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ABSTRACT 

 

Bowman, Katlin Ph.D., Environmental Sciences Ph.D. Program, Wright State University, 

2014. Mercury distributions and cycling in the North Pacific and Eastern Tropical Pacific 

Oceans. 

 

The distribution of mercury (Hg) in the ocean is complex as a result of in situ 

chemical transformations and inputs from natural and anthropogenic sources. Within the 

ocean, inorganic Hg is methylated to monomethylmercury (MMHg), which 

bioaccumulates and biomagnifies in marine food webs and poses a health risk to humans 

who eat fish. The biogeochemistry of Hg in the ocean has been studied for decades, 

however, recently improved sampling and analytical techniques have allowed for an 

enhanced understanding of global distributions of different Hg species. This dissertation 

uses a newly developed method for the analysis of MMHg that improves detection limits 

10-fold over previous methods and allows for separation and analysis of dissolved 

gaseous dimethylmercury (DMHg) in the same sample. Filtered total Hg (HgT), MMHg, 

DMHg, and elemental Hg (Hg
0
) were measured in high vertical and horizontal resolution 

in the water column of the North Atlantic (GA03) and eastern tropical South Pacific 

(GP16) Oceans, using vetted methods for the trace-metal clean sampling and analysis of 

Hg through the U.S. GEOTRACES program. Total Hg and MMHg were also measured 

in suspended particles across both sections. A wide range of oceanographic features 

important to Hg chemistry were sampled including oligotrophic waters in the Atlantic, 

productive upwelling waters in the Pacific, hydrothermal vent plumes, and deep and 
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intermediate water masses of varying ages and source regions. The subsurface 

distribution of Hg
0
 was connected to the nitrogen cycle, with nutrient-like vertical 

distributions, similar to nitrate, in the Atlantic basin and increasing Hg
0
 concentrations 

with denitrification in the Pacific. Filtered total Hg exhibited both scavenged- and 

nutrient-type vertical distributions in the Atlantic and nutrient-type distributions in the 

Pacific. Elevated concentrations of HgT were observed in a hydrothermal vent plume 

stemming from the Mid-Atlantic Ridge; however, Hg was not increased in a plume 

extending from the East Pacific Rise. Total Hg concentrations increased from younger to 

older Pacific deep waters but were anomalously high in Atlantic deep waters subducted 

within the past 200 y due to anthropogenic inputs. Young deep water impacted by 

anthropogenic Hg in the Atlantic contained 1.4× more methylated Hg (MMHg + DMHg) 

on average compared to unimpacted deep water in the Pacific. Dimethylmercury was 

often the dominant form of methylated Hg in deep water and concentrations of both 

MMHg and DMHg increased in aging Pacific deep water. Vertically stratified maxima of 

MMHg and DMHg were observed often near the subsurface chlorophyll maximum and 

frequently in low-oxygen thermocline waters where MMHg concentrations were 2× 

greater than DMHg. Methylated Hg was weakly positively correlated with apparent 

oxygen utilization, however, methylated Hg concentrations decreased with greater 

oxygen consumption. Concentrations of MMHg and DMHg were similar between 

Atlantic thermocline waters affected by anthropogenic Hg inputs and thermocline waters 

underlying the highly productive upwelling region in the eastern Pacific, despite 

substantial differences in oxygen concentrations. Analytical separation of methylated Hg 

species revealed unique and independent distributions of MMHg and DMHg. Data from 
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both cruise sections suggests that MMHg and DMHg are produced throughout the water 

column in oxygenated subsurface waters, low-oxygen thermocline waters, and likely in 

deep water masses. Comparison of oceanic sections following thermohaline circulation 

revealed the impact of anthropogenic Hg inputs with increased concentrations of HgT, 

MMHg, and DMHg in young (< 200 y) deep and subsurface Atlantic waters. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

 

 

TABLE OF CONTENTS 

 

1. INTRODUCTION..........................................................................................................1 

1.1. Mercury biogeochemistry .........................................................................................1 

1.2. Human exposure to Hg and associated health risks ..................................................3 

1.3. Oceanic distribution of Hg ........................................................................................4 

1.4. Specific aims .............................................................................................................6 

1.4.1 North Atlantic zonal transect key features ..........................................................7 

1.4.2 Eastern Pacific zonal transect key features .........................................................7 

1.5. Hypotheses ................................................................................................................8 

References ......................................................................................................................10 

2. EXTRACTION OF MONOMETHYLMERCURY FROM SEAWATER FOR 

LOW-FEMTOMOLAR DETERMINATION  .............................................................19 

Abstract ..........................................................................................................................20 

Introduction ....................................................................................................................21 

Materials and procedures ...............................................................................................23 

Water ..........................................................................................................................23 

Methylmercury quantification ....................................................................................23 

Direct ethylation technique .........................................................................................25 

Quality control ............................................................................................................26 

Assessment .........................................................................................................................27 

Acid treatment ............................................................................................................27 

Duration of H2SO4 treatment ......................................................................................29 

Duration of the derivatization period .........................................................................29 

N2 purge volume .........................................................................................................30 

MMHg determination in freshwater ...........................................................................31 

Sulfide.........................................................................................................................31



vii 
 

 

Tenax ..........................................................................................................................32 

Shipboard analysis of MMHg in Pacific water ..........................................................33 

Shipboard analysis of DMHg in Pacific water ...........................................................33 

Discussion ..........................................................................................................................36 

Acknowledgements ............................................................................................................37 

References ..........................................................................................................................38 

3. MERCURY IN THE NORTH ATLANTIC OCEAN: THE U.S. GEOTRACES 

ZONAL AND MERIDIONAL SECTIONS  .................................................................48 

Abstract ..........................................................................................................................49 

3.1. Introduction .............................................................................................................50 

3.2. Materials and methods ............................................................................................52 

3.2.1 Sample collection ..............................................................................................52 

3.2.2 Mercury analysis ...............................................................................................52 

3.3. Results and discussion .............................................................................................56 

3.3.1 Physical oceanography of the basin ..................................................................56 

3.3.2 Total Hg .............................................................................................................57 

3.3.3 Elemental Hg .....................................................................................................60 

3.3.4 Monomethylmercury .........................................................................................63 

3.3.5 Dimethylmercury ...............................................................................................66 

3.3.6 TAG hydrothermal vent plume .........................................................................68 

3.4. Summary .................................................................................................................70 

Acknowledgements ........................................................................................................71 

References ......................................................................................................................72 

4. DISTRIBUTION OF MERCURY SPECIES ACROSS A ZONAL SECTION OF 

THE EASTERN TROPICAL PACIFIC OCEAN (U.S. GEOTRACES GP16) ........91 

Abstract ..........................................................................................................................91 

4.1. Introduction .............................................................................................................92 

4.2. Methods ...................................................................................................................94 

4.2.1 Sample collection ..............................................................................................94 

4.2.2 Mercury analysis  ..............................................................................................95 



viii 
 

4.3. Results  ....................................................................................................................97 

4.3.1 Physical oceanography of the section................................................................97 

4.3.2 Total Hg  ............................................................................................................99 

4.3.3 Elemental Hg ...................................................................................................103 

4.3.4 DMHg and MMHg  .........................................................................................104 

4.3.5 Oxygen relationships and methylated Hg........................................................107 

4.3.6 Hg in the EPR hydrothermal vent plume  .......................................................108 

4.4. Summary ...............................................................................................................110 

Acknowledgements ......................................................................................................111 

References ....................................................................................................................112 

5. THE BEHAVIOR AND DISTRIBTUION OF METHYLATED MERCURY 

COMPARED BETWEEN THE NORHT ATLANTIC AND EASTERN TROPICAL 

SOUTH PACIFIC OCEANS ........................................................................................137 

Abstract ........................................................................................................................137 

5.1. Introduction ...........................................................................................................138 

5.2. Results ...................................................................................................................141 

5.2.1 Subsurface chlorophyll maximum ...................................................................141 

5.2.2 Thermocline waters .........................................................................................142 

5.2.3 Deep waters .....................................................................................................146 

5.3. Conclusions ...........................................................................................................148 

Acknowledgements ......................................................................................................149 

References ....................................................................................................................150 

Appendix A. Storage bottle material and cleaning for determination of total 

mercury in seawater ......................................................................................................164 

Appendix B. Vertical methylmercury distribution in the subtropical North Pacific 

Ocean ...............................................................................................................................184 

Appendix C. Mercury in the anthropocene ocean ......................................................210 

Appendix D. A global ocean inventory of anthropogenic mercury based on water 

column measurements ...................................................................................................271 

Appendix E. Permission to reprint ...............................................................................292 

 

 



ix 
 

LIST OF FIGURES 

 

Figure 1.1 Mercury biogeochemistry in the ocean………………………………………18 

 

Figure 2.1. Recovery of added MMHg (500 fmoles) from 0.2-L samples of North 

Atlantic surface water and 2-L aliquots of North Pacific surface water acidified to 0–1% 

with 18 M H2SO4 for 24 h before analysis. N2 purging was at 0.15 L min
-1

 (×25 min) for 

0.2-L aliquots and 0.8 L min
-1

 (×60 min) for 2-L samples. Error bars are the difference 

among duplicate samples (North Atlantic only). Dashed line is 100% recovery………..46 

 

Figure 2.2. Recovery of MMHg (as methylethylmercury) from 2-L samples of filtered 

seawater purged with various volumes of N2. Tests were conducted with multiple 

samples at N2 purge rates of 0.8 and 1.2 L min
-1

. Dashed line is 100% recovery……….47 

 

Figure 3.1. GEOTRACES GA03 water sampling stations during the meridional (red) and 

zonal (yellow) sections of the North Atlantic Ocean. Stations occupied in 2010 are 

indicated by diamonds, and stations occupied in 2011 are indicated by circles. (For 

interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article)……………………………………………………………….82 

 

Figure 3.2. Water masses in the North Atlantic along the GEOTRACES GA03 transect, 

superimposed on the salinity distribution. Surface waters are mainly North Atlantic 

Central Water (NACW) with Atlantic Equatorial Water (AEW) at the southernmost 

extent of the cruise near the Cape Verde Islands. Intermediate waters include Irminger 

Sea Water (ISW) in the west, Antarctic Intermediate Water (AAIW) in the central basin, 

and Mediterranean Overflow Water (MOW) in the east. North Atlantic Deep Water 

(NADW) is between 1500 and ~4000 m. Water deeper than 4000 m is a mixture of 

NADW and Antarctic Bottom Water (AABW) with the fraction as AABW increasing 

below 5000 m (Jenkins et al., in review). Sampling points are shown as black dots and 

station numbers are listed intermittently throughout the grey bathymetric section……...83 

Figure 3.3. Distribution of total Hg concentrations (pM) in filtered water (panel A) and 

suspended particles (panel B) along GEOTRACES GA03 in the North Atlantic Ocean. 

Isobars of dissolved oxygen have concentration units of µmol/kg. Sampling points are 

shown as black dots and station numbers are listed intermittently throughout the grey 

bathymetric sections……………………………………………………………………...84 

Figure 3.4. Distribution of Hg
0 

(pM) along GEOTRACES GA03 in the North Atlantic 

Ocean.  Isobars of dissolved oxygen have concentration units of µmol/kg. Sampling 

points are shown as black dots and station numbers are listed intermittently throughout 

the grey bathymetric section……………………………………………………………..85



x 
 

 

Figure 3.5. Vertical profiles of elemental Hg (grey circles), filtered total Hg (black 

circles), nitrate (open triangles), and dissolved oxygen (dashed line) at Stations 12 (panel 

A) and 20 (panel B) of GEOTRACES GA03 in the North Atlantic Ocean. Error bars are 

covered by figure symbols; relative percent difference was 4 ± 4 (n = 5) for filtered HgT, 

and 0.3 ± 0.7 (n = 72) for nitrate………………………………………………………..86 

Figure 3.6. Distribution of MMHg concentrations (pM) in filtered water (panel A) and 

suspended particles (panel B) along GEOTRACES GA03 in the North Atlantic Ocean. 

Isobars of dissolved oxygen have concentration units of µmol/kg. Sampling points are 

shown as black dots and station numbers are listed intermittently throughout the grey 

bathymetric sections……………………………………………………………………...87 

Figure 3.7. Profiles of filtered MMHg (closed circles), CTD fluorescence (solid line), and 

dissolved O2 (dashed line) at zonal Stations 16–18 near the center of the North Atlantic 

Ocean.  The grey area highlights MMHg maxima in oxic water between 100 and 200 m 

depth……………………………………………………………………………………...88 

Figure 3.8. Distribution of DMHg concentrations (pM) along GEOTRACES GA03 in the 

North Atlantic Ocean. Isobars of dissolved oxygen have concentration units of µmol/kg. 

Sampling points are shown as black dots and station numbers are listed intermittently 

throughout the grey bathymetric section…………………………………………………89  

Figure 3.9. Mercury and iron speciation in the TAG hydrothermal vent plume (zonal 

Station 16). The grey area highlights the layer of the hydrothermal plume between 3200 

and 3400 m depth………………………………………………………………………...90 

Figure 4.1. U.S. GEOTRACES GP16 water sampling stations in the eastern tropical 

South Pacific Ocean. Stations with identification numbers were sampled with full depth 

profiles, unlabeled stations were demi-stations (upper 1000 m) or shelf stations……124 

 

Figure 4.2. Oxygen concentrations are overlayed with silicate contours (μmol kg
−1

) to 

identify water masses. Antarctic Intermediate Water (AAIW) is between 700–1000 m, 

AAIW mixes with Pacific Deep Water (PDW) from 1000–2000 m, PDW is found 

throughout the western and eastern portions of the transection >2000 m, Modified PDW 

(PDWM) is found between 2000–4000 m east of the East Pacific Rise (EPR), and Lower 

Circumpolar Deep Water (LCDW) is found west of the EPR >4000 m (Kawabe and 

Fujio, 2010; Talley et al., 2011). Sampling points are shown as black dots and stations 

with full-depth profiling are identified numerically in the gray bathymetric section…..125 

 

Figure 4.3. Concentrations of filtered (panel A) and suspended particulate (panel B) HgT 

in the eastern South Pacific Ocean. Sampling points are shown as black dots and full 

station numbers are listed throughout the gray bathymetric section……………………126 

 

Figure 4.4. Filtered and particulate HgT and Hg
0
 in the water column on the continental 

shelf (Stations 2–3) and slope (Station 4) near Peru…………………………………....127 

 



xi 
 

Figure 4.5. Oxygen concentrations decrease in AAIW (700–1000 m) from east to west 

across the transect (panel A). Filtered HgT (r
2
 = 0.1, p = 0.01) decreases as AAIW ages 

moving west (panel B)………………………………………………………………….128 

 

Figure 4.6. Potential temperature decreases with depth west of the EPR crest and remains 

constant with depth east of the crest due to geothermal heating along the rise………...129 

 

Figure 4.7. Mean (± SD) Hg:Premin ratios in bottom water <1000 m from abyssal 

sediments. Station numbers are listed in the bars. The dashed line at Hg:Premin = 1 

represents the deep water ratio expected in waters that only accumulate Hg released from 

sinking biological material (Lamborg et al., 2014)…………………………………..…130  

 

Figure 4.8. Elemental Hg distribution in eastern South Pacific Ocean. Sampling points 

are shown as black dots and full station numbers are listed throughout the gray 

bathymetric section……………………………………………………………………..131 

 

Figure 4.9. Elemental Hg (Hg
0
) was inversely related to degree of denitrification in 

mixed layer and thermocline waters (20–700 m; r
2
 = 0.3, p < 0.001). N* was calculated 

according to Gruber and Sarmiento (1991); N* = 0.87(NO3 − 16PO4 + 2.95)…………132 

 

Figure 4.10. Concentrations of DMHg (panel A), filtered MMHg (panel B), and 

suspended particulate MMHg (panel C). Sampling points are shown as black dots and full 

station numbers are listed throughout the gray bathymetric section…………………....133 

 

Figure 4.11. Filtered and particulate MMHg, and DMHg in the water column on the 

continental shelf (Stations 2–3) and slope (Station 4) near Peru……………………….134 

 

Figure 4.12. Filtered MMHg (r
2
 = 0.2, p = 0.002) and DMHg (r

2
 = 0.4, p < 0.0001) 

decrease in AAIW (700–1000 m) moving west across the section (slope = –0.0001 for 

both DMHg and MMHg)……………………………………………………………….135 

 

Figure 4.13. DMHg and filtered MMHg concentrations related to dissolved oxygen 

(DMHg, r
2
 = 0.3, p < 0.0001; MMHg, r

2
 = 0.2, p < 0.0001) in thermocline waters (100–

700 m). Closed circles are upwelling Stations 1–9 and open circles are non-upwelling 

Stations 10–36…………………………………………………………………………..136 

Figure 5.1. DMHg (panel A) and MMHg (panel B) maxima are found in oxygenated and 

low-oxgyen waters at depths near the subsurface cholorophyll maximum (70–100 m). 

Red diamonds are data from the North Atlantic Zonal Transect (North Atlantic) and blue 

circles are data from the Eastern Pacific Zonal Transect (Eastern Pacific)…………….157 

Figure 5.2. Correlations between DMHg and filtered Fe, Mn, and Co in the upper water 

column (< 100 m depth) in the Pacific upwelling region (panels A–C) and North Atlantic 

Ocean (panels D–F). Unpublished Fe, Mn, and Co data was obtained with permission 

from the National Science Foundation Biological & Chemical Oceanography Data 

Management Office (www.bco-dmo.org)........................................................................158 



xii 
 

Figure 5.3. Total methylated Hg (MMHg + DMHg) was correlated with AOU in the 

thermocline of the North Atlantic (panel A; 100–1000 m) and eastern Pacific Oceans 

(panel C; 100–700 m). The MMHg:DMHg molar ratios in the thermocline of the Atlantic 

(panel B) and Pacific Oceans (panel D)………………………………………………...159 

Figure 5.4. Dimethylmercury (panel A) was postively correlated with filtered Co (r
2
 = 

0.05, p = 0.009) and Fe (r
2
 = 0.1, p < 0.0001) in Atlantic thermocline waters (100–1000 

m). Methylmercury (panel B) was inversely related to filtered Co (r
2
 = 0.1, p < 0.0001) 

and Fe (r
2
 = 0.04, p = 0.02)……………………………………………………………..160 

Figure 5.5. MMHg and DMHg were positively correlated with total Hg in thermocline 

waters of the North Atlantic (panel A, 100–1000 m) and equatorial South Pacific Oceans 

(panel B, 100–700 m).  Linear regression statistics: Atlantic (r
2
 = 0.04, p = 0.006), 

Atlantic (r
2
 = 0.1, p < 0.0001), Pacific MMHg (r

2
 = 0.1, p = 0.0002), Pacific DMHg (r

2
 = 

0.3, p < 0.0001). Linear regression slopes were similar for MMHg (0.06 ± 0.02 Atlantic, 

0.05 ± 0.01 Pacific) and  DMHg (0.1 ± 0.03 Atlantic, 0.1 ± 0.1 Pacific). for both Atlantic 

and Pacific)……………………………………………………………………………..161 

Figure 5.6. Total Hg was positively correlated with AOU in the thermocline of the North 

Atlantic (panel A; 100–1000 m) and eastern Pacific Oceans (panel B; 100–700 m)….162 

Figure 5.7. Total methylated Hg (MMHg + DMHg) concentrations increase with the 

Hg:Premin ratio in deep waters of the North Atlantic (NADW and AABW; panel A; >1500 

m). Results from Station 16 were not included because of external inputs from the TAG 

hydrothermal vent field. There is no significant correlation between methyatled Hg and 

Hg:Premin (p = 0.2) in Atlantic termocline waters (panel B; 100–1000 m)……………...163 



xiii 
 

LIST OF TABLES 

 

Table 2.1. Methodological sequence for quantitatively extracting DMHg and MMHg (as 

methlethylmercury, MeEtHg) from a 2-L sample of water……………………………...45 

 

Table 3.1. Summary of Hg species concentrations including results from all stations and 

depths. For suspended particulate MMHg, the percentage of total Hg is referenced to only 

the suspended particulate phase………………………………………………………….81 

Table 4.1. Mean (± SD) concentrations of Hg species in filtered water from different 

water masses. All concentrations are pM and the number of concentration measurements 

are in parentheses. The average concentration of Hg
0
 in PDWM does not included 

elevated concentrations at Station 1 near the Peru margin……………………………..122 

Table 4.2. Mean (± SD) concentrations of Hg species (pM) in the upper water column 

(20–700 m) at upwelling and non-upwelling stations. The number of concentration 

measurements are  in parentheses………………………………………………………123 

 

Table 5.1. Mean (± SD) concentrations (pM) of filtered HgT, MMHg, and DMHg in 

thermocline waters of the North Atlantic (100–1000 m), and equatorial South Pacific 

(100–700 m) Oceans at upwelling (Stations 1–9) and non-upwelling (Stations 10–36) 

locations. The number of measured concentrations is in parentheses………………….155 

 

Table 5.2. Mean (± SD) concentrations (pM) of filtered MMHg and DMHg in deep water 

masses of the North Atlantic (North Atlantic Deep Water, NADW; Antarctic Bottom 

Water, AABW), and equatorial South Pacific Oceans (Lower Circumpolar Deep Water, 

LCDW; Pacific Deep Water, PDW; Modified Pacific Deep Water, PDWM). The number 

of measured concentrations are in parentheses. The Mann-Whitney Rank Sum test was 

used to compare concentrations of MMHg and DMHg in each water mass…………...156 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

ACKNOWLEDGEMENTS 

 

 

I would like to thank my advisor, Chad, for hiring me when I was 19-years-old to work as 

an undergraduate research technician, a part-time job that turned into a 7 year stay. I was 

able to learn and grow as a scientist through your trust and faith in me and I will always 

appreciate your mentorship. I thank Bill and Carl for adopting me into Team Hg; you 

have been insightful and enthusiastic mentors and a pleasure to work with. Wright State’s 

Department of Earth and Environmental Sciences has taken care of me for over 8 years 

and for that I am grateful. I also thank the Environmental Science Ph.D. program and all 

of my committee members at Wright State for their time and commitment.  

 

I thank my parents for their continued support and for fostering my interest in science at a 

young age. They helped me compete in 8 science fairs as a kid – my dad drove me 

around to streams and lakes during the winter and busted through ice with a sledge 

hammer so I could collect water samples. My mom proofread every single report and 

project board, and even let me ship plastic tubes of live ants to the house (my brother 

later knocked over the ant farm and those “live ants” stuck around longer than expected). 

Dan Vargo, Jodi Tayor, and Ray Wagner from Columbiana High School were also great 

supporters of my science fair efforts, and educators that go above and beyond their job 

descriptions.  

 

I thank my siblings, past and present lab mates, and close friends for always making me 

laugh and keeping me grounded.    

 

This dissertation would not have been possible without the U.S. GEOTRACES program 

and financial support from the U.S. National Science Foundation (Chemical 

Oceanography Division of Ocean Sciences; OCE-0928191, OCE-1132480, OCE-

1232979). My work has benefited greatly from the collaborative efforts of dozens of 

scientists who have provided samples, high quality data, and thoughtful discussion. I also 

thank the captains and crews and of the R/V Knorr and R/V Thompson for making this 

work possible.  

 

 

 

 

 

 

 

 

 



xv 
 

 

 

 

 

“Do not let your fire go out, spark by irreplaceable spark in the hopeless swamps of the 

not-quite, the not-yet, and the not-at-all. Do not let the hero in your soul perish in lonely 

frustration for the life you deserved and have never been able to reach. The world you 

desire can be won. It exists…it is real…it is possible…it’s yours.” 

-Ayn Rand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to Jeanne Dusi 

 



1 
 

1. INTRODUCTION 

 

1.1. Mercury biogeochemistry  

Mercury (Hg) enters the environment through natural sources such as weathering 

of mineral deposits and volcanic outgassing, and anthropogenic sources, mainly the 

combustion of coal and other fossil fuels for energy production (Fitzgerald et al., 2007). 

The ocean receives Hg inputs primarily from atmospheric deposition, although riverine 

discharge, remobilization from sediments, groundwater discharge, and submarine 

hydrothermal vents can be important (Mason et al., 2012; Amos et al., 2014). An 

estimated two thirds of Hg in the atmosphere is anthropogenic and man-made emissions 

are projected to increase during the next century (Fitzgerald et al., 1998; Pirrone, et al., 

2010; Hammerschmidt, 2011; Kocman et al., 2013). Anthropogenic emissions have 

added 290 ± 80 million moles of Hg to the global ocean with two-thirds residing in 

thermocline waters where in situ chemical transformations may be most active (Lamborg 

et al., 2014).  

The biogeochemistry of Hg in the ocean is controlled by biological and chemical 

processes that influence its transport, fate, and chemical speciation (Fig. 1). Elemental Hg 

(Hg
0
) in the atmosphere is oxidized to Hg

2+
 and deposited to the surface ocean in either 

wet or dry deposition (Holmes et al., 2009; Mason et al., 2001). In the mixed layer, 

reduction processes transform some of the Hg
2+

 back to Hg
0
, which often results in 

supersaturation and evasion back to the atmosphere (Andersson et al., 2011). Hg
2+

 can be 

either reduced throughout the water column, complexed with dissolved and particulate 

ligands, or methylated to methylmercury (CH3Hg
+
, MMHg) and dimethylmercury 

((CH3)2Hg, DMHg). Dimethylmercury is thought to be a relatively short-lived gas and 
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found mainly in cold, deep waters (Mason et al., 1995). Monomethylmercury is a 

bioaccumulative, toxic species of Hg found in marine sediments and throughout the water 

column (Mason et al., 2012); MMHg biomagnifies in marine food webs and is known to 

affect cardiovascular, endocrine, and neurological systems, posing a health threat to 

humans who eat fish and piscivorous wildlife (Zahir et al., 2005; Scheuhammer et al., 

2007; Sunderland, 2007; Bose-O’Reilly et al., 2010; Karimi et al., 2012). 

The formation and relationship between MMHg and DMHg in seawater is poorly 

understood; the two species may be produced either independently or through a series of 

methyl-group transfer reactions. Monomethylmercury production is hypothesized to 

occur through abiotic pathways in surface water and rainwater (Celo et al., 2006; 

Hammerschmidt et al., 2007), however, microbial production is thought to be the 

dominant source in sediments (Benoit et al., 2003). In sediments, Hg methylation occurs 

under anoxic conditions through the activity of sulfate- and iron-reducing bacteria, and 

possibly methanogens (King et al., 2000; Kerin et al., 2006; Hamelin et al., 2011; 

Graham et al., 2012). Incubation studies have observed production of DMHg and MMHg 

in seawater under both oxic and low-oxygen conditions (Lehnherr et al., 2011; 

Monperrus et al., 2007). Genomic studies have identified specific genes associated with 

Hg reduction (merA) and methylation (hgcAB), however, the abundance of these genes in 

marine systems has yet to be explored (Barkay and Wagner-Döbler, 2005; Parks et al., 

2013; Gilmour et al., 2013). Biotic and abiotic processes also decompose methylated Hg 

(Barkay et al., 2003; Zhang and Hsu-Kim, 2010); therefore the oceanic distributions of 

MMHg and DMHg likely reflect a steady-state condition between competing methylation 

and demethylation reactions.  
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1.2. Human exposure to Hg and associated health risks  

Mercury became widely recognized as an environmental toxin during the 1950s 

and 1960s when waste from the Chisso Company in Minamata, Japan, was discharged 

into Minamata Bay. Monomethylmercury in the waste biomagnified within the food web, 

subsequently poisoning wildlife and humans who consumed locally harvested seafood. 

Thousands of people suffered from severe neurological and developmental impairments 

in what is known as one of the worst environmental disasters in history (NIMD, 2013). 

Today the threat of Hg pollution is more subtle; mass poisoning events similar to 

Minamata are now unheard of, however, humans are still exposed to MMHg through the 

consumption of fish and a majority of those fish are harvested from the ocean (Mahaffey, 

2004; Sunderland, 2007; Višnjevec et al., 2014; FAO, 2014). Exposure to MMHg in 

utero has been associated with impaired neurological development in children (Mahaffey 

et al., 2011). An estimated 10% of U.S. women of child-bearing age have blood MMHg 

levels high enough to increase these risks in their unborn children (Mahaffey et al., 

2009). Adults exposed to high doses of MMHg also can experience neurological as well 

as cardiovascular impairments (Edna et al., 2003; Auger et al., 2005; Stern et al., 2005; 

Mergler et al., 2007).  

Fish is a nutritionally valuable food source that supplies the global population 

with 15–20% of animal protein needs and contains omega-3 fatty acids important for 

brain growth and development (Mahaffey et al., 2011; FAO, 2014). Anthropogenic inputs 

have increased concentrations of inorganic Hg in the ocean and industrial emissions are 

expected to continue rising this century (Streets et al., 2009; Hammerschmidt, 2011; 

Lamborg et al., 2014). Additional emissions will continue to increase loadings of Hg to 
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the ocean, which could exacerbate exposures of humans and wildlife. It is therefore 

important to understand Hg biogeochemistry in marine systems to better assess how 

future emission scenarios will affect the ocean and, by extension, humans who eat 

seafood.  

1.3. Oceanic distribution of Hg 

There are two published data sets for Hg in the Atlantic Ocean, one in subpolar 

North Atlantic waters near regions of deep water formation (Mason et al., 1995) and the 

other in the western South Atlantic (Mason & Sullivan 1999). These studies reported 

average HgT concentrations around 2 pM in unfiltered samples with up to 57% as Hg
0 

in 

the mixed layer. Monomethylmercury concentrations were below detection limit (<50 

fM) and DMHg was found mainly in deep waters, where it was thought to be produced 

during deep water formation (Mason et al., 1995). More data exist for the Pacific Ocean, 

where HgT concentrations are reported to be closer to 1 pM, however, a majority of this 

data is limited to the upper 1000 m of the water column (Mason and Fitzgerald 1993; 

Laurier et al., 2004; Sunderland et al., 2009; Hammerschmidt and Bowman, 2012).   

Historical data suggest that vertical profiles of HgT have either a scavenged- or 

nutrient-type distribution, with Hg removal from surface waters through either 

bioaccumulation or adsorption to sinking particles and released at intermediate depths 

through remineralization processes (Mason et al., 2012). In deep water, total Hg is 

generally homogenous with depth and concentrations below the thermocline reflect the 

drawdown of atmospheric Hg during water mass formation and release of Hg from 

sinking biological material (Lamborg et al., 2014).  
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Insufficient detection limits and the analytical challenge of separating MMHg and 

DMHg have inhibited our understanding of methylated Hg in the ocean (many studies 

report MeHgT, the summation of MMHg and DMHg concentrations). Regardless of these 

challenges, a general vertical trend has been observed in multiple ocean basins; 

methylated Hg is low in surface waters due to removal processes (photodecomposition 

and adsorption of MMHg, atmospheric evasion of DMHg), with maxima in low-oxygen 

regions of the water column and homogenous concentrations in deep water (Mason et al, 

2012). In situ production is hypothesized to be the primary source of methylated Hg 

maxima in oxygen minimum zones (OMZs). Remineralization of organic matter in 

OMZs releases inorganic Hg and organic substrate to fuel heterotrophic microbes that 

may produce MMHg and DMHg within the water column. Significant correlations 

between methylated Hg and either dissolved oxygen, apparent oxygen utilization, or 

organic carbon remineralization rate have been observed in the Mediterranean Sea, South 

Atlantic, North Pacific and Southern Oceans (Mason and Fitzgerald, 1991; Mason and 

Sullivan, 1999; Kirk et al., 2008; Sunderland et al., 2009; Heimbürger et al., 2010; Cossa 

et al., 2011; Lehnherr et al., 2011).  

 The dominant form of methylated Hg and lifetimes of MMHg and DMHg in the 

ocean are uncertain. In the Atlantic and equatorial Pacific Oceans, DMHg was the 

dominant methylated species while MMHg concentrations were 2–4× greater than DMHg 

in the North Pacific (Mason et al., 1995; Mason and Sullivan, 1999; Hammerschmidt and 

Bowman, 2012). Mechanistic studies in polar marine waters also have found greater rate 

constants for the production of MMHg from isotopically labeled Hg(II) compared to 

DMHg production (Lehnherr et al., 2011). The estimated lifetime of DMHg in oceanic 
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waters is <50 y while no estimates for MMHg exist (Mason and Fitzgerald, 1993; Mason 

and Sullivan 1999). The importance of external sources verses in situ production and the 

time needed to reach steady state between production and loss in deep waters needs to be 

examined in order to constrain estimates of methylated Hg in the ocean. 

1.4. Specific aims 

By participating in two U.S. GEOTRACES zonal sections, I generated high-

resolution, full-depth profiles of Hg species in the North Atlantic and eastern tropical 

South Pacific Oceans. Low-level (femtomolar) MMHg measurements in seawater were 

made with a new method that allows for separation and analysis of DMHg from the same 

sample (Chapter 2; Bowman and Hammerschmidt, 2010). Filtered and particulate HgT 

and MMHg and dissolved gaseous Hg
0
 and DMHg were measured during the zonal 

sections of the North Atlantic (Chapter 3; Bowman et al., 2014) and eastern Pacific 

Ocean (Chapter 4). My objective was to use these two oceanic data sets to improve 

understanding of the distribution and behavior of Hg in the ocean. Chapter 5 compares 

the distribution of MMHg and DMHg between similar and contrasting oceanographic 

features of the Atlantic and Pacific Oceans.  

