
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

6-2001

Summarizing Data Sets for Classification Summarizing Data Sets for Classification

Christopher W. Kinzig
Wright State University - Main Campus

Krishnaprasad Thirunarayan
Wright State University - Main Campus, t.k.prasad@wright.edu

Gary B. Lamont

Robert E. Marmelstein

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Kinzig, C. W., Thirunarayan, K., Lamont, G. B., & Marmelstein, R. E. (2001). Summarizing Data Sets for
Classification. Proceedings of the International Conference on Artificial Intelligence, 681-687.
https://corescholar.libraries.wright.edu/knoesis/891

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in
Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis
Publications by an authorized administrator of CORE Scholar. For more information, please contact library-
corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/36753545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu
mailto:library-corescholar@wright.edu

Summarizing Data Sets for Classification 1

Christopher W. Kinzig and Krishnaprasad Thirunarayan2
Department of Computer Science and Engineering

Wright State University, Dayton, Ohio-45435.
Email: tkprasad@cs.wright.edu

URL: www.cs.wright.edu/~tkprasad
Tel: (937)-775-5109

FAX: (937)-775-5133

 Gary B. Lamont, Professor
 Dept of Electrical and Computer Engineering

 School of Engineering and Management
 Air Force Institute of Technology

 2950 P. St., WPAFB
 Dayton, Ohio 4543

Email: gary.lamont@afit.edu
 Tel: (937)-255-3450 (X-4718)

 FAX: (937)-656-4055

 Robert E. Marmelstein, Major, USAF (Ph.D.)
 Deputy Chief, Information Systems Division (AFRL/IFS)

 525 Brooks Road, Bldg 3 - Rm 1046
 Rome, NY 13441-4505

 Email: Robert.Marmelstein@rl.af.mil
 Tel: (315)-330-1782
 FAX: (315)-330-7083

1 This work was supported by the AFRL/DAGSI Joint Research Program, Project #: SN-AFIT-99-04
2 Contact Author and Potential Presenter

This paper describes our approach and experiences with
implementing a data mining system using genetic
algorithms in C++. In contrast with earlier classification
algorithms that tended to “tile” the data sets using some
pre-specified “shapes”, the proposed system is based on
Marmelstein’s work on determining natural boundaries
for class homogeneous regions. These boundaries are
further refined to construct a compact set of simple data
mining rules for classification.

Keywords: Classifier, Data Mining, Genetic
Algorithm, Supervised Learning, Porting.

1. Introduction
While organizations today store enormous amounts of
data, the data is useless unless it can be properly
interpreted and summarized. Data mining tools help
turn data into information, and eventually into
knowledge [1].
 The Genetic Rule and Classifier Construction
Environment (GRaCCE) is a data mining tool
developed by Robert E. Marmelstein [2]. In addition
to learning rules to accurately classify data, GRaCCE
attempts to summarize its results in a form that is
humanly understandable and simple. In contrast with
other approaches that try to “tile” the data sets with
pre-specified “shapes” [3], GRaCCE seeks natural
boundaries between classes, which isolate points

belonging to a class into regions that are amenable to
“simple” description, without sacrificing classification
accuracy. This leads to a small set of compact rules
that are relatively easy to comprehend, compared
with those found by other methods.
 GRaCCE was prototyped in MATLAB [2].
While this implementation successfully demonstrated
GRaCCE’s ability to classify data in an
understandable way, it also manifested some
shortcomings that motivated its translation into C++.
Since MATLAB is an interpreter, it produces code
that is inherently slower than the corresponding
compiled code. Translation of GRaCCE into C++
was originally attempted to speed up its execution,
and to enable, at a later date, a fair comparison with
other data mining algorithms.
 Even though tools do exist to convert
MATLAB code into C++ automatically, these tools
are not mature enough to deal with the constructs
used in the GRaCCE code. Furthermore, even if
automatic translation were feasible, the resulting C++
code would not have been readily understandable to a
programmer seeking to enhance it further.
 Our approach to porting GRaCCE was guided
by practical software engineering concerns of reuse,
modularity, and verifiability, as explained in Section 3
[4]. Furthermore, it was necessary to build the
system using only public domain software as much as
possible, in order to be able to distribute it free of
charge, via the web.
 GRaCCE is still a work in progress. The C++
version that we have coded is a stepping stone
towards further algorithmic improvements,
generalization, and parallelization.
 The rest of the paper is organized as follows.
Section 2 provides a brief overview of the GRaCCE
design. Section 3 describes our approach to
implementing GRaCCE in C++. Section 4 sketches
the performance results. Finally, Section 5 presents
our conclusions.

