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This paper describes our approach and experiences with 
implementing a data mining system using genetic 
algorithms in C++.  In contrast with earlier classification 
algorithms that tended to “tile” the data sets using some 
pre-specified “shapes”, the proposed system is based on 
Marmelstein’s work on determining natural boundaries 
for class homogeneous regions.  These boundaries are 
further refined to construct a compact set of simple data 
mining rules for classification. 
 
Keywords: Classifier, Data Mining, Genetic 
Algorithm, Supervised Learning, Porting. 
 

 
 

1. Introduction  
While organizations today store enormous amounts of 
data, the data is useless unless it can be properly 
interpreted and summarized.  Data mining tools help 
turn data into information, and eventually into 
knowledge [1]. 
          The Genetic Rule and Classifier Construction 
Environment (GRaCCE) is a data mining tool 
developed by Robert E. Marmelstein [2].  In addition 
to learning rules to accurately classify data, GRaCCE 
attempts to summarize its results in a form that is 
humanly understandable and simple.  In contrast with 
other approaches that try to “tile” the data sets with 
pre-specified “shapes” [3], GRaCCE seeks natural 
boundaries between classes, which isolate points 



belonging to a class into regions that are amenable to 
“simple” description, without sacrificing classification 
accuracy.  This leads to a small set of compact rules 
that are relatively easy to comprehend, compared 
with those found by other methods. 
          GRaCCE was prototyped in MATLAB [2].  
While this implementation successfully demonstrated 
GRaCCE’s ability to classify data in an 
understandable way, it also manifested some 
shortcomings that motivated its translation into C++.  
Since MATLAB is an interpreter, it produces code 
that is inherently slower than the corresponding 
compiled code.  Translation of GRaCCE into C++ 
was originally attempted to speed up its execution, 
and to enable, at a later date, a fair comparison with 
other data mining algorithms. 
          Even though tools do exist to convert 
MATLAB code into C++ automatically, these tools 
are not mature enough to deal with the constructs 
used in the GRaCCE code. Furthermore, even if 
automatic translation were feasible, the resulting C++ 
code would not have been readily understandable to a 
programmer seeking to enhance it further. 
          Our approach to porting GRaCCE was guided 
by practical software engineering concerns of reuse, 
modularity, and verifiability, as explained in Section 3 
[4].  Furthermore, it was necessary to build the 
system using only public domain software as much as 
possible, in order to be able to distribute it free of 
charge, via the web. 
          GRaCCE is still a work in progress.  The C++ 
version that we have coded is a stepping stone 
towards further algorithmic improvements, 
generalization, and parallelization. 
         The rest of the paper is organized as follows.  
Section 2 provides a brief overview of the GRaCCE 
design.  Section 3 describes our approach to 
implementing GRaCCE in C++.  Section 4 sketches 
the performance results.  Finally, Section 5 presents 
our conclusions. 
 

2. GRaCEE Background  
The GRaCCE algorithm consists of the following 
phases/steps:  

(1) Preprocessing. 
• (optional) Feature Selection 
• (mandatory) Winnowing. 

(2) Partition Generation. 
(3) Data Approximation. 
(4) Region Identification. 

(5) Region Refinement. 
(6) Partition Simplification. 