GEOTRACES is an international program with a central goal of quantifying 

fluxes and processes of key trace elements and their isotopes in the global ocean 

(geotraces.org). By participating in GEOTRACES cruises I had access to trace metal, 

nutrient, and radioisotope data that assisted in my interpretation of Hg distributions in 

regard to the oceanographic processes taking place in both basins. Each section 
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encompassed a variety of either unique or prominent oceanographic features, outlined 

below. 

1.4.1 North Atlantic zonal transect key features  

 Deep water masses formed in the subpolar North Atlantic (North Atlantic Deep 

Water, NADW) and Southern Ocean (Antarctic Bottom Water, AABW). NADW 

across this section ranged in age from ~90 y to ~200 y.  

 Intermediate waters from the subpolar North Atlantic (Irminger Sea Water), 

Southern Ocean (Antarctic Intermediate Water), and Mediterranean Sea 

(Mediterranean Overflow Water).   

 Broad continental shelf in the western (North America) and eastern basins 

(Europe & Africa). 

 Oligotrophic surface water in the Sargasso Sea and more productive waters near 

the coast of Africa where an OMZ is pronounced. 

 A buoyant hydrothermal vent plume over the Mid-Atlantic Ridge. 

 Atmospheric inputs from industrial (North America and Europe) and natural 

(Saharan dust) sources. 

1.4.2 Eastern Pacific zonal transect key features 

 Deep water among the oldest in the ocean (Pacific Deep Water and Modified 

Pacific Deep Water), as well as deep water more recently subducted from the 

Antarctic Circumpolar Current (Lower Circumpolar Deep Water). 
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 Intermediate water from the Southern Ocean (Antarctic Intermediate Water) and 

mode waters from the Southwestern Pacific (South Pacific Subtropical Mode 

Water) and Antarctic Circumpolar Current (Subantarctic Mode Water). 

 A narrow continental margin and subduction zone (Peru trench, ~5500 m). 

 Highly productive surface waters resulting from upwelling near the Peru margin 

that create a suboxic (2–10 μmol kg
−1

 O2) oxygen minimum zone. Oligotrophic 

waters west of the upwelling zone. 

 A buoyant hydrothermal vent plume extending west from the East Pacific Rise 

located between 2000–3000 m depth. 

1.5. Hypotheses  

I had the following hypotheses related to the distributions and behavior of Hg species in 

the ocean: 

1) Release from sinking particles will increase Hg concentrations in deep water over 

time, however, deep water downwelled within the last 100–200 y may contain 

more Hg than older waters due to anthropogenic inputs. 

2) MMHg, DMHg, and Hg
0
 produced in continental margin sediments will be 

mobilized to overlying water in both basins. Efflux from deep-sea sediments will 

not be a significant source. 

3) Vertical maxima of MMHg and DMHg will be found in the OMZ, with greater 

concentrations in OMZs under more productive waters where microorganisms 

suspected of producing methylated-Hg thrive under low-oxygen conditions 

generated by remineralization processes.    
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4) Dissolved Hg
0
 in deep water masses will decrease with age as a result of dark 

oxidation reactions. Distributions of Hg
0
 will correlate with nitrite, suggesting Hg 

resistance (merA) in nitrifying bacteria.   

5) Input of hydrothermal fluids in the Atlantic and Pacific will be a significant 

source of Hg to deep waters in both basins. 

6) Because Hg methylation has been observed in both oxic and low-oxygen 

seawater, MMHg and DMHg will not have a significant correlation with apparent 

oxygen utilization.  

7) MMHg may correlate with Fe(II) and cobalt; Fe-reducing bacteria have been 

shown to produce MMHg in culture (Kerin et al., 2006) and production of vitamin 

B-12 (cobalt dependent) via the acetyl Co-A pathway releases excess methyl 

groups that may contribute to MMHg production (Choi et al., 1994; Ekstrom et 

al., 2003).  

8) DMHg will be the dominant form of methylated-Hg in deep water, but the 

MMHg:DMHg molar ratio in surface and intermediate waters will be >1. 
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Figure 1.1. Mercury biogeochemistry in the ocean. 
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Abstract 

Humans are exposed to toxic monomethylmercury (MMHg) principally by the 

consumption of marine fish.  However, and due in part to analytical limitations, little is 

known about the distribution, sources, and biogeochemical cycling of MMHg in the 

ocean, where aqueous concentrations are in the femtomolar range and often less than 

current limits of detection.  Here, we present a simple method for extraction and analysis 

of MMHg in seawater that has a detection limit of about 2 fM for a 2-L sample, which is 

a 10-fold improvement over current approaches.  The technique, which is readily 

adaptable to a shipboard laboratory, involves purging and quantification of 

dimethylmercury (DMHg) from an unaltered 2-L water sample followed by acidification 

to 1% with H2SO4 for > 6 h, pH neutralization, derivatization of MMHg in the seawater 

matrix with an ethylating agent, and purge-and-trap analysis with gas-chromatographic 

cold-vapor atomic fluorescence spectrometry.  The method was developed and validated 

with analyses of seawater from the North Atlantic and Pacific Oceans, in addition to two 

fresh waters.  This technique can be used to quantify, differentiate, and develop an 

improved understanding of the biogeochemistries of MMHg and DMHg in the ocean. 
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2.1. Introduction 

 Monomethylmercury (MMHg) is the highly toxic form of mercury that 

accumulates in aquatic biota.  MMHg is produced from complexes of inorganic Hg 

(Hg(II)) by microorganisms (Benoit et al., 2003), concentrated from water by 

phytoplankton (Mason et al., 1996), and subsequently biomagnified through successive 

dietary trophic transfers (Wiener et al., 2003), resulting in some fish having MMHg 

levels that may be harmful to piscivorous wildlife (Scheuhammer et al., 2007) and 

humans who eat fish (Mergler et al., 2007).  Most of the fish consumed by humans are 

from the marine environment (U.S. EPA, 2002); however, and due in part to analytical 

limitations, little is known about the distribution, sources, and biogeochemical cycling of 

MMHg in the ocean, where aqueous concentrations are in the femtomolar range and often 

less than current limits of detection (Fitzgerald et al., 2007). 

 Most current methods for determination of MMHg involve extraction from 

natural solution, derivatization to a volatile compound, pre-concentration and separation 

of the derivative by gas chromatography (Bloom, 1989), and detection by either cold-

vapor atomic fluorescence spectrometry (CVAFS; Bloom and Fitzgerald, 1988) or 

inductively coupled plasma mass spectrometry (ICPMS; Hintelmann and Evans, 1997).  

Aqueous distillation and solvent-solvent extraction with CH2Cl2 (Horvat et al., 1993), 

both of which include an acidification step, are techniques used commonly to separate 

MMHg from organic and inorganic constituents in natural waters that may interfere with 

the derivatization reaction, which is often by alkylation (Bloom, 1989) or hydride 

generation (Filippelli et al., 1992).  These analytical separations also result in 

dimethylmercury (DMHg), if present, being decomposed to MMHg (Wood et al., 1968; 
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Black et al., 2009) and therefore artifactually bias measured levels of MMHg.  With 

typical sample volumes of 0.1−0.2 L, method detection limits for aqueous MMHg are 

often between about 40 and 100 fM.  While such limits of detection are sufficient for 

analysis of MMHg in most fresh (e.g., Hurley et al., 1995; St. Louis et al., 2005; Brigham 

et al., 2009) and coastal marine (e.g., Hammerschmidt and Fitzgerald, 2006; Kirk et al., 

2008; Kotnik et al., 2007; Cossa et al., 2009) waters, they result often in MMHg being 

undetectable in open-ocean seawater (Fitzgerald to al., 2007) and thereby present a 

limitation to understanding the biogeochemistry of this toxic and bioaccumulative 

compound in the marine environment.   

 We have developed a simple technique for extraction and analysis of MMHg in 

seawater that lowers the detection limit to about 2 fM for a 2-L sample and isolates 

DMHg from MMHg.  Instead of developing a more sensitive measurement technology, 

we sought to improve the detection limit for MMHg by increasing the volume of sample 

from which it is pre-concentrated, which requires an alternative to distillation and solvent 

extraction for sample pre-treatment.  Prior studies have shown that MMHg in freshwaters 

may be determined quantitatively by direct ethylation with sodium tetraethylborate (e.g., 

Holz et al., 1999; Rolfhus et al., 2003; Hammerschmidt and Fitzgerald, 2010).  It has 

been suggested, however, that direct ethylation of MMHg is ineffective for seawater 

because chloride interferes with the reaction (Bloom, 1989).  Our initial tests of this 

assumption proved similar:  MMHg could be recovered by direct ethylation, albeit not 

completely (50−80% recovery of known additions).  Hence, we conducted a suite of 

laboratory experiments to optimize a direct ethylation technique with the goal of 

quantitatively recovering MMHg from seawater.  We found that acidification of seawater 
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to 1% with concentrated H2SO4, after removal of gaseous DMHg by purging, results in 

MMHg being sufficiently labile for quantitative derivatization directly in the seawater 

matrix.  This technique was developed and validated with experimental laboratory and 

shipboard analyses of seawater from the North Atlantic and Pacific Oceans, in addition to 

two fresh waters. 

2.2. Materials and procedures 

2.2.1 Water 

Seawater for laboratory tests was obtained from an open-ocean location in the 

northwest Atlantic Ocean (38° 43’ N, 70 °W) in August 2008.  Surface water from the 

Atlantic (salinity = 33.27; dissolved organic carbon = 85 µM) was sampled with a trace-

metal clean rosette at 10 m depth, capsule filtered (0.45 µm; Meissner Alpha, 

polyethylene membrane) promptly after collection, and stored in a 50-L polyethylene 

carboy.  No DMHg was detected (< 2 fM).  Seawater was sampled similarly from various 

depths of the North Pacific Ocean (30 °N, 140 °W), capsule filtered (0.2 µm; Pall 

AcroPak-200, polyethersulfone membrane) directly from rosette bottles, and used for 

shipboard analytical tests during the U.S. GEOTRACES Intercalibration cruise in May 

2009. 

2.2.2 Methylmercury quantification 

MMHg was determined by gas-chromatographic CVAFS (Bloom, 1989) with a 

Hg speciation analyzer that we have described previously (Tseng et al., 2004).  In 

laboratory and shipboard tests, a known volume of aqueous sample (0.2–2 L) was 

introduced to a gas-liquid separator (GLS).  For 0.2-L samples, the GLS was a 0.5-L 

glass side-arm flask that was in-line with the Hg speciation analyzer (Tseng et al., 2004).  
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The GLS for 2-L samples during the North Pacific cruise was a 2-L FEP Teflon bottle 

capped with a multi-port cap and impinger (Omnifit Q-series; Danbury, CT), which is 

off-line of the Hg speciation analyzer.  The pH of samples was adjusted to 4.9 with 4 M 

acetate buffer and an aliquot of ice-cold 1% (wt:vol) sodium tetraethylborate (NaTEB; 

Strem Chemical, Newburyport, MA) added as the derivatization reagent (U.S. EPA, 

2001).  The volume of added NaTEB was 0.1−0.2% of the sample.  NaTEB reacts with 

MMHg and Hg(II) to produce methylethylmercury (MeEtHg, the MMHg derivative) and 

diethylmercury (the Hg(II) derivative), which are gases and can be purged quantitatively 

from solution.  NaTEB was allowed to react with sample Hg in a closed GLS before 

purging derivatives from solution with N2 through a fine-pore glass or ceramic frit 

located at the bottom of the GLS.  The N2 was ultra-high purity (grade 5.0) and cleaned 

of Hg by passage through Au-coated glass beads and Tenax TA resin (23% graphitized 

carbon, 20/35 mesh, Alltech) prior to the GLS.  Optimal duration of the derivatization 

reaction and N2 purging conditions were investigated and described below in the 

assessment. 

Effluent gas from the GLS, containing sample MeEtHg, passed through a Teflon 

column (10 cm long, 3.2 mm ID) packed with reagent-grade soda lime (~20 mesh) and 

then a glass column (10 cm long, 3.2 mm ID) packed with Tenax TA.  Soda lime 

removes water vapor/aerosols and neutralizes any acidity in the gas stream, whereas 

Tenax sequesters volatile methylmercury species.  Soda lime columns were prepared 

daily and replaced upon wetting, which was typically after purging either one 2-L sample 

or 10−20 0.2-L samples.  Newly prepared Tenax columns were conditioned with multiple 

loadings and subsequent desorption of MeEtHg prior to use for trapping sample Hg; this 
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pretreatment improves peak resolution.  In a stream of Ar carrier (ultra-high purity and 

passed over Au and Tenax; 0.09 L min
−1

), volatile Hg species were desorbed thermally 

from the Tenax, separated with an isothermal gas chromatographic column (60 °C, 30 cm 

long, 3.2 mm ID, packed with 60/80 mesh Chromosorb WAW-DMSC coated with 15% 

OV-3; Supelco), pyrolyzed (500 °C) to Hg
0
 upon elution from the chromatographic 

column, and Hg
0
 detected by CVAFS (Tseng et al., 2004). 

Determination of gaseous DMHg (Mason and Fitzgerald, 1993) was similar 

methodologically to that of MMHg, the only difference was that no chemical 

amendments were made to water prior to purging DMHg from solution with N2 and 

trapping on Tenax.  Because of its volatility and susceptibility to decomposition to 

MMHg upon water acidification (Black et al., 2009), DMHg must be purged from 

unacidified solutions promptly after sampling; otherwise, it is either lost or measured 

levels of MMHg may be biased artifactually.  We did not purge DMHg from North 

Atlantic surface water in our laboratory tests because it was not present at detectable 

levels (< 2 fM). 

2.2.3 Direct ethylation technique 

We investigated the effect of different experimental conditions on recovery of 

MMHg from filtered seawater.  Experimental samples were prepared by adding 400−500 

femtomoles of MMHg, as CH3HgCl, to either 0.2-L (laboratory tests) or 2.0-L (shipboard 

tests) aliquots of filtered seawater inside FEP Teflon bottles.  MMHg amendments to 

seawater were about 10–100× greater than ambient levels, but were useful for optimizing 

analytical conditions and not enough to oversaturate Cl
–
 or organic ligands (Lamborg et 

al., 2003), the dominant complexing agents of MMHg in seawater (Fitzgerald et al., 
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2007).  The bottles were capped, solutions homogenized by hand shaking for several 

seconds, and stored in the dark (4–24 °C) for  24 h prior to any experimental treatment 

or analysis.  This time period is sufficient for Hg(II) to equilibrate with natural ligands 

(Lamborg et al., 2003); therefore, added CH3HgCl should have the same chemical 

speciation with dissolved and colloidal ligands as ambient MMHg.  Tests to optimize 

recovery of MMHg from seawater by direct ethylation included the following variables: 

1) pretreatment with different types and concentrations of mineral acids, 2) duration of 

sample pretreatment with acid, 3) duration of derivatization with NaTEB, and 4) N2 

purge volume of samples. 

2.2.4 Quality control 

Water samples were collected, manipulated, and analyzed with trace-metal clean 

procedures (Gill and Fitzgerald, 1985).  All equipment and containers used for sample 

collection, storage, and analysis were cleaned rigorously with acid and rinsed with 

reagent-grade water (resistivity, > 18 MΩ-cm) prior to use.  Sample MMHg was 

quantified after each Tenax column was calibrated individually with aliquots of an 

aqueous MMHg standard that was derivatized and purged from solution in the same GLS 

used for samples; each Tenax column typically had excellent linear calibration 

regressions (r
2
  0.99) within the range of sample MMHg.  Aqueous MMHg standards 

were standardized versus Hg
0
 (Gill and Fitzgerald, 1987). Precision of MMHg 

determinations averaged 13% relative standard deviation (RSD) for 33 sets of laboratory 

test samples that were replicated procedurally in this study. 

Although environmental samples are not prone to contamination with MMHg, 

determinations can be biased by contamination from analytical reagents, and there is a 
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potential for artifactual formation of MMHg from Hg(II) during analysis (Bloom et al., 

1997; Hintelmann et al., 1997; Hammerschmidt and Fitzgerald, 2001).  Analysis of 

procedural blanks is important for assessment of MMHg impurities introduced by 

reagents.  Procedural blanks consisted of analytical reagents added to either reagent-grade 

water or previously ethylated and purged seawater (i.e., no remaining MMHg).  With 

regard to a 2-L seawater sample acidified to 1% with H2SO4, this included 20 mL of 18 

M H2SO4, 60 mL of 12 M KOH (for pH neutralization), about 30 mL of 4 M acetate 

buffer (pH adjustment to ~5), and 2 mL of 1% NaTEB.  While these reagents add 

substantial Hg(II) to the matrix (> 500 fmoles for a 2-L sample), procedural blanks 

contained routinely about 5 fmoles (1 pg) of Hg, as MMHg, for a 2-L sample.  Acetate 

buffer is the only reagent from which we have detected a contribution of MMHg, 

presumably from chemical methylation of contaminant Hg(II) in the sodium acetate.  As 

an alternative to sodium acetate, we have found that preparation of acetate buffer from 

glacial acetic acid and KOH results often in an undetectable MMHg blank. 

2.3. Assessment 

2.3.1 Acid treatment 

Treatment of natural waters with dilute concentrations of mineral acids promotes 

the release of MMHg from particles (e.g., Tseng et al., 1997; Hammerschmidt and 

Fitzgerald, 2001) and/or its reactivity to NaTEB (Hammerschmidt and Fitzgerald, 2010).  

Accordingly, we examined whether addition to seawater of either 12 M HCl (1 and 2% 

vol:vol), 16 M HNO3 (1 and 2%), or 18 M H2SO4 (1%; all acids were Baker Instra-

analyzed) increased recovery of MMHg from the matrix beyond the 50−80% recovery 

observed for untreated samples (n = 3 for each acid type/concentration).  After treatment 



28 
 

with each acid for 24 h, sample acidity was neutralized by titration with 12 M KOH 

(ACS grade, Fisher); base is added directly to the sample bottle, as opposed to the GLS, 

so that the solution can be mixed to dissolve Mg(OH)2 precipitate that forms during 

addition of base.  Titrated samples were transferred within 15 min of neutralization to a 

GLS and analyzed as described above, with a 10-min reaction period for NaTEB and N2 

purging for 25 min at 0.15 L min
−1

 for a 0.2-L sample.  Relative to samples with no acid 

treatment (mean ± 1 SD recovery of MMHg; 80 ± 3%), addition of HCl reduced 

precision and recovery of MMHg (1% HCl = 31 ± 18%, 2% HCl = 56 ± 20%), HNO3 had 

no effect (1% HNO3 = 83 ± 7%, 2% HNO3 = 66 ± 24%), and 1% H2SO4 yielded 

quantitative results (100 ± 10%).   

We examined whether concentrations of H2SO4 less than 1% were equally 

effective in promoting MMHg recovery from seawater, because acidification to 1% with 

H2SO4 requires relatively large volumes of acid, base, and buffer.  Two-liter aliquots of 

North Pacific surface water (pre-purged of DMHg) and 0.2-L volumes of North Atlantic 

water were equilibrated for 24 h with 500 fmoles of added CH3HgCl and then treated for 

24 h with 18 M H2SO4 at concentrations ranging from 0 to 1% (vol:vol), after which the 

acid was titrated with KOH and samples analyzed as described above.  While no 

correction for ambient MMHg was used for 0.2-L aliquots of North Atlantic surface 

water (ambient MMHg not detectable in this sample volume, < 20 fM), 17 fM (ambient 

level) was subtracted from measurements of North Pacific water to estimate recovery of 

known MMHg additions.  N2 purging rates were greater for 2-L samples (0.8 L min
–1

 for 

40 min) than for 0.2-L aliquots (0.15 L min
–1

 for 20 min), but the same relative volume 

ratio of purge gas to water (15) was used for both. For both sample volumes and types, 
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MMHg recovery was about 60−80% for samples treated with less than 0.6% H2SO4 and 

considerably greater at higher acidities, with 1% H2SO4 yielding complete recovery of 

MMHg (Figure 1).  Therefore, we used 1% H2SO4 as the acid treatment for all 

subsequent MMHg extractions. 

2.3.2 Duration of H2SO4 treatment 

Initial tests of MMHg recovery as a function of acid type and concentration were 

conducted on samples treated with acid for 24 h at room temperature.  The potential 

influence of acid-treatment time was investigated with 0.2-L aliquots of North Atlantic 

water amended with 500 fmoles of MMHg, treated with 2 mL of 18 M H2SO4 (i.e., 1% 

vol:vol), and stored acidified for 1, 6, 12, 24, 48, 72, and 168 h (n = 3 for each period).  

MMHg recovery was quantitative among all periods except the 1-h treatment (mean ± 1 

SD recovery of MMHg); 1 h = 29 ± 2%, 6 h = 112 ± 20%, 12 h = 86 ± 12%, 24 h = 100 ± 

10%, 48 h = 88 ± 14%; 72 h = 93 ± 10%, and 168 h = 95 ± 6%.  These results indicate 

that acidification to 1% with 18 M H2SO4 for  6 h increases sufficiently the lability of 

MMHg in seawater for quantitative analysis, and also suggests that samples may be 

acidified for at least one week prior to analysis without any substantial loss or gain of 

MMHg. 

2.3.3 Duration of derivatization period 

Method development for direct ethylation analysis of MMHg in arctic lake waters 

indicated that a 10 min derivatization period prior to purging gave quantitative results 

(Hammerschmidt and Fitzgerald, 2010).  Accordingly, tests of acid type, concentration, 

and treatment period (described above) were conducted with a 10-min NaTEB reaction 

period prior to purging solutions with N2.  The duration of NaTEB derivatization period 
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required for ethylation of MMHg in seawater was examined with 0.2-L aliquots of 

MMHg-amended water from the North Atlantic.  Samples were acidified to 1% with 18 

M H2SO4 for 24 h, neutralized with KOH, buffered, and allowed to react with added 

NaTEB for 0, 5, 10, and 20 min prior to N2 purging (0.15 L min
–1

 for 20 min).  Recovery 

of MMHg from solution (mean ± 1 SD; n = 3 for each period) was complete among all 

tested reaction periods, averaging 90 ± 11% for 0 min, 88 ± 8% for 5 min, 100 ± 2% for 

10 min, and 85 ± 14% for 20 min.  Quantitative recovery from the 0-min reaction period 

suggests that NaTEB effectively ethylates MMHg during the 20-min purging step and 

that a pre-purge reaction period is not needed. 

2.3.4 N2 purge volume 

The volume of N2 required to purge MeEtHg quantitatively from solution was 

investigated with multiple 2-L samples of filtered water from the mixed layer of the 

North Pacific (no detectable DMHg).  Seawater was amended with 500 fmoles of 

MMHg, allowed to equilibrate for 24 h, acidified with 18 M H2SO4 to 1% for 12 h, and 

analyzed as described above.  The only difference was that samples were purged with N2 

at 0.8 and 1.2 L min
–1

, at room temperature, for periods ranging between 10 and 60 min.  

Differences in N2 purge rates and times permitted analysis of MeEtHg recovery versus 

gas volume purged through the water between two different rates (Figure 2).  Regression 

analysis of the results indicated that >95% recovery of MMHg was achieved by purging 

2-L samples with 30 L of N2, which is 15× the water volume, at either rate.  Moreover, 

and following the methods of Andersson and colleagues (2008), results from the gas 

recovery curve can be used to estimate a dimensionless Henry’s law constant (H) of 

about 0.2 for MeEtHg, under the conditions of this test.  This value compares favorably 



31 
 

to that of DMHg (H = 0.31 at 25 °C; Lindqvist and Rodhe, 1985).  We also have found 

that compressed air, generated from a compressor pump and cleaned of Hg species by 

passage through Au-coated beads, is equally as effective as N2 for purging MeEtHg from 

solution.  This is an important consideration for extended oceanographic cruises where 

the ship’s storage capacity for compressed gas cylinders may be limited.    

2.3.5 MMHg determination in freshwater 

The utility of pre-treatment with 1% H2SO4 and direct ethylation also was 

investigated for fresh waters.  Surface water was collected from two sources in southwest 

Ohio that have relatively high pH, dissolved organic carbon, and MMHg; Crystal Lake 

(Clark County; pH = 7.65, DOC = 2100 µM, ambient MMHg = 1550 fM) and the Little 

Miami River (Greene County; pH = 8.50, DOC = 500 µM, MMHg = 70 fM).  As in tests 

with seawater, added CH3HgCl (500 fmoles) was allowed to equilibrate with ambient 

ligands in 0.2-L aliquots of filtered water (0.2 µm) for 24 h prior to treatment with 1% 

H2SO4 for 24 h and subsequent analysis.  We also examined the recovery of added 

MMHg from unfiltered Little Miami River water (total suspended solids = 6 mg L
–1

) 

acidified to 1% with H2SO4.  Recovery of added MMHg from filtered water was 

quantitative for both sources: 91 ± 7% for Little Miami River (n = 9) and 98 ± 12% for 

Crystal Lake (n = 3).  Recovery of added MMHg from unfiltered river water averaged 

101 ± 22% (n = 6).  Hence, this extraction technique appears to be applicable to filtered 

and unfiltered fresh waters, in addition to seawater.   

2.3.6 Sulfide 

Water used in all of our experiments had between 50 and 300 µM oxygen and 

presumably very little sulfide.  MMHg has a high affinity for sulfide, about 10
9
 greater 
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than that for Cl
−
 (Dyrssen and Wedborg, 1991).  Because stratified estuaries, some 

marginal seas, and portions of the ocean have considerable levels of sulfide, we 

investigated whether sample treatment with H2SO4 could result in quantitative recovery 

of MMHg from sulfidic water.  For this experiment, aliquots of North Atlantic surface 

water were deoxygenated by purging with N2, amended with S
2–

 to 20 µM and MMHg to 

1250 fM, and allowed to equilibrate in closed bottles for 24 h prior to treatment with 1% 

H2SO4 for 24 h and subsequent analysis.  Importantly, no MMHg was recovered from 

water amended with sulfide (n = 5).  We found, however, that purging of acidified (1% 

H2SO4), sulfidic seawater with air (about 15× water volume) prior to KOH addition 

allowed for quantitative recovery of MMHg (91 ± 8%, n = 3).  This step presumably 

removed sulfide by either purging H2S from solution or by reaction with oxygen.  Thus, 

removal of sulfide by purging with air appears to be a technique that can be applied to 

samples suspected of having increased levels of the ligand. 

2.3.7 Tenax 

Tenax resin was used to trap gaseous methylmercury species in this study.  Tenax, 

in contrast to Carbotrap resin, was selected because we observed it to sequester less water 

vapor, which can cause auto-fluorescence during CVAFS analysis.  We also found Tenax 

to suitably remove MeEtHg from gas streams.  The trapping efficiency of Tenax was 

investigated by loading either 100 or 2500 fmoles of MeEtHg, from water at the same gas 

purging rates used above, onto Tenax analytical traps that were immediately upstream of 

a breakthrough trap (also Tenax).  For comparison, the same test was performed with 

Carbotrap in the primary position and Tenax breakthrough traps.  In the 100-fmole test, 

no MeEtHg was detected on breakthrough traps downstream of either the Tenax or 
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Carbotrap analytical traps (n = 3 each).  This quantity of MeEtHg in a 2-L water sample 

equates to 50 fM and is within the range of levels observed in the North Pacific (below).  

At the extreme, loadings of 2500 fmoles of MeEtHg also did not break through Carbotrap 

whereas 6.2 ± 2.4% passed the Tenax analytical trap and was sequestered on the 

breakthrough trap (n = 3 each).  Although this degree of trap loading is uncommon for 

natural seawater, a 6% negative bias is within typical ranges of analytical uncertainty at 

such low concentrations.   

2.3.8 Shipboard analyses of MMHg in North Pacific water 

The above described analytical technique was applied to measurement of MMHg 

and DMHg in seawater during the 2009 U.S. GEOTRACES Intercalibration cruise (Table 

1).  After purging of DMHg, MMHg was determined in duplicate 2-L aliquots of filtered 

water from the upper 800 m of the water column, where concentrations ranged from 17 to 

33 fM.  Precision of duplicate analyses averaged 15% relative difference (range = 5–

24%, n = 6).  Recovery of known MMHg additions (100 fmoles) from sample matrixes 

averaged 90% (range = 83–92%, n = 8).  The detection limit for MMHg was about 2 fM, 

estimated as 3× the standard deviation of reagent blank concentrations. 

2.3.9 Shipboard analyses of DMHg in North Pacific water 

A useful advantage of the described direct ethylation technique is that it allows 

determination of DMHg in the same water sample, particularly when purging off-line in 

2-L bottles (Table 1).  That is, and prior to acidification for MMHg analysis, 2-L samples 

(unamended with chemical regent) can be purged with N2 and evolved DMHg trapped on 

a resin for analysis.  After stripping DMHg, the same sample is acidified to 1% with 18 

M H2SO4 and analyzed for MMHg as described above.  DMHg is a dissolved gas and 
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measured typically in unfiltered water decanted from rosette to sample bottles with a 

laminar flow through tubing.  However, seawater collected as part of the U.S. 

GEOTRACES program is typically passed through an in-line capsule filter while 

decanting into sample bottles. 

To test whether filtration affects levels of dissolved gaseous DMHg, we compared 

measured concentrations between 2-L aliquots of unfiltered water and that filtered 

through a pre-rinsed capsule (0.2 µm; Pall AcroPak-200, polyethersulfone membrane) 

and silicone tubing as it was decanted from the rosette bottle.  Unfiltered water was 

collected similarly but without filtration.  Water was sampled from three different depths 

(300−800 m) in the North Pacific Ocean.  DMHg in filtered:unfiltered water was 10:11 

fM (300 m depth), 9:11 fM (300 m duplicate), 19:14 fM (600 m), and 14:11 fM (800 m).  

DMHg in unfiltered and filtered water at 300 m depth compared well between duplicate 

samples and, among all four samples, DMHg levels in filtered water did not differ 

significantly from unfiltered aliquots (paired t-test, p = 0.43).  While the number of 

samples tested is few, these results suggest that DMHg is not lost when samples are 

filtered carefully. 

Prior research has indicated that DMHg can diffuse out of sample water through 

Teflon bottles, with about 10% loss within 24 h of collection (Parker and Bloom, 2005), 

although it is stable in glass bottles for at least 10 h (Black et al., 2009).  DMHg losses 

could occur between sampling and analysis, particularly when the Teflon bottle (i.e., 

GLS) is pressurized with N2 during purging.  All water samples from the North Pacific 

were purged of DMHg within about 1–2 h of sampling.  To evaluate whether substantial 

losses might occur during such a period prior to purging, 2-L aliquots of seawater were 
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amended with 500 fmoles of MeEtHg and measured for MeEtHg content after 1–2 h 

storage, in the dark at room temperature.  MeEtHg was added in lieu of DMHg because 

1) of laboratory safety concerns associated with concentrated solutions of DMHg and 2) 

both gases have similarly low solubility in water, as noted above.  Recovery of MeEtHg 

from seawater after 1–2 h of storage in FEP Teflon was 97 ± 14% (n = 4).  We also 

examined whether MeEtHg is lost during purging by comparing 2-L bottles made of 

either FEP or borosilicate glass (no storage period).  Recovery of 250 fmoles of MeEtHg 

from FEP Teflon bottles (101 ± 7%, n = 5) was comparable to that from glass bottles 

(101 ± 22%, n = 6).  This finding is consistent with the good recovery of known MMHg 

additions purged from 2-L North Pacific waters in FEP bottles (mean = 90 ± 2%, n = 8), 

which suggests substantial quantities of volatile methylmercury species do not escape the 

bottle during purging.  Hence, while gas-impermeable glass may be a superior bottle 

material for DMHg sampling and analysis (Parker and Bloom, 2005), FEP appears to be a 

suitable alternative if DMHg is purged promptly after sample collection. 

It also has been suggested that Tenax is inferior to Carbotrap for trapping DMHg 

(Bloom et al., 2005).  While we did not test breakthrough of DMHg, we infer that Tenax 

sequesters DMHg as efficiently as it does MeEtHg, based on their similar 

physicochemistry.  This is supported by the relatively good agreement among replicate 

samples of filtered seawater from depth in the North Pacific.  Precision of DMHg 

determinations averaged 15% RSD (range = 4–25% RSD) among 14 sets of samples that 

contained between 6–19 fM DMHg.  Such good agreement would not be expected if 

random losses of analyte occurred as a result of either breakthrough, filtration, or 

diffusion through bottle material. The detection limit for DMHg is about 2 fM, estimated 
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as 3× the standard deviation of three replicate measurements of low-DMHg water (2 fM) 

from 125 m depth in the North Pacific. 

2.4. Discussion  

Purging of DMHg prior to seawater acidification and MMHg analysis permits 

separate quantification of both mercury species.  This is in contrast to methodologies 

used in many prior investigations, including our own (e.g., Hammerschmidt and 

Fitzgerald, 2006), where filtered or unfiltered water is often acidified for storage or 

during analysis, and determined concentrations of “methylmercury” are either assumed 

wrongly to be representative of MMHg only or recognized to include both MMHg and 

DMHg.  It is long known that acidification causes demethylation of DMHg to MMHg 

(Wood et al., 1968).  Either interpretation is problematic because if DMHg were a 

substantial fraction of the methylated Hg, then the measured concentration of 

“methylmercury” is biased and little progress is made toward better understanding the 

biogeochemistry of MMHg, a bioaccumulative solute, versus DMHg, a non-

bioaccumulative gas.  Differentiation between MMHg and DMHg is particularly 

important for sub-surface marine waters, in which levels of DMHg may be comparable 

to, or greater than, MMHg (Fitzgerald et al., 2007).  Hence, this methodology presents a 

useful tool for quantifying, differentiating, and developing an improved understanding of 

the different, but likely interrelated, concentrations and biogeochemistries of MMHg and 

DMHg in the ocean.    

