidase in the absence of assembly protein Surf1p leads to loss of the 

active site heme. J Biol Chem 280, 17652-6.  

Stanicova, J., Musatov, A. and Robinson, N. C. (2004) Stability of bovine cytochrome c 

oxidase as studied after exposure to high hydrostatic pressure. Acta Medica (Hradac 

Kralove) 47, 335-338.  

Stanicova, J., Sedlak, E., Musatov, A. and Robinson, N. C. (2007) Differential stability of 

dimeric and monomeric cytochrome c oxidase exposed to elevated hydrostatic pressure. 

Biochemistry 46, 7146-7152.  

Steinrucke, P., Steffens, G. C., Panskus, G., Buse, G. and Ludwig, B. (1987) Subunit II of 

cytochrome c oxidase from Paracoccus denitrificans. DNA sequence, gene expression 

and the protein. Eur. J. Biochem. 167, 431-439.  

Stiburek, L. and Zeman, J. (2010) Assembly factors and ATP-dependent proteases in 

cytochrome c oxidase biogenesis. Biochim. Biophys. Acta, in press, 

doi:10.1016/j.bbabio.2010.04.006. 

Suarez, M. D., Revzin, A., Narlock, R., Kempner, E. S., Thompson, D. A. and Ferguson-

Miller, S. (1984) The functional and physical form of mammalian cytochrome c oxidase 

determined by gel filtration, radiation inactivation, and sedimentation equilibrium 

analysis. J Biol Chem 259, 13791-9.  

Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., Bartlam, M. and Rao, Z. (2005) 

Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 

1043-1057.  

Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P. and Iwata, S. 

(2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c 

oxidases from Rhodobacter sphaeroides. J. Mol. Biol. 321, 329-39.  

http://dx.doi.org/10.1016/j.bbabio.2010.04.006


199 

 

Tatsuta, T. and Langer, T. (2009) AAA proteases in mitochondria: diverse functions of 

membrane-bound proteolytic machines. Res. Microbiol. 160, 711-717.  

Thompson, D. A. and Ferguson-Miller, S. (1983) Lipid and subunit III depleted 

cytochrome c oxidase purified by horse cytochrome c affinity chromatography in lauryl 

maltoside. Biochemistry 22, 3178-87.  

Thompson, D. A., Gregory, L. and Ferguson-Miller, S. (1985) Cytochrome c oxidase 

depleted of subunit III: proton-pumping, respiratory control, and pH dependence of the 

midpoint potential of cytochrome a. J Inorg Biochem 23, 357-64.  

Tihova, M., Tattrie, B. and Nicholls, P. (1993) Electron microscopy of cytochrome c 

oxidase-containing proteoliposomes: imaging analysis of protein orientation and 

monomer-dimer behaviour. Biochem. J. 292, 933-946.  

Tiranti, V., Corona, P., Greco, M., Taanman, J. W., Carrara, F., Lamantea, E., Nijtmans, 

L., Uziel, G. and Zeviani, M. (2000) A novel frameshift mutation of the mtDNA COIII 

gene leads to impaired assembly of cytochrome c oxidase in a patient affected by Leigh-

like syndrome. Hum. Mol. Genet. 9, 2733-2742.  

Tsujimoto, Y. and Shimizu, S. (2007) Role of the mitochondrial membrane permeability 

transition in cell death. Apoptosis 12, 835-840.  

Tsukihara, T., Aoyama, H., Yamashita, T. T., Yamaguchi, H., Shinzawa-Itoh, K., 

Nakashima, R., Yaono, R. and Yoshikawa, S. (1996) The whole structure of the 13-

subunit oxidized cytochrome c oxidase at 2.8A. Science 272, 1136-1144.  

Tsukihara, T., Shimokata, K., Katayama, Y., Shimada, H., Muramoto, K., Aoyama, H., 

Mochizuki, M., Shinzawa-Itoh, K., Yamashita, E., Yao, M., Ishimura, Y. and Yoshikawa, 

S. (2003) The low-spin heme of cytochrome c oxidase as the driving element of the 

proton-pumping process. Proc Natl Acad Sci U S A 100, 15304-9.  

Tuppen, H. A., Blakely, E. L., Turnbull, D. M. and Taylor, R. W. (2010) Mitochondrial 

DNA mutations and human disease. Biochim. Biophys. Acta 1797, 113-128.  

van Gelder, B. (1966) On cytochrome c oxidase. I. The extinction coefficients of 

cytochrome a and cytochrome a3. Biochim. Biophys. Acta 118, 36-46.  