          The Preprocessing phase prepares the data set 
for subsequent rule induction. The optional feature 
selection step involves choosing the most relevant 
subset of features for classification, to deal with “the 
curse of dimensionality.” GRaCCE provides three 
options for feature selection: (1) deterministic forward 
search, (2) genetic algorithm (GA) based search, and 
(3) hybrid approach in which the result of a limited 
deterministic forward search is used to initialize a 
population for the GA search. 
          The mandatory preprocessing step is the 
winnowing of the data set.  The data points that fall 
within overlapping class boundaries interfere with the 
training of the classifier, potentially causing 
misclassifications.  GRaCCE removes such data 
points, resulting in linearly separable class 
homogenous (CH) clusters of data.  Winnowing uses 
the edited k-Nearest Neighbor (kNN) algorithm in 
which repeated passes over the data set remove 
instances whose class differs from that of the majority 
of the k-nearest neighbors, until either no remaining 
instances are misclassified, or the misclassification 
rate does not change in consecutive passes. 
          The remaining phases of GRaCCE construct 
the classification rules.  The Partition Generation 
phase is responsible for generating a set of 
hyperplanes that are sufficient to separate each CH 
cluster.  The equations for these hyperplanes are 
based on the Bayes decision boundary, and thus 
closely represent the natural boundaries between 
different classes [5].  There are two different kinds of 
partitions (hyperplanes): Global partitions are based 
on the global distribution of the data, and each pair of 
classes yields one global partition.  Local partitions, 
on the other hand, are based on local distributions of 
data, and each boundary point pair of CH clusters of 
different classes yields a single local partition. A global 
partition provides a clean and natural boundary for 
two separable classes compared to a piecewise 
combination of local partitions (as abstracted in Figure 
1), but it is not sufficient when the data points are 
distributed in an interleaved or checkerboard fashion 
(as abstracted in Figure 2). The local partitions 
provide sufficient means for separating each pair of 
CH regions. 
 



 
Figure  1  

 

 
Figure 2 

 
          Since the boundary points of a winnowed data 
set outline the borders of CH regions, regions created 
to enclose the boundary points are a good 
approximation for enclosing all of the data points in 
the CH regions.  Thus, a Data Approximation phase is 
used by GRaCCE in which the data set is 
approximated by the boundary points of each CH 
cluster, with weights assigned to each boundary point 
based on the number of points closest to it.  This has 
the advantage of accelerating later phases. 
          The Region Identification phase is the heart of 
the GRaCCE algorithm.  During this phase, genetic 
algorithms (GAs) are used to find combinations of 
partitions to enclose each CH region.  Each region is 
represented as a binary chromosome, where a “1” 
signifies that the designated partition is to be utilized 
and a “0” signifies that it is not.  A population of these 
binary chromosomes is maintained and evolved 
during the GA search.  The objective function used to 
evaluate the fitness of each member of the population 
takes into account the accuracy, coverage, and 
number of partitions used.    

          Once a set of regions is found during the 
Region Identification phase to isolate each CH cluster 
of data, a Region Refinement phase is used to 
simplify the set of regions.  This includes three 
substeps.  First, any partition whose removal does not 
increase the misclassification rate is removed from the 
region.  Next, any region that has a combination of 
small coverage and large number of partitions 
(defined by a “Region Utility Ratio”) is removed from 
the system.  Finally, the partitions are reoriented to 
improve classification accuracy.    
          The final step of the GRaCCE algorithm is the 
Partition Simplification phase.  This phase reduces the 
complexity of each partition in a region by deleting 
terms that do not significantly affect the overall 
misclassification rate of the rule set.   
          The GRaCCE approach has a number of 
advantages over the other approaches. Firstly, 
GRaCCE gleans natural class boundaries in the data, 
the search for which is facilitated by the removal of 
noisy data in the winnowing phase.  The use of both 
local and global partitions ensures that a sufficient set 
of partitions to enclose CH regions is available. 
          A second advantage of GRaCCE is its ability 
to find globally optimum solutions in a wide variety of 
search spaces.  This is mainly due to its use of genetic 
algorithms to examine the search space that avoids 
convergence to local optima [6].  This is in contrast 
with other data mining methods, such as variants of 
decision trees, which make decisions based on local 
results [3]. 
          A third advantage of GRaCCE is that it creates 
a set of decision rules that are more compact and 
simpler than those obtained through other methods.  
This is because the hyperplanes used are based on 
Bayes’ natural class boundaries, and the objective 
function used in the Region Identification phase 
explicitly minimizes the number of partitions required 
to enclose regions.  Furthermore, the Region 
Refinement and Partition Simplification phases help to 
simplify the regions and the partitions that make up 
the regions. 
          GRaCCE is amenable to parallel processing.  
This can improve its efficiency and scalability. 
Genetic algorithms are known to be fairly easily 
parallelized [7].  In fact, a parallel version of the 
Region Identification phase has already been 
implemented in MATLAB. 
          A final key benefit of GRaCCE is that the 
classification accuracy is robust with respect to the 
initial values of the user-specified parameters.  This 



contrasts with the behavior of many other clustering 
algorithms.  This aspect unburdens the user from 
knowing in advance the properties of the data for 
adjusting these parameters. 
 