 The biogeochemistry of toxic and bioaccumulative MMHg in seawater is vastly 

understudied given its toxicological significance to both humans and wildlife.  While 

there is a large and growing knowledge of MMHg in freshwater systems, very little is 
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known about the sources and cycling of methylmercury species in the ocean.  This is due, 

in part, to the concentration of MMHg in open-ocean seawater often being less than 

contemporary limits of detection.  Here, we have developed and outlined the basis of a 

method, which we are certain to see improved, that readily allows quantification of 

MMHg in seawater at levels of 2 fM or greater, a 10-fold improvement on current limits 

of detection.  Moreover, and critically, this technique allows the separation and 

determination of DMHg from the same aliquot of seawater and thereby neither biases 

determined levels of MMHg nor confounds interpretation of MMHg and DMHg cycling. 
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Table 2.1. Methodological sequence for quantitatively extracting DMHg and MMHg (as 

methylethylmercury, MeEtHg) from a 2-L sample of water. 

Analytical step Sample water manipulation 

DMHg purge Purge with N2 for 40 min at 0.8 L min
–1

, trap DMHg on 

Tenax downstream of soda lime column  

DMHg determination No manipulation; analyze trapped DMHg by CVAFS 

Acidification Add 20 mL of 18 M H2SO4, shake, and store in the dark at 

 4–25 °C for  6 h  

pH adjustment Add 60 mL of 12 M KOH and 30 mL of 4 M acetate buffer 

MMHg derivatization Add 2 mL of 1% (wt:vol) NaTEB 

MMHg purge Purge with N2 (or Hg-free air) for 40 min at 0.8 L min
–1

, trap 

MeEtHg on Tenax downstream of soda lime column 

MMHg determination No manipulation; analyze trapped MeEtHg by CVAFS 
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Figure 2.1. Recovery of added MMHg (500 fmoles) from 0.2-L samples of North 

Atlantic surface water and 2-L aliquots of North Pacific surface water acidified to 0−1% 

with 18 M H2SO4 for 24 h prior to analysis.  N2 purging was at 0.15 L min
−1

 (× 25 min) 

for 0.2-L aliquots and 0.8 L min
−1

 (× 60 min) for 2-L samples.  Error bars are the 

difference among duplicate samples (North Atlantic only).  Dashed line is 100% 

recovery. 
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Figure 2.2. Recovery of MMHg (as methylethylmercury) from 2-L samples of filtered 

seawater purged with various volumes of N2.  Tests were conducted with multiple 

samples at N2 purge rates of 0.8 and 1.2 L min
−1

.  Dashed line is 100% recovery. 
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Abstract 

  

Mercury (Hg) in the ocean undergoes many chemical transformations, including 

in situ production of monomethylmercury (MMHg), the form that biomagnifies in marine 

food webs. Because the ocean is a primary and dynamic reservoir of Hg cycling at earth’s 

surface and the principal source of human MMHg exposures through seafood, it is 

important to understand the distribution of Hg and its chemical species in marine 

environments. We examined total Hg, elemental Hg (Hg
0
), MMHg, and dimethylmercury 

(DMHg) with fully resolved high-resolution profiles during the U.S. GEOTRACES zonal 

and meridional sections of the North Atlantic Ocean (GEOTRACES GA03). Total Hg in 

filtered water had both scavenged- and nutrient-type vertical distributions, whereas 

concentrations of DMHg, Hg
0
, and filtered MMHg were increased in the oxygen 

deficient zone of the permanent thermocline across the basin, relative to water above and 

often below. Total Hg and MMHg on suspended particles accounted for less than 10% of 

total concentrations. The TAG hydrothermal vent on the Mid-Atlantic Ridge (MAR) was 

a source of total Hg and MMHg to nearby waters with apparent scavenging and Hg 

transformation occurring in the buoyant plume. Uniquely, we observed significant 

horizontal segregation of filtered total Hg and MMHg, DMHg, and Hg
0
 in North Atlantic 

Deep Water (NADW) between younger water on the western and older water on the 

eastern side of the MAR. Relative to eastern NADW, Hg concentrations in western 

NADW were greater, on average, by 1.14× for filtered total Hg, 1.6× for Hg
0
, 2.5× for 

filtered MMHg, and 2.6× for DMHg. Total Hg enrichment in deep water of the western 

basin may have resulted from downwelling of anthropogenic Hg during NADW 

formation. Enrichment of MMHg, DMHg, and Hg
0
 in western basin NADW may be 



50 
 

explained by either greater Hg substrate availability or greater methylation and reduction 

potentials in younger deep waters.  

3.1. Introduction 

 Mercury (Hg) is a ubiquitous environmental contaminant that originates from 

natural and anthropogenic sources (Fitzgerald et al., 2007). Direct atmospheric deposition 

is the primary source of Hg to the ocean whereas riverine discharge, mobilization from 

sediments, groundwater, and submarine hydrothermal inputs contribute lesser amounts 

(Mason et al., 2012). The majority of atmospheric Hg emissions are anthropogenic 

(Fitzgerald et al., 1998; Amos et al., 2013) and emissions are hypothesized to increase 

during the next century (Hammerschmidt, 2011; Kocman et al., 2013; Pirrone et al., 

2010; Streets et al., 2009). Because the ocean is a primary and dynamic reservoir of Hg 

cycling at earth’s surface and the principal source of human Hg exposures through 

seafood (Mason et al., 2012), it is important to understand the distribution of Hg and its 

chemical species in marine environments. 

 Mercury exists as four primary chemical species in seawater: mercuric ion 

(Hg(II)) and monomethylmercury (MMHg, CH3Hg
+
) in complexes with inorganic and 

organic ligands as well as elemental Hg (Hg
0
) and dimethylmercury (DMHg, (CH3)2Hg), 

which are dissolved gases.  Each of these species are hypothesized to be linked through the 

Hg(II) pool (Fitzgerald et al., 2007).  For example, Hg(II) may be either reduced to Hg0 or 

transformed to MMHg and DMHg by biological and abiotic mechanisms (Monperrus et al., 

2007; Whalin et al., 2007; Lehnherr et al., 2011).  Hg(II) reduction occurs to such an extent 

that Hg0 in estuarine and marine surface waters are usually supersaturated with respect to the 

atmosphere, leading to evasion (Andersson et al., 2011).  Moreover, in situ methylation of 

Hg(II) is an important source of MMHg and DMHg in many marine ecosystems (Balcom et 
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al., 2004; Hammerschmidt and Fitzgerald, 2006a; Sunderland et al., 2009; Hollweg et al., 

2010; Cossa et al., 2011). MMHg is the bioaccumulative species of Hg that is present 

throughout the marine water column (Hammerschmidt and Bowman, 2012; Heimbürger 

et al., 2010; Mason et al., 2012). Harmful to humans and piscivorous wildlife, MMHg 

can interfere with neurological, cardiovascular, and endocrine systems (Bose-O’Reilly et 

al., 2010; Scheuhammer et al., 2007; Zahir et al., 2005). In the United States and Europe, 

consumption of marine fish is the primary route of human exposure to MMHg 

(Sunderland, 2007; Višnjevec et al., 2014).  

 We investigated the speciation and distribution of Hg in the North Atlantic Ocean 

during the U.S. GEOTRACES zonal and meridional sections in Fall 2010 and Fall 2011 

(GEOTRACES GA03; Figure 1). These cruise tracks included multiple oceanographic 

features that may influence the biogeochemical cycling of Hg species: 1) a broad 

continental shelf on the western margin, 2) oligotrophic surface waters in the Sargasso 

Sea, 3) the Mid-Atlantic Ridge with active hydrothermal venting, 4) relatively productive 

surface waters along the eastern margin as a result of upwelling and Saharan dust inputs, 

5) multiple deep and intermediate water masses (Figure 2), and 6) age differences of 

North Atlantic Deep Water (NADW) between the western and eastern sides of the Mid-

Atlantic Ridge. We measured high-resolution vertical profiles of Hg
0
, DMHg, MMHg, 

and total Hg in filtered water at 32 stations across the North Atlantic as well as particulate 

total Hg and MMHg at 22 stations to assemble the most comprehensive and resolved 

distribution of Hg species in any ocean basin. Here, we provide the first descriptive 

presentation of our speciation results.  
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3.2. Materials and Methods 

3.2.1 Sample collection 

Seawater was sampled with 12-L Teflon-coated Go-Flo bottles attached to a 

dedicated trace-metal clean rosette that was deployed with a plastic-coated hydrowire 

(Cutter and Bruland, 2012). Twenty full-depth stations (24‒36 depths) and 12 “demi” 

stations (12 depths each in upper 1000 m) were sampled and analyzed for Hg species in 

filtered water. Go-Flo bottles were promptly transferred to a clean laboratory van where 

seawater was filtered without agitation through pre-rinsed capsules (0.2 μm Pall 

AcroPak-200) into 2-L Teflon bottles for determination of DMHg, Hg
0
, and MMHg. An 

additional 0.2-L aliquot of filtered seawater was collected into 0.25-L borosilicate glass 

bottles for measurement of total Hg. Each sample bottle, which was cleaned rigorously 

with vetted methods (Hammerschmidt et al., 2011), was rinsed 3× with sample water 

(about 10% bottle volume) before filling. 

Suspended particles (1–51 μm) were sampled from 16 depths at 22 stations onto 

quartz fiber filters (Whatman QMA) with McLane in situ pumps (Bishop et al., 2012). 

Filters were subsampled in a clean laboratory into 25-mm diameter punches and stored 

frozen until Hg analysis at Wright State University. The volume of seawater passed 

through each 25-mm filter subsample ranged from about 25 to 100 L. 

3.2.2. Mercury analysis 

Hg species in filtered seawater were extracted and quantified on board the 

research vessel inside a clean laboratory van, which was separate from other 

GEOTRACES laboratories to prevent potential sample contamination from Hg
0
 release to 

the air from mercury electrodes used by other researchers. Within 2 h of water sampling 
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and filtration, gaseous Hg
0 

and DMHg were extracted from 2-L samples by purging with 

Hg-free N2 (30 L total at 0.8 L min
-1

; Bowman and Hammerschmidt, 2011). The sample 

bottles were fitted with multi-port caps (Omnifit Q-series; Danbury, CT) that allowed 

influent N2 to flow through fritted glass impingers while effluent gas exited through a 

series of three collection traps connected by Teflon fittings. The first trap contained 

reagent-grade soda lime to help remove water vapor/aerosols generated from purging, the 

second contained Tenax TA to concentrate DMHg, and the third contained Au-coated 

glass beads to collect Hg
0
 (Lamborg et al., 2012). This extraction and trapping approach 

allows for DMHg and Hg
0
 to be determined independently as opposed to trapping both 

species on Au as generic dissolved gaseous mercury (DGM). It also allows for species-

specific differentiation of DMHg and MMHg, which are more commonly determined as 

total methylated mercury (ΣCH3Hg) after sample acidification (Mason et al., 2012). 

DMHg was quantified after thermal desorption from Tenax by gas chromatographic cold 

vapor atomic fluorescence spectrometry (GC-CVAFS, Bloom, 1989; Bowman and 

Hammerschmidt, 2011) and Hg
0
 by dual Au-amalgamation CVAFS (Bloom and 

Fitzgerald, 1988). Each Au-trap for analysis of Hg
0
 was calibrated at every other station 

after direct loading with a known quantity of Hg
0
 vapor. Procedural precision of Hg

0
 

determinations averaged 10 ± 6 relative percent difference (RPD; n = 5 pairs) between 

duplicate samples. Tenax traps for DMHg analysis were calibrated frequently between 

stations with known additions of methylethylmercury, a volatile derivative of MMHg. 

Procedural precision of DMHg analyses averaged 16 ± 18 RPD between 16 pairs of 

samples.  The number of duplicate samples for DMHg, Hg
0
, and MMHg analysis was 

low relative to the total number of samples because water budgets for the Go-Flo bottles 
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were extremely limited, particularly for an extra 2-L of water. Method detection limits 

were 0.01 pM for Hg
0
 and 0.002 pM for DMHg.   

After quantitatively stripping Hg
0 

and DMHg from solution, water samples were 

transferred to 2-L polycarbonate bottles and acidified to 1% with trace-metal grade 

H2SO4  for MMHg determination (Bowman and Hammerschmidt, 2011). After 12‒24 h, 

sample acidity was neutralized with 12 M KOH, pH adjusted to 5 with 4 M acetate 

buffer, and ethylated with sodium tetraethylborate (NaTEB). Low-Hg acetate buffer was 

prepared from acetic acid and KOH, as opposed to acetic acid and sodium acetate 

because the sodium salt can contain significant amounts of total Hg and MMHg. Sample 

bottles were fitted with multi-port caps and purged with air (30 L total at 0.8 L min
-1

) that 

was cleaned of Hg by passing over Au and Carbotrap. Effluent gas from the bottles 

passed through soda lime before methylethylmercury was concentrated on Tenax. MMHg 

was quantified by GC-CVAFS (Bloom, 1989; Bowman and Hammerschmidt, 2011). 

Recovery of known additions of MMHg from seawater averaged 105 ± 6% (n = 3) and 

procedural precision averaged 13 ± 13 RPD between 14 pairs of duplicate samples. 

Individual Tenax traps were calibrated frequently between stations with aliquots of an 

aqueous MMHgCl standard; the standard was calibrated versus digested TORT-2 

reference material (lobster hepatopancreas, National Research Council of Canada) every 

two weeks.  

Total Hg in filtered seawater was measured within 48 h of sampling from 0.2-L 

aliquots separate from those used for Hg
0
 and organo-Hg species. Water was oxidized 

with BrCl solution (0.1% by volume) for >12 h and pre-reduced with NH2OH 

immediately prior to analysis. Oxidized Hg species were reduced to Hg
0
 with SnCl2, 
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purged from solution with custom-made UConn Bubblers (Lamborg et al., 2012), and 

quantified by dual Au-amalgamation CVAFS (Bloom and Fitzgerald, 1988; Fitzgerald 

and Gill, 1979), after calibration with aqueous Hg(II) standards that were traceable to the 

U.S. National Institute of Standards and Technology (NIST).  The method detection limit 

for total Hg in filtered seawater was 0.02 pM. Recovery of known additions of aqueous 

Hg(II) averaged 99 ± 5% (n = 12) and near-weekly measurements of total Hg in BCR-

579 (Total Mercury in Coastal Seawater, European Commission) averaged 10.3 ± 0.6 

pmol/kg (n = 5), which was within the certified range of 9.5 ± 2.5 pmol/kg. Procedural 

precision of total Hg measurements in filtered seawater averaged 5 ± 5 RPD between 18 

pairs of samples. 

Filter punches containing suspended particulate matter were stored frozen (≤ 

−20°C) until analysis at Wright State University within two to three months of sampling. 

Mercury was leached from filters with high-purity 2 N HNO3 for 4 h in a 60 
o
C water 

bath (Hammerschmidt and Fitzgerald, 2006b). Aliquots of digestate were analyzed for 

MMHg by flow-injection GC-CVAFS (Tseng et al., 2004) after calibration with 

procedural MMHg standards digested similarly in 2 N HNO3. MMHg standards for 

analysis of particulate MMHg were calibrated against aqueous Hg(II) solutions traceable 

to the U.S. NIST. Particulate total Hg was determined from the same digestates used for 

MMHg analysis. Aliquots of digestates were oxidized with BrCl, pre-reduced with 

NH2OH, reduced with SnCl2, and analyzed by dual Au-amalgamation CVAFS 

(Hammerschmidt and Fitzgerald, 2006b). The method detection limit for particulate 

MMHg was 0.002 pM and that for total Hg was 0.03 pM. Due to low analyte 

concentrations and limited sample volumes, analytical precision of particulate Hg 
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determinations was assessed only during analysis of total Hg: precision of analytical 

replicates averaged 3 ± 3 RPD (n = 18).  

Trace-metal clean procedures were followed throughout sample collection and 

processing. Collection and filtration methods, sample bottle materials and cleaning 

techniques, and analytical methods were evaluated rigorously during the U.S. 

GEOTRACES Intercalibration cruises in the Atlantic and Pacific Oceans, prior to the 

North Atlantic sections (Bowman and Hammerschmidt, 2011; Hammerschmidt et al., 

2011; Bishop et al., 2012; Lamborg et al., 2012; Cutter and Bruland, 2012). 

3.3. Results and Discussion 

3.3.1 Physical oceanography of the basin 

The zonal and meridional sections traversed multiple water masses in North 

Atlantic Ocean (Figure 2). The largest water mass in the North Atlantic is NADW, which 

occupies the water column from about 1500 to 4000 m depth. The dominant flow of 

newly formed NADW is from the Labrador and Norwegian Seas into the western basin of 

the North Atlantic. Not until the Romanche Fracture Zone, south of the equator, does 

some NADW return northward and ventilate the abyss on the eastern side of the Mid-

Atlantic Ridge. This path of deep water flow results in NADW of the western basin (~90 

y old near Bermuda) having a radiocarbon age about 150 y younger than the eastern basin 

(~240 y old; Broecker et al., 1991). These age differences of NADW between the eastern 

and western basin are related to the speciation and concentration of Hg in NADW, as 

discussed below and elsewhere (Lamborg et al., accepted).  
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3.3.2 Total Hg 

Among all stations and depths in the North Atlantic, total Hg in filtered water 

ranged from 0.09 to 1.9 pM (Table 1), excluding waters sampled from the TAG 

hydrothermal plume on the Mid-Atlantic Ridge (Station 16), which is discussed in 

section 3.6. The mean concentration of filtered total Hg in our study (0.89 ± 0.30 pM) is 

less than half of that determined from other locations in the North (Mason et al., 1998) 

and Equatorial and South Atlantic (Mason and Sullivan, 1999) about two decades earlier. 

Lower concentrations in the current study may be attributed to decreased atmospheric 

inputs of Hg to the North Atlantic during the past 20 years (Ebinghaus et al., 2011). 

Alternatively, the difference may reflect on-going improvements in clean techniques for 

sampling and analysis of Hg in seawater, particularly as a result of testing and 

development during the U.S. GEOTRACES Intercalibration (Hammerschmidt et al., 

2011; Lamborg et al., 2012).   

Total Hg in filtered water had both scavenged- and nutrient-type vertical 

distributions in the North Atlantic (Figure 3a). The concentration of filtered total Hg in 

the upper 100 m of the water column averaged 0.65 ± 0.32 pM (n = 103) among all 

stations during both meridional and zonal sections and were much less than levels in 

deeper water. Relative to surface water, concentrations of filtered total Hg were increased 

in the oxygen deficient zone (ODZ), extending from east to west across the North 

Atlantic (Figure 3a), consistent with release of Hg from sinking particles during 

remineralization. Strong scavenging of total Hg from surface waters was evident in the 

eastern Atlantic, where dust deposition and upwelling promote biological productivity 

and either bioaccumulation or scavenging of Hg from solution.   
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Horizontal segregation of filtered total Hg was evident in NADW, excluding the 

hydrothermal plume on the Mid-Atlantic Ridge that had concentrations of filtered total 

Hg up to 13 pM. We have hypothesized that Hg slowly accumulates in deep waters of the 

ocean as a result of soft-tissue remineralization at depth, resulting in older deep waters 

(e.g., North Pacific) having greater concentrations than younger deep water (e.g., North 

Atlantic; Hammerschmidt and Bowman, 2012; Lamborg et al., accepted).  In contrast, 

younger NADW in the western North Atlantic (Stations 1–15, zonal transect) has a mean 

concentration of filtered total Hg (1.04 ± 0.17 pM, n = 65) that is about 15% greater than 

that in approximately 150-y older NADW in the eastern basin (mean = 0.91 ± 0.23 pM, n 

= 68; Mann-Whitney rank sum, p < 0.001), disregarding the TAG hydrothermal station 

on the Mid-Atlantic Ridge (Station 16). Greater concentrations of filtered total Hg in 

younger NADW of the western basin compared to the eastern North Atlantic may be 

attributed to younger NADW having downwelled anthropogenic Hg during deep water 

formation (Lamborg et al., accepted). Such a source would be in addition to the natural 

and anthropogenic Hg that is added to deep waters on both sides of the Mid-Atlantic 

Ridge as a result of particle scavenging and remineralization. In water deeper than 4000 

m, which is a combination of NADW and Antarctic Bottom Water (AABW; Jenkins et 

al., in review), concentrations of filtered total Hg (1.3 ± 0.1 pM) were greater than those 

in NADW and comparable to concentrations in AABW in the Southern Ocean (1.4 ± 0.4 

pM; Cossa et al., 2011). The similarity of concentrations between the deepest waters of 

the North Atlantic and those in young AABW suggests that Hg is not effectively 

scavenged from deep waters on time scales <300 years. Ineffective scavenging may result 

from either an attenuated particle flux at depth (Antia et al., 2001) or Hg existing 
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predominantly as either complexes (e.g., Hg-organic ligands; Fitzgerald et al., 2007) or 

redox species (Hg
0
, described below) that are less relative to particles. With the exception 

of zonal Stations 2, 3, and 6 on the northwest continental margin, filtered total Hg was 

not more concentrated in water overlying the sediment interface, suggesting that diffusion 

and advection of dissolved and colloidal Hg from deep-sea sediments is not an important 

source to the ocean.  

Total Hg in suspended particles accounted for less than 10% of Hg in the water 

column of the North Atlantic, with much greater concentrations in surface waters than at 

depth (Figure 3b). The vertical distribution of particulate total Hg is consistent with that 

of particulate organic matter in the North Atlantic (Antia et al., 2001). The mean 

concentration of particulate total Hg along the U.S. GEOTRACES sections (Table 1; 

0.038 ± 0.039 pM) is similar to that determined by Mason and colleagues (1998) in 

surface waters of the North Atlantic between 50 and 70 °N (0.035 ± 0.02 pM). Similar 

concentrations of particulate total Hg between this study and that of Mason and co-

workers (1998) further suggest that concentrations of filtered total Hg determined in the 

previous study may be artificially high, unless there has been a significant change in 

particle-water partitioning of Hg in the North Atlantic during the past 20 years. Elevated 

concentrations of total Hg on suspended particles (but not in filtered water) were 

observed in benthic nephloid layers at meridional Station 9 in the eastern Atlantic and 

zonal Stations 4, 8, and 10 in the western Atlantic (Figure 3b). Particles enriched with 

metal-oxides apparently scavenge Hg in the TAG hydrothermal plume, which is 

discussed in section 3.6.  
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3.3.3 Elemental Hg  

Elemental Hg has a complex vertical and horizontal distribution across the North 

Atlantic (Figure 4). Elemental Hg is the product of both photochemical and biological 

mechanisms that reduce Hg(II) substrates (Costa and Liss, 1999; Rolfhus and Fitzgerald, 

2004; Poulain et al., 2007) as well as biological and photochemical demethylation of 

methylated Hg (Mason and Fitzgerald, 1993; Lehnherr et al., 2011), with both biological 

reduction and demethylation potentially mediated by the mer-operon (Barkay et al., 

2003). Concentrations of Hg
0
 varied nearly 100-fold within the North Atlantic (Table 1), 

with levels in thermocline and deep waters typically exceeding those in the upper 100 m 

of the water column (mean = 0.15 ± 0.12 pM, n = 109).  Levels of Hg
0
 in the mixed layer 

of the North Atlantic at our sampling locations between 17 and 40 °N are much less than 

those measured between 50 and 70 °N (0.65 ± 0.39 pM; Mason et al., 1998). Elemental 

Hg at the sea surface, sampled underway at 2 m depth with a towed fish, averaged 0.05 ± 

0.03 pM (n = 24).   

Vertical profiles of Hg
0
 had a distinct nutrient-type distribution that closely 

followed that of total filtered Hg and nitrate in the western North Atlantic (zonal Stations 

1-12 and 14), as shown for Station 12 (Figure 5a). This was unexpected as nutrient-type 

profiles of Hg
0
 had not previously been documented, also photochemical and microbial 

reduction of Hg(II) in surface waters can lead to super-saturation of Hg
0
 with respect to 

the atmosphere (Andersson et al., 2011), suggesting maximum rather than minimum 

concentrations could be found at the surface. In the western basin, Hg
0
 concentrations 

increased with depth from the surface, were greatest in the ODZ, and relatively 

homogenous at greater depths. In contrast, at stations in the eastern North Atlantic (zonal 
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Stations 16-24, and meridional Stations 11-12), Hg
0
 was maximum in the ODZ with 

much lower concentrations in sub-thermocline waters (Figure 5b). Both Hg
0
 

concentrations and the fraction of filtered total Hg as Hg
0
 in NADW differed 

significantly between the western and eastern North Atlantic (Mann-Whitney rank sum, 

p-values < 0.001). The mean concentration of Hg
0
 in western NADW (0.42 ± 0.09 pM, n 

= 66) was nearly twice that of eastern NADW (0.26 ± 0.10 pM, n = 72). Likewise, the 

fraction of filtered total Hg as Hg
0
 in NADW also was greater in the western (42 ± 8%, n 

= 63) than eastern basin (30 ± 15% n = 59).  

One potential explanation for the horizontal segregation of Hg
0
 in NADW is that 

Hg
0
 is downwelled during NADW formation in the Labrador and Norwegian Seas and 

slowly oxidized as the water ages. A study of Hg in the sub-polar North Atlantic near 

locations of NADW formation found that Hg
0 

was produced in the mixed layer and 

conserved as the water mass was formed and sank to depth (Mason et al., 1998). 

Concentrations of Hg
0
 in NADW in the western North Atlantic (0.42 ± 0.09 pM) are not 

different from those in surface waters of the Norwegian Sea (0.35 ± 0.18 pM; Mason et 

al., 1998) and support this hypothesis. However, a more recent study found 

concentrations of DGM (> 90% as Hg
0
 in surface water; Mason et al., 1998) were 0.1 pM 

or less in surface waters of the Labrador Sea (Andersson et al., 2008), which is a source 

region for NADW formation and contradicts this hypothesis. Measurements of Hg
0
 in 

NADW along a meridional section of the western North Atlantic, ideally between the 

equator and Labrador and Norwegian Seas, would help validate whether Hg
0
 is conserved 

during the first century of deep water flow.  
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Alternatively, Hg
0
 concentrations in deep water may represent a balance between 

in situ reduction and oxidation reactions. While photochemical processes are thought to 

be the primary mechanism of Hg reduction in the surface ocean (Rolfhus and Fitzgerald, 

2004), the concentration maximum of Hg
0
 that extends across the Atlantic in the ODZ is 

indicative of a dark reaction leading to its formation at depth, likely coincident with 

organic matter remineralization. By extension, it is reasonable to speculate that Hg
0
 in 

deep water masses also is formed by either an abiotic or microbial reduction process. The 

difference of Hg
0
 concentrations in NADW between the western and eastern basins of the 

North Atlantic may be due to differences in either Hg reactivity or activity of reductants, 

including microbes, in the water.   Biological reduction of Hg can be mediated by 

microbes containing mer-operon encoded proteins (Barkay et al., 2003). While the 

evolutionary time frame of the mer-operon has not been identified, it is plausible that 

increasing Hg in the environment during the past 150 years has exerted selective pressure 

on the mer operon (Boyd and Barkay, 2012). Accordingly, older NADW may contain 

less Hg
0
 due to lower efficiency of microbial Hg reduction, compared to younger NADW 

generated during the last 100 years when anthropogenic Hg emissions were increasing. In 

contrast, the mer operon may have a much slower evolutionary time scale and the 

difference in Hg
0 

between older eastern and younger western NADW may result from 

exhaustion of reducible forms of Hg after >100 y. Based on the distribution and relatively 

low concentrations of MMHg and DMHg across the transect, reductive demethylation 

cannot explain the difference in Hg
0
 concentrations between basins.  
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3.3.4 Monomethylmercury  

Monomethylmercury in filtered water ranged from <0.002 (detection limit) to 

0.60 pM in the North Atlantic Ocean (Table 1).  The typical vertical distribution of 

filtered MMHg at most stations in the North Atlantic was relatively low concentrations in 

the upper 100 m (0.06 ± 0.05 pM, n = 70), a subsurface maximum in the ODZ, and lower 

concentrations in water below the thermocline (Figure 6a), which is consistent with 

vertical distributions observed in other ocean basins (Mason and Fitzgerald, 1993; Mason 

and Sullivan, 1999; Sunderland et al., 2009; Cossa et al., 2009, 2011; Hammerschmidt 

and Bowman, 2012). Although Hg is methylated in the mixed layer (Lehnherr et al., 

2011), relatively low concentrations of MMHg there can be attributed to bioaccumulation 

and photochemical and microbial decomposition (Monperrus et al., 2007; Lehnherr et al., 

2011; Black et al., 2012; Hammerschmidt and Bowman, 2012). As observed for filtered 

total Hg and Hg
0
, filtered MMHg concentrations in NADW were significantly greater in 

the western (0.15 ± 0.12 pM, n = 31) than eastern basin (0.06 ± 0.06 pM, n = 64; Mann-

Whitney rank sum, p < 0.001), although there was more intra-basin variability of MMHg 

concentrations than for the other two Hg species. This comparison of MMHg 

concentrations in NADW neglects results from Station 16 on the Mid-Atlantic Ridge that 

has hydrothermal inputs. Some of the variability and greater mean concentration of 

filtered MMHg in NADW of the western North Atlantic can be attributed to increased 

concentrations near the slopes of the northwest Atlantic and Bermuda, which may result 

from benthic production and mobilization to overlying water (Hollweg et al., 2010). 

Aside from these locations, deep ocean sediments do not appear to be an important 

source of MMHg to the water column of the North Atlantic, as also hypothesized for 
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other ocean basins (Heimbürger et al., 2010; Cossa et al., 2011; Hammerschmidt and 

Bowman, 2012). Similar to filtered total Hg, filtered MMHg in AABW (0.18 ± 0.08 pM) 

was increased relative to NADW. 

The primary influence on MMHg cycling in the eastern North Atlantic is strong 

particle scavenging (Figure 6). Scavenging in the eastern Atlantic is evident from both 

the very low concentrations of filtered MMHg and relatively high levels of particulate 

MMHg in the mixed layer and permanent thermocline (Figure 6b). Increased particulate 

MMHg concentrations near the African coast, which are unlike those in the rest of the 

North Atlantic, are the result of high dust deposition and coastal upwelling that fuel 

primary production. Given that suspended material had exceedingly low concentrations 

of MMHg (mean = 0.0007 ± 0.001 pM) and that sinking particles have similar, if not 

lower, concentrations of MMHg than suspended particles (Lamborg et al, 2009), we 

would expect release of surface-formed MMHg from sinking particles during 

remineralization to have little influence on levels of filtered MMHg in the thermocline.  

Such is the case in the far eastern North Atlantic, where there is no connection between 

particulate and filtered MMHg. On average, suspended particles contained less than 1% 

of total MMHg in the water column.  

Subsurface maxima of filtered MMHg were observed in the ODZ across the 

North Atlantic. Maxima of methylated Hg in ODZs, or oxygen minimum zones, have 

been widely attributed to in situ production fueled by microbial remineralization of 

organic matter (Cossa et al., 1994, 2009; Mason & Fitzgerald, 1993; Mason and Sullivan, 

1999; Sunderland et al., 2009; Heimbürger et al., 2010; Hammerschmidt and Bowman, 

2012). Multiple sectional oceanographic studies have observed positive associations 
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between concentrations of methylated Hg and either apparent oxygen utilization (AOU; 

Mason and Sullivan, 1999; Cossa et al., 1994, 2009, 2011; Kirk et al., 2008; Heimbürger 

et al., 2010; Lehnherr et al., 2011) or organic carbon remineralization rate (Sunderland et 

al., 2009), which could be interpreted to suggest that production of methylated Hg in the 

marine water column is limited by microbial methylation potential more than it is by 

Hg(II) availability. However, we observed no correlation between filtered MMHg 

concentration and either the concentration of dissolved O2 (p = 0.15) or AOU (p = 0.42) 

across these far ranging sections of the North Atlantic. This suggests that lower oxygen 

concentrations and the microbial community, potentially including anaerobes, in the ODZ 

are not unique in their ability to produce MMHg, which is consistent with results from 

process studies.  Incubation tests with waters from the eastern equatorial Pacific Ocean 

and Arabian Sea imply that Hg(II) methylation is not particularly active in oxygen 

minimum zones and anaerobic microorganisms are not important methylators of Hg in 

the marine water column (Malcolm et al., 2010). Moreover, rates of Hg methylation were 

similar between the oxic mixed layer, near the subsurface chlorophyll maximum, and 

oxygen minimum zone at multiple locations in the Canadian Arctic Archipelago 

(Lehnherr et al., 2011). Thus, an alternative hypothesis for the maxima of MMHg in the 

ODZ is that MMHg may be produced throughout the marine water column and is less 

susceptible to decomposition and scavenging in the ODZ than it is at other depths. While 

the functional identities of microorganisms that demethylate MMHg are largely 

unknown, a slower rate of decomposition in the ODZ is consistent with the inhibitory 

effect of low O2 concentrations on rates of aerobic metabolism as well as the rarity of mer 

genes in anaerobic microbes (Barkay et al., 2010). 
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Secondary maxima of filtered MMHg also were observed at depths shallower 

than the ODZ and near the chlorophyll and oxygen maxima at zonal Stations 16–22 in the 

eastern North Atlantic Ocean (Figure 7). Maxima of filtered MMHg (~0.2–0.6 pM) were 

observed between 100–200 m at these stations and within about 80 m depth of the in situ 

fluorescence and associated O2 maxima. Increased MMHg concentrations immediately 

below the euphotic zone can be interpreted to indicate production in surface waters and 

may result from enhanced microbial respiration of organic carbon (Heimbürger et al., 

2010).  