2. GRaCEE Background
The GRaCCE algorithm consists of the following
phases/steps:

(1) Preprocessing.
• (optional) Feature Selection
• (mandatory) Winnowing.

(2) Partition Generation.
(3) Data Approximation.
(4) Region Identification.

(5) Region Refinement.
(6) Partition Simplification.

 The Preprocessing phase prepares the data set
for subsequent rule induction. The optional feature
selection step involves choosing the most relevant
subset of features for classification, to deal with “the
curse of dimensionality.” GRaCCE provides three
options for feature selection: (1) deterministic forward
search, (2) genetic algorithm (GA) based search, and
(3) hybrid approach in which the result of a limited
deterministic forward search is used to initialize a
population for the GA search.
 The mandatory preprocessing step is the
winnowing of the data set. The data points that fall
within overlapping class boundaries interfere with the
training of the classifier, potentially causing
misclassifications. GRaCCE removes such data
points, resulting in linearly separable class
homogenous (CH) clusters of data. Winnowing uses
the edited k-Nearest Neighbor (kNN) algorithm in
which repeated passes over the data set remove
instances whose class differs from that of the majority
of the k-nearest neighbors, until either no remaining
instances are misclassified, or the misclassification
rate does not change in consecutive passes.
 The remaining phases of GRaCCE construct
the classification rules. The Partition Generation
phase is responsible for generating a set of
hyperplanes that are sufficient to separate each CH
cluster. The equations for these hyperplanes are
based on the Bayes decision boundary, and thus
closely represent the natural boundaries between
different classes [5]. There are two different kinds of
partitions (hyperplanes): Global partitions are based
on the global distribution of the data, and each pair of
classes yields one global partition. Local partitions,
on the other hand, are based on local distributions of
data, and each boundary point pair of CH clusters of
different classes yields a single local partition. A global
partition provides a clean and natural boundary for
two separable classes compared to a piecewise
combination of local partitions (as abstracted in Figure
1), but it is not sufficient when the data points are
distributed in an interleaved or checkerboard fashion
(as abstracted in Figure 2). The local partitions
provide sufficient means for separating each pair of
CH regions.

Figure 1

Figure 2

 Since the boundary points of a winnowed data
set outline the borders of CH regions, regions created
to enclose the boundary points are a good
approximation for enclosing all of the data points in
the CH regions. Thus, a Data Approximation phase is
used by GRaCCE in which the data set is
approximated by the boundary points of each CH
cluster, with weights assigned to each boundary point
based on the number of points closest to it. This has
the advantage of accelerating later phases.
 The Region Identification phase is the heart of
the GRaCCE algorithm. During this phase, genetic
algorithms (GAs) are used to find combinations of
partitions to enclose each CH region. Each region is
represented as a binary chromosome, where a “1”
signifies that the designated partition is to be utilized
and a “0” signifies that it is not. A population of these
binary chromosomes is maintained and evolved
during the GA search. The objective function used to
evaluate the fitness of each member of the population
takes into account the accuracy, coverage, and
number of partitions used.

 Once a set of regions is found during the
Region Identification phase to isolate each CH cluster
of data, a Region Refinement phase is used to
simplify the set of regions. This includes three
substeps. First, any partition whose removal does not
increase the misclassification rate is removed from the
region. Next, any region that has a combination of
small coverage and large number of partitions
(defined by a “Region Utility Ratio”) is removed from
the system. Finally, the partitions are reoriented to
improve classification accuracy.
 The final step of the GRaCCE algorithm is the
Partition Simplification phase. This phase reduces the
complexity of each partition in a region by deleting
terms that do not significantly affect the overall
misclassification rate of the rule set.
 The GRaCCE approach has a number of
advantages over the other approaches. Firstly,
GRaCCE gleans natural class boundaries in the data,
the search for which is facilitated by the removal of
noisy data in the winnowing phase. The use of both
local and global partitions ensures that a sufficient set
of partitions to enclose CH regions is available.
 A second advantage of GRaCCE is its ability
to find globally optimum solutions in a wide variety of
search spaces. This is mainly due to its use of genetic
algorithms to examine the search space that avoids
convergence to local optima [6]. This is in contrast
with other data mining methods, such as variants of
decision trees, which make decisions based on local
results [3].
 A third advantage of GRaCCE is that it creates
a set of decision rules that are more compact and
simpler than those obtained through other methods.
This is because the hyperplanes used are based on
Bayes’ natural class boundaries, and the objective
function used in the Region Identification phase
explicitly minimizes the number of partitions required
to enclose regions. Furthermore, the Region
Refinement and Partition Simplification phases help to
simplify the regions and the partitions that make up
the regions.
 GRaCCE is amenable to parallel processing.
This can improve its efficiency and scalability.
Genetic algorithms are known to be fairly easily
parallelized [7]. In fact, a parallel version of the
Region Identification phase has already been
implemented in MATLAB.
 A final key benefit of GRaCCE is that the
classification accuracy is robust with respect to the
initial values of the user-specified parameters. This