3.  Porting GRaCCE to C++  
 The MATLAB version of GRaCCE was 
reimplemented in C++ for the following reasons: (1) 
To improve the efficiency by translating from an 
interpreted language to a compiled language. (2) To 
enable other researchers ready access to GRaCCE in 
C++ for experimentation, comparison, and potential 
incorporation as a component in their system. (In 
fact, this entire effort has been initiated and funded by 
the U. S. Air Force.) (3) To develop a version of 
GRaCCE using public domain software as much as 
possible so that it can be distributed and used free of 
charge. 
          Automatic translation of GRaCCE from 
MATLAB to C++ was deemed doomed because: (1) 
The available translators are not general and mature 
enough to deal with the existing GRaCCE code. (2) 
Even if the translation were possible, the resulting 
C++ code would not be easy to read, understand, 
modify, and evolve, especially given that information 
implicit in the names used in the MATLAB source 
code would be lost.  
          So, manual translation of GRaCCE into C++ 
was undertaken with special attention paid to the 
software engineering concerns, and the context of 
distribution and use. The following requirements were 
imposed on this exercise: 
          The C++ code should maintain a close 
correspondence with the original MATLAB code.  
This enabled existing users of the MATLAB version a 
smooth transition to the C++ implementation.  It 
facilitated  “ease of understanding” and “reuse of 
experience” for the existing GRaCCE users, and 
“reuse of architecture, specification and design” for 
the GRaCCE implementers.  Instead of trying to 
“reinvent the wheel” and build the algorithms from 
scratch, the implementers could better focus on 
developing the C++ version as quickly as possible, 
and improve only the critical sections (“hotspots”) of 
the code, when necessary.  In other words, a tangible 
benefit of our approach was that the MATLAB code 
served as an abstract specification that could be 
relatively easily refined into C++ code in a modular 
fashion, so that its correctness can be verified by 
inspection. 

          In order to accomplish this, the interface that 
MATLAB provided to GRaCCE was isolated first.  In 
particular, MATLAB primitives that were used in the 
original GRaCCE code were identified, and 
abstracted.  This layer was then reimplemented by 
reusing code from the Template Numerical Toolkit 
(TNT) that provides classes for manipulating 
numerical matrices. (TNT, a successor to LAPACK, 
is a freely distributable package of matrix classes and 
operations developed at the National Institute of 
Standards and Technology [URL: 
http://math.nist.gov/tnt]. Packages such as ISML 
were not considered, as they are not freely 
distributable.)  While TNT does not implement all of 
the matrix operations needed for GRaCCE, it does 
provide a solid foundation to build on in terms of the 
basic data structures and   algorithms (such as LU 
factorization and equation solving) it supports.  The 
additional matrix operations were built on top of TNT 
as a separate module. 
          Overall, the GRaCCE code has been organized 
into three main modules: Feature Selection, 
Winnowing, and Rule Induction.  The Rule Induction 
module includes Partition Generation, Data 
Approximation, Region Identification, Region 
Refinement, and Partition Generation. 
          Currently, GRaCCE expects the data in a plain 
text file, each line corresponding to a data instance.  
The format of each line is: an integer class ID 
followed by one or more numerical (integer or real) 
values, one per attribute.  For example, the first few 
lines of the Iris data set (see next section) is: 