3.3.5 Dimethylmercury 

The distribution of DMHg in the North Atlantic is similar to that of MMHg and 

Hg
0
 (Figure 8). Like MMHg, concentrations of DMHg in the upper 100 m were 

extremely low, increased in the ODZ, and were relatively homogeneous with depth. Low 

concentrations of DMHg in the mixed layer are a result of its evasion to the atmosphere 

(Black et al., 2009). Also similar to MMHg, concentrations of DMHg in NADW were 

considerably greater in the western North Atlantic (mean = 0.18 ± 0.12 pM, n = 48) than 

on the east side of the Mid-Atlantic Ridge (mean = 0.07 ± 0.04 pM, n = 23; Mann-

Whitney rank sum, p < 0.001), excluding results from Station 16 above the ridge. Water 

deeper than 4000 m, a combination of AABW and NADW, contained 0.18 ± 0.12 pM of 

DMHg (n = 16), a mean concentration similar to that in western NADW.  The average 

concentration of ΣCH3Hg, calculated as the sum of MMHg and DMHg, in AABW was 

0.37 ± 0.08 pM at stations between 20 and 30 °N, and comparable to, if not slightly less 

than, ΣCH3Hg levels measured in AABW in the Southern Ocean (0.52 ± 0.11 pM; Cossa 

et al., 2011).   
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Dimethylmercury can be the dominant form of methylated Hg in the open ocean 

(Mason and Fitzgerald, 1993; Mason et al., 1995; Mason and Sullivan, 1999). For surface 

waters in which DMHg was detectable, the filtered MMHg:DMHg molar ratio was large 

and highly variable in the upper 100 m of the water column (18 ± 25). In contrast, 

MMHg:DMHg averaged 1.6 ± 1.8 in North Atlantic water deeper than 1000 m. The 

filtered MMHg:DMHg ratio for sub-thermocline waters in the North Atlantic is similar to 

that in North Pacific Deep and Bottom Waters (> 1500 m), which averaged 1.9 ± 0.4 

(Hammerschmidt and Bowman, 2012), and suggests that MMHg is dominant form of 

methylated Hg in deep waters. DMHg has been posited to be the immediate product of 

microbial methylation, with MMHg resulting from its decomposition (Mason and 

Fitzgerald, 1993; Mason et al., 1995; Mason and Sullivan, 1999).  However, results from 

a recent process study suggest that the rate of MMHg formation from Hg(II) is about 

three orders of magnitude greater than production of DMHg from Hg(II) in seawater 

(Lehnherr et al., 2011), suggesting that DMHg may be formed primarily by methylation 

of MMHg. 

Unlike Hg
0
 in NADW, which may have been downwelled during deep water 

formation, DMHg in the water mass was likely formed in situ during thermohaline flow. 

DMHg concentrations in the mixed layer of the Labrador and Norwegian Seas were 

either undetectable or less than 0.02 pM (Mason et al., 1998). On the basis of 

oceanographic measurements and modeling, Mason and Fitzgerald (1993) hypothesized 

that DMHg accumulates slowly in seawater because its rate of formation and 

decomposition are of the same order of magnitude.  They later observed that DMHg in 

recently formed NADW increased with age and depth of the water, from about 0.03 pM 
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in the upper water column to 0.13 ± 0.08 pM at depth at stations between 50 and 60 °N 

(Mason et al., 1998). Our results for DMHg in NADW in the western Atlantic (0.18 ± 

0.12 pM) are consistent with this hypothesis and suggest that concentrations may have 

increased during southward transit between 50 and 60 °N to between 25 and 40 °N in the 

current study.  However, the lower concentrations of DMHg in NADW of the eastern 

compared to the western basin are inconsistent with the hypothesis. Indeed, levels of both 

DMHg and filtered MMHg were significantly lower in older eastern than younger 

western NADW. The mean concentration of DMHg in western NADW was 2.6-fold 

greater than that in the eastern basin and the average level of MMHg in the west was 2.5-

fold greater than in eastern NADW.  The similarity of these enrichment factors indicates 

that concentrations of filtered MMHg and DMHg are proportional in NADW on both 

sides of the Mid-Atlantic Ridge.  However, the difference between these enrichment 

factors and that of filtered total Hg in NADW (1.14-fold greater in the west), suggests 

that older NADW has less of a methylation potential for Hg than younger deep water in 

the west. This is supported by the mean fraction of total Hg as MMHg in filtered water 

being significantly greater in western NADW (14 ± 11%) than in eastern NADW (7 ± 

8%; Mann-Whitney rank sum, p < 0.01).  A difference in the average percentage of 

filtered total Hg as ΣCH3Hg in NADW also existed between the western (33 ± 16%) and 

eastern (23 ± 14%) North Atlantic but the difference was not significant at α = 0.05 (t-

test, p = 0.08).     

3.3.6 TAG hydrothermal vent plume  

Seawater and suspended particles were sampled from a plume at the TAG 

submarine hydrothermal vent mound located on the east wall of the Mid-Atlantic Ridge 
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(Station 16, 26.14 °N, 44.83 °W; Rona et al., 1986). The buoyant plume was located 

between 3200 and 3400 m depth and identified during sampling with a transmissometer. 

Previous studies of vent systems in the Pacific Ocean have found a wide range of total Hg 

concentrations in hydrothermal vent fluids (4–11,000 pM; Lamborg et al., 2006; Crespo-

Medina et al., 2009) although little is known about Hg in vent systems of the Atlantic 

Ocean (Demina et al., 2012). 

Mercury is emitted from the TAG hydrothermal vent and Hg species are 

scavenged and transformed in the plume (Figures 3 and 9). The maximum concentration 

of filtered total Hg in the plume was 13 pM at 3400 m depth, more than 10× greater than 

levels in surrounding NADW (Figure 9a). The speciation of Hg at the filtered total Hg 

maximum (3400 m depth) was 8% as Hg
0
, 3% as filtered MMHg, and less than 0.2% as 

DMHg, with particulate Hg comprising less than 2% of the total Hg. This speciation is in 

contrast to vent fluids sampled at the Gorda Ridge in the Pacific Ocean where nearly all 

Hg was present as MMHg (Lamborg et al., 2006). At shallower depths in the plume 

(3200–3330 m), filtered total Hg decreased to 0.90 ± 0.04 pM, concentrations less than 

those in NADW above the plume (1.15 pM), and Hg
0
 decreased to 0.13 ± 0.06 pM and as 

low as 0.05 pM at 3250 m (Figure 9a), a concentration 8-fold less than in NADW above 

the plume and 20-fold greater than at 3400 m. The decline of filtered total Hg between 

the bottom and interior of the plume can be attributed to scavenging. Metal oxides are 

formed within the plume and concentrations of particulate total Hg follow those of 

particulate Fe oxides, with 27% of the total at 3300 m depth being associated with 

particles (Figure 9b).  Because Hg
0
 is not particle reactive, its loss from the core of the 

hydrothermal plume may result from oxidation reactions.        
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The TAG hydrothermal vent also was a localized source of MMHg, but not 

DMHg, to the deep North Atlantic (Figure 9). MMHg was enriched in the hydrothermal 

plume relative to waters above and below. In contrast to total Hg that was reactive to 

particle scavenging, more than 99.5% of MMHg in the plume was in the filtered phase, 

resulting in MMHg accounting for 42 ± 24% of filtered total Hg in the plume at depths 

other than the filtered total Hg maximum at 3400 m. Particle-water partitioning 

coefficients of MMHg are typically an order of magnitude less than those of Hg(II) in 

oxic seawater (Balcom et al., 2008). The apparent absence of any DMHg enrichment in 

the hydrothermal plume is consistent with DMHg being less stable at higher temperatures 

(Mason and Sullivan, 1999) and lower pH (Wood et al., 1968; Beijer and Jernelöv, 1979) 

that would expected in the vent. While the source of MMHg in submarine hydrothermal 

fluids is unknown and may be either biological or abiotic (Lamborg et al., 2006), the two 

gene clusters associated with bacterial Hg methylation (Parks et al., 2013) have been 

identified in at least one species of hydrothermal vent bacteria, Deferrisoma camini 

(Slobodkina et al., 2012).  

3.4. Summary 

The U.S. GEOTRACES zonal and meridional sections of the North Atlantic 

Ocean have allowed for the first fully resolved high-resolution examination of Hg 

speciation within this ocean basin. We found that total Hg, MMHg, Hg
0
, and DMHg in 

water of the North Atlantic are vertically segregated as a function of bioaccumulation, 

scavenging, remineralization, and transformation reactions in the water column. A 

hydrothermal vent on the Mid-Atlantic Ridge was confirmed to be a source of total Hg 

and MMHg to deep water, as suggested by previous studies of vent fluids elsewhere. Our 
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most significant and unexpected discovery was the horizontal segregation of Hg and its 

chemical species in NADW between the western and eastern North Atlantic. While 

greater concentrations of filtered total Hg in younger NADW of the western basin 

compared to the eastern North Atlantic may be attributed to younger NADW having 

downwelled anthropogenic Hg during deep water formation (Lamborg et al., accepted), 

the reason for horizontal enrichment of Hg
0
, MMHg, and DMHg in western NADW is 

unknown. We speculate that younger NADW has a greater methylation and reduction 

potential than older waters in the mass. Both a meridional section of the western North 

Atlantic as well as process-based investigations are needed to better understand the 

enrichment of Hg
0
, MMHg, and DMHg in western NADW.  
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Table 3.1. Summary of concentrations and speciation of Hg across the transect. Average 

and range values are listed in pM units and include data from all 32 stations at all depths. 

For suspended particulate MMHg, the percentage as HgT refers only to the suspended 

particulate phase. 

Hg species Average ± stdev Range % of HgT n 

HgT
a 

0.90 ± 0.36 0.040 – 3.0
 

N/A 647 

Hg
0
 0.32 ± 0.17 0.012 – 1.0 35 ± 16 625 

DMHg 0.095 ± 0.10 >DL – 0.65 10 ± 11 427 

MMHg 0.095 ± 0.098 >DL – 0.60 11 ± 11 432 

Particulate HgT 0.038 ± 0.039 >DL – 0.38 N/A 322 

Particulate 

MMHg 

0.00069 ± 0.0013 >DL – 0.010 4 ± 7 255 

    a
Data from the TAG hydrothermal vent plume at station 16 was not included in HgT average and range. 

 

 

 

 

 

 

 

 

 

 

 



82 
 

 

 

Figure 3.1. GEOTRACES GA03 water sampling stations during the meridional (red) and 

zonal (yellow) transects of the North Atlantic Ocean. Stations occupied in 2010 are 

represented by diamonds, and stations occupied in 2011 are represented by circles. 
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Figure 3.2. Water masses in the North Atlantic along the GEOTRACES GA03 transect, 

superimposed on the salinity distribution. Surface waters are mainly North Atlantic 

Central Water (NACW) with Atlantic Equatorial Water (AEW) at the southernmost 

extent of the cruise near the Cape Verde Islands. Intermediate waters include Irminger 

Sea Water (ISW) in the west, Antarctic Intermediate Water (AAIW) in the central basin, 

and Mediterranean Overflow Water (MOW) in the east. North Atlantic Deep Water 

(NADW) is between 1500 and ~4000 m. Water deeper than 4000 m is a mixture of 

NADW and Antarctic Bottom Water (AABW) with the fraction as AABW increasing 

below 5000 m (Jenkins et al., in review). Sampling points are shown as black dots and 

station numbers are listed intermittently throughout the grey bathymetric section. 
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Figure 3.3. Distribution of total Hg concentrations (pM) in filtered water (panel A) and 

suspended particles (panel B) along GEOTRACES GA03 in the North Atlantic Ocean. 

Isobars of dissolved oxygen have concentration units of µmol/kg. Sampling points are 

shown as black dots and station numbers are listed intermittently throughout the grey 

bathymetric sections. 
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Figure 3.4. Distribution of Hg
0 

(pM) along GEOTRACES GA03 in the North Atlantic 

Ocean.  Isobars of dissolved oxygen have concentration units of µmol/kg. Sampling 

points are shown as black dots and station numbers are listed intermittently throughout 

the grey bathymetric section. 
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Figure 3.5. Vertical profiles of elemental Hg (grey circles), filtered total Hg (black 

circles), nitrate (open triangles), and dissolved oxygen (dashed line) at Stations 12 (panel 

A) and 20 (panel B) of GEOTRACES GA03 in the North Atlantic Ocean. Error bars are 

covered by figure symbols; relative percent difference was 4 ± 4 (n=5) for filtered HgT, 

and 0.3 ± 0.7 (n=72) for nitrate.   
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Figure 3.6. Distribution of MMHg concentrations (pM) in filtered water (panel A) and 

suspended particles (panel B) along GEOTRACES GA03 in the North Atlantic Ocean. 

Isobars of dissolved oxygen have concentration units of µmol/kg. Sampling points are 

shown as black dots and station numbers are listed intermittently throughout the grey 

bathymetric sections. 
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Figure 3.7. Profiles of filtered MMHg (closed circles), CTD fluorescence (solid line), 

and dissolved O2 (dashed line) at zonal Stations 16–18 near the center of the North 

Atlantic Ocean.  The grey area highlights MMHg maxima in oxic water between 100 and 

200 m depth. 
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Figure 3.8. Distribution of DMHg concentrations (pM) along GEOTRACES GA03 in 

the North Atlantic Ocean. Isobars of dissolved oxygen have concentration units of 

µmol/kg. Sampling points are shown as black dots and station numbers are listed 

intermittently throughout the grey bathymetric section. 
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Figure 3.9. Mercury and iron speciation in the TAG hydrothermal vent plume (zonal 

Station 16). The grey area highlights the layer of the hydrothermal plume between 3200 

and 3400 m depth. 
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Abstract 

Mercury (Hg) in the ocean undergoes transformations in the water column 

including reduction to elemental Hg (Hg
0
) and methylation to dimethylmercury 

((CH3)2Hg, DMHg) and monomethylmercury (CH3Hg
+
, MMHg). Monomethylmercury is 

a neurotoxin that bioaccumulates in predatory fish species harvested for human 

consumption. I participated in the U.S. GETORACES section of the eastern tropical 

Pacific Ocean (GP16) to examine filtered and particulate total Hg (HgT) and MMHg, and 

dissolved gaseous Hg
0
 and DMHg with high-resolution vertical profiles at 35 sampling 

stations. Total Hg had a nutrient-like vertical distribution with increasing concentrations 

in aging Pacific deep waters. Concentrations of filtered HgT, MMHg and DMHg also 

increased with age among deep water masses unaffected by anthropogenic Hg. Unlike in 

the Atlantic Ocean, a large hydrothermal plume stemming from the East Pacific Rise was 

not enriched with Hg relative to surrounding deep waters. Waters within 1000 m of 

abyssal sediments contained more HgT than expected from remineralization of sinking 

particles. Geothermal heating along the rise may increase the flux of Hg from sediments,  

accounting for the excess Hg. The behavior of HgT surrounding the East Pacific Rise 

may be unique to fast spreading centers in the ocean. In thermocline waters, elemental Hg 

was inversely correlated with N*, a proxy for denitrification, suggesting that denitrifying 

bacteria (pseudomonads, e.g.) may also be capable of Hg reduction. The cruise section 
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sampled productive waters near the Peru-Chile upwelling region that supports one of the 

world’s largest fisheries and sustains an expansive suboxic oxygen minimum zone. All 

three Hg species and HgT were elevated within the upwelling region compared to non-

upwelling stations. Thermocline waters had, on average, 2× more filtered MMHg than 

DMHg, however, concentrations of MMHg and DMHg were comparable in the 

upwelling region.  

4.1. Introduction 

Mercury (Hg) is emitted from natural (e.g., geogenic emissions, terrestrial and 

aquatic re-emissions) and anthropogenic sources (dominantly fossil fuel combustion) to 

the atmosphere, where it can remain for up to one year allowing for long-range transport 

and deposition to the global ocean (Lamborg et al., 2002; Holmes et al., 2006; Mason et 

al., 2012). Once deposited to seawater, Hg binds with inorganic and organic ligands and 

undergoes chemical transformations mediated by abiotic and microbial processes. 

Inorganic Hg can be reduced to elemental Hg (Hg
0
) that is ubiquitous throughout the 

marine water column (Fitzgerald et al., 2007; Bowman et al., 2014). Inorganic Hg also 

can be methylated to either gaseous dimethylmercury ((CH3)2Hg, DMHg) or 

monomethylmercury (CH3Hg
+
, MMHg; Monperrus et al., 2007; Whalin et al., 2007; 

Lehnherr et al., 2011). 

Monomethylmercury is a toxic, bioaccumulative form of Hg that biomagnifies in 

marine food webs and is most concentrated in predatory fish species (Karimi et al., 2012; 

Sunderland, 2007; Mason et al., 2012). Consumption of fish is the primary route of 

human exposure to MMHg and 70% of the global fish harvest comes from the ocean 

(Sunderland, 2007; Višnjevec et al., 2014; FAO, 2014). Fish are an important source of 
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omega-3 fatty acids that support healthy brain growth and development, MMHg, 

however,  is antagonistic –maternal fish consumption has been linked to neurological 

deficits and decreased cognitive performance in developing children (Innis, 2008; Oken 

et al., 2008; Bose-O’Reilly et al., 2010). Adults exposed to high levels of MMHg also can 

experience neurological and cardiovascular impairments (Stern et al., 2005; Auger et al., 

2005; Edna et al., 2003; Mergler et al., 2007). The marine biogeochemical cycling of Hg, 

therefore, has important implications for marine fish harvested from the ocean. 

I investigated the distribution of total Hg, Hg
0
, MMHg, and DMHg in the eastern 

tropical South Pacific Ocean, as part of the U.S. GEOTRACES expedition (GP16) in 

October–December 2013. The section included 35 high-resolution vertical profiles 

between Peru and Tahiti and tranversed the Peru-Chile upwelling region (Fig. 4.1), which 

supports one of the world’s largest fisheries (FAO, 2014). Wind-driven upwelling along 

the Peru-Chile coast fuels high levels of primary production that subsequently contributes 

to the persistence of a suboxic oxygen minimum zone (OMZ; 2–10 μM O2; Codispoti et 

al., 2005) in the thermocline (Fig. 4.2). In situ production of MMHg and DMHg in the 

ocean has been linked to processes in low-oxygen thermocline waters (Mason and 

Fitzgerald, 1991; Mason and Sullivan, 1999; Kirk et al., 2008; Sunderland et al., 2009; 

Heimbürger et al., 2010; Cossa et al., 2011; Lehnherr et al., 2011; Hammerschmidt and 

Bowman, 2012) so a relationship between MMHg, DMHg, and dissolved oxygen was 

examined over a strong productivity gradient from suboxic thermocline waters in the 

upwelling region to more oxygenated thermocline waters in the South Pacific gyre (Fig. 

2). Other oceanographic features of the transect included 1) deep Pacific waters 

unaffected by anthropogenic Hg emissions (Lamborg et al., 2014), 2) a large buoyant 
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hydrothermal plume stemming from the East Pacific Rise (EPR), 3) waters once in 

contact with the Peru shelf, margin, and trench, and  4) intermediate and mixed layer 

waters originating from the Antarctic Circumpolar Current (ACC, Fig. 2).  

4.2. Methods  

4.2.1 Sample collection  

Filtered water and suspended particles were collected and analyzed with vetted 

trace-metal clean techniques (Hammerschmidt et al., 2011; Bowman and 

Hammerschmidt, 2011; Bishop et al., 2012; Lamborg et al., 2012), similar to those 

described previously for the U.S. GEOTRACES North Atlantic sections (Bowman et al., 

2014). Seawater was sampled at 18 full-depth stations (36 water depths at each station), 

four shelf stations (6–23 depths), and 13 demi stations (12 depths each in upper 1000 m) 

with 12-L Teflon-coated Go-Flo bottles attached to a trace-metal clean rosette (Cutter and 

Bruland, 2012). Go-Flo bottles were transferred from the rosette to a clean laboratory van 

where seawater was filtered through pre-rinsed capsules (0.2 μm Pall AcroPak-200) into 

2-L Teflon bottles for determination of Hg
0
, DMHg, and MMHg, and 0.25-L borosilicate 

glass bottles for determination of HgT. The water was filtered carefully so as to not degas 

volatile Hg species during transfer to the sample bottles (Bowman and Hammerschmidt, 

2011). McLane in situ pumps (Bishop et al., 2012) were used to sample suspended 

particles (1–51 μm) onto quartz fiber filters from the 18 full-depth stations (16 depths 

each) and four shelf stations (5–8 depths).  Filters were subsampled into 25-mm diameter 

punches (25–100 L of seawater filtered through each) that were frozen and transported to 

Wright State University for analysis of particulate MMHg and HgT.  
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4.2.2 Mercury analysis  

Mercury species in filtered seawater were analyzed on board the research vessel 

in a dedicated laboratory van under clean conditions. Gaseous Hg
0
 and DMHg were 

determined within ~2 h of sampling from 2-L water samples with a purge-and-trap 

method (Bowman and Hammerschmidt, 2011). Samples were purged with Hg-free N2 

(30 L total at 0.8 L min
−1

), and effluent gas from the bottle was first passed through 

reagent-grade soda lime to remove water vapor and aerosols. Dimethylmercury was 

concentrated on Bond Elut resin (Agilent; Baya et al., 2013) and Hg
0
 on a Au-trap 

downstream of the Bond Elut (Lamborg et al., 2012). Dimethylmercury was quantified 

by gas-chromatographic cold vapor atomic fluorescence spectrometry (GC-CVAFS; 

Tseng et al., 2004; Bowman and Hammerschmidt, 2011) and Hg
0
 by dual Au-

amalgamation CVAFS (Bloom and Fitzgerald, 1988) following thermal desorption from 

the traps. Each Au-trap was calibrated at every station after loading with a known 

quantity of Hg
0
. Procedural precision (± SD) of Hg

0
 determinations averaged 20 ± 15 

relative percent difference (RPD) among 27 pairs of replicate samples. Bond Elut traps 

for DMHg analysis were calibrated every 2–3 stations with known additions of 

methylethylmercury, a volatile derivative of MMHg. Procedural precision of DMHg 

analyses averaged 27 ± 20 RPD (n = 17 pairs). Method detection limits were appropriate 

for open-ocean Hg measurements (0.01 pM for Hg
0
 and 0.002 pM for DMHg). Bond Elut 

traps were replaced frequently (after 12–24 uses) when deterioration of the resin became 

apparent. Deteriorating Bond Elut traps have poor trapping efficiency and they generate a 

residue that coats the fluorescence cuvette, reducing analytical sensitivity.  
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Seawater purged of DMHg and Hg
0
 was transferred to a 2-L polycarbonate bottle 

for MMHg analysis. Samples were acidified to 1% with trace-metal grade H2SO4 for 12–

24 h, neutralized with 12 M KOH, adjusted to pH 5 with 4 M acetate buffer, amended 

with ascorbic acid (to 0.003 M), and derivatized with sodium tetraethylborate (NaTEB; 

Bowman and Hammerschmidt, 2011; Munson et al., 2014). Hg-free air was used to purge 

volatile methylethylmercury from samples (30 L total at 0.8 L min
−1

) that was 

concentrated on Tenax after passing through reagent-grade soda lime. 

Monomethylmercury (as methylethylmercury) was quantified by GC-CVAFS (Tseng et 

al., 2004; Bowman and Hammerschmidt, 2011). Bond Elut was not a good alternative for 

MMHg determination in seawater; NaTEB derivatized other organic molecules in 

seawater with a similar volatility to methylethylmercury that were collected on Bond 

Elut, interfering with the MMHg chromatographic peak. Recovery of known additions of 

MMHg from seawater averaged 84 ± 12% (n = 3) and procedural precision averaged 35 ± 

22 RPD (n = 6). Individual Tenax traps were calibrated every 2–3 stations with aliquots 

of an aqueous CH3HgCl standard that was calibrated versus TORT-2 reference material 

(lobster hepatopancreas, National Research Council of Canada). Method detection limit 

for MMHg was 0.02 pM and approtiate for open-ocean measurements. 

Total Hg was measured in 0.25-L filtered seawater samples within 48 h of 

sampling with a purge-and-trap method (Lamborg et al., 2012) and dual Au-

amalgamation CVAFS detection (Bloom and Fitzgerald, 1988; Fitzgerald and Gill, 

1979). Total Hg in seawater was calibrated against aqueous Hg(II) standards traceable to 

the U.S. National Institute of Standards and Technology. Procedural precision averaged 7 
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± 9 RPD (n = 29 pairs) and the method detection limit for HgT was 0.03 pM and 

appropriate for open-ocean measurements.  

Mercury in suspended particles was leached from filter punches with 2 M HNO3 

for 4 h in a 60 °C water bath (Hammerschmidt and Fitzgerald, 2006; Bowman et al., 

2014). MMHg in the digestates was quantified by flow-injection GC-CVAFS (Tseng et 

al., 2004) and analyses were calibrated with procedural standards. Standards of CH3HgCl 

were calibrated against TORT-2 reference material, and the method detection limit for 

particle-associated MMHg in seawater was 0.002 pM. Recovery of known additions of 

MMHg from filter punches averaged 98 ± 20% (n = 7) and procedural precision averaged 

16 ± 11 RPD (n = 16). Separate aliquots of digestate were oxidized and analyzed for HgT 

by dual Au-amalgamation CVAFS (Hammerschmidt and Fitzgerald, 2006). Procedural 

precision averaged 8 ± 8 RPD (n = 10) and the method detection limit for particulate HgT 

was 0.03 pM.  

4.3. Results  

4.3.1 Physical oceanography of the section  

The section covered a large portion of the South Pacific gyre and traversed 

multiple water masses. Deep water masses that were sampled included Lower 

Circumpolar Deep Water (LCDW), Pacific Deep Water (PDW), and modified PDW 

(PDWM; Fig. 4.2). Wind-driven upwelling south of the Antarctic Circumpolar Current 

(ACC) shoals and mixes deep water masses from the Indian, Pacific, and Atlantic 

Oceans. This mixture of deep water masses, referred to as Circumpolar Deep Water 

(CDW), is downwelled by convergence between the ACC and the Subantarctic Front, and 

spreads north into the Pacific Ocean (Rintoul et al., 2001; Kawabe and Fujio, 2010; 
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Talley et al., 2011). Density stratification divides CDW into two layers: 1) a deeper layer 

of LCDW that has greater density and dissolved oxygen due to entrainment of North 

Atlantic Deep Water (NADW), and 2) an upper layer (Upper Circumpolar Deep Water; 

UCDW) that is less dense and composed of mainly Indian Deep Water and PDW (Talley 

et al., 2011). UCDW and PDW are synonymous, and occupy the same depths and density 

range (Talley et al., 2011). Once UCDW reaches the North Pacific and circulates south, it 

becomes PDW; “younger” UCDW and “older” PDW are best differentiated by their 

silicate and oxygen concentrations. LCDW (θ = 0.2–0.8 °C, S = 34.7) was at depths 

>4000 m west of the EPR. The section contained mostly PDW (θ = 1.1–1.2 °C, S = 

34.68–34.69) between 2000–4000 m and at depths >4000 m east of the EPR. PDWM is 

formed in the North Pacific by deep upwelling of LCDW that mixes with PDW and flows 

south along the coast of South America (Kawabe and Fujio, 2010). East of the EPR, 

PDWM is found between 2000–4000 m (Fig. 4.2). 

Antarctic Intermediate Water (AAIW) forms north of the Subantarctic Front in 

the southeast Pacific, and was between 700 and 1000 m depth across the section (θ = 2–

10 °C, S = 33.8–34.5; Siedler et al., 2003). Water between 1000–2000 m was too saline 

to be AAIW and too dilute to be classified as PDW and is therefore considered a mixture 

of the two water masses (Fig. 4.2). Equatorial surface and intermediate water masses 

were not encountered because the cruise track was too far south (10–15 °S). Surface 

waters included South Pacific Subtropical Mode Water overlying Subantarctic Mode 

Water (Talley et al., 2011). ENSO conditions were neutral during the sampling period 

(NOAA, 2014) and normal wind-driven coastal upwelling occurred at Stations 1–9 

supporting a suboxic OMZ.  
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4.3.2 Total Hg 

Filtered HgT had a nutrient-like distribution due to scavenging at the surface, 

remineralization in low-oxygen thermocline waters, and accumulation in aging deep 

waters during thermohaline flow (Fig. 4.3; Table 4.1). Mixed layer and thermocline 

waters in the Peru upwelling zone (Stations 1–9) were enriched in both particulate and 

filtered HgT compared to Stations 10–36, where there was no upwelling (Table 4.2). The 

upwelling zone contained waters brought to the surface from ~350 m depth, and this 

water may have contained Hg that was scavenged at the surface (post-deposition) and 

likely released during organic matter remineralization. Excess Hg in upwelling waters 

may also have originated from sediments on the Peru margin. At Stations 2 and 3 on the 

shelf, water deeper than 50 m was suboxic and concentrations of filtered HgT increased 

near the sediment-water interface, suggesting mobilization from the benthos (Fig. 4.4). 

Mercury remobilized from deposits on the margin was not distributed homogeneously 

through the water column; however, shelf waters (<200 m depth) contained 

uncharacteristically high concentrations of filtered HgT (1.3 ± 0.4 pM, n = 14) compared 

to other mixed layer waters in the Pacific Ocean (< 0.5 pM; Laurier et al., 2004; Bowman 

and Hammerschmidt, 2012; Munson, 2014). Total Hg in suspended particles was 

significantly greater along the Peru margin (Stations 1–5; 0.2 ± 0.1 pM, n = 47) compared 

to other stations (0.1 ± 0.1 pM, n = 290; Mann-Whitney Rank Sum p <0.0001; Fig. 3b). 

Greater concentrations of particulate Hg on the margin may result from increased mass of 

suspended particles (data available 2015; Phoebe Lam, personal communication), or 

different sediment-water partitioning of Hg near the continental margin.  
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Concentrations of filtered HgT increased with deep water mass age (Table 4.1), in 

contrast to AAIW which appeared to have decreasing Hg concentrations with greater age 

as it circulates through the South Pacific (Fig. 4.5). Radiocarbon and chloroflurocarbons 

measured across the section will be used to compile a detailed hydrographic synthesis 

including age approximations, and these results will be available in 2015/2016 (William 

Jenkins and Jim Happell, personal communication). Hydrographic properties (increasing 

silicate and decreasing oxygen concentrations) suggest that LCDW was the youngest 

deep water mass followed in increasingly greater age by PDW and PDWM. PDWM 

contains some “younger” LCDW; however, deep upwelling of LCDW can occur at 

latitudes up to 50 °N where the oldest PDW resides (Kawabe and Fujio, 2010; DeVries 

and Primeau, 2011; Gebbie and Huybers, 2012). PDWM contained significantly more 

filtered HgT than younger PDW and LCDW (Kruskal-Wallis One Way ANOVA, p < 

0.05). A trend of increasing HgT in progressively older deep waters in the Pacific is 

supported by concentration comparisons among deep waters in different ocean basins.  

For example, filtered HgT in relatively young deep water of the Southern Ocean (1.2 ± 

0.3 pM unfiltered; Cossa et al., 2011) is less than that in increasing older deep waters of 

the Central Pacific (1.25–1.5 pM at 10 °S and 1.5–2.0 pM at 10 °N; Munson, 2014) and 

northeast Pacific (1.3 ± 0.3 pM; Hammerschmidt and Bowman, 2012). AAIW in the 

South Pacific has an anticyclonic circulation originating in the southeast (Talley et al., 

2011), and oxygen concentrations decreased from east to west across the section (Fig. 

4.5a). Filtered HgT also decreased significantly (p = 0.01) with station longitude from 80 

to 150 °W (Fig. 4.5b) as AAIW aged. 
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Increased Hg concentrations in the bottom 1000 m of the water column may have 

been linked to geothermal heat beneath the ridge axis of the EPR. Decreasing potential 

temperature with increasing depth observed at stations west of the EPR crest (Stations 

21–36) was consistent with other observations of deep water in the South Pacific where θ 

< 1.2 °C at depths greater than 3500 m (Fig. 4.6; Kawabe and Fujio, 2010; Talley, 2007; 

Talley et al., 2011). Potential temperature was greater than expected at the same depths 

east of the EPR crest (Stations 1–17) and vertically homogenous rather than decreasing 

with depth. Filtered HgT was elevated in the bottom 1000 m of water at the stations east 

of the ridge crest and increased with depth up to 2 pM (Fig. 4.3a), 2-fold greater than 

average deep water concentrations (Table 4.1). Models based on radiocarbon 

measurements estimate that deep water in the southeastern Pacific is ~ 900 y old, 

therefore, any accumulated Hg should be from natural rather than anthropogenic sources 

(DeVries and Primeau, 2011; Gebbie and Huybers, 2012; Lamborg et al., 2014). 

Lamborg and colleagues (2014) found a ratio of filtered HgT to remineralized 

phosphorus (Premin) of 1 pmol/μmol in deep Pacific waters unaffected by anthropogenic 

inputs, which accumulate Hg and P from decomposing biological material. At stations on 

the east side of the EPR, where geothermal heating was apparent, deep water within 1000 

m of abyssal sediments had an average Hg:Premin > 1, which suggests a source of filtered 

HgT to the water column other than organic matter remineralization. On the western 

ridge geothermal heating was not evident, however, Hg:Premin. was still greater than 1 

pmol/μmol at most stations (Fig. 4.7). At the EPR in the North Pacific (9°50’N), 

unfiltered diffuse flow fluids contained 14–445 pM HgT (Crespo-Medina, 2009), 
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however, at Station 18 (15°S) directly above the EPR filtered and particulate HgT was 

not elevated and Hg:Premin ≈ 1 (0.87 ± 0.18, n = 32). 

Geothermal heating of deep water at 15 °S near the EPR has been observed 

previously (Thompson and Johnson, 1996) in addition to other locations along the EPR in 

the North and South Pacific Ocean (Detrick et al., 1974; Bender et al., 1985; Joyce et al., 

1986; Crane et al., 1987). Upwelling mantle centered at the EPR crest can travel through 

shallow melt channels at the base of the crust and ascend through porous channels, 

moving heat to shallower depths within the crust along the rise (Key et al., 2013). In the 

North Atlantic and Pacific Oceans, where there was no geothermal heating, abyssal 

sediments were not a source of Hg to bottom waters (Laurier et al., 2004; 

Hammerschmidt and Bowman, 2012; Bowman et al., 2014). Efflux of Hg from sediments 

overlying geothermally heated crust has not been studied previously, however, it appears 

that warmer sediments overlying the EPR may be responsible for a noticeable flux of Hg 

to bottom waters. On the western side of the EPR, geothermal heating did not appear to 

impact bottom water temperatures, however, excess heat from geothermal sources can be 

as small as 0.05 °C (Talley et al., 2011), and may not have been measured precisely with 

the CTD thermocouple. Alternatively, sediments composed of mainly biological material 

on the eastern side of the EPR may contain and release more Hg compared to sediment 

on the western side of the EPR which is likely dominated by lithogenic material. While 

this is a new and unexpected source of Hg to the water column, concentrations in 

geothermally impacted waters (Hg:Premin. > 1) were not significantly different from 

surrounding PDW or PDWM (Mann-Whitney Rank Sum p = 0.13 and p = 0.99, 

respectively). 
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4.3.3 Elemental Hg  

Elemental Hg concentrations were low in old Pacific Ocean deep water masses 

compared to younger Atlantic waters (Fig.4.8; Bowman et al., 2014). Average 

concentrations were low in the mixed layer and AAIW compared to the thermocline 

where microbial processes reduce inorganic Hg during organic matter remineralization 

(Table 1; Monperrus et al., 2007; Whalin et al., 2007; Lehnherr et al., 2011). Mixed layer 

and thermocline waters in the upwelling region (Stations 1–9) had 5× more Hg
0
 

compared to stations where there was no upwelling (Stations 10–36; Table 4.2). On 

average, Hg
0
 in deep water masses was 0.03–0.04 pM, an order of magnitude less than 

concentrations in young NADW in the North Atlantic (0.3–0.4 pM Hg
0
; Bowman et al., 

2104). Greater concentrations of Hg
0
 in NADW may have contributed to higher levels of 

Hg
0
 in PDWM and LCDW, both of which contain some entrained NADW, compared to 

PDW (Kruskal-Wallis One Way ANOVA p < 0.05).  

On the Peru shelf and slope, concentrations of Hg
0
 did not increase at the 

sediment-water interface, however, concentrations were increased in suboxic bottom 

waters of the shelf (Stations 2–3; 0.1–0.3 pM Hg
0
) relative to oxygenated bottom waters 

on the slope (Station 4; 0.04 pM Hg
0
; Fig. 4.4). Elemental Hg in deep water near the Peru 

coast (Station 1) was elevated (> 0.1 pM) and more characteristic of shelf waters than 

adjacent PDWM (Fig. 4.8). Based on these observations, reduction of inorganic Hg in 

sediments along the margin of South America could be a source of Hg
0
 to PDWM flowing 

southward along South America.   

Denitrification exceeded nitrogen fixation (negative N*; Gruber and Sarmiento, 

1997) in mixed layer and thermocline waters across the entire section, and concentrations 
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of Hg
0
 were inversely correlated with N* (Fig. 4.9). Reduction of inorganic Hg by 

denitrifying bacteria has been observed in culture (Schaefer et al., 2002; Kritee et al., 

2008), and Munson (2014) recently found a similar relationship between Hg
0
 and N* at 

one location in the central tropical Pacific Ocean. In the more oligotrophic waters of the 

North Atlantic, nitrogen fixation was greater than denitrification (positive N*), and there 

was no correlation between Hg
0
 and N*; instead, Hg

0
 had a nutrient-like vertical 

distribution across most of the basin (Bowman et al., 2014). Different planktonic 

community structures between Fe-limited waters in the eastern South Pacific and N- and 

P-limited waters in the North Atlantic (Moore et al., 2013) may affect the distribution of 

the mer operon, which mediates Hg reduction, resulting in inter-basin differences in Hg
0
 

distribution. 

4.3.4 DMHg and MMHg 

Dimethylmercury concentrations increased with depth throughout the water 

column and both MMHg and DMHg concentrations were maximum in the thermocline 

(Table 4.1, Fig.4.10a,b). In the mixed layer, DMHg can evade to the atmosphere and 

MMHg can be demethylated either photochemically or microbially (Mason et al., 2012). 

The MMHg:DMHg molar ratio in the mixed layer was high and variable (12 ± 16, n = 

24), but on average there was 3× more MMHg, which could be attributed to either a 

greater loss of DMHg compared to MMHg or an external source of MMHg such as 

rainwater (Hammerschmidt et al., 2007; Hammerschmidt et al., 2014).  

Mixed layer and thermocline waters were enriched with filtered and particulate 

MMHg and gaseous DMHg in the upwelling zone compared to stations where there was 

no upwelling (Table 4.2), and proximity to shelf and slope sediments had a large 
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influence on the MMHg:DMHg molar ratio (Fig. 4.11). In thermocline waters where 

there was no upwelling (Stations 10–36), MMHg was more abundant that DMHg 

(MMHg:DMHg = 2 ± 3, n = 84; Mann-Whitney Rank Sum, p <0.001), and within the 

upwelling zone (Stations 1–9) concentrations of MMHg and DMHg were similar 

(MMHg:DMHg = 1.5 ± 1.3, n = 87; Mann-Whitney Rank Sum,  p = 0.7). On the shelf 

and slope (Stations 2–4), filtered MMHg and DMHg increased near the sediment-water 

interface, and uniquely, DMHg concentrations were 1.5–2× greater than those of MMHg 

(Fig. 11). This is different than the continental shelf and slope in the North Atlantic 

where concentrations of filtered MMHg were greater than those of DMHg near the 

benthos (Fitzgerald et al., 2012). Higher concentrations of organic matter in sediments 

underlying the productive upwelling region may have scavenged MMHg from pore fluids 

and attenuated its flux to overlying water (Hammerschmidt et al., 2004), while gaseous 

DMHg would not be affected similarly. On the slope (Station 4), oxygenated bottom 

water contained concentrations of filtered MMHg and DMHg that were twice as high as 

bottom water on the shelf. Increased flux from oxygenated surface sediments due to 

bioturbation is not likely because concentrations of filtered HgT at the same station on 

the slope did not increase with proximity to the sediment-water interface (Section 3.2, 

Fig. 4.4; Hammerschmidt and Fitzgerald, 2008). High sulfide concentrations in anoxic 

sediments inhibit the bioavailability and subsequent methylation of inorganic Hg 

(Hammerschmidt et al., 2008). Accordingly, sulfide may have resulted in a lower flux of 

methylated Hg from the suboxic shelf compared to the oxygenated slope.  

Accumulation of DMHg and MMHg in aging deep water, and net loss from 

intermediate water contributed to a decreasing concentration gradient from east to west 
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along the section (Fig. 4.10). Similar to filtered HgT (Fig. 4.5), concentrations of DMHg 

and MMHg decreased from east to west as AAIW (700–1000 m depth) became older, 

and linear regression analyses suggest a similar loss rate for both methylated species (Fig. 

4.12). Because gaseous DMHg is not scavenged, similar loss rates suggest that 

demethylation rather than scavenging is responsible for decreasing concentrations with 

age and westward circulation of AAIW. These observations are consistent with high 

concentrations of methylated Hg measured in young AAIW in the Southern Ocean (0.4 ± 

0.2 pM methylated Hg; Cossa et al., 2011) and even lower concentrations in older AAIW 

further west (155–175 °W) in the central Pacific at 10°S (DMHg < 0.075 pM, MMHg < 

0.05 pM; Munson, 2014). Methylated Hg concentrations reported by Cossa and 

colleagues (2011) were measured in unfiltered water, however, MMHg in suspended 

particles is typically < 1% of total MMHg in the water column (this study, Bowman et 

al., 2014) and inclusion of particles should have an undiscernible effect. Mason and 

Sullivan (1999) also observed decreasing DMHg concentrations with increasing age of 

AAIW from south to north in the South Atlantic Ocean. The MMHg:DMHg molar ratio 

in Pacific AAIW was 0.9 ± 0.9 (n = 46) and concentrations of DMHg were significantly 

greater than MMHg (Mann-Whitney Rank Sum, p = 0.004). Greater concentrations of 

DMHg than MMHg may result from increased solubility of DMHg in low-temperature 

waters.  

In deep Pacific waters, concentrations of DMHg and MMHg, both independently 

and together as methylated Hg, increase with water mass age (Table 4.1; Kruskal-Wallis 

One Way ANOVA, p < 0.05). Dimethylmercury was significantly greater than MMHg in 

PDW and PDWM (Mann-Whitney Rank Sum, p <0.001 for PDW and p = 0.03 for 
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PDWM). Monomethylmercury in suspended particles was too low (< 0.001 pM) to 

increase filtered MMHg through remineralization, suggesting in situ methylation 

increases MMHg in deep water masses. Munson (2014) reported similar concentrations 

of DMHg and MMHg at 10 °S in the Central Pacific, however, there are inconsistencies 

with other studies. Concentrations of methylated Hg were high in newly formed CDW in 

the Southern Ocean (0.5 ± 0.2 pM; Cossa et al., 2011), which would not support 

increasing concentrations with water mass age. Also, in the subtropical northeast Pacific, 

concentrations of DMHg were lower and those of MMHg higher than would be expected 

in younger PDWM (Hammerschmidt and Bowman, 2012). Methylation dynamics in deep 

water masses have not been studied and more experimental and observational data is 

needed understand the behavior of methylated Hg in the deep ocean. 

4.3.5 Oxygen relationships and methylated Hg 

Correlations between methylated Hg and oxygen consumption have emphasized a 

dependence on organic carbon remineralization to sustain methylation of inorganic Hg 

(Mason et al., 2012). However, tests examining Hg methylation in seawater from the 

Canadian Archipelago found that methylation rates were unrelated to oxygen 

concentration (Lehnherr et al., 2011), and others have found maxima of methylated Hg 

near the oxygenated subsurface chlorophyll maximum (Heimbürger et al., 2010; Bowman 

et al., 2014).  In thermocline waters of this section (100–700 m) of the eastern South 

Pacific, there were weak, but statistically significant, inverse correlations between 

concentrations of MMHg, DMHg, and dissolved oxygen (Fig. 4.13). Removing suboxic 

upwelling stations (Stations 1–9) did not affect either the strength or significance of these 

relationships. Concentrations of both DMHg and MMHg were typically low where 
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oxygen was elevated, but highly variable where oxygen concentrations approached zero. 

Suboxic thermocline waters at upwelling stations (Stations 1–9) had 1–2 maxima of 

MMHg and DMHg which contributed to a wide range of concentrations in low-oxygen 

waters (Fig. 4.13). Stations outside the upwelling zone (Stations 10–36) had only one 

vertical maxima of MMHg and DMHg within the thermocline.  

Maxima of DMHg and MMHg observed were also in oxygenated waters near the 

subsurface chlorophyll maximum. Monomethylmercury maxima were observed near the 

subsurface chlorophyll maximum at most stations across the section and DMHg maxima 

were observed only near the subsurface chlorophyll maximum at upwelling stations (1–

9). In suspended particles, concentrations of MMHg increased in parallel to filtered 

MMHg at the subsurface chlorophyll maximum and OMZ, suggesting that in situ 

production rather than release from particles was responsible for these maxima. Weak 

correlations with oxygen and maxima of methylated Hg in oxygenated waters in this 

section of the Pacific emphasizes the potential importance of aerobic microbial functional 

groups and their access to organic substrates and bioavailable forms of inorganic Hg to 

methylate Hg. Primary and secondary nitrite maxima were observed near the subsurface 

chlorophyll maximum and OMZ, similar to maxima of MMHg and DMHg; however, 

there was no significant correlation between either DMHg or MMHg and N* (p = 0.5 for 

DMHg, p = 0.09 for MMHg).  

4.3.6 Hg in the EPR hydrothermal vent plume 

Total Hg was not enriched in the buoyant hydrothermal plume that extends west 

from the EPR at 113–150 °W between 2000–3000 m (Fig.4.3). Some scavenging of HgT 

occurred at the base of the plume as evidenced by increased concentrations of particulate 
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HgT (Stations 18–21; Fig. 4.3b), however, scavenging did not affect filtered 

concentrations in deep water. Similar to a vent plume near the Mid-Atlantic Ridge, 

concentrations of MMHg increased and DMHg decreased slightly near the EPR (Fig.4.6; 

Bowman et al., 2014). The absence of increased Hg concentrations within the EPR plume 

was surprising because other trace metals (i.e., Al, Mn, Fe) were elevated above 

background PDW concentrations in the EPR plume (Resing et al., 2014) and filtered HgT 

was increased in the Mid-Atlantic Ridge hydrothermal plume (Bowman et al., 2014). 

Other studies of vent fluids and a hydrothermal plume have found increased and variable 

concentrations of HgT, ranging from 4 to 11,000 pM (Lamborg et al., 2006; Crespo-

Medina, 2009; Bowman et al., 2014). Such high concentrations in vent fluids and the 

observation of geothermal Hg discussed in Section 3.2 suggests that Hg likely was 

enriched in EPR hydrothermal fluids, however, the Hg may have either precipitated, 

possibly as cinnabar, or been scavenged by metal oxides before ascending into the 

buoyant plume.  

Hydrothermal vents at fast and slow spreading ridges may differ in their ability to 

release and disperse Hg. Focused-flow vent fluids (>350°C) sampled at 9 °N on the EPR 

had a dark color, presumably from precipitated metals, and contained 3,500–11,000 pM 

HgT (unfiltered; Crespo-Medina et al., 2009). At Gorda Ridge, a slower spreading center 

in the northeast Pacific, unfiltered fluids from a focused-flow vent were clear and 

contained substantially less HgT (4–10 pM; Lamborg et al., 2006). A similar 

concentration of HgT (13 pM) was measured in a plume near the Mid-Atlantic Ridge, 

also a slow spreading center (Bowman et al., 2014). Fast spreading centers are 

characterized by greater volumes of magma that create a thicker layer of basalt compared 
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to slow spreading centers. This results in a more shallow percolation of seawater near the 

ridge crest, and less contact with the upper mantle (Ligi et al., 2013). Different spreading 

rates and depths of seawater penetration could affect the chemical speciation, 

precipitation, and concentration of Hg released from hydrothermal vent systems.  

4.4. Summary 

Mercury released during particle remineralization and accumulated from contact 

with shelf sediments was brought to the upper water column (20–700 m) in the Peru 

upwelling region. Mixed layer and thermocline waters in the upwelling region contained 

significantly greater concentrations of MMHg and DMHg than in non-upwelling areas of 

the eastern South Pacific Ocean. Most (95%) of the fish harvested from the upwelling 

zone are anchovy, a low trophic level species containing low concentrations of MMHg 

(Karimi et al., 2012; FAO 2014). Accordingly, the feeding ecology and trophic status of 

anchovy may mitigate the risks imposed by elevated concentrations of methylated Hg in 

productive upwelling waters. Oscillating ENSO cycles and overfishing are a threat to 

anchovy in this region and implementing sustainable fishing practices could also help to 

remove MMHg from the base of the food web. 

Sediments on the Peru shelf release DMHg in excess of MMHg to bottom waters. 

Outside of the upwelling zone concentrations of MMHg are greater than those of DMHg 

in thermocline waters, and concentrations of each are comparable within the upwelling 

zone. There was a weak correlation between oxygen and methylated Hg, however, 

concentrations of MMHg and DMHg found in suboxic thermocline waters were 

comparable to concentrations found in the oligotrophic North Atlantic Ocean where 

oxygen is >50 μmol kg
−1 

(Bowman et al., 2014). When multiple ocean basins are 



111 
 

considered, concentrations of MMHg and DMHg do not increase linearly with decreasing 

oxygen. This could result from scavenging and bioaccumulation in more productive 

waters, or limitations of microbial activity and bioavailable forms of inorganic Hg. 

 Elemental Hg was inversely related to N*, suggesting that denitrifiying bacteria 

in suboxic ocean waters may reduce inorganic Hg. Concentrations of HgT, MMHg, and 

DMHg decreased with westward distance and age of AAIW and increased with age in 

Pacific deep water masses unaffected by anthropogenic inputs. The buoyant 

hydrothermal vent plume stemming from the EPR was not enriched with Hg, however, 

geothermal heating along the rise may increase the flux of Hg from abyssal sediments.  

 

 

Acknowledgements  

I thank my U.S. GEOTRACES colleagues, especially co-chief scientists Chris German 

and James Moffett, and the captain and crew of the R/V Thompson. Cheryl Zurbrick, 

Claire Parker, Sara Rauschenberg, Rob Sherrell, Laura Richards, and Greg Cutter helped 

sample and filter water. Phoebe Lam and Dan Ohnemus sampled suspended particles. 

This research was supported by the U.S. National Science Foundation Chemical 

Oceanography Program. 

 

 

 

 

 

 



112 
 

References  

Anderson, R.N., Hobart, M.A. 1976. The relation between heat flow, sediment thickness, 

and age in the Eastern Pacific. J. Geophys. Res. 81, 2968–2989. 

Auger, N., Kofman, O., Kosatsky, T., Armstrong, B. 2005. Low-level methylmercury 

exposure as a risk factor for neurologic abnormalities in adults. Neurotoxicology. 

26, 149–157. 

Baya, P.A., Hollinsworth, J.L., Hintelmann, H. 2013. Evaluation and optimization of 

solid adsorbents for the sampling of gaseous methylated mercury species. Anal. 

Chim. Acta. 786, 61–69. 

Bender, M.L., Hudson, A., Graham, D.W., Barnes, R.O., Leinen, M., Kahn, D. 1985. 

Diagenesis and convection reflected in pore water chemistry on the western flank 

of the East Pacific Rise, 20 degrees south. Earth Planet. Sci. Lett. 76, 71–83. 

Bishop, J.K.B., Lam, P.J., Wood, T.J. 2012. Getting good particles: Accurate sampling of 

particles by large volume in-situ filtration. Limnol. Oceanogr.- Methods 10, 681‒

710. 

Bloom, N.S., Fitzgerald, W.F. 1988. Determination of volatile mercury species at the 

picogram level by low-temperature gas chromatography with cold-vapor atomic 

fluorescence detection. Anal. Chim. Acta. 208, 151‒161. 

Bloom, N.S. 1989. Determination of pictogram levels of methylmercury by aqueous 

phase ethylation, followed by cryogenic gas chromatography, with cold vapour 

atomic fluorescence detection. Can. J. Fish. Aquat. Sci. 46, 1131‒1140. 



113 
 

Bose-O’Reilly, S., McCarty, K.M., Steckling, N., Lettmeier, B. 2010. Mercury exposure 

and children’s health. Curr. Probl. Pediatr. Adolesc. Health Care 40, 186‒215. 

Bowman, K.L., Hammerschmidt, C.R. 2011. Extraction of monomethylmercury from 

seawater for low-femtomolar determination. Limnol. Oceanogr.-Methods 9, 121‒

128. 

Bowman, K.L., Hammerschmidt, C.R., Lamborg, C.H., Swarr, G. 2014. Mercury in the 

North Atlantic Ocean: The U.S. GEOTRACES zonal and meridional sections. 

Deep-Sea Res. II. DOI: 10.1016/j.dsr2.2014.07.004. 

Codispoti, L.A., Yoshinari, T., Devol, A.H. 2005. Suboxic respiration in the oceanic 

water column, in Respiration in the Aquatic Ecosystems, edited by P. Del Giorgio 

and W. Peter, pp.225–247, Oxford Univ. Press, Oxford, U.K.  

Cossa, D., Heimbürger, L.-E., Lannuzel, D., Rintoul, S.R., Butler, E.C.V., Bowie, A.R., 

et al. 2011. Mercury in the Southern Ocean. Geochim. Cosmochim. Acta 75, 

4037‒4052. 

Crane, K., Aikman III., F., Foucher, J.-P. 1987. The distribution of geothermal fields 

along the East Pacific Rise from 13°10’N to 8°20’N: Implications for deep seated 

origins. Mar. Geophys. Res. 9, 211–236. 

Crespo-Medina, M., Chatziefthimiou, A.D., Bloom, N.S., Luther III, G.W., Wright, D.D., 

Reinfelder, J.R., et al. 2009. Adaptation of chemosynthetic microorganisms to 

elevated mercury concentrations in deep-sea hydrothermal vents. Limnol. 

Oceanogr. 54, 41‒49.  



114 
 

Cutter, G.A., Bruland, K.W. 2012. Rapid and noncontaminating sampling system for 

trace elements in global ocean surveys. Limnol. Oceanogr-Meth. 10, 425‒430. 

Detrick,R.S., Williams, D.L., Mudie, J.D., Sclater, J.G. 1974. The Galapagos Spreading 

Centre: Bottom-water temperatures and the significance of geothermal heating. 

Geophys. J. Roy. Astr. S. 38, 627–637. 

DeVries, T., Primeau, F. 2011. Dynamically and observationally constratined estimates 

of water-mass distributions and ages in the global ocean. J. Phys. Oceanor. 41, 

2381–2401. 

Edna, Y., Joaquim, V., Lynn, G., Illeane, P., Ellen, S. 2003. Low level methylmercury 

exposure affects neuropsychological function in adults. Environ. Health. 2, 8. 

Fitzgerald, W.F., Gill, G.A. 1979. Subnanogram determination of mercury by two-stage 

gold amalgamation applied to atmospheric analysis. Anal. Chem. 51, 1714‒1720. 

Fitzgerald, W.F., Hammerschmidt, C.R., Bowman, K.L., Balcom, P.H., O’Donnell, J. 

2012. High Resolution distributions and fluxes of monomethyl and dimethyl 

mercury on the continental margin of the NW Atlantic. Abstract A0019 presented 

at 2012 Ocean Science Meeting, Salt Lake City, UT, 20-24 Feb. 

Fitzgerald, W.F., Lamborg, C.H., Hammerschmidt, C.R. 2007. Marine biogeochemical 

cycling of mercury. Chem. Rev. 107, 641‒662. 

 (FAO) Food and Agricultural Organization of the United Nations, 2014. The state of 

world fisheries and aquaculture. <www.fao.org/publications>. 



115 
 

Gebbie, G., Huybers, P. 2011. The mean age of ocean waters inferred from radiocarbon 

observations: sensitivity to surface sources and accounting for mixing histories. J. 

Phys. Oceanogr., 42, 291–305. 

Gruber, N., Sarmiento, J.L. 1997. Global patterns of marine nitrogen fixation and 

denitrification. Global Biogeochem. Cycles 11, 235–266. 

Hammerschmidt, C.R., Bowman, K.L. 2012. Vertical methylmercury distribution in the 

subtropical North Pacific Ocean. Mar. Chem. 132‒133, 77‒82. 

Hammerschmidt, C.R., Bowman, K.L., Tabatchnick, M.D., Lamborg, C.H. 2011. Storage 

bottle material and cleaning for determination of total mercury in seawater. 

Limnol. Oceanogr.-Methods 9, 426–431. 

Hammerschmidt, C.R., Fitzgerald, W.F. 2006. Bioaccumulation and trophic transfer of 

methylmercury in Long Island Sound. Arch. Environ. Contam. Toxicol. 51, 416‒

424. 

Hammerschmidt, C.R., Fitzgerald, W.F., Lamborg, C.H., Balcom, P.H., Visscher, P.T. 

2004. Biogeochemistry of methylmercury in sediments of Long Island Sound. 

Mar. Chem. 90, 31–52. 

Hammerschmidt, C.R., Lamborg, C.H., Fitzgerald, W.F. 2007. Aqueous phase 

methylation as a potential source of methylmercury in wet deposition. Atmos. 

Environ. 41, 1663‒1668. 

Heimbürger, L.-E., Cossa, D., Marty, J.-C., Migon, C., Averty, B., Dufour, A., Ras, J. 

2010. Methyl mercury distributions in relation to the prescence of nano- and 



116 
 

picophytoplankton in an oceanic water column (Ligurian Sea, North-western 

Mediterranean). Geochim. Cosmochim. Acta 74, 5549–5559. 

Hammerschmidt, C.R., Swarr, G.J., Bowman, K.L., Lamborg, C.H., Shelley, R.U. 2014. 

U.S. GEOTRACES: Air-sea exchange of mercury along zonal transects of the 

North Atlantic and eastern tropical South Pacific Oceans. Abstract 13897 

presented at 2014 Ocean Science Meeting, Honolulu, HI, 23-28 Feb. 

Holmes, C.D., Jacob, D.J., Yang, X. 2006. Global lifetime of elemental mercury against 

oxidation by atomic bromine in the free troposphere. Geophys. Res. Lett. 33, 

L20808, doi: 10.1029/2006GL027176. 

Innis, S.M., 2008. Dietary omega 3 fatty acids and the developing brain. Brain Res. 1237, 

35–43.  

Joyce, T.M., Warren, B.A., Talley, L.D. 1986. The geothermal heating of the abyssal 

sub-Arctic Pacific Ocean. Deep-Sea Res. 33:1003–1015.  

Karimi, R., Fitzgerald, T.P., Fisher, N.S. 2012. A quantitative synthesis of mercury in 

commercial seafood and implications for exposure in the United States. Environ. 

Health Perspect. 120, 1512–1519. 

Kawabe, M., Fujio, S. 2010. Pacific Ocean circulation based on observation. J. Oceanogr. 

66, 38–9403. 

Key, K., Constable, S., Liu, L., Pommier, A. 2013. Electrical image of passive mantle 

upwelling beneath the northern East Pacific Rise. Nature 495, 499–502.  

Kirk, J.L., St. Louis, V.L., Hintelmann, H., Lehnherr, I., Else, B., Poissant, L. 2008. 

Methylated mercury species in marine waters of the Canadian High and Sub 

Arctic. Environ. Sci. Technol. 42, 8367‒8373. 



117 
 

Kritee, K., Blum, J.D., Barkay, T. 2008. Mercury stable isotope fractionation during 

reduction of Hg(II) by different microbial pathways. Environ. Sci. Technol. 42, 

9171–9177. 

Lamborg, C.H., W.F. Fitzgerald, A.W.H. Damman, J.M. Benoit, P.H. Balcom, and D.R. 

Engstrom. 2002. Modern and historic atmospheric mercury fluxes in both 

hemispheres: global and regional mercury cycling implications. Global 

Biogeochem. Cycles 16:1104–1114. 

Lamborg, C.H., Hammerschmidt, C.R., Bowman, K.L., Swarr, G.J., Munson, K.M., 

Ohnemus, D.C., et al. 2014. A global ocean inventory of anthropogenic mercury 

based on water column measurements. Nature 512, 65–68. 

Lamborg, C.H., Hammerschmidt, C.R., Gill, G.A., Mason, R.P., Gichuki, S. 2012. An 

intercomparison of procedures for the determination of total mercury in seawater 

and recommendations regarding mercury speciation during GEOTRACES 

cruises. Limnol. Oceanogr-Methods 10, 90‒100. 

Lamborg, C.H., Von Damm K.L., Fitzgerald, W.F., Hammerschmidt, C.R., Zierenberg, 

R. 2006. Mercury and monomethylmercury in fluids from Sea Cliff submarine 

hydrothermal field, Gorda Ridge. Geophys. Res. Lett. 33, L17606. 

Laurier, F.J.G., Mason, R.P., Gill, G.A., Whalin, L. 2004. Mercury distributions in the 

North Pacific Ocean–20 years of observations. Mar. Chem. 90, 3–19. 

Lehnherr, I., St. Louis, V.L., Hintelmann, H., Kirk, J.L. 2011. Methylation of inorganic 

mercury in polar marine waters. Nat. Geosci. 4, 298‒302. 



118 
 

Ligi, M., Bonatti, E., Cuffaro, M., Brunelli, D. 2013. Post-Mesozoic rapid increase of 

seawater Mg/Ca due to enhanced mantle-seawater interaction. Scientific Reports 

3, 2752, doi: 10.1038/srep02752.   

Mason, R.P., Choi, A.L., Fitzgerald, W.F., Hammerschmidt, C.R., Lamborg, C.H., 

Soerensen, A.L., Sunderland, E.M. 2012. Mercury biogeochemical cycling in the 

ocean and policy implications. Environ. Res. 119, 101‒117. 

Mason, R.P, Fitzgerald, W.F. 1991. Mercury speciation in open ocean waters. Water Air 

Soil Poll. 56, 779‒798.  

Mason, R.P., Sullivan, K.A. 1999. The distribution and speciation of mercury in the 

South and equatorial Atlantic, Deep-Sea Res. PT II. 46, 937–956. 

Mergler, D., Anderson, H.A., Chan, L.H.M., Mahaffey, K.R., Murray, M., Sakamoto, M., 

Stern, A.H. 2007. Methylmercury exposure and health effects in humans: A 

worldwide concern. Ambio. 36, 3–11. 

Monperrus, M., Tessier, E., Amouroux, D., Leynaert, A., Huonnic, P., Donard, O.F.X. 

2007. Mercury methylation, demethylation and reduction rates in coastal and 

marine surface waters of the Mediterranean Sea. Mar. Chem. 107, 49‒63. 

Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd, P.W., 

Galbraith, E.D., … Ulloa, O. 2013. Processes and patterns of oceanic nutrient 

limitation. Nat. Geosci. 6, 701–710. 

Munson, K. M. 2014. Transformations of mercury in the marine water column. (Doctoral 

dissertation). Retrieved from Massachusetts Institute of Technology Libraries. 

http://hdl.handle.net/1721.1/87513. 



119 
 

Munson, K.M., Babi, D., Lamborg, C.H. 2014. Determination of monomethylmercury 

from seawater with ascorbic acid-assisted direct ethylation. Limnol. Oceanogr.-

Methods 12, 1–9. 

(NOAA) National Oceanic and Atmospheric Administration. 2014. El Niño/Southern 

Oscillation (ENSO): Historical information. Center for Weather and Climate 

Prediction. 

Oken, E., Radesky, J.S., Wright, R.O., Bellinger, D.C., Amarasiriwardena, C.J., 

Kleinman, K.P., Gillman, M.W. 2008. Maternal fish intake during pregnancy, 

blood mercury levels, and child cognition at age 3 years in a US cohort. Am. J. 

Epidemiol. 167, 117–11181. 

Resing, J.A., Sedwick, P., Soht, B. 2014. GEOTRACES Eastern Pacific Zonal Transect: 

Shipboard iron, manganese, and aluminum. Abstract 16887 presented at 2014 

Ocean  Science Meeting, Honolulu, HI, 23-28 Feb.  

Rintoul, S.R., Hughes, C.W., Olbers, D. 2001. The Antarctic Circumpolar Current 

system, in Ocean Circulation and Climate, edited by G. Siedler, pp.271–301, 

Elsevier, New York. 

Schaefer, J.K., Letowski, J., Barkay, T. 2002. Mer-mediated resistance and volatilization 

of Hg(II) under anaerobic conditions. Geomicrobiol. J. 19, 87–102. 

Siedler, G., Church, J., Gould, J. 2003. Ocean Circulation and Climate: Observing and 

Modelling the Global Ocean, Academic Press, AIP International Geophysics 

Series, Volume 77. 



120 
 

Stern, A.H. 2005. A review of the studies of the cardiovascular health effects of 

methylmercury with consideration of their suitability for risk assessment. 

Environ. Res. 98, 133–142. 

Sunderland, E.M. 2007. Mercury exposure from domestic and imported estuarine and 

marine fish in the U.S. seafood market. Environ. Health Persect. 115, 235–242. 

Sunderland, E.M., Krabbenhoft, D.P., Moreau, J.W., Strode, S.A., Landing, W.A. 2009. 

Mercury sources, distribution, and bioavailability in the North Pacific Ocean: 

Insights from data and models. Global Biogeochem. Cycles 23, GB2010. 

Talley, L.D. 2007. Hydrographic Atlas of the World Ocean Circulation Experiment 

(WOCE). Volume 2: Pacific Ocean (eds. M. Sparrow, P. Chapman and J. Gould), 

International WOCE Project Office, Southampton, U.K., ISBN 0-904175-54-5. 

Talley, L.D., Pickard, G.L., Emery, W.J., Swift, J.H. 2011. Descriptive Physical 

Oceanography: An Introduction (Sixth Edition), Elsevier, Boston, 560, pp.303–

362. 

Thompson, L., Johnson, G.C., 1996, Abyssal currents generated by diffusion and 

geothermal heating over rises. Deep-Sea Res. I. 43, 193–211. 

Tseng, C.-M., Hammerschmidt, C.R., Fitzgerald, W.F. 2004. Determination of 

methylmercury in environmental matrixes by on-line flow injection and atomic 

fluorescence spectrometry. Anal. Chem. 76, 7131‒7136. 

Višnjevec, A.M., Kocman, D., Horvat. M. 2014. Human mercury exposure and effects in 

Europe. Environ. Toxicol. Chem. 33, 1259–1270.  



121 
 

Whalin, L., Kim, E.-H., Mason, R. 2007. Factors influencing the oxidation, reduction, 

methylation and demethylation of mercury species in coastal waters. Mar. Chem. 

107, 278–294. 

 

 

 

 

 

 

 

 

 



122 
 

Table 4.1. Mean (± SD) concentrations of Hg species in filtered water from different water masses. All concentrations are pM and the 

number of concentration measurements are in parentheses. The average concentration of Hg
0
 in PDWM does not included elevated 

concentrations at Station 1 near the Peru margin.  

 

 

 

 

 

 

Water mass HgT Hg
0
 DMHg MMHg 

Mixed layer
a 

0.34 ± 0.35 (117) 0.041 ± 0.070 (114) 0.015 ± 0.041 (100) 0.056 ± 0.062 (79) 

Thermocline
b 

0.62 ± 0.38 (259) 0.049 ± 0.066 (246) 0.060 ± 0.072 (226) 0.069 ± 0.061 (185) 

AAIW 0.73 ± 0.18 (75) 0.029 ± 0.039 (72) 0.091 ± 0.069 (64) 0.058 ± 0.058 (49) 

AAIW/PDW
c 

0.75 ± 0.32 (71) 0.035 ± 0.051 (68) 0.050 ± 0.036 (64) 0.071 ± 0.043 (43) 

PDWM 1.25 ± 0.23 (55) 0.042 ± 0.030 (39) 0.12 ± 0.068 (56) 0.089 ± 0.057 (49) 

PDW 1.06 ± 0.28 (261) 0.029 ± 0.028 (216) 0.074 ± 0.068 (208) 0.049 ± 0.055 (114) 

LCDW 0.96 ± 0.15 (11) 0.035 ± 0.016 (11) 0.017 ± 0.011 (8) 0.012 ± 0.0075 (7) 
a
20–100 m, 

b
100-700 m, 

c
>1000-2000 m 
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Table 4.2. Mean (± SD) concentrations of Hg species (pM) in the upper water column (20–700 m) at upwelling and non-upwelling 

stations. The number of concentration measurements is in parentheses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stations HgTFilt. HgPart. Hg
0
 DMHg MMHgFilt. MMHgPart. 

Upwelling St. 1–9 0.90 ± 0.42 

(105) 

0.12 ± 0.092 

(42) 

0.011 ± 0.096 

(103) 

0.075 ± 0.070 

(105) 

0.085 ± 0.066 

(103) 

0.0012 ± 0.0014 

(43) 

Non-upwelling St. 10–36
 

0.40 ± 0.27 

(254) 

0.052 ± 0.052 

(98) 

0.023 ± 0.026 

(273) 

0.032 ± 0.062 

(221) 

0.052 ± 0.055 

(161) 

0.0071 ± 0.0099 

(100) 
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Figure 4.1.  U.S. GEOTRACES GP16 water sampling stations in the eastern tropical South Pacific Ocean. Stations with identification 

numbers were sampled with full depth profiles, unlabeled stations were demi-stations (upper 1000 m) or shelf stations. 
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Figure 4.2. Oxygen concentrations are overlayed with silicate contours (μmol kg
−1

) to 

identify water masses. Antarctic Intermediate Water (AAIW) is between 700–1000 m, 

AAIW mixes with Pacific Deep Water (PDW) from 1000–2000 m, PDW is found 

throughout the western and eastern portions of the transection >2000 m, Modified PDW 

(PDWM) is found between 2000–4000 m east of the East Pacific Rise (EPR), and Lower 

Circumpolar Deep Water (LCDW) is found west of the EPR >4000 m (Kawabe and 

Fujio, 2010; Talley et al., 2011). Sampling points are shown as black dots and stations 

with full-depth profiling are identified numerically in the gray bathymetric section.  
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(A) 

 

 

(B) 

 

 

 

 

Figure 4.3.  Concentrations of filtered (panel A) and suspended particulate (panel B) 

HgT in the eastern South Pacific Ocean. Sampling points are shown as black dots and full 

station numbers are listed throughout the gray bathymetric section.  
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Figure 4.4. Filtered and particulate HgT and Hg
0
 in the water column on the continental 

shelf (Stations 2–3) and slope (Station 4) near Peru.  
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Figure 4.5. Oxygen concentrations decrease in AAIW (700–1000 m) from east to west 

across the transect (panel A). Filtered HgT (r
2
 = 0.1, p = 0.01) decreases as AAIW ages 

moving west (panel B). 
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Figure 4.6. Potential temperature decreases with depth west of the EPR crest and remains 

constant with depth east of the crest due to geothermal heating along the rise.  
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Figure 4.7. Mean (± SD) Hg:Premin ratios in bottom water <1000 m from abyssal 

sediments. Station numbers are listed in the bars. The dashed line at Hg:Premin = 1 

represents the deep water ratio expected in waters that only accumulate Hg released from 

sinking biological material (Lamborg et al., 2014).  
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Figure 4.8. Elemental Hg distribution in eastern South Pacific Ocean. Sampling points 

are shown as black dots and full station numbers are listed throughout the gray 

bathymetric section.  
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Figure 4.9. Elemental Hg (Hg
0
) was inversely related to degree of denitrification in 

mixed layer and thermocline waters (20–700 m; r
2
 = 0.3, p < 0.001). N* was calculated 

according to Gruber and Sarmiento (1991); N* = 0.87(NO3 − 16PO4 + 2.95).  
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(C) 

  

 

Figure 4.10. Concentrations of DMHg (panel A), filtered MMHg (panel B), and 

suspended particulate MMHg (panel C). Sampling points are shown as black dots and full 

station numbers are listed throughout the gray bathymetric section. 
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Figure 4.11. Filtered and particulate MMHg, and DMHg in the water column on the 

continental shelf (Stations 2–3) and slope (Station 4) near Peru.  
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Figure 4.12. Filtered MMHg (r
2
 = 0.2, p = 0.002) and DMHg (r

2
 = 0.4, p < 0.0001) 

appear to decrease in AAIW (700–1000 m) moving west across the section (slope = –

0.0001 for both DMHg and MMHg). 
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Figure 4.13. DMHg and filtered MMHg concentrations related to dissolved oxygen 

(DMHg, r
2
 = 0.3, p < 0.0001; MMHg, r

2
 = 0.2, p < 0.0001) in thermocline waters (100–

700 m). Closed circles are upwelling Stations 1–9 and open circles are non-upwelling 

Stations 10–36. 
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5. THE BEHAVIOR AND DISTRIBUTION OF METHYLATED MERCURY 

COMPARED BETWEEN THE NORTH ATLANTIC AND EASTERN TROPICAL 

SOUTH PACIFIC OCEANS  

 

Abstract  

Monomethylmercury (MMHg) and dimethylmercury (DMHg) are present in the 

ocean at femtomolar concentrations, making their detection and separation challenging. 

Using methods described in Chapter 2, high-resolution vertical profiles of MMHg and 

DMHg were obtained during two expansive sections in the North Atlantic and eastern 

tropical South Pacific Oceans, culminating in the largest data set of methylated Hg in the 

ocean. Increased concentrations of MMHg and DMHg were observed in the subsurface 

chlorophyll maximum and more commonly in low-oxygen thermocline waters. 

Dimethylmercury concentrations correlated with redox sensitive metals, increasing with 

Fe and Co reduction and decreasing with Mn reduction. In the Atlantic thermocline, Fe 

and Co correlated with decreasing MMHg and increasing DMHg, suggesting that MMHg 

is methylated to DMHg during Fe and Co reduction. In the thermocline of the Atlantic 

and Pacific Oceans, MMHg concentrations were typically two-fold greater than DMHg, 

Total methylated Hg (MMHg + DMHg) was related to apparent oxygen utilization, 

however, comparison between the two basins over a wide range of oxygen concentrations 

suggests that other factors may be of greater importance for controlling mercury 

methylation. Dimethylmercury was the dominant form of methylated Hg in most deep 

water masses and concentrations of both DMHg and MMHg increased in aging Pacific 

deep water. Increased concentrations of MMHg and DMHg in deep North Atlantic waters 
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may be related to anthropogenic mercury inputs. Analytical separation of methylated Hg 

species revealed unique and independent distributions of MMHg and DMHg. These data 

suggest that MMHg and DMHg are produced throughout the water column in oxygenated 

subsurface waters, low-oxygen thermocline waters, and likely in deep water masses 

during thermohaline circulation.  

5.1. Introduction 

Current knowledge of inorganic mercury (Hg) methylation originates from 

incubation experiments conducted with sediment and pore water (Compeau and Bartha, 

1985; Gilmour et al., 1992; Benoit et al., 2003; Hammerschmidt et al., 2004, 2008), pure 

cultures of microbes (Wood et al., 1968; King et al., 2000; Kerin et al., 2006; Hamelin et 

al., 2011; Schaefer et al., 2011; Parks et al., 2013; Gilmour et al., 2013), and seawater 

(Celo et al., 2006; Monperrus et al., 2007; Lehnherr et al., 2011; Munson, 2014). The 

most extensively studied medium is anoxic sediment, where sulfate-reducing bacteria 

(SRB) are the primary methylators (Compeau and Bartha, 1985; Gilmour et al., 1992; 

Benoit et al., 2003), and production of monomethylmercury (MMHg) appears to be 

limited by the availability and speciation of inorganic Hg (Hammerschmidt and 

Fitzgerald, 2004; Hammerschmidt et al., 2008; Gilmour et al., 2013; Hsu-Kim et al., 

2013). Neutrally charged complexes, such as HgS
0
, are thought to be the most 

bioavailable forms of inorganic Hg (Benoit et al., 2003), however, facilitated diffusion 

and active transport across cell membranes may shuttle other forms of Hg into cells 

where methylation occurs (Hsu-Kim et al., 2013).  

Cultures of SRB, iron-reducing bacteria, and methanogens have been observed to 

produce MMHg from inorganic Hg substrate (Wood et al., 1968; King et al., 2000; Kerin 
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et al., 2006; Hamelin et al., 2011; Schaefer et al., 2011; Gilmour et al., 2013). Inside the 

cell, MMHg production has been linked to the reductive acetyl-coenzyme A (CoA) 

pathway, a biochemical process involving the synthesis of methylcobalamin (vitamin 

B12; Choi et al., 1994). More recently, and upon discovery of the hgcAB gene cluster 

responsible for Hg methylation in SRB (Parks et al., 2013), a more diverse group of 

anaerobic microorganisms has been observed to methylate Hg, including fermentative, 

acetogenic, and cellulolytic microorganisms (Gilmour et al., 2013). The hgcA gene 

encodes a corrinoid-dependent protein (HgcA) similar to the corrinoid iron-sulfur protein 

required for methyltransferase in the acetyl-CoA pathway. Methyl transfer reactions can 

occur only after cobalt within the HgcA protein is reduced (Co
2+

 to Co
+
), and this is 

thought to be facilitated by the HgcB ferrodoxin protein encoded by hgcB (Choi et al., 

1994; Parks et al., 2013). Transfer of a methyl group to inorganic Hg is presumed to 

occur during these methyl transfer reactions.  

Microorganisms identified as potential methylators in pore water and bacteria 

cultures require anoxic conditions for their metabolism to be thermodynamically 

favorable, however, seawater incubation tests with isotopically enriched 
199

Hg and 
198

Hg 

have demonstrated MMHg production under oxic conditions (Monperrus et al., 2007; 

Lehnherr et al., 2011). Methylation in oxic water may result from either abiotic reactions 

(Celo et al., 2006), biotic reactions involving anaerobic bacteria in hypoxic 

microenvironments (e.g., suspended particles), or by other microbes with an 

undiscovered ability to methylate inorganic Hg. In Arctic Ocean waters, the rate of 

MMHg decomposition measured using CH3
201

Hg was two orders of magnitude greater 

than the methylation rate, resulting in a fast approach to steady-state concentrations (4–10 
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d; Lehnherr et al., 2011). In waters of the Mediterranean Sea, CH3
201

Hg decomposition 

was observed under both light and dark incubation conditions, suggesting decomposition 

by both photochemical and microbial demethylation pathways (Monperrus et al., 2007).  

Oceanographic field observations have consistently revealed elevated 

concentrations of methylated Hg in low-oxygen regions of the water column, particularly 

oxygen minimum zones (OMZ) that persist in the thermocline (Mason et al., 2012). 

Multiple studies have observed significant correlations between either MMHg, 

dimethylmercury (DMHg), or total methylated Hg (MMHg + DMHg) and apparent 

oxygen utilization (AOU; Mason and Fitzgerald, 1991; Mason and Sullivan, 1999; Kirk 

et al., 2008; Sunderland et al., 2009; Heimbürger et al., 2010; Cossa et al., 2011; 

Lehnherr et al., 2011), a proxy for heterotrophic microbial activity. Other studies, 

however, have reported elevated concentrations of methylated Hg in the well-oxygenated 

subsurface chlorophyll maximum in addition to the OMZ, apparently negating the 

dependence of Hg methylation on low-oxygen conditions (Heimbürger et al., 2010; 

Heimbürger et al., in review; Bowman et al., 2014). Seminal investigations of methylated 

Hg in the ocean were limited by a lack of measurements in deep water, analytical 

challenges including high detection limits, and the determination of total methylated Hg 

instead of independent measurements of MMHg and DMHg. Seawater incubation tests 

observed production of DMHg from Hg(II) and from methylation of MMHg, but at rates 

much slower than the production of MMHg (Lehnherr et al., 2011). While DMHg has 

been reported as the dominant species of methylated Hg in the deep ocean (Cossa et al., 

1997; Mason and Sullivan, 1999; Mason et al., 1995), its production and interaction with 

MMHg has been understudied.  
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 Results from the U.S. GEOTRACES North Atlantic Zonal Transect (Chapter 3, 

Atlantic, GA03) and Eastern Pacific Zonal Transect (Chapter 4, Pacific, GP16) were used 

to examine the behavior of MMHg and DMHg in upper water column, thermocline, and 

deep waters of these two ocean basins. 

5.2. Results  

5.2.1 Subsurface chlorophyll maximum  

A subsurface chlorophyll maximum is often located at the lower boundary of the 

euphotic zone, where either upwelling or vertical diffusion delivers dissolved nutrients 

from depth and there is sufficient sunlight to support primary production (Feely et al., 

2004). Subsurface maxima of methylated Hg have been reported previously in the 

Mediterranean Sea, where they were associated with the microbial loop and active nano- 

and picophytoplankton (Heimbürger et al., 2010). Maxima of MMHg also were observed 

near the subsurface chlorophyll maximum in both the Atlantic and Pacific Oceans. Few 

DMHg maxima were observed at the subsurface chlorophyll maximum in the Atlantic 

Ocean, but were found commonly in the upwelling region of the eastern equatorial 

Pacific Ocean (Chapters 3–4). In the oxygenated subsurface chlorophyll maximum, 

MMHg concentrations were greater than those of DMHg. Below the subsurface 

chlorophyll maximum, rates of net primary production decrease and both DMHg and 

MMHg increase with decreasing oxygen (Fig. 5.1). In the surface mixed layer (<100 m 

depth), concentrations of DMHg correlated with redox-sensitive iron (Fe), manganese 

(Mn), and cobalt (Co), and these relationships were strongest in the upwelling region of 

the eastern Pacific Ocean (Fig. 5.2). In suboxic areas of the Pacific upwelling region, 

Fe(III) is used as a terminal electron acceptor and concentrations of DMHg and filtered 
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Fe were positively correlated. DMHg concentrations also increased with filtered Co in 

the mixed layer of the Pacific, which is indicative of Co reduction from highly insoluble 

Co
3+

 to Co
2+

 (Saito et al., 2004). DMHg was unrelated to Co in the Atlantic, where 

greater concentrations of oxygen in the Atlantic surface waters may have precluded Co 

reduction. These findings are consistent with microbial culture studies that link microbial 

Fe- and Co-reduction to methylation of inorganic Hg (Choi et al., 1994; Kerin et al., 

2006; Ekstrom and Morel, 2008; Gilmour et al., 2013). In contrast to relationships with 

Fe and Co, concentrations of DMHg were inversely related to filtered Mn, which 

suggests electrochemical reduction of Mn (increasing filtered Mn) decreases DMHg. 

Potential demethylation during Mn reduction is a unique observation – Mn oxides are 

known to bind MMHg which can be released during Mn reduction (Desauziers et al., 

1997) and would more likely be associated with increasing rather than decreasing 

concentrations of methylated Hg. There were no significant correlations between MMHg 

and redox-sensitive metals, suggesting that redox conditions favor the production of 

DMHg more than that of MMHg.  

5.2.2 Thermocline waters  

Concentrations of filtered total methylated Hg (MMHg + DMHg) were maximum 

in Atlantic thermocline waters (100–1000 m), and changes in the MMHg:DMHg molar 

ratio with depth suggest that MMHg is methylated to DMHg under low-oxygen 

conditions. Suspended particles in the Atlantic contained <1% of total MMHg in the 

water column and were not included in this analysis. There was a weak but significant 

correlation between total methylated Hg and AOU, and the relationship was best fit by a 

second-order polynomial function, similar to results in the North Pacific (Sunderland et 
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al, 2009; Fig. 5.3a). The highest concentrations of methylated Hg were observed between 

100–150 μmol kg
–1

 AOU. Where oxygen consumption in the thermocline was relatively 

low (AOU < 50 μmol kg
–1

), MMHg concentrations were up to 80× greater than those of 

DMHg, potentially from MMHg production in overlying water (e.g., subsurface 

chlorophyll maximum) and vertical transport into the thermocline (Fig. 5.3b). 

Alternatively, MMHg production may be favored relative to that of DMHg when AOU is 

low. Where AOU was greater than 75 μmol kg
–1

 in the thermocline, MMHg:DMHg 

molar ratios decreased to an average of 2 ± 2 (n = 60).   

Dimethylmercury was positively correlated with AOU (r
2
 = 0.1, p < 0.0001) as 

well as Co and Fe in the Atlantic thermocline (Fig.5. 4a). Concentrations of dissolved 

oxygen were >50 μmol kg
–1

 in the OMZ of the North Atlantic, which is inconsistent with 

methylation by anaerobic microbes. However, anoxic/hypoxic microenvironments in 

sinking particles may harbor microbes that reduce Co and Fe and produce DMHg. 

Correlations between DMHg, Co, and Fe in the thermocline are consistent with 

increasing DMHg under reducing conditions at the subsurface chlorophyll maximum 

(Fig. 2), but inconsistent with decreasing DMHg associated with Mn reduction (p = 0.07). 

Concentrations of MMHg were not correlated with AOU in thermocline waters of the 

North Atlantic (p = 0.7) and were related inversely with those of Co and Fe (Fig. 5.4b), in 

contrast to DMHg. Concentrations of total methylated Hg were unrelated to either filtered 

Co (p = 0.9) or Fe (p = 0.2). Decreasing MMHg with increasing DMHg suggests that pre-

formed MMHg is methylated to DMHg during Co and Fe reduction in the thermocline of 

the North Atlantic. These results suggest that DMHg produced under oxic and low-
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oxygen conditions drives the correlation between total methylated Hg and AOU in 

Atlantic thermocline waters.  

Total methylated Hg also was maximum in the Pacific thermocline and related to 

AOU by a second-order function (Fig. 5.3c), similar to the relationship observed in the 

Atlantic (Fig. 5.3a), although the maximum inflection point in the Pacific was shifted 

toward higher AOU. Suspended particles in the Pacific also contained minimal 

concentrations of MMHg (≤1% total methylated Hg) and only filtered concentrations 

were used for this comparison. High primary production in the upwelling region of the 

eastern Pacific stimulated greater oxygen consumption in the thermocline, and maximum 

concentrations of total methylated Hg were observed between 150–200 μmol kg
–1 

AOU. 

Unlike in the Atlantic where MMHg:DMHg ratios varied 80-fold when AOU was < 50 

μmol kg
−1

, MMHg:DMHg ratios in the Pacific varied by less than an order of magnitude 

and averaged 2 ± 3 (n = 146). Where AOU concentrations were >100 μmol kg
−1

, 

MMHg:DMHg molar ratios in the thermocline were similar between the North Atlantic 

and eastern South Pacific (Mann-Whitney Rank Sum, p = 0.5). Unlike in the Atlantic, the 

correlation between total methylated Hg and AOU in the Pacific was driven by MMHg 

(r
2
 = 0.1, p < 0.0001 for MMHg vs. AOU; p = 0.7 for DMHg vs. AOU). 

Monomethylmercury (r
2
 = 0.03, p = 0.02) and DMHg (r

2
 = 0.1, p < 0.0001 DMHg) were 

related positively to filtered Co, but unrelated to either Fe or Mn in the Atlantic 

thermocline. The lack of correlation between total methylated Hg and other redox-

sensitive metals in the Pacific may result from efficient metal scavenging in productive 

upwelling waters. 
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In the thermocline of both the North Atlantic and eastern South Pacific Oceans, 

concentrations of filtered DMHg and MMHg were related positively to filtered total Hg 

(HgT), and the slopes for each species were similar between basins (Fig. 5.5). These 

relationships suggest that in thermocline waters, on average about 10% of total Hg is as 

DMHg and 5–6% as MMHg, which is inconsistent with average MMHg:DMHg molar 

ratios in the thermocline (2 ± 2 in Atlantic, n = 60; 2 ± 3 in Pacific, n = 146). Weak 

correlation coefficients (Fig. 5.5) and relatively high variability of MMHg:DMHg ratios 

(± 100–150%) highlight the fact that while we can make generalizations, the behavior of 

MMHg and DMHg in thermocline waters is often unpredictable. Filtered total Hg was 

positively correlated with AOU in the Atlantic and Pacific thermoclines (Fig. 5.6), but 

unlike methylated Hg the relationship was linear. The decrease of total methylated at 

AOU >150-200 μmol kg
−1

, coincident with a continued increase of filtered HgT, suggests 

that methylation rates may decrease beyond a certain point after depletion of bioavailable 

forms of inorganic Hg or exhaustion of organic molecules needed to sustain the 

metabolisms of specific methylating microorganisms.  

Concentrations of filtered HgT, MMHg, and DMHg in thermocline waters were 

not significantly different between the eastern Pacific upwelling region and the North 

Atlantic (Kruskal-Wallis One Way ANOVA, p < 0.05), however, the sources of Hg were 

different. Lamborg and colleagues (2014) found a 1:1 pmol/μmol ratio of filtered HgT to 

remineralized phosphorus (Hg:Premin) in waters unaffected by anthropogenic Hg inputs 

that receive Hg and P from decomposing biological material. In the Pacific upwelling 

region, Hg scavenged at the surface is released during recycling and remineralization 

processes in the thermocline and the Hg:Premin. ratio was 0.7 ± 0.3 (n = 60). This suggests 
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that while filtered HgT concentrations in the upwelling region were elevated relative to 

non-upwelling thermocline waters in the section (Table 5.1), the Hg originated from a 

natural source. In younger waters of the Atlantic thermocline the Hg:Premin. ratio was 2 ± 

1 (n = 258) indicating that there is excess Hg present due to anthropogenic inputs. While 

Hg originated from different sources, similar concentrations of HgT in the Atlantic and 

Pacific upwelling thermoclines resulted in similar concentrations of MMHg and DMHg 

(Kruskal-Wallis One Way ANOVA, p < 0.05; Table 5.1).   

5.2.3 Deep waters 

Aging deep water in the Pacific accumulated both MMHg and DMHg (Table 5.2) 

and in the Atlantic, deep water contains significantly more methylated Hg due to 

anthropogenic inputs (Fig. 5.6a). Deep water in the Atlantic (North Atlantic Deep Water, 

NADW and Antarctic Bottom Water, AABW) was impacted by anthropogenic Hg inputs 

(Hg:Premin > 1; Lamborg et al., 2014), and total methylated Hg increased with the 

Hg:Premin ratio (Fig. 5.7a). Dimethylmercury and MMHg were independently correlated 

with Hg:Premin (r
2
 = 0.07, p = 0.006 for DMHg; r

2
 = 0.3, p < 0.0001 for MMHg). Atlantic 

thermocline waters also contain anthropogenic Hg (Hg:Premin > 1; Lamborg et al., 2014),  

but there was no correlation with Hg:Premin (p = 0.2; Fig. 5.7b). Demethylation in 

thermocline waters may have removed excess MMHg and DMHg (Lehnherr et al., 2011) 

produced from inputs of anthropogenic Hg while slower demethylation rates in deep 

water, due to the absence of sunlight (Monperrus et al., 2007), preserved greater 

concentrations of methylated Hg. Overall, deep water in the Atlantic had 1.4× more total 

methylated Hg, on average, than deep water in the Pacific that did not receive 

anthropogenic Hg inputs. 
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In Pacific deep water masses unaffected by anthropogenic Hg, concentrations of 

MMHg and DMHg increased with age (Lower Circumpolar Deep Water (LCDW) < 

Pacific Deep Water (PDW) < Modified PDW (PDWM); Kruskal-Wallis One Way 

ANOVA, p < 0.05), with MMHg and DMHg in similar proportions to each other (Table 

5.2). The only exception was MMHg which was similar between LCDW and PDW (p > 

0.05). In the Pacific section, no external sources of MMHg or DMHg to deep water 

masses were identified; MMHg in suspended particles was too low (< 0.001 pM at depths 

> 2000 m) to release notable amounts of filtered MMHg, and there was no increase in 

either MMHg or DMHg at the sediment-water interface near abyssal sediments, or within 

the buoyant hydrothermal vent plume released from the East Pacific Rise (Chapter 4). 

Methylation of inorganic Hg in deep water masses has not been studied, however, these 

results suggest that deep water methylation likely occurs.  

Dimethylmercury was the dominant form of methylated Hg in NADW, PDW, and 

PDWM, and concentrations of DMHg and MMHg were similar in LCDW and AABW 

(Table 5.2). Greater concentrations of DMHg relative to MMHg may result from 

increased stability of DMHg in cold, deep water masses (Mason and Fitzgerald, 1993; 

Mason et al, 1998). Methylation of MMHg to DMHg was not likely a source of increased 

DMHg because methylation rates measured in polar surface waters were 1–2 orders of 

magnitude slower for DMHg (produced from Hg(II) and MMHg) compared to 

methylation of Hg(II) to MMHg (Lehnherr et al., 2011). Net methylation of MMHg 

would have to be sufficient enough to replace what is lost to demethylation while still 

accumulating greater concentrations with age. The MMHg:DMHg molar ratios of deep 

water masses may be influenced by the original composition of the water mass prior to 



148 
 

subduction. For example, in the Arctic Ocean, Andersson and colleagues (2008) found 

elevated concentrations of dissolved gaseous Hg (DMHg + Hg
0
) in ice covered waters. 

Seasonal ice cover at subduction regions may prevent evasion of DMHg, causing polar 

surface waters to accumulate DMHg in excess of MMHg. 

5.3. Conclusions  

High vertical and horizontal resolution sampling, sufficiently low detection limits, 

and separation of MMHg and DMHg have resulted in this being the most comprehensive 

data set of methylated Hg in the ocean. Distributions of MMHg and DMHg across two 

expansive ocean sections suggest that MMHg and DMHg are produced throughout the 

entire water column; in oxygenated subsurface waters, low-oxygen thermocline waters, 

and likely in deep water masses. At the subsurface chlorophyll maximum, DMHg 

correlated with redox-sensitive metals, increasing in concentration concomitantly with Fe 

and Co reduction and decreasing as Mn is reduced. Positive correlations between DMHg, 

Fe, and Co were also found in the Atlantic thermocline and correlated inversely with 

MMHg, suggesting that methylation of MMHg was a source of DMHg under low-oxygen 

conditions. Monomethylmercury was typically 2-fold greater than DMHg in the 

thermocline of the Atlantic and Pacific Oceans. 

There was some correlation between total methylated Hg and AOU, however, 

concentrations of methylated Hg decreased as remineralization progressed, despite a 

continued increase in filtered HgT. This pattern may reflect the exhaustion of 

bioavailable forms of inorganic Hg and organic molecules needed to sustain the 

metabolism of methylating microorganisms. Methylated Hg correlates with oxygen 

consumption in thermocline waters of multiple ocean basins (Mason et al, 2012), 
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suggesting that the greatest concentrations of MMHg and DMHg would be found in 

highly productive, suboxic thermocline waters. However, this is not true due to inputs of 

anthropogenic Hg. Concentrations of MMHg and DMHg were similar between Atlantic 

thermocline waters affected by anthropogenic Hg inputs and highly productive upwelling 

waters in the eastern Pacific, despite substantial differences in oxygen concentrations 

(Pacific upwelling OMZ <10 μM O2, Atlantic OMZ >50 μM O2). Enrichment of MMHg 

and DMHg in waters affected by anthropogenic Hg needs to be considered when 

comparing oceanographic surveys and building budgets of methylated Hg in the global 

ocean. 

Monomethylmercury and DMHg were increased significantly in Atlantic deep 

water containing greater concentrations of anthropgoenic Hg compared to deep waters in 

the Pacific. In the Pacific, where deep water was not affected by anthropogenic Hg, 

methylated Hg increased with water mass age. Dimethylmercury was often the dominant 

form of methylated Hg in deep water masses. In order for DMHg to excede MMHg in the 

deep ocean, methyation dynamics would have to be signifiacntly different from surface 

waters. Alternatively, the MMHg:DMHg ratio in deep water masses may reflect the 

original compositon of the water mass at the surface prior to subduction and thermohaline 

circulation. 
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Table 5.1. Mean (± SD) concentrations (pM) of filtered HgT, MMHg, and DMHg in 

thermocline waters of the North Atlantic (100–1000 m), and equatorial South Pacific 

(100–700 m) Oceans at upwelling (Stations 1–9) and non-upwelling (Stations 10–36) 

locations. The number of measured concentrations is in parentheses.  

Region HgT MMHg DMHg 

Atlantic 

 
0.9 ± 0.3 (296) 0.11 ± 0.10 (189) 0.09 ± 0.11 (207) 

Pacific upwelling (St.1–9) 

 
1.0 ± 0.4 (69) 0.09 ± 0.06 (67) 0.09 ± 0.07 (70) 

Pacific non-upwelling 

(St.10–36) 
0.5 ± 0.3 (190) 0.06 ± 0.06 (118) 0.04 ± 0.07 (156) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



156 
 

Table 5.2. Mean (± SD) concentrations (pM) of filtered MMHg and DMHg in deep water masses of the North Atlantic (North 

Atlantic Deep Water, NADW; Antarctic Bottom Water, AABW), and equatorial South Pacific Oceans (Lower Circumpolar Deep 

Water, LCDW; Pacific Deep Water, PDW; Modified Pacific Deep Water, PDWM). The number of measured concentrations is in 

parentheses. The Mann-Whitney Rank Sum test was used to compare concentrations of MMHg and DMHg in each water mass. 

Water mass MMHg DMHg MMHg:DMHg MMHg vs. DMHg (p-value) 

NADW 0.087 ± 0.096 (94) 0.14 ± 0.11 (88) 1.3 ± 1.4 (47) <0.001 

AABW 0.13 ± 0.10 (14) 0.16 ± 0.11 (20) 0.85 ± 0.90 (10) 0.3 

LCDW 0.012 ± 0.0075 (7) 0.017 ± 0.011 (8) 1.3 ± 1.2 (7) 0.3 

PDW 0.049 ± 0.055 (114) 0.074 ± 0.068 (208) 1.2 ± 1.4 (100) <0.001 

PDWM 0.089 ± 0.057 (49) 0.12 ± 0.068 (56) 0.93 ± 1.0 (36) <0.001 
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Figure 5.1. DMHg (panel A) and MMHg (panel B) maxima are found in oxygenated and 

low-oxgyen waters at depths near the subsurface cholorophyll maximum (70–100 m). 