contrasts with the behavior of many other clustering
algorithms. This aspect unburdens the user from
knowing in advance the properties of the data for
adjusting these parameters.

3. Porting GRaCCE to C++
 The MATLAB version of GRaCCE was
reimplemented in C++ for the following reasons: (1)
To improve the efficiency by translating from an
interpreted language to a compiled language. (2) To
enable other researchers ready access to GRaCCE in
C++ for experimentation, comparison, and potential
incorporation as a component in their system. (In
fact, this entire effort has been initiated and funded by
the U. S. Air Force.) (3) To develop a version of
GRaCCE using public domain software as much as
possible so that it can be distributed and used free of
charge.
 Automatic translation of GRaCCE from
MATLAB to C++ was deemed doomed because: (1)
The available translators are not general and mature
enough to deal with the existing GRaCCE code. (2)
Even if the translation were possible, the resulting
C++ code would not be easy to read, understand,
modify, and evolve, especially given that information
implicit in the names used in the MATLAB source
code would be lost.
 So, manual translation of GRaCCE into C++
was undertaken with special attention paid to the
software engineering concerns, and the context of
distribution and use. The following requirements were
imposed on this exercise:
 The C++ code should maintain a close
correspondence with the original MATLAB code.
This enabled existing users of the MATLAB version a
smooth transition to the C++ implementation. It
facilitated “ease of understanding” and “reuse of
experience” for the existing GRaCCE users, and
“reuse of architecture, specification and design” for
the GRaCCE implementers. Instead of trying to
“reinvent the wheel” and build the algorithms from
scratch, the implementers could better focus on
developing the C++ version as quickly as possible,
and improve only the critical sections (“hotspots”) of
the code, when necessary. In other words, a tangible
benefit of our approach was that the MATLAB code
served as an abstract specification that could be
relatively easily refined into C++ code in a modular
fashion, so that its correctness can be verified by
inspection.

 In order to accomplish this, the interface that
MATLAB provided to GRaCCE was isolated first. In
particular, MATLAB primitives that were used in the
original GRaCCE code were identified, and
abstracted. This layer was then reimplemented by
reusing code from the Template Numerical Toolkit
(TNT) that provides classes for manipulating
numerical matrices. (TNT, a successor to LAPACK,
is a freely distributable package of matrix classes and
operations developed at the National Institute of
Standards and Technology [URL:
http://math.nist.gov/tnt]. Packages such as ISML
were not considered, as they are not freely
distributable.) While TNT does not implement all of
the matrix operations needed for GRaCCE, it does
provide a solid foundation to build on in terms of the
basic data structures and algorithms (such as LU
factorization and equation solving) it supports. The
additional matrix operations were built on top of TNT
as a separate module.
 Overall, the GRaCCE code has been organized
into three main modules: Feature Selection,
Winnowing, and Rule Induction. The Rule Induction
module includes Partition Generation, Data
Approximation, Region Identification, Region
Refinement, and Partition Generation.
 Currently, GRaCCE expects the data in a plain
text file, each line corresponding to a data instance.
The format of each line is: an integer class ID
followed by one or more numerical (integer or real)
values, one per attribute. For example, the first few
lines of the Iris data set (see next section) is:

3 5.800 2.700 5.100 1.900
2 6.300 2.300 4.400 1.300
3 6.900 3.100 5.400 2.100
2 5.600 3.000 4.100 1.300