 
3     5.800   2.700   5.100   1.900 
2     6.300   2.300   4.400   1.300 
3     6.900   3.100   5.400   2.100 
2     5.600   3.000   4.100   1.300 

Figure  3 
 
          GRaCCE generates a report that lists the error 
rates on the training data and the test data due to the 
rule set after different phases of the algorithm.  It then 
lists the partitions used to define each region, followed 
by the regions themselves.  The partitions are given in 
the form shown in Figure 4, where the V-elements 
make up the vector normal to the hyperplane, and the 
X-elements make up the anchor point through which 
the hyperplane passes.  Each class homogeneous 
region is presented as shown in Figure 5, where each 
utilized partition is listed along with the region’s 
orientation (1 or –1) with respect to the partition, as 



well as the center of the region. In this example, just 
two hyperplanes are sufficient to isolate the entire 
“open” region. 
          The original implementation of GRaCCE 
consisted of approximately 6700 lines of MATLAB 
code, plus about 850 lines of MATLAB code in a 
third-party supplied GA toolbox (including only the 
functions actually used). 
 
  Partition 1       ... 
     V(1  )                  ==> 0.00 
     V(2  )                  ==> 0.00 
     V(3  )                  ==> 0.00 
     V(4  )                  ==> -0.23 
     X(1  )                  ==> 5.10 
     X(2  )                  ==> 2.94 
     X(3  )                  ==> 2.27 
     X(4  )                  ==> 0.76 

Figure   4 
 
Cluster Number            ==> 2 
   Primary Class             ==> 2 
   Number of Members         ==> 43 
   Number of Partitions      ==> 2 
   Partition Map                ... 
      Partition 1            ==> -1 
      Partition 2            ==> -1 
   Cluster Center            ... 
      X(1  )                 ==> 5.92 
      X(2  )                 ==> 2.76 
      X(3  )                 ==> 4.25 
      X(4  )                 ==> 1.32 

Figure   5 
 
          Our version of GRaCCE consists of 
approximately 7600 lines of C++ code plus 850 lines 
of C++ code for the GA routines.  Additionally, the 
code for the TNT files actually used includes about 
1900 lines of C++ code, our additional matrix 
operations consist of about 2300 lines of C++ code, 
and an optional code for a GUI designed to work 
under a Windows environment consists of 
approximately 3000 lines of C++ code. 
 

4.  Performance Results  
GRaCCE’s effectiveness was measured by running it 
on six data sets obtained from the UCI-Irvine ML 
Repository 
(URL:http://mlwww.diee.unica.it/ML/MLSummary.ht
ml) and one from [8].  Tables 1 and 2 summarize the 
results of these test runs. GRaCCE was executed on 

each data set five times, and the averages of these 
times are given in these tables.  All code was 
compiled under Visual C++ 6.0 on a 667 MHz Intel 
Pentium III Dell PC with 128 MB RAM running 
Windows 2000.  While these results obviously depend 
on the hardware used, it does give us a reasonable 
estimate of the expected performance on the state-of-
the-art PC. 
          The tests from which all of the results given in 
these tables were performed were done without using 
Feature Selection.  Executing Feature Selection took 
much longer than the other phases combined (even by 
factors in the hundreds when using a GA-based 
method for Feature Selection), while executing the 
later phases on a reduced feature set still took 
approximately 80 percent of the time as on a full 
feature set on average.  This is mostly due to the 
kNN algorithm used to evaluate the fitness of each 
member in the population. 
          Table 1 gives some information relevant to the 
complexity of the data sets as well as the raw times 
needed to complete the GRaCCE algorithm.  
GRaCCE took anywhere from one second on the 
simplest data set tested to six minutes on the most 
complex data set tested.  Also included in this table 
for each data set is the ratio of the total time taken by 
the previous MATLAB code over the total time taken 
by the new C++ code.  As can be seen, an overall 
speedup factor of anywhere from 9 to 37 was 
obtained on each data set.  The Region Identification 
phase experienced the greatest speedup (by far), and 
thus data sets in which this phase takes the largest 
percentage of time tends to have the largest overall 
speedup.  The amount of speedup for each phase 
seems to depend largely on the percentage of work 
that is done during the phase inside the MATLAB 
primitives, which are usually compiled and optimized 
(unlike the user-written code which is usually 
interpreted). 
          Table 2 gives the break-up of the time taken 
by each phase as compared with the entire task. The 
Partition Generation phase seems to be a bottleneck, 
accounting for approximately 45 percent of the total 
time on average.  This is true despite the fact that the 
Region Identification has the highest growth rate of 
any of the phases [2].  Also note that the Region 
Identification phase is likely to vary widely in 
execution time due to the modality of the data set 
(more modal data requires more regions to be found).  
Finally, the time taken by Winnowing, Region 
Identification, Region Refinement, and Partition 