Red diamonds are data from the North Atlantic Zonal Transect (North Atlantic) and blue 

circles are data from the Eastern Pacific Zonal Transect (Eastern Pacific).   
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Figure 5.2. Correlations between DMHg and filtered Fe, Mn, and Co in the upper water 

column (< 100 m depth) in the Pacific upwelling region (panels A–C) and North Atlantic 

Ocean (panels D–F). Unpublished Fe, Mn, and Co data was obtained with permission 

from the National Science Foundation Biological & Chemical Oceanography Data 

Management Office (www.bco-dmo.org).  
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Figure 5.3.  Total methylated Hg (MMHg + DMHg) was correlated with AOU in the 

thermocline of the North Atlantic (panel A; 100–1000 m) and eastern Pacific Oceans 

(panel C; 100–700 m). The MMHg:DMHg molar ratios in the thermocline of the Atlantic 

(panel B) and Pacific Oceans (panel D).  
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Figure 5.4. Dimethylmercury (panel A) was postively correlated with filtered Co (r
2
 = 

0.05, p = 0.009) and Fe (r
2
 = 0.1, p < 0.0001) in Atlantic thermocline waters (100–1000 

m). Methylmercury (panel B) was inversely related to filtered Co (r
2
 = 0.1, p < 0.0001) 

and Fe (r
2
 = 0.04, p = 0.02). 
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Figure 5.5. MMHg and DMHg were positively correlated with total Hg in thermocline 

waters of the North Atlantic (panel A, 100–1000 m) and equatorial South Pacific Oceans 

(panel B, 100–700 m).  Linear regression statistics: Atlantic (r
2
 = 0.04, p = 0.006), 

Atlantic (r
2
 = 0.1, p < 0.0001), Pacific MMHg (r

2
 = 0.1, p = 0.0002), Pacific DMHg (r

2
 = 

0.3, p < 0.0001). Linear regression slopes were similar for MMHg (0.06 ± 0.02 Atlantic, 

0.05 ± 0.01 Pacific) and  DMHg (0.1 ± 0.03 Atlantic, 0.1 ± 0.1 Pacific). for both Atlantic 

and Pacific).  
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Figure 5.6. Total Hg was positively correlated with AOU in the thermocline of the North 

Atlantic (panel A; 100–1000 m) and eastern Pacific Oceans (panel B; 100–700 m).  
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Figure 5.7. Total methylated Hg (MMHg + DMHg) concentrations increase with the 

Hg:Premin ratio in deep waters (>1500 m) of the North Atlantic (NADW and AABW, 

panel A). Results from Station 16 were not included because of external inputs from the 

TAG hydrothermal vent field. There is no significant correlation between methyatled Hg 

and Hg:Premin (p = 0.2) in Atlantic thermocline waters (panel B; 100–1000 m). 
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Appendix A. Storage bottle material and cleaning for determination of total 

mercury in seawater 
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Abstract 

Accurate determinations of trace levels of mercury (Hg) in water require scrupulously 

clean sampling equipment and storage bottles.  To avoid Hg contamination during 

storage, it has been presumed that water samples must be stored in either glass or Teflon
®
 

bottles cleaned with a rigorous method, such as submersion in hot acid.  These cleaning 

procedures are hazardous, and use of Teflon
®
 bottles can be cost prohibitive for major 

oceanographic programs. We investigated the suitability of alternative cleaning 

procedures and bottle materials for storage of seawater containing sub-picomolar levels 

of Hg.  We found that a simple technique with detergent, dilute acid, and bromine 

monochloride removes Hg from all bottle materials tested, which included FEP Teflon
®
, 

glass, polycarbonate (PC), low-density polyethylene (LDPE), and fluorinated 

polyethylene (FLPE).  The technique is effective for bottles that are either new or used 

previously for trace-level oceanographic samples (total Hg < 10 pM).  Stability of 

seawater Hg levels differed dramatically among storage bottle materials during a 74-

week test.  Hg in seawater stored in LDPE, FLPE, and FEP bottles increased within 15 

weeks of storage at room temperature.  In contrast, Hg levels in seawater stored in PC 

bottles were increased modestly only after 74 weeks of storage and those in glass bottles 

were unchanged throughout the test.  We recommend future use of this new cleaning 

method and encourage greater utilization of glass and PC bottles for storage of waters 

containing low levels of Hg.     
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Introduction 

 Accurate determinations of trace metals in seawater require sensitive 

instrumentation, a clean analytical environment, and scrupulously clean sampling 

equipment and storage bottles (Patterson and Settle, 1976; Gill and Fitzgerald, 1985).  

Techniques for quantification of total mercury (Hg) in seawater are mature and well 

refined, including determination by cold-vapor atomic fluorescence spectrometry 

(CVAFS; Bloom and Fitzgerald, 1988) and inductively coupled plasma mass 

spectrometry (Haraldsson et al., 1989), and trace-metal clean techniques that ensure 

sample integrity during collection and processing have been known for decades (Gill and 

Fitzgerald, 1985).  To avoid Hg contamination during storage, it has been presumed that 

water samples must be stored in either glass or Teflon
®
 bottles cleaned with a rigorous 

method, such as submersion in hot acid (U.S. EPA, 2002).  Although this cleaning 

method and bottle materials are known to be effective for long-term archival of waters 

having relatively high levels of total Hg (> 5 pM; Parker and Bloom, 2005), they are 

unproven for oligotrophic seawater, which contains commonly 0.2–2 pM total Hg 

(Fitzgerald et al., 2007).  Moreover, bottles made of Teflon, typically fluorinated ethylene 

propylene (FEP), are about 10−100× more expensive than those made of other 

hydrocarbon polymers or glass, and such cleaning procedures are hazardous and limited 

by the number of bottles that can be cleaned simultaneously.  These constraints are not 

conducive for large-scale oceanographic research programs, such as GEOTRACES, in 

which hundreds of water samples will be collected during each expedition and may be 

stored for an extended period prior to analysis. 
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Here, we examine two basic questions about bottles used to store seawater for Hg 

analysis: 1) By what alternative methods to hot acid, if any, can bottles made of FEP and 

other materials be cleaned so that they will not contaminate seawater with Hg? 2) Are Hg 

concentrations in seawater stable (i.e., no increase or decrease) during prolonged storage 

periods in FEP and other bottle materials?  These questions were investigated during a 

17-month laboratory test of bottle cleanliness and Hg stability in stored seawater.  We 

found that a simple cleaning technique with detergent, dilute acid, and bromine 

monochloride (BrCl) removes Hg quantitatively from all bottle materials tested, which 

included FEP, borosilicate glass, polycarbonate (PC), low-density polyethylene (LDPE), 

and fluorinated high-density polyethylene (FLPE)—bottle materials used commonly for 

sampling trace metals in water.  Moreover, and surprisingly, we found the stability of 

seawater Hg in FEP bottles to be inferior to that stored in either glass or PC vessels:  Hg 

concentrations increased significantly in seawater stored at room temperature in FEP, 

LDPE, and FLPE during a 17-month storage period.  Hence, the use of bottles made of 

either glass or PC is advised for storage of trace-level water samples intended for Hg 

determination.                 

 

Materials and procedures 

Cleaning new bottles—A 4 × 5 factorial design was used to investigate the efficacy 

of four common cleaning methods for removing Hg from sample bottles made from five 

different materials.  The four cleaning methods ranged from a presumably comprehensive 

approach for removing metals and organics (Method A) to a simple cleaning with 10% 

HCl (Method D).  We tested the four following bottle cleaning methods: 
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Method A:  1) Wash bottle interior with Citranox
®
 detergent and reagent-grade 

water (RGW, resistivity > 18 MΩ-cm) and rinse with hot tap water followed by 3× rinse 

with RGW, 2) fill with 1 N KOH (ACS grade) for 24 h followed by 3× rinse with RGW, 

3) fill with 4 M HNO3 (ACS grade) for 24 h followed by 3× rinse with RGW, and 4) fill 

with 0.6 M HCl (ACS grade) for 24 h followed by 5× rinse with RGW. 

Method B: 1) Rinse bottle 2× with RGW, fill with Citranox
®
/RGW solution for 6 

d, and rinse with RGW, 2) fill with 1.2 M HCl (Instra-analyzed, J.T. Baker) for 6 d and 

rinse 5× with RGW, 3) fill with 0.5% BrCl solution (Bloom and Crecelius, 1983) for 1 d 

followed by 3× rinse with 0.01 M HCl (Instra-analyzed) and 5× rinse with RGW. 

Method C:  Same as Method B only that the 1.2 M HCl treatment is followed by a 

3× rinse with 0.01 M HCl and 5× rinse with RGW (i.e., no BrCl treatment). 

Method D:  Wash bottle interior with Citranox
®
 detergent and hot tap water 

followed by 3× rinse with RGW, and 2) fill with 1.2 M HCl (ACS grade) for 24 h 

followed by 5× rinse with RGW. 

Bottle cleaning was conducted inside a Class 100 clean room by personnel using 

“clean hands/dirty hands” techniques (U.S. EPA, 2002).  Clean bottles were stored 

empty, with caps on, and double bagged in new zip-type polyethylene bags (2 mil). 

 The efficacy of each cleaning method was tested with new 250-mL bottles made 

of FEP (Nalgene, ethylene tetrafluoroethylene caps), borosilicate glass (Fisherbrand, 

polytetrafluoroethylene-lined polyethylene caps), PC (Nalgene, polypropylene cap), 

FLPE (Nalgene, fluorinated polypropylene cap), and LDPE (Nalgene, polypropylene 

cap).  Three bottles made of each material were cleaned with each of the four methods 

described above. Afterward, the cleanliness of bottles was investigated by filling them 
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with 0.2 L of 0.1-µm filtered RGW, containing 0.10 ± 0.03 pM total Hg, to which was 

added 0.2 mL of BrCl (0.1% of sample volume).  BrCl solution is acidic and a strong 

oxidant, and Hg has a relatively strong affinity for halide ligands.  The Hg content of 

RGW in each bottle was measured after about 18 h of storage inside a HEPA-filtered 

laminar flow hood in a Class 100 clean room.  Contamination from interior bottle 

surfaces was evaluated as the difference in total Hg concentration between direct analysis 

of RGW from the purifier and that from sample bottles, with reagent contributions 

monitored carefully and subtracted from both types of waters.    

Storage—The stability of Hg in seawater stored at either room temperature or 

frozen was examined for each of the bottle materials tested above.  Both freezer and room 

temperature storage conditions were tested because it is unknown whether Hg 

concentrations may be more stable in frozen seawater.  Results from the cleaning 

methods component of this study (discussed below) indicated that Method B was the 

most efficacious for removing Hg from each of the bottle materials tested.  Hence, new 

250-mL bottles made of glass, FEP, PC, LDPE, and FLPE were cleaned with Method B 

and filled with 0.2 L of filtered (0.2 µm) seawater from the northwest Atlantic Ocean 

(38° 43’ N, 70 °W, 10-m depth, salinity = 33.27, dissolved organic carbon = 70 µM) that 

had an initial Hg level of 0.91 ± 0.05 pM (n = 12).  This concentration is within the range 

of those measured commonly in open-ocean waters (i.e., ~ 0.2−2 pM; Fitzgerald et al., 

2007).  Samples were acidified to 0.1% with high-purity HCl (Instra-analyzed), 

containing a relatively low level of Hg (measured, 10 pM in concentrated acid), and 

bottle caps were tightened by hand.  All bottles were double bagged in new zip-type 

polyethylene bags (2 mil).  Half of the bottles made of each plastic were stored in a 
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conventional freezer ( −20 °C) and the other half at room temperature in a darkened 

cabinet outside of the clean laboratory (~20 °C).  Samples in glass bottles were stored 

only in the room-temperature cabinet.  A potential source of Hg concentration instability 

in stored seawater is diffusion of Hg
0
 through bottle materials (Bothner and Robertson, 

1975; Parker and Bloom, 2005).  Hg
0
 in air of the room-temperature cabinet (Fitzgerald 

and Gill, 1979), measured 3× over a 24-h period, averaged 26 ± 17 ng m
−3

, which is 

typical for indoor air (Carpi & Chen, 2001).  Hg
0
 was not determined inside the freezer, 

although it is presumed to be low given the temperature dependence of Hg volatility 

(Huber et al., 2006) and that the freezer was new and had not contained Hg-enriched 

materials.  Seawater in each of the five bottle types was measured for total Hg after 1, 3, 

15, 32, and 74 weeks of storage. 

Hg analysis—Total Hg was measured by dual Au amalgamation CVAFS 

(Fitzgerald and Gill, 1979; Bloom and Fitzgerald, 1988).  Water samples (0.2 L) were 

digested with 0.2 mL BrCl solution for 12−18 h and pre-reduced with 0.1 mL of 12% 

(wt:vol) NH2OH prior to transferring to a 400-mL gas-liquid separator.  Sample Hg
2+

 was 

reduced to Hg
0
 in the gas-liquid separator with 0.1 mL of 50% (wt:vol) SnCl2 and purged 

from solution with Hg-free N2.  Analyses of total Hg were calibrated versus Hg
0
 taken 

from the headspace over pure liquid (Gill and Fitzgerald, 1987) and verified by 

comparison to determinations of Hg
2+

 from a solution traceable to the U.S. National 

Institute of Standards and Technology.  Recovery of 100 pg Hg
2+

 additions to seawater 

(about 2.5 pM) averaged 100 ± 7% (± 1 SD, n = 28).      
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Assessment and discussion 

Cleaning new bottles—The efficacy of tested cleaning methods for removing Hg 

varied among bottle materials (Figure 1).  Each of the four methods resulted in little or no 

residual Hg in bottles made of either glass or PC.  Method A, the seemingly most 

rigorous of the four, removed Hg from all bottle interiors except those made of FEP, 

which suggests that FEP was the dirtiest of the four tested polymers.  In contrast to 

Method A, Hg was removed from FEP bottles by each of the three other methods.  

Methods C and D, while effective for glass, FEP, and PC, did not remove Hg completely 

from the two types of polyethylene bottles. 

Method B cleaned Hg from each of the five bottle materials tested (Figure 1).  It 

appears that BrCl is a key agent for effective cleaning of bottles used for trace-level Hg 

determination.  The only difference between Methods B and C was that Method B 

included a final treatment with 0.5% BrCl.  Use of BrCl had no effect on the cleanliness 

of glass, FEP, and PC bottles, but it made a substantial difference on removal of Hg from 

LDPE and FLPE bottles.  Our laboratories have found that sample oxidation with 

0.1−0.2% BrCl, in the original sample bottle, is sufficient to liberate Hg quantitatively in 

seawater containing relatively low levels of dissolved organic carbon (DOC, < 100 µM 

C).  Cleaning sample bottles with either an equal or greater concentration of BrCl should 

remove any contaminant Hg that might be mobilized from the material during sample 

oxidation with BrCl.  The relative ease and safety of this bottle cleaning procedure, 

compared to treatment with hot acids, as prescribed by the U.S. Environmental Protection 

Agency Method 1631 (U.S. EPA, 2002), lends itself favorably as an alternative for 

routine laboratory use. 
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Fig. 1. Total Hg in reagent-grade water after 18 h of storage with 0.1% BrCl in bottles 

made of borosilicate glass, fluorinated ethylene propylene (FEP), polycarbonate (PC), 

low-density polyethylene (LDPE), and fluorinated high-density polyethylene (FLPE) 

cleaned with four different methods (A–D).  Three bottles were tested for each bottle 

material type and cleaning method; error bars are one standard deviation of the mean. 

Dashed lines delineate the range of total Hg in reagent-grade water only. 
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Cleaning contaminated bottles—The efficacy of cleaning Method B also was tested with 

previously used bottles.  Our initial test examined only new bottles that had not been 

subject to potential contamination with Hg and ligands from prior use.  Natural organic 

matter, for example, can adsorb to bottle surfaces, complex sample Hg, and thereby 

potentially bias measured Hg levels (Parker and Bloom, 2005). An important and useful 

question is whether previously used bottles, especially those that have contained water 

with high levels of Hg and organic matter, can be cleaned again for re-use without 

predisposing an artifact to the next sample.  The effectiveness of Method B was tested by 

filling bottles made of glass, FEP, PC, LDPE, and FLPE with filtered (0.2 µM) seawater 

from Vineyard Sound, Massachusetts (DOC = 210 µM) that was amended with Hg to 

about 10 pM, a concentration substantially greater than that of total Hg in open-ocean 

seawater (Fitzgerald et al., 2007).  To intentionally dope bottle interiors with Hg and 

natural ligands, the samples were allowed to stand for two weeks (unacidified, room 

temperature) before water was discarded and bottles cleaned again with Method B.  After 

cleaning, and similar to our test with new bottles, bottles were filled with 0.2 L of RGW, 

oxidized with 0.1% BrCl, and total Hg was measured in the water.  No contaminant Hg 

was detected in the RGW.  Total Hg (pM, ± 1 SD) averaged 0.10 ± 0.04 in FEP, 0.06 ± 

0.03 in glass, 0.11 ± 0.02 in PC, 0.11 ± 0.06 in LDPE, and 0.08 ± 0.02 in FLPE, levels 

that were similar to those in RGW only (0.10 ± 0.03 pM). 

Fresh and estuarine waters often contain Hg and DOC at levels far greater than 

those in open-ocean seawater (Fitzgerald and Lamborg, 2003).  Moreover, our experience 

is that the same sample bottles used for freshwater or near-shore research are often re-

used during oceanographic expeditions.  Accordingly, we were interested in knowing 



174 
 

whether sample bottles exposed to highly contaminated freshwater could be cleaned 

sufficiently by Method B for oceanographic studies.  This was tested by filling clean 

bottles made of glass, FEP, PC, LDPE, and FLPE with filtered (0.2 µm) water from the 

Little Miami River, Ohio, (pH = 8.3; DOC = 500 µM) that was amended with Hg
2+

 (as 

HgCl2) to 100 pM.  The Hg content of this water is about 100× greater than open-ocean 

waters, but within the range of some contaminated estuaries (Fitzgerald and Lamborg, 

2003) and streams (e.g., Hurley et al., 1995).  Bottles were left undisturbed and 

unacidified for two weeks at room temperature before solutions were discarded and 

bottles cleaned with Method B.  After cleaning, bottles were filled with 0.2 L of RGW, 

water oxidized with 0.1% BrCl, and total Hg determined. 

In contrast to the test with Hg-amended Vineyard Sound water, contaminant Hg 

was evident in RGW from all bottle materials except glass, which had a Hg content (0.15 

± 0.07 pM) that was not significantly different from direct analysis of RGW (0.10 ± 0.03 

pM).  Hg concentrations (pM, ± 1 SD) were substantially greater in RGW from bottles 

made of other materials: 0.51 ± 0.45 in FEP, 0.52 ± 0.12 in PC, 1.85 ± 0.37 in LDPE, and 

0.60 ± 0.31 in FLPE.  While contamination was evident, the fraction of Hg from the 

original sample (100 pM) that carried over and was detected in the RGW was small 

(0.4−1.8%) and would be neither of concern nor discernable if waters having comparable 

Hg levels were sampled subsequently. However, this finding indicates that Method B 

should not be used for routine cleaning of bottles re-used for sampling of both highly 

contaminated and open-ocean waters.  Our laboratories clean all sample bottles with 

Method B but keep oceanographic bottles segregated from others.   
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Storage—The stability of Hg in seawater stored at room temperature differs 

dramatically among storage bottle materials (Table 1).  Under the conditions of our study, 

Hg concentrations in seawater were very stable in glass and PC bottle:  Levels in bottles 

made of either material were unchanged during the 74-week storage period with the 

exception of a modest increase in PC bottles at the end of the test.  LDPE proved to be an 

inferior bottle material for storage of seawater for Hg determination; levels increased 5-

fold during the initial week of storage, which is consistent with results of prior studies 

(Bothner and Robertson, 1975; Parker and Bloom, 2005).  Mean concentrations of total 

Hg in seawater increased as a function of storage time in FEP (r
2
 = 0.81, p = 0.01) and 

FLPE (r
2
 = 0.99, p < 0.01), and levels were significantly greater than the original water 

(i.e., 0.91 ± 0.05 pM) within 15 and 3 weeks of storage, respectively. Fitzgerald and 

Lyons (1975) also found Hg to be stable in seawater stored in FEP bottles up to eight 

weeks, the maximum extent of their test.  Hence, FEP and FLPE may be suitable for 

relatively short-term, but not prolonged, storage of seawater containing low-pM levels of 

Hg.  The finding that aqueous Hg levels are not stable in FEP over prolonged storage is in 

contrast to results published previously (Parker and Bloom, 2005), although the prior 

study examined waters having substantially greater initial concentrations of Hg (5–15 

pM).   

Freezer storage minimizes Hg contamination of seawater stored in plastic bottles 

(Table 2).  Freezer storage resulted in no discernable level of Hg contamination of 

seawater in FEP bottles, in contrast to those stored at room temperature (Table 1).  

Frozen storage of seawater in LDPE and FLPE bottles reduced the magnitude of 

contamination compared to room-temperature storage; however, Hg levels were  
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Table 1. Total Hg (± 1 SD) in acidified (0.1% HCl), 0.2-µm filtered seawater stored 

at room temperature in bottles made of borosilicate glass, fluorinated ethylene 

propylene (FEP), polycarbonate (PC), low-density polyethylene (LDPE), and 

fluorinated high-density polyethylene (FLPE, n = 3 each).  Mean initial Hg 

concentration in the seawater was 0.91 ± 0.05 pM. 

 Total Hg (pM) 

Time 

(weeks) 

Glass FEP PC LDPE FLPE 

0 0.89 ± 0.07 0.86 ± 0.04 0.93 ± 0.05 0.85 ± 0.03 0.89 ± 0.01 

1 0.88 ± 0.02 0.93 ± 0.01 0.98 ± 0.09 4.26 ± 0.35 0.94 ± 0.05 

3 0.88 ± 0.02 0.95 ± 0.06 0.89 ± 0.01 5.11 ± 1.62 1.28 ± 0.12 

15 0.93 ± 0.09 1.27 ± 0.07 1.01 ± 0.07 45.6 ± 12.1 3.62 ± 1.08 

32 0.85 ± 0.06 1.96 ± 0.65 0.93 ± 0.13 6.18 ± 1.76 4.54 ± 0.17 

74 0.90 ± 0.09 2.01 ± 0.87 1.21 ± 0.12 15.4 ± 4.72 10.5 ± 1.45 
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Table 2. Total Hg (± 1 SD) in acidified (0.1% HCl), 0.2-µm filtered seawater stored 

frozen in bottles made of fluorinated ethylene propylene (FEP), polycarbonate (PC), 

low-density polyethylene (LDPE), and fluorinated high-density polyethylene (FLPE, 

n = 3 each).  Mean initial Hg concentration in the seawater was 0.91 ± 0.05 pM. 

 Total Hg (pM) 

Time (weeks) FEP PC LDPE FLPE 

0 0.84 ± 0.01 0.92 ± 0.07 0.85 ± 0.03 0.85 ± 0.03 

1 0.91 ± 0.05 0.93 ± 0.02 2.22 ± 0.21 0.90 ± 0.06 

3 0.88 ± 0.09 0.87 ± 0.01 2.23 ± 1.35 1.00 ± 0.03 

15 1.11 ± 0.09 0.89 ± 0.03 1.26 ± 0.13 2.63 ± 1.15 

32 1.04 ± 0.18 1.07 ± 0.11 0.87 ± 0.03 3.12 ± 1.24 

74 1.16 ± 0.25 1.26 ± 0.12 1.29 ± 0.10 4.00 ± 2.28 
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increased substantially compared to the initial concentration and often with relatively 

high degrees of variability among replicate bottles (Table 2).  Hence, freezer storage 

minimizes Hg contamination of seawater stored in FEP bottles but it does not completely 

ameliorate problems associated polyethylene bottles.  Seawater Hg levels in PC bottles 

were uncompromised for at least eight months, whether stored frozen or at room 

temperature.   

In none of our tests with acidified seawater (0.1% HCl) were there detectable 

losses of Hg during storage at either room temperature or –20 °C (Tables 1 and 2).  

Measured Hg levels after storage were either similar to or greater than the initial 

concentration.  This indicates that significant losses of Hg did not occur as a result of 

either adsorption of ionic species to bottle walls or diffusion of dissolved Hg
0
 from water 

through the bottle material.  In contrast, many seawater samples, particularly those stored 

in FEP, LDPE, and FLPE bottles, experienced a significant increase of Hg during the 

storage test.  We speculate that the source of Hg contamination is diffusion of Hg
0
 

through bottle materials with subsequent oxidation and accumulation as Hg
2+

 in the 

acidified solution (Parker and Bloom, 2005). This hypothesis is consistent with the 

temperature dependence of Hg diffusivity and volatility (Huber et al., 2006) and that, for 

a particular bottle material, seawater stored at −20 °C had less Hg contamination than 

those stored at ~20 °C. 

 

Comments and recommendations 

 As an alternative to submersion in hot acid, we found that a relatively simple 

method employing detergent and dilute HCl and BrCl effectively cleaned Hg from the 
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five bottle materials tested.  Our two laboratories have cleaned bottles with this method 

(Method B) for more than two years and it was used to prepare bottles for the U.S. 

GEOTRACES Intercalibration for Hg.  We recommend its use for investigations in both 

freshwater and marine systems, but caution against interchangeable use of bottles 

between systems with relatively high and low Hg levels; 1% carryover of Hg from 

contaminated freshwater can result in significant bias to pristine open-ocean samples. We 

also have found that repeated BrCl cleaning of bottles made of PC, unlike FEP and glass, 

results in a gradual yellowing of the polymer, although we have not detected any 

functional deficiencies related to sample storage for total Hg analysis. 

 The superb, long-term stability of Hg in glass bottles was expected, and so was 

the poor stability in bottles made of LDPE.  However, seawater stored in FEP and PC 

bottles provided surprises.  Of the four hydrocarbon polymers tested, PC was the only 

bottle material in which seawater Hg levels were not compromised during a storage 

period of  8 months.  To our knowledge, PC bottles are not used commonly by aquatic 

Hg researchers, who (we included) often use FEP bottles when a plastic is preferred to 

glass, such as in a shipboard laboratory.  The strong bias toward Teflon
®
 likely extends 

from past practice, a U.S. EPA method indicating its suitability (U.S. EPA, 2002), and 

from Teflon
®
 polymers being amenable to repeated submersion in hot acid for cleaning.  

However, we have presented a new method for bottle cleaning that does not require hot 

acid.  In contrast to PC, acidified seawater stored in FEP bottles at room temperature 

showed significant contamination after storage for 15 weeks.  Such contamination calls 

into question the accuracy of seawater Hg determinations made on samples stored in FEP 

bottles for extended periods under conditions similar to those used in this test.  While 
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glass bottles are superior, we encourage greater use of PC bottles for Hg sampling 

because they cost about 10-fold less than those made of FEP and are better than Teflon
®
 

in maintaining the integrity of low-Hg seawater during prolonged storage. 
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Abstract 

Humans are exposed to toxic and bioaccumulative monomethylmercury (MMHg) 

principally by consuming seafood.  However, knowledge of the sources of MMHg to 

surface-dwelling marine organisms has been hampered by a paucity of information on its 

vertical distribution in the open ocean.  Here, we report the first complete high-resolution 

profile of MMHg, from sea surface to bottom water, in the Pacific Ocean.  Filtered water 

and suspended particles were sampled at the SAFe station (140 °W, 30 °N) during the 

U.S. GEOTRACES Intercalibration. Distributions of MMHg and dimethylmercury 

suggest that both are synthesized in low-oxygen and oxic strata of the water column and 

that deep-sea sediments are not an important source. Scaling estimates imply that a 

majority of MMHg in phytoplankton and, by extension, the pelagic food web at this 

location results from production in the mixed layer, which is impacted by anthropogenic 

mercury inputs and thus may be affected by future changes in emissions to the 

atmosphere. 
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1. Introduction 

A principal concern with mercury (Hg) in the environment is human exposure to 

toxic monomethylmercury (MMHg) by consumption of fish (Mergler et al., 2007).  Most 

of the fish eaten by humans are of marine origin (U.S. EPA, 2002; Sunderland, 2007).  

Major sources of MMHg in the ocean and, by extension, seafood have been suggested to 

include production in sediments on the continental margin (Hammerschmidt and 

Fitzgerald, 2006a), deep-sea deposits and hydrothermal vents (Kraepiel et al., 2003; 

Lamborg et al., 2006), and formation in oxic and low-oxygen regions of the water 

column, presumably through heterotrophic microbial activity (Mason and Fitzgerald, 

1993; Monperrus et al., 2007; Cossa et al., 2009, 2011; Sunderland et al., 2009; 

Heimbürger et al, 2010; Lehnherr et al., 2011).  However, knowledge of the sources of 

MMHg to surface-dwelling marine organisms, including many fishes consumed by 

humans, has been hampered by a paucity of information on its vertical distribution in the 

open ocean (Fitzgerald et al., 2007). 

To better understand the biogeochemistry and sources of MMHg in the ocean, we 

determined the vertical distribution of methylmercury species at the SAFe station 

(Sampling and Analysis of Iron; 140 °W, 30 °N) in the North Pacific Ocean during the 

2009 U.S. GEOTRACES Intercalibration cruise.  This location, which is about mid-way 

between Hawaii and California, has full ocean depth (~5000 m) with multiple subsurface 

water masses, and it is within the expansive gyre of oligotrophic surface water in the 

subtropical North Pacific.  Accordingly, the vertical distribution and associated cycling of 

MMHg and dimethylmercury (DMHg) at the SAFe site may be representative of that in 

other comparable oceanic environs. 
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2. Materials and methods 

2.1. Sampling 

Seawater was sampled with a trace-metal clean rosette and Teflon-coated GO-Flo 

bottles from 20 water depths at the SAFe site in the North Pacific Ocean in May 2009.  

Promptly after sampling, seawater was filtered through a pre-rinsed capsule (0.2 µm; Pall 

AcroPak-200, polyethersulfone membrane) and silicone tubing as it was decanted from a 

rosette bottle into a 2-L FEP Teflon
®
 bottle, a technique we have found to result in no 

measureable loss of DMHg (Bowman and Hammerschmidt, 2011).  Suspended particles 

also were sampled from eight depths with a multiple-unit large-volume in situ filtration 

system (Bishop et al., 1985) onto pre-cleaned quartz filters that collect a size fraction 

between 1 and 51 µm.  Water volumes filtered through filter punches analyzed for 

MMHg ranged from 0.07 m
3
 at the surface to about 0.24 m

3
 at 850 m depth.  Trace-metal 

clean techniques were used during sampling, preparation, and analysis of the samples 

(Hammerschmidt et al., 2011; Lamborg et al., 2012). 

 

2.2. Methylmercury determination 

DMHg and MMHg were extracted from filtered seawater and analyzed with 

methods detailed elsewhere (Bowman and Hammerschmidt, 2011).  Briefly, 2-L sample 

bottles containing seawater were fitted with a multi-port cap (Omnifit Q-series; Danbury, 

CT) and impinger with a fine-pore frit at the bottom of the bottle.  DMHg was purged 

from solution with 30 L of N2 (0.8 L min
–1

) and concentrated on Tenax TA (23% 

graphitized carbon, 20/35 mesh, Alltech), a resin used by others to quantify DMHg (e.g., 



188 
 

Mason and Sullivan, 1999; Horvat et al., 2003).  The N2 was of ultra-high purity and 

cleansed of Hg by passage through Au-coated glass beads and graphitized carbon prior to 

the impinger.  Purged waters were prepared for MMHg extraction by reaction with 

H2SO4 (1% sample volume) for 12–24 h, neutralized with KOH, and adjusted to pH 4.9 

with 4 M acetate buffer prior to addition of cold sodium tetraethylborate and purging of 

the ethylated derivative of MMHg (methylethylmercury) from solution onto a Tenax 

column.  Both DMHg and MMHg (as methylethylmercury) were quantified by gas-

chromatographic, cold-vapor atomic fluorescence spectrometry (CVAFS; Bloom, 1989; 

Tseng et al., 2004) in a shipboard laboratory. 

All equipment and containers used for sample collection, storage, and analysis 

were cleaned rigorously with acid and rinsed with either reagent-grade water (resistivity, 

> 18 MΩ-cm) or surface seawater prior to use.  Sample DMHg and MMHg were 

quantified after each Tenax column was calibrated individually with aliquots of an 

aqueous MMHg standard that was derivatized and purged from solution in the same 

bottles used for samples.  Aqueous MMHg standards were standardized versus an 

aqueous Hg(II) solution traceable to the U.S. National Institute of Standards and 

Technology.  Precision of determinations averaged 15% relative difference between 

duplicate samples for both DMHg (n = 14 duplicates) and MMHg (n = 2).  Recovery of 

known MMHg additions from sample matrixes averaged 91% (n = 10).  The method 

detection limit, based on analysis of reagent blanks (3σ), was about 2 fM for MMHg and 

similar to the instrument detection limit for DMHg in a 2-L sample. 

MMHg was extracted from particles (1–51 µm) by leaching quartz filters with 

high-purity 2 N HNO3 for 4 h in a 60 °C water bath at Wright State University 
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(Hammerschmidt and Fitzgerald, 2006b).  Sample MMHg was quantified by gas-

chromatographic CVAFS after calibration with a standardized solution. 

 

2.3. Total Hg in filtered seawater 

 Total Hg was measured in 0.2-L aliquots of filtered (0.2 µm) water that were 

separate from those used for methylmercury determination but collected from the same 

GO-Flo bottles.  Water for total Hg analysis was acidified to 0.2% with high-purity HCl 

and stored in rigorously cleaned 250-mL FEP Teflon
®
 bottles (Hammerschmidt et al., 

2011) until analysis at Wright State University, about six weeks after sampling.  Analyses 

of reagent-grade water that was stored in FEP bottles and transported with the samples 

indicated no discernable Hg contamination during storage (i.e., trip blanks).  Samples 

were oxidized with BrCl solution (0.1% sample volume) for > 12 h and subsequently pre-

reduced with NH2OH.  Sample Hg was reduced to Hg
0
 with SnCl2 and quantified by dual 

Au-amalgamation CVAFS (Fitzgerald and Gill, 1979; Bloom and Fitzgerald, 1988).  

Total Hg measurements were calibrated versus Hg
0
 gas standards.  Recoveries of known 

Hg(II) additions to sample matrixes averaged 99% (n = 7) and the precision of one 

procedurally duplicated sample was 10% relative difference, which was comparable to 

the precision of seawater determinations of total Hg in a companion study (mean = 4% 

relative difference; range = 0.5–20%; n = 70).  The method detection limit for total Hg 

(3σ reagent blanks) was about 0.05 pM for a 0.2-L sample. 

 

 

 



190 
 

3. Results and discussion 

MMHg and DMHg have two well-defined and corresponding subsurface maxima 

in the water column of the eastern North Pacific at 500 and 1000 m depth (Figure 1a).  

These maxima correspond with the core of oxygenated North Pacific Intermediate Water 

(NPIW; ~300–700 m depth) and oxygen minimum zone (800–1000 m).  Filtered MMHg 

is low in the surface mixed layer presumably as a result of photochemical decomposition 

(Monperrus et al., 2007; Whalin et al., 2007) and uptake by phytoplankton, while gaseous 

DMHg is lost most likely by evasion to the atmosphere (Black et al., 2009).  Deeper 

waters have homogeneous distributions of MMHg (24 ± 4 fM) and DMHg (13 ± 1 fM) 

with no increase near the seafloor, which suggests that deep-sea sediments are not a 

significant source.  Cossa and colleagues drew a similar conclusion based on profiles in 

the open Mediterranean Sea and Southern Ocean (Cossa et al., 2009, 2011).  This is the 

first high-resolution profile of MMHg concentrations below 1000 m in the Pacific Ocean, 

although methylated Hg has been measured in the upper 1000 m of water at other 

locations in the Pacific (Mason and Fitzgerald, 1990; Sunderland et al., 2009).  Levels of 

methylmercury in the upper 1000 m at SAFe are 2–6× less than those measured at a 

station about 1000 km to the west (Sunderland et al., 2009).  A similar degree of 

variability of methylated Hg concentrations has been observed among locations in the 

Mediterranean Sea and Southern Ocean (Cossa et al., 2009, 2011).     