Figure 3

 GRaCCE generates a report that lists the error
rates on the training data and the test data due to the
rule set after different phases of the algorithm. It then
lists the partitions used to define each region, followed
by the regions themselves. The partitions are given in
the form shown in Figure 4, where the V-elements
make up the vector normal to the hyperplane, and the
X-elements make up the anchor point through which
the hyperplane passes. Each class homogeneous
region is presented as shown in Figure 5, where each
utilized partition is listed along with the region’s
orientation (1 or –1) with respect to the partition, as

well as the center of the region. In this example, just
two hyperplanes are sufficient to isolate the entire
“open” region.
 The original implementation of GRaCCE
consisted of approximately 6700 lines of MATLAB
code, plus about 850 lines of MATLAB code in a
third-party supplied GA toolbox (including only the
functions actually used).

 Partition 1 ...
 V(1) ==> 0.00
 V(2) ==> 0.00
 V(3) ==> 0.00
 V(4) ==> -0.23
 X(1) ==> 5.10
 X(2) ==> 2.94
 X(3) ==> 2.27
 X(4) ==> 0.76

Figure 4

Cluster Number ==> 2
 Primary Class ==> 2
 Number of Members ==> 43
 Number of Partitions ==> 2
 Partition Map ...
 Partition 1 ==> -1
 Partition 2 ==> -1
 Cluster Center ...
 X(1) ==> 5.92
 X(2) ==> 2.76
 X(3) ==> 4.25
 X(4) ==> 1.32

Figure 5

 Our version of GRaCCE consists of
approximately 7600 lines of C++ code plus 850 lines
of C++ code for the GA routines. Additionally, the
code for the TNT files actually used includes about
1900 lines of C++ code, our additional matrix
operations consist of about 2300 lines of C++ code,
and an optional code for a GUI designed to work
under a Windows environment consists of
approximately 3000 lines of C++ code.

4. Performance Results
GRaCCE’s effectiveness was measured by running it
on six data sets obtained from the UCI-Irvine ML
Repository
(URL:http://mlwww.diee.unica.it/ML/MLSummary.ht
ml) and one from [8]. Tables 1 and 2 summarize the
results of these test runs. GRaCCE was executed on

each data set five times, and the averages of these
times are given in these tables. All code was
compiled under Visual C++ 6.0 on a 667 MHz Intel
Pentium III Dell PC with 128 MB RAM running
Windows 2000. While these results obviously depend
on the hardware used, it does give us a reasonable
estimate of the expected performance on the state-of-
the-art PC.
 The tests from which all of the results given in
these tables were performed were done without using
Feature Selection. Executing Feature Selection took
much longer than the other phases combined (even by
factors in the hundreds when using a GA-based
method for Feature Selection), while executing the
later phases on a reduced feature set still took
approximately 80 percent of the time as on a full
feature set on average. This is mostly due to the
kNN algorithm used to evaluate the fitness of each
member in the population.
 Table 1 gives some information relevant to the
complexity of the data sets as well as the raw times
needed to complete the GRaCCE algorithm.
GRaCCE took anywhere from one second on the
simplest data set tested to six minutes on the most
complex data set tested. Also included in this table
for each data set is the ratio of the total time taken by
the previous MATLAB code over the total time taken
by the new C++ code. As can be seen, an overall
speedup factor of anywhere from 9 to 37 was
obtained on each data set. The Region Identification
phase experienced the greatest speedup (by far), and
thus data sets in which this phase takes the largest
percentage of time tends to have the largest overall
speedup. The amount of speedup for each phase
seems to depend largely on the percentage of work
that is done during the phase inside the MATLAB
primitives, which are usually compiled and optimized
(unlike the user-written code which is usually
interpreted).
 Table 2 gives the break-up of the time taken
by each phase as compared with the entire task. The
Partition Generation phase seems to be a bottleneck,
accounting for approximately 45 percent of the total
time on average. This is true despite the fact that the
Region Identification has the highest growth rate of
any of the phases [2]. Also note that the Region
Identification phase is likely to vary widely in
execution time due to the modality of the data set
(more modal data requires more regions to be found).
Finally, the time taken by Winnowing, Region
Identification, Region Refinement, and Partition

Generation take approximately equal fractions of the
total time on average, while Data Approximation takes
by far the smallest fraction.