Vanneste, W. H. (1966) The stoichiometry and absorption spectra of components a and 

a3 in cytochrome c oxidase. Biochemistry 5, 838-848.  

Varanasi, L., Mills, D., Murphree, A., Gray, J., Purser, C., Baker, R. and Hosler, J. (2006) 

Altering conserved lipid binding sites in cytochrome c oxidase of Rhodobacter 

sphaeroides perturbs the interaction between subunits I and III and promotes suicide 

inactivation. Biochemistry 45, 14896-14907.  



200 

 

Verkhovsky, M. I., Belevich, I., Bloch, D. A. and Wikstrom, M. (2006) Elementary steps 

of proton translocation in the catalytic cycle of cytochrome oxidase. Biochim Biophys 

Acta 1757, 401-7.  

Vogel, F., Bornhovd, C., Neupert, W. and Reichert, A. S. (2006) Dynamic 

subcompartmentalization of the mitochondrial inner membrane. J. Cell Biol. 175, 237-

247.  

von Ballmoos, C., Wiedenmann, A. and Dimroth, P. (2009) Essentials for ATP synthesis 

by F1F0 ATP synthases. Annu. Rev. Biochem. 78, 649-672.  

Wallace, D. C. (2007) Why do we still have a maternally inherited mitochondrial DNA? 

Insights from evolutionary medicine. Annu. Rev. Biochem. 76, 781-821.  

Wallace, D. C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, 

aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359-407.  

Wallace, D. C. and Fan, W. (2010) Energetics, epigenetics, mitochondrial genetics. 

Mitochondrion 10, 12-31.  

Walsh, C., Barrow, S., Voronina, S., Chvanov, M., Petersen, O. H. and Tepikin, A. 

(2009) Modulation of calcium signalling by mitochondria. Biochim. Biophys. Acta 1787, 

1374-1382.  

Wikstrom, M. and Verkhovsky, M. I. (2007) Mechanism and energetics of proton 

translocation by the respiratory heme-copper oxidases. Biochim. Biophys. Acta 1767, 

1200-1214.  

Wikstrom, M. K. (1977) Proton pump coupled to cytochrome c oxidase in mitochondria. 

Nature 266, 271-3.  

Wilson, K. S. and Prochaska, L. J. (1990) Phospholipid vesicles containing bovine heart 

mitochondrial cytochrome c oxidase and subunit-III deficient enzyme: Analysis of 

respiratory control and proton translocation activities. Arch Biochem Biophys 282, 413-

420.  

Wurm, C. A. and Jakobs, S. (2006) Differential protein distributions define two sub-

compartments of the mitochondrial inner membrane in yeast. FEBS Lett. 580, 5628-5634.  

Xu, J., Sharpe, M. A., Qin, L., Ferguson-Miller, S. and Voth, G. A. (2007) Storage of an 

excess proton in the hydrogen-bonded network of the d-pathway of cytochrome C 

oxidase: identification of a protonated water cluster. J. Am. Chem. Soc. 129, 2910-2913.  

Yappert, M. C. and Ingle, J. D. (1989) Correction of polychromatic luminescence signals 

for inner-filter effects. Applied Spect. 43, 759-767.  



201 

 

Yonetani, T. (1961) Studies on cytochrome oxidase. J Biol Chem 236, 1680-1688.  

Yoshikawa, S., Shinzawa-Itoh, K. and Tsukihara, T. (1998) Crystal Structure of Bovine 

Heart Cytochrome c Oxidase at 2.8 A Resolution. J Bioenerg Biomembr 30, 7-14.  

Zhen, Y., Qian, J., Follmann, K., Hayward, T., Nilsson, T., Dahn, M., Hilmi, Y., Hamer, 

A. G., Hosler, J. P. and Ferguson-Miller, S. (1998) Overexpression and purification of 

cytochrome c oxidase from Rhodobacter sphaeroides. Protein Express. Purif. 13, 326-36.  

Zick, M., Rabl, R. and Reichert, A. S. (2009) Cristae formation-linking ultrastructure and 

function of mitochondria. Biochim. Biophys. Acta 1793, 5-19.  

Zickermann, V., Kerscher, S., Zwicker, K., Tocilescu, M. A., Radermacher, M. and 

Brandt, U. (2009) Architecture of complex I and its implications for electron transfer and 

proton pumping. Biochim. Biophys. Acta 1787, 574-583.  

 

 


	Cytochrome C Oxidase from Rhodobacter Sphaeroides: Oligomeric Structure in the Phospholipid Bilayer and the Structural and Functional Effects of a C-Terminal Truncation in Subunit III
	Repository Citation

	tmp.1466519419.pdf.sm7RV