The vertical distribution of total Hg in filtered water at SAFe is different from the 

methylmercury species (Figure 1b).  Total Hg has a transient, atmospherically enhanced 

level of 0.40 pM at the sea surface and a minimum of 0.25 pM at greater depths in the 

surface mixed layer (upper ~130 m).  Total Hg increases with depth through the  
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Fig. 1. Vertical distribution of mercury species at the SAFe station in the North Pacific;  

a) DMHg and filtered MMHg, b) filtered total Hg and MMHg:total Hg ratio, c) 

nutrients, and d) physicochemistry. Error bars for Hg concentrations are the 

difference between duplicate samples. 
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thermocline, with a maximum at 500 m in NPIW, and greater concentrations in bottom 

water.  Levels of total Hg in filtered water at the SAFe station are 50–100% less than 

those at a station about 1000 km to the west (Sunderland et al., 2009), but the vertical 

distribution of total Hg is comparable to that at other locations in the open North Pacific 

(Laurier et al., 2004) and controlled by mixing and particle scavenging (Figure 2). 

Elevated total Hg in North Pacific Bottom Water (≥ 3500 m) can be attributed to 

long-term accumulation associated with soft-tissue remineralization processes 

superimposed on  oceanic abyssal circulation (i.e., thermohaline).  Broadly, the amounts 

of many biological active substances (e.g., NO3
–
, PO4

3–
, CO2) increase at depth as water 

ages in transit from source regions in the North Atlantic to the northeast Pacific, where 

the oldest deep water is found.   We recently measured total Hg in North Atlantic Deep 

Water (NADW) as part of the U.S. GEOTRACES North Atlantic zonal section.  At a 

station in the northwest Atlantic about midway between Cape Cod and Bermuda (35.4 

°N, 66.5 °W), deep water (1500–4000 m) contained 0.93 ± 0.10 pM total Hg and 18 µM 

NO3
–
 (unpublished data).  The increase of total Hg between NADW at this station and 

NPBW at SAFe (≥ 3500 m; 1.55 ± 0.01 pM total Hg, 33 µM NO3
–
) is a factor of 1.7 and 

nearly identical that of NO3
–
, which has a horizontal enrichment of 1.8.  This inter-basin 

comparison, while limited to just the two end members of the thermohaline cycle, implies 

that Hg accumulation in deep waters results from remineralization of biological soft 

tissues and provides a useful tool for predicting total Hg in deep waters elsewhere in the 

ocean. 

Methylmercury is commonly enriched in low-oxygen seawater associated with 

increased microbial remineralization of organic material (Mason and Fitzgerald, 1990,  
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Fig. 2.  Property–property plot of filtered total Hg versus salinity at the SAFe site.  

Dashed lines indicate conservative mixing between water masses: Surface Mixed 

Layer (SML; upper ~130 m), Subtropical Salinity Maximum Water (STSMW;  = 

24.0, centered at ~ 150 m), Subsurface Salinity Minimum Water (SSMW;  = 

25.8, centered at ~ 200 m), NPIW ( = 26.8, centered at ~ 500 m), North Pacific 

Deep Water (NPDW;  = 27.4, centered at ~ 1300 m), and North Pacific Bottom 

Water (NPBW;  = 27.8, > 3000m) (Talley, 1985, 1993; Sabine et al., 1995). 

 

 

Salinity

33.8 34.0 34.2 34.4 34.6 34.8 35.0 35.2

F
il

te
re

d
 t

o
ta

l 
H

g
 (

p
M

)

0.0

0.5

1.0

1.5

2.0

SML

STSMW

SSMW

NPIW

NPDW

NPBW



194 
 

1993; Mason and Sullivan, 1999; Cossa et al., 2009; Sunderland et al., 2009; Heimbürger 

et al., 2010).  This has been attributed to in situ methylation of inorganic Hg by 

heterotrophic microorganisms.  Such an in situ source is a likely explanation for the 

MMHg and DMHg focused around 1000 m in the oxygen minimum at SAFe (Mason and 

Fitzgerald, 1993), where the fraction of filtered total Hg as MMHg also is maximum 

(Figure 1b).  This is supported by the absence of similar features in distributions of either 

total Hg or nutrients (Figure 1b,c), which suggest isopycnal transport at these depths is 

not a major source.  MMHg production at 1000 m depth can be estimated as the product 

of a vertical eddy diffusion coefficient for deep water (KV = 2–4 ×10
–4

 m
2
 s

–1
; Hogg et 

al., 1982; Gargett, 1984) and concentration gradient between 1000 m (96 fM) and both 

700 m (34 fM) and 1500 m (31 fM).  This approximation yields a flux of 6–12 pmol m
–2

 

d
–1

 in the oxygen minimum zone, which is within the range of fluxes from sediments on 

the remote continental shelf (Hammerschmidt and Fitzgerald, 2006a; Hollweg et al., 

2010). 

The reason for the MMHg and DMHg maxima in NPIW is less clear.  Potential 

sources of methylated mercury in NPIW at the SAFe station include release from sinking 

particles, isopycnal transport, and in situ production.  The vertical distribution of 

particulate MMHg is similar to that of particulate organic carbon (POC) in surface and 

intermediate waters at SAFe (Figure 3).  MMHg in particles is 2.8 fM at the surface and 

decreases exponentially with depth to 0.7 fM at 220 m.  This concentration, near the 

upper boundary of NPIW, is comparable to that at the lower boundary of the water mass, 

which means that sinking particles add little MMHg to NPIW.  An increase in the ratio of 

particulate MMHg:POC with depth suggests that MMHg is either more refractory than  



195 
 

 

 

 

 

 

 

 

Fig. 3.  Vertical distributions of particle-specific MMHg, particulate organic carbon 

(POC), and the particulate MMHg:POC ratio at the SAFe station. 
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bulk POC or that it is scavenged by, or produced within, sinking particles (Figure 

3). The mass-normalized concentration of MMHg in particles at 20 m depth (e.g., 

phytoplankton) is about 0.8 ng g
−1

 wet weight, assuming that the particles are composed 

entirely of organic matter (no hard parts), Redfield stoichiometry of the material, and a 

water content of 95% (Knauer and Martin, 1972).  MMHg in surface particles at SAFe is 

comparable to that in phytoplankton of Long Island Sound (0.5 ng g
–1

; Hammerschmidt 

and Fitzgerald, 2006b), the New England continental shelf (0.3 ng g
–1

; Hammerschmidt 

and Fitzgerald, 2006a), and Monterey Bay (1.3–4.5 ng g
–1

; Knauer and Martin, 1972). 

Another potential explanation for methylmercury species in NPIW is that they 

were pre-formed in source waters and advected horizontally to the SAFe site, just as total 

Hg is increased in this water mass.  NPIW is formed by cabbeling of deep shelf water 

from the Sea of Okhotsk with Oyashio and Kuroshio water in the western Pacific (Talley, 

1997; You, 2003a).  Water from the Sea of Okhotsk has contact with benthic deposits 

(Shcherbina et al.,2003) that could be a source of MMHg and DMHg to NPIW.  MMHg 

is mobilized from shelf sediments to overlying water (Hammerschmidt and Fitzgerald, 

2006a; Hollweg et al., 2010), and we have observed recently a DMHg efflux from 

deposits on the margin of the northwest Atlantic Ocean (unpublished results).  Water 

from the Sea of Okhotsk is a known source of organic carbon (Hernes and Benner, 2002) 

and trace metals (Nishioka et al., 2007) to the ocean interior.  The estimated water-mass 

age of NPIW at SAFe is 20–70 y (Warner et al., 1996; You, 2003b).  Accordingly, for 

DMHg and MMHg in NPIW to be derived from the Sea of Okhotsk, they would require a 

lifetime of 20+ years.  Little is known about the lifetime of methylmercury species in 

subsurface seawater, but that of DMHg has been estimated to be 0.3–30 years (Mason 
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and Fitzgerald, 1993).  It is unclear if lateral transport is a significant source of 

methylmercury in NPIW at the SAFe site; however, if it were, this would be a remarkable 

vector for distributing MMHg from the margins to the interior ocean. 

In situ production is the other potential source of methylmercury in NPIW.  

Methylation within the water mass has been posited by Sunderland and colleagues (2009) 

to be a source of methylated Hg in NPIW.  Here, we show the speciation of methylated 

Hg in NPIW and the significant presence of DMHg (Figure 1a).  If the methylmercury 

species were produced in situ by microbial activity, then the methylation process was 

probably aerobic (Monperrus et al., 2007), because oxygen was relatively high (55–175 

µmol O2 kg
–1

) in the region where MMHg and DMHg were maximal (400–600 m depth).  

Alternatively, methylation could be mediated by anaerobic microorganisms associated 

with anoxic microenvironments, such as decomposing remains of plankton (Heimbürger 

et al., 2010).  A nitrite maximum at 600 m (Figure 1c) suggests that either denitrification 

or ammonium oxidation co-occurs within NPIW, although it is unknown if either process 

is related to Hg methylation. 

The ratio of MMHg:DMHg is about two throughout much of the subsurface water 

column at the SAFe station (Figure 4).  MMHg:DMHg is 2.3 ± 0.4 in NPIW, 4.4 ± 0.5 

near the oxygen-minimum zone, and 1.9 ± 0.4 in water below 1500 m.  With the 

exception of the oxygen-minimum region, the relative constancy of the ratio indicates 

that a steady state condition may exist between MMHg and DMHg, because neither 

molecule behaves conservatively.  This would require an active exchange of methyl 

groups between the molecules, as observed recently by Lehnherr and colleagues in polar 

seawater (Lehnherr et al., 2011).  The ratio of methyl groups associated with MMHg and  
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Fig. 4.  Vertical distribution of monomethylmercury:dimethylmercury (MMHg:DMHg) 

molar ratios in subsurface water at the SAFe site. 
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DMHg is near unity throughout much of the water column.  A greater 

MMHg:DMHg ratio in the oxygen minimum zone suggests involvement of different 

processes (possibly ones that are associated with hypoxia and employ different 

methylation mechanisms) that result in the establishment of a different steady state.  The 

maximum MMHg:DMHg ratio around 1000 m depth (Figure 4) corresponds with a peak 

in the MMHg:total Hg ratio (Figure 1b).  This suggests that low oxygen conditions 

maximize the net production of methylated mercury and the fraction as MMHg. 

NPIW is a source of methylmercury species to the mixed layer.  The flux of 

DMHg from NPIW can be estimated as the product of a vertical eddy diffusion 

coefficient for surface water (KV = 0.5–1 × 10
–4

 m
2
 s

–1
; Fiadeiro and Craig, 1978; 

Gargett, 1984) and concentration gradient between 500 m (19 fM) and 100 m (2 fM).  

This approximation yields a flux of 0.2–0.4 pmol m
–2

 d
–1

.  The same estimate for MMHg 

between 500 m (45 fM) and 100 m (19 fM) depths suggests an efflux of 0.3–0.6 pmol m
–

2
 d

–1
. 

The vertical diffusive flux of MMHg from NPIW to the mixed layer (~0.3–0.6 

pmol m
–2

 d
–1

) at SAFe is trivial compared to bioaccumulation of about 4–7 pmol m
–2

 d
–1

 

by primary producers.  This bioaccumulation estimate is based on a particulate 

MMHg:carbon ratio of 2 × 10
–9

 (Figure 2) and assumes net community production is 

about 0.7–1.3 mol C m
–2

 y
–1

 in the mixed layer at SAFe.  The estimate of net community 

production, which is considerably less than that of gross primary production (~6 mol C 

m
–2

 y
–1

; Behrenfeld and Falkowski, 1997), assumes upward diffusion of NO3
–
 into the 

mixed layer (0.1–0.2 mol NO3
–
 m

–2
 y

–1
) limits growth of phytoplankton that have 6.6 C:N 

Redfield stoichiometry.  The vertical nitrate flux is the product of the thermocline NO3
–
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gradient (Figure 1c; 76 µmol m
–4

) and vertical eddy diffusivity coefficient (0.5–1 × 10
–4

 

m
2
 s

–1
).  Photochemical decomposition of MMHg in surface seawater (k ~ 0.08–0.4 d

–1
; 

Monperrus et al., 2007; Whalin et al., 2007) is estimated to consume an additional 8–40 

pmol m
–2

 d
–1

 if the process were limited to the extent of ultraviolet radiation penetration 

(Lehnherr and St. Louis, 2009), which is about 5 m in the North Pacific (Goes et al., 

1995).  MMHg also may be decomposed by biological processes in the mixed layer.  

Accordingly, diffusion-advection of MMHg from water beneath the mixed layer is at 

least an order of magnitude less than the amounts bioaccumulated and decomposed 

photochemically at the SAFe station.  This suggests that MMHg in the mixed layer at 

SAFe must be either transported horizontally by surface currents or, more likely, 

produced there.  A Hg methylation rate constant of only 0.0003–0.0012 d
–1

 in the mixed 

layer would be sufficient to balance estimated MMHg losses to bioaccumulation and 

photochemical decomposition at SAFe.  Such rates of Hg methylation are considerably 

less than those measured in surface waters of the Canadian Archipelago (0.006 ± 0.002 d
–

1
; Lehnherr et al., 2011). For the losses to bioaccumulation and photodecomposition to be 

balanced by atmospheric inputs of MMHg, rainwater would need to contain 0.4–1.7 pM 

MMHg (assuming 1 m rain y
–1

), a concentration that is at least 10-fold greater than that 

in rain over the Pacific Ocean (< 0.05 pM; Mason et al., 1992).   

 Our results imply that both MMHg and DMHg are produced in oxic and low-

oxygen regions throughout the marine water column.  We observed subsurface peaks of 

MMHg and DMHg in both the oxygen minimum zone (~ 1000 m depth; 12–18 µmol O2 

kg
–1

) and in more oxygenated (55–175 µmol kg
–1

) North Pacific Intermediate Water.  

Vertical distributions of both methylated species differ considerably from that of total 
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Hg, which implies that production of MMHg and DMHg is influenced by environmental 

factors that control availability of ionic Hg and activities of microbial functional groups 

that may differ with depth.  Our simple, one-dimensional scaling estimates suggest that a 

majority of MMHg in phytoplankton at the SAFe station results from production in the 

mixed layer, although we cannot rule out MMHg inputs from surface currents.  About 

half of the ionic Hg in the mixed layer is from anthropogenic sources and delivered by 

atmospheric transport and deposition (Lamborg et al., 2002).  If MMHg production in the 

mixed layer were limited by availability of ionic Hg, as it appears to be in sediments 

(Hammerschmidt and Fitzgerald, 2004; Fitzgerald et al., 2007), then future changes in Hg 

inputs, including atmospheric deposition, may influence levels of MMHg in pelagic food 

webs.  
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ABSTRACT 

Mercury is a toxic metal present at trace levels in the ocean, but it accumulates in fish at 

concentrations high enough to pose a threat to human and environmental health. Human 

activity has dramatically altered the global mercury cycle, resulting in loadings to the 

ocean that have increased by at least a factor of three from pre-anthropogenic levels. 

Loadings are likely to continue to increase as a result of higher atmospheric emissions 

and others factors related to global environmental change. The impact that these loadings 

will have on the production of methylated mercury (the form that accumulates in fish) is 

unclear. In this report, we summarize the biogeochemistry of mercury in the ocean and 

use this information to examine past impacts that human activity has had on the cycling 
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of this toxic metal. We also highlight ways in which the mercury cycle may continue to 

be affected and its potential impact on mercury in fish.  

INTRODUCTION 

Mercury is a notoriously toxic trace metal that has received global attention since 

the poisoning of thousands of people in southern Japan (Minamata and Niigata) in the 

mid-1950s. Ingestion of fish laden with monomethylmercury (CH3Hg
+
) caused those 

tragic circumstances and inspired researchers worldwide to examine mercury toxicity to 

humans and wildlife, measure concentrations in terrestrial and aquatic biota, and 

understand the biogeochemical cycling of the element’s multiple forms.   

Mercury would be of little toxicological concern if it were not for its microbial 

and abiotic transformation to CH3Hg
+
, which is the form that most readily 

bioaccumulates and biomagnifies in marine food webs. These processes result in CH3Hg
+
 

concentrations in predatory fish and marine mammal species, including many species 

eaten by humans (e.g., tuna, swordfish, shark, pilot whale) that regularly exceed 

guidelines for safe consumption.  Indeed, 5–10% of US women of childbearing age 

having blood CH3Hg
+
 levels that increase the risk of neurodevelopmental problems in 

their children (Mahaffey et al., 2009), presumably as a result of eating seafood (Selin et 

al., 2010). While the effects of current mercury exposures may not be as overt as those 

experienced in Minamata, the size of the worldwide population exposed to potentially 

harmful levels of CH3Hg
+
 via seafood consumption is likely in the hundreds of millions.  

In addition to the impact on human health, we are just beginning to understand 

how elevated concentrations of mercury in food webs can affect their health and 
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sustainability. Several studies documented developmental and behavioral effects of 

CH3Hg
+
 on fish and other animals at concentrations commonly found in the environment 

(Scheuhammer et al., 2007) but at levels well below those causing acute toxicity. Indeed, 

some studies have suggested that the sustainability of some animal populations may 

already be threatened by impaired reproductive success as a result of mercury exposure 

(e.g., Tartu et al., 2013).   

These disturbing ecological findings come in the context of geochemical research 

that indicates human activities have significantly perturbed the mercury cycle on local, 

regional, and global scales. Mercury loadings to the atmosphere, for example, have 

increased at least three-fold since the Industrial Revolution and are expected to continue 

to rise (e.g., Driscoll et al., 2013). Some research even suggests that anthropogenic 

impacts on the mercury cycle extend well before industrialization, largely as a result of 

its use in gold and silver mining.  

Here, we review the environmental pathways of mercury from its introduction to 

the ocean to its accumulation in seafood, focusing on what is known and unknown about 

key microbial transformations of mercury in the sea, and how this cycle may change in 

the future. 

Mercury Species Concentrations and Transformations in the Ocean 

Mercury exists primarily as four chemical species in the ocean: elemental Hg 

(Hg
0
), mercuric ion (Hg

2+
, also written as Hg(II)) in a variety of inorganic and organic 

complexes, and methylated forms that include both CH3Hg
+
 and dimethylmercury 

((CH3)2Hg; Table 1; Figure 1). As with most trace metals, both biological and physical  
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Table 1. Summary of Hg species in the ocean. 

 

Species 

Typical Concentration/ 

Percent of Total 

 

Note 

Total Hg < 0.1–10 pM  

Hg
2+

 50–100% Generally dominant form 

Hg
0
 < 5–50% Majority in atmosphere, dissolved gas in ocean 

CH3Hg
+
 < 20% Species that bioaccumulates in food webs 

(CH3)2Hg < 20% Dissolved gas, origin unknown 
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Figure 1. Conceptual model of mercury biogeochemical cycling in the ocean. Gaseous elemental 

mercury (Hg
0
) is oxidized in the atmosphere to complexes of divalent mercury (Hg(II), also 

written as Hg(II)) and deposited to land and the surface ocean. Hg(II) can be either reduced to 

Hg
0
 or methylated to form monomethylmercury (CH3Hg

+
) and dimethylmercury ((CH3)2Hg).  

Blue arrows highlight biogeochemical transformations of mercury. Black arrows denote fluxes 

among the atmosphere, water, sediments, and biota. All of the mercury species can be transported 

hydrologically between the coastal zone, surface ocean, and deep sea, with bioaccumulative 

CH3Hg
+
 also transported by bioadvection (white arrows; Fitzgerald et al., 2007). 
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processes govern the distribution of total mercury in the ocean. Combined influences of 

bioaccumulation and organic matter remineralization, as well as inputs from the 

atmosphere, scavenging, and horizontal advection, result in mercury displaying nutrient- 

and scavenged-type profiles with depth in the ocean. At any location,  the profile will be 

dependent upon the relative strength of each of these processes (e.g., Mason et al., 2012). 

Figure 2 shows some representative vertical profiles of total dissolved mercury and Hg
0
 

concentrations from open-ocean stations that illustrate these behaviors. Bioaccumulation 

in surface water and release during remineralization of soft tissues in the thermocline 

likely cause nutrient-type distributions of mercury, as often observed for trace metals that 

are biologically essential (e.g., zinc, cobalt, cadmium). Thus, increased concentrations of 

total dissolved mercury in the thermocline are a result of vertical transport from above 

and a slow rate of removal by either scavenging or microbial uptake. 

 Although distributions of total mercury are important to establish, the story of 

mercury cycling in the ocean is fundamentally connected to its proclivity to change 

chemical and physical forms. Natural and anthropogenic sources emit elemental Hg (as 

well as a lesser amount of gaseous Hg(II)). Direct atmospheric deposition is presumed to 

be the principal source of Hg(II) (mercury is oxidized to Hg(II)
 
in the atmosphere) to 

most of the ocean (e.g., Driscoll et al., 2013), although rivers and groundwater can be 

more important in nearshore systems and the confined Arctic Ocean. This flux amounts 

to about 7 Mmole yr
-1

 in the net (Amos et al., 2013). Once in the marine environment, 

Hg(II) has a complex biogeochemistry, resulting in one of three fates (Figure 1): (1)  
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Figure 2. Vertical profiles of filtered total mercury, nutrients, and physicochemical parameters 

that illustrate different vertical mercury distributions in the ocean. (a and b) SAFe (Sampling and 

Analysis of Fe) program site in the North Pacific Ocean (Hammerschmidt and Bowman, 2012). (c 

and d) Station 10 (31.8°N, 64.2°W) in the western North Atlantic Ocean sampled during the 

recent US GEOTRACES zonal section (recent work of author Bowman). 
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reduction to Hg
0
 and evasion to the atmosphere, (2) methylation to either CH3Hg

+
 or 

(CH3)2Hg, and (3) scavenging from the water column.  

Reduction 

Net reduction of Hg(II) to Hg
0
 proceeds strongly enough that Hg

0
 is often supersaturated 

in seawater with respect to the atmosphere (Mason et al., 2012). Subsequent evasion of 

Hg
0
 to the atmosphere is half of the air-sea cycling loop and is a unique aspect of the 

biogeochemistry this metal. The reduction and evasion process is a major component of 

the marine Hg cycle, with evasion fluxes removing 50–80% of gross loadings from the 

atmosphere. Mercury reduction in seawater is thought to occur rapidly and to include 

both abiotic (photochemical) reactions as well as reduction by biota. Most mercury 

reduction in productive coastal waters is likely by a biological mechanism, driven by any 

one of several mercury-reducing bacteria. In contrast, photochemical reduction is more 

likely the dominant pathway in the open ocean, where light penetration is deeper and 

biological productivity less.  

Methylation and Demethylation 

Sediments 

External sources of the methylated forms of mercury are too low to explain the 

concentrations and fluxes of it in the ocean (e.g., Fitzgerald et al., 2007), suggesting that 

the primary source is internal production in sediments or the water column. In nearshore 

environments and likely for continental shelves, in situ sediment production accounts for 

most of the CH3Hg
+
 present. Other significant sources of CH3Hg

+
 to nearshore systems 

include tidal marshes, waste water treatment facilities, submarine groundwater discharge, 
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and mangroves that have exceptionally high rates of mercury methylation (e.g., Driscoll 

et al., 2013). Principal losses of CH3Hg
+
 from these waters include sedimentation, 

photochemical decomposition, harvesting of seafood, and export to the wider ocean.  

In a recent breakthrough, Parks et al. (2013) identified two genes (hgcA and hgcB) 

that are responsible for mercury methylation in some cultured anaerobic bacteria. These 

genes have also been found in other organisms that were not yet known to be mercury 

methylators, and from a more diverse group of anaerobic bacteria than previously 

observed (Gilmour et al., 2011; Parks et al., 2013). This finding reveals that the effect of 

microbial population structure in methylation is still poorly understood beyond the 

presence/absence of the general classes of microbes that contribute to methylation. 

Moreover, the microbial mechanism of mercury methylation is unknown, although it is 

thought to occur by an intracellular process. Examination of the genes in greater detail 

should reveal much about the biochemistry of mercury methylation and aid in our 

understanding of its occurrence in the environment. 

The genetic basis of Hg methylation not withstanding, net production of CH3Hg
+
 

in coastal sediments appears to be influenced more by Hg(II) bioavailability than the 

activity of methylating microbes. Supply of electron acceptors (e.g., SO4
2–

 or Fe(III)) as 

well as labile organic matter appear to be sufficient to fuel organisms’ mercury 

methylation even in the sandiest of marine deposits. Accordingly, geochemical factors 

that influence the sediment-water partitioning and chemical speciation of Hg(II) substrate 

greatly affect benthic production of CH3Hg
+
. Maximum rates of CH3Hg

+
 production are 

observed in coastal sediments that have relatively low levels of both solid-phase organic 

matter and sulfide, which favors partitioning of Hg(II) species into pore water and 
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therefore uptake by microbes (Fitzgerald et al., 2007). In contrast, CH3Hg
+
 production 

can be inhibited in sediments with enhanced levels of either organic matter (greater 

particle binding) or sulfide, which shifts speciation of dissolved Hg−S species to ionically 

charged complexes that are less bioavailable (e.g., Benoit et al., 1999). Therefore, Hg 

methylation is most effective at redox transition zones, where sulfate-reducing bacteria 

are present, but their sulfide by-product is not so abundant as to sequester Hg in 

sediments. 

Microbial demethylation also significantly influences net production of CH3Hg
+
; 

however, the mechanisms and rates of degradation remain a large gap in our 

understanding of CH3Hg
+
 biogeochemistry in marine sediments. Multiple functional 

groups of anaerobic microorganisms have the ability to demethylate CH3Hg
+
 by either an 

oxidative process where CO2 and Hg(II) are the end products or use of the 

organomercurial lyase protein, MerB, encoded on the mer operon (Barkay et al., 2003). 

However, microbial demethylation via the mer operon is likely not the dominant 

mechanism of CH3Hg
+
 loss in anoxic sediment. 

Water Column  

Hg(II) also can be methylated to CH3Hg
+
 and (CH3)2Hg in the marine water column 

(Figure 1; the sum of the two species denoted as ∑CH3Hg). The most striking feature of 

the vertical distribution of ∑CH3Hg is the ubiquitous maximum in the OMZ, typically 

from 500–1,000 m depth (Figure 4). Maxima of ∑CH3Hg in OMZs have been widely 

attributed to in situ methylation fueled by microbial remineralization of organic matter 

(e.g., Mason and Fitzgerald, 1993), the process that also is partly responsible for the  
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Figure 4. Representative profiles of monomethylmercury (CH3Hg
+
) and total methylated mercury 

(∑CH3Hg) in seawater, illustrating a connection to dissolved oxygen distributions.  Filtered 

CH3Hg
+
 in (a) Northeast Atlantic Ocean (unpublished data of author Bowman) and (b) 

subtropical North Pacific Ocean (Hammerschmidt and Bowman, 2012). ∑CH3Hg
 
in unfiltered 

water of the (c) sub-Arctic North Pacific (Sunderland et al., 2009), (d) Southern Ocean (Cossa et 

al., 2011), and (e) Mediterranean Sea (Cossa et al., 2009).  Dashed lines denote the depth of the 

sediment-water interface.  
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oxygen minimum, in addition to a slow rate of ventilation in the thermocline. Sectional 

oceanographic studies have observed associations between methylated mercury species 

and either apparent oxygen utilization (AOU) or organic carbon remineralization rate 

(Sunderland et al., 2009), which suggests that production of methylated mercury in the 

marine water column is limited by methylation potential more than it is by Hg(II) 

availability. 

Much of the previous research describing mercury methylation under anoxic 

conditions may be of little use in understanding CH3Hg
+
 dynamics in the open ocean. 

Although strains of iron- and sulfate-reducing bacteria methylate mercury in anoxic 

sediments (Gilmour et al., 2011), neither functional group is active in the marine water 

column except under conditions of extreme suboxia associated with some OMZs and 

microenvironments in sinking particles. The prevalence of CH3Hg
+
 and (CH3)2Hg 

throughout the oxic ocean and active rates of mercury methylation in oxic surface waters 

(Mason et al., 2012) implies that the ability to methylate mercury is widespread among 

microorganisms, including aerobes.   

Burial 

On time scales of tens of thousands of years and more, the ultimate sink for mercury is 

burial in marine sediments (e.g., Fitzgerald et al., 2007; Amos et al., 2013). 

Unfortunately, there is not a great deal of data for the concentration of mercury in deep-

sea sediments. As a result, we do not have well-constrained estimates for the rate at 

which sedimentation removes mercury from the ocean. We can make a first order 

estimate using studies that observed correlations between mercury and organic matter in 
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sediments (e.g., Fitzgerald et al., 2007) along with estimates for the amount of organic 

carbon buried on continental shelves and the abyssal ocean. This approach suggests that 

about 1 Mmol yr
–1

 of mercury is buried in global abyssal sediments, while almost 2 

Mmol yr
–1

 are buried on continental shelves. This mercury eventually makes its way back 

into the global cycle through subduction of marine sediments at active margins, 

reappearing as mercury volatilized from volcanoes and associated deposits. However, it 

is clear that more Hg is going into the ocean each year (approximately 7 Mmole yr
-1 

net 

from atmosphere and rivers; e.g., Amos et al., 2013) than leaving through burial, leading 

to inevitable increases. 

The Anthropogenic Load Timing and Magnitude 

As mentioned earlier, human activity has significantly increased the amount of mercury 

present in biologically active reservoirs at a variety of scales. At present, there is 

conflicting information regarding the amount of pollution mercury released, the timing of 

the releases, and fate of that material. What is clear, and as a result of complex 

biogeochemistry and resulting mobility, is that previously released pollution mercury 

remains active and contributes to the amount found in active environmental reservoirs 

(e.g., Amos et al., 2013). Thus, there is a reservoir of “legacy” mercury in the ocean, 

atmosphere, and soils that must be tracked to adequately assess pollution impacts and that 

will necessarily result in lags between corrective actions (such as reducing emissions) and 

subsequent declines in the environment. A critical area of research in environmental 

mercury biogeochemistry is to assess the scope of mercury perturbations in time and 

space and to include such information in models that will allow predictions to be made.       
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Our recent research as part of the GEOTRACES program (Anderson et al., 2014, 

in this issue; http://www.geotraces.org) has allowed us to estimate the amount of 

anthropogenic mercury in the ocean from direct oceanographic measurements. We 

compared the concentration of total mercury to that of remineralized phosphate in deep 

and intermediate waters from around the world, with an emphasis on the North and South 

Atlantic. Interestingly, mercury concentrations correlate well with remineralized 

phosphate in all deep waters except the North Atlantic, indicating that mercury under 

non-pollution conditions is behaving much like a macronutrient: it increases in 

concentration as it is swept along the oceanic conveyor belt through the deep Atlantic, 

into the deep Southern Ocean, then into the deep Indian, and eventually the deep North 

Pacific. In contrast, mercury-to-remineralized phosphate ratios were greatly increased in 

NADW of the North Atlantic and some intermediate waters, indicating anthropogenic 

impact. The excess anthropogenic mercury accounts for about 300 Mmoles present in the 

ocean today, which has increased concentrations in the surface ocean, permanent 

thermocline, and deep ocean regions by about 250%, 160%, and 10%, respectively. 

Our estimated amount of anthropogenic mercury in the ocean is consistent with 

the amounts predicted by previous modeling efforts, in particular, with that of Sunderland 

and Mason (2007). Their model is one of the few to explicitly include deepwater 

formation when considering the fate of mercury in the ocean. They found about 49% of 

total anthropogenic mercury resides below 1,500 m depth, similar to our measurements. 

The model highlights the importance that deepwater formation plays in the fate of 

anthropogenic Hg in the short term (century to millennium time scale); if this process did 

not occur, our results suggest that almost twice as much mercury would currently reside 
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in the surface ocean. This dynamic also has something to tell us about the future of Hg in 

the ocean. It is predicted that in the next 50 years, as much Hg could be released from 

industry as has been released in the previous 150 (Streets et al., 2009). However, of the 

future Hg added to the ocean, a larger proportion will be found in shallower water and 

will therefore be potentially available for inclusion in the marine food web. In short, not 

only will Hg concentrations in the surface ocean continue to rise along with emissions, 

but that rise could be at a faster rate than emissions. Because the residence time of 

mercury in the mixed layer is only 0.5-1 years, if we reduce atmospheric mercury inputs 

to the open ocean, there should be a proportional and immediate reduction of mercury 

concentrations in pelagic food webs. 

Historical archives provide compelling evidence of mercury concentration 

increases in biologically important reservoirs in the ocean. They suggest 200–500% 

increases of CH3Hg
+
 concentration in the ocean since industrialization. Such an increase 

of CH3Hg
+
 in seabirds is consistent with the GEOTRACES-based estimate of Hg(II) 

increases (e.g., Mason et al., 2012). It is possible that changes in the recent past and in 

some locations may very well be different from global averages. Thus, a conservative 

description of the state-of-the-science is that many studies support the hypothesis that 

increased emissions of Hg result in higher Hg concentrations in fish in the ocean, but that 

there is still much we do not know.  

The response of CH3Hg
+
 production in sediments on the continental margin is 

likely to influence future changes in Hg