5. Conclusions
The implementation of GRaCCE in C++ has
demonstrated several key points. Firstly, it has
constructively demonstrated perceptible
improvements in running time. This speedup can
especially be considered significant depending on the
time scales involved. While improving an algorithm
that takes a few seconds to one that takes a fraction
of a second is not worthy of attention in practice,
speeding up an algorithm that took an hour to execute
to just a couple of minutes is very significant. As
real-world data sets can often be much larger than
those listed, the time savings from the user’s
perspective can be quite dramatic. As stated
previously, the C++ version of GRaCCE will provide
a foundation for further experimentation and future
enhancements, both on the algorithmic front and on
the usability front. Furthermore, the analysis of the
results gives us insights into the relative resource
requirements of the various phases, to better focus
future efforts. Since the Partition Generation and
Feature Selection phases seem to be the major
bottlenecks, in part being provably intractable, they
seem like the best candidates for parallel
implementation.

Table 1 Average Raw Times for Each Phase (in sec)

Data Set Classes Samples Features Time
(sec)

Factor of
Speedup

over
MATLAB3

3 Times for larger data sets with the MATLAB version were not available due to memory limitations of
the Student version of MATLAB that was used for testing.
4 Times for each phase were measured to the nearest tenth of a second. Thus, any phase reported as
taking zero percent of the total time are due to the phase taking less than 0.1 seconds for all tests.

Iris 3 150 4 1.0 17.7
Wine 3 178 13 1.2 15.6
Glass 6 214 9 6.0 23.3
Ionosphere 2 351 34 16.4 36.9
Diabetes 2 768 8 17.8 8.6
Cancer 2 699 9 18.8 19.2
FLIR 2 1000 6 33.4 27.6
Thyroid 2 3163 24 343.8 --
Soybean 19 683 35 642.5 --

Table 2 Average Fractions of Total Time for All Phases4

Winnow Partition

Gener.
Data

Approx.
Region

ID
Region
Refine.

Part.
Simp.

Rule Ind
Total

Iris 0.10 0.46 0.00 0.24 0.20 0.00 0.90
Glass 0.19 0.43 0.00 0.09 0.17 0.14 0.81
Wine 0.04 0.39 0.01 0.28 0.09 0.20 0.96
Cancer 0.20 0.67 0.01 0.02 0.10 0.01 0.80
Ionosphere 0.06 0.87 0.01 0.04 0.05 0.09 0.94
Pima 0.19 0.35 0.02 0.21 0.12 0.12 0.81
FLIR 0.17 0.38 0.02 0.24 0.14 0.05 0.83
Thyroid 0.20 0.47 0.00 0.01 0.31 0.00 0.80
Soybean 0.01 0.12 0.00 0.03 0.02 0.82 0.99

References

[1] Tobin, Daniel R. 1997. The Knowledge-
Enabled Organization. AMACOM Books.
[2] Marmelstein, Robert E. 1999. “Evolving
Compact Decision Rule Sets.” Ph.D. diss., Air
Force Institute of Technology.
[3] Safavian, S. Rasoul and David Landgrebe.
May 1991. “A Survey of Decision Tree Classifier
Methodology.” IEEE Transactions on Systems,
Man, and Cybernetics 21(3): 660-674.
[4] Meyer, Bertrand. 1997. Object-Oriented
Software Construction. 2nd Edition. Prentice
Hall.
[5] Lee, Chulhee and David Landgrebe. 1993.
“Feature Extraction and Classification Algorithms
For High Dimensional Data.” Ph.D. diss, Purdue
University.
[6] Patnaik, Lalit M. and Srinivas Mandavilli.
“Adaptation in Genetic Algorithms.” 1996. In
Genetic Algorithms for Pattern Recognition, ed.
Sankar K. Pal and Paul P. Wang, 45-64. Boca
Raton, FL: CRC Press.
[7] De, Susmita, Ashish Ghosh, and Sankar K.
Pal. 1996. “Fitness Evaluation in Genetic
Algorithms with Ancestors’ Influence.” In
Genetic Algorithms for Pattern Recognition, ed.

Sankar K. Pal and Paul P. Wang, 1-23. Boca
Raton, FL: CRC Press.
[8] Ernisse, Brian E. 1996. “Automatic Target
Cuer/Recognizer System for Tactical FLIR
Images.” M.S. Thesis, Air Force Institute of
Technology.

	Summarizing Data Sets for Classification
	Repository Citation

	tmp.1412709565.pdf.BhPDS