Generation take approximately equal fractions of the 
total time on average, while Data Approximation takes 
by far the smallest fraction. 
 

5.  Conclusions  
The implementation of GRaCCE in C++ has 
demonstrated several key points. Firstly, it has 
constructively demonstrated perceptible 
improvements in running time.  This speedup can 
especially be considered significant depending on the 
time scales involved.   While improving an algorithm 
that takes a few seconds to one that takes a fraction 
of a second is not worthy of attention in practice, 
speeding up an algorithm that took an hour to execute 
to just a couple of minutes is very significant.  As 
real-world data sets can often be much larger than 
those listed, the time savings from the user’s 
perspective can be quite dramatic. As stated 
previously, the C++ version of GRaCCE will provide 
a foundation for further experimentation and future 
enhancements, both on the algorithmic front and on 
the usability front.  Furthermore, the analysis of the 
results gives us insights into the relative resource 
requirements of the various phases, to better focus 
future efforts.  Since the Partition Generation and 
Feature Selection phases seem to be the major 
bottlenecks, in part being provably intractable, they 
seem like the best candidates for parallel 
implementation. 
 
 
 
 
 
 
 
 
 

 
Table 1   Average Raw Times for Each Phase (in sec) 

Data Set Classes Samples Features Time 
(sec) 

Factor of 
Speedup 

over 
MATLAB3 

                                                             
3 Times for larger data sets with the MATLAB version were not available due to memory limitations of 
the Student version of MATLAB that was used for testing. 
4 Times for each phase were measured to the nearest tenth of a second.  Thus, any phase reported as 
taking zero percent of the total time are due to the phase taking less than 0.1 seconds for all tests. 



Iris 3 150 4 1.0 17.7 
Wine 3 178 13 1.2 15.6 
Glass 6 214 9 6.0 23.3 
Ionosphere 2 351 34 16.4 36.9 
Diabetes 2 768 8 17.8 8.6 
Cancer 2 699 9 18.8 19.2 
FLIR 2 1000 6 33.4 27.6 
Thyroid 2 3163 24 343.8 -- 
Soybean 19 683 35 642.5 -- 

 
Table 2   Average Fractions of Total Time for All Phases4 

 
Winnow Partition 

Gener. 
Data 

Approx. 
Region 

ID 
Region 
Refine. 

Part. 
Simp. 

Rule Ind 
Total 

Iris 0.10 0.46 0.00 0.24 0.20 0.00 0.90 
Glass 0.19 0.43 0.00 0.09 0.17 0.14 0.81 
Wine 0.04 0.39 0.01 0.28 0.09 0.20 0.96 
Cancer 0.20 0.67 0.01 0.02 0.10 0.01 0.80 
Ionosphere 0.06 0.87 0.01 0.04 0.05 0.09 0.94 
Pima 0.19 0.35 0.02 0.21 0.12 0.12 0.81 
FLIR 0.17 0.38 0.02 0.24 0.14 0.05 0.83 
Thyroid 0.20 0.47 0.00 0.01 0.31 0.00 0.80 
Soybean 0.01 0.12 0.00 0.03 0.02 0.82 0.99 
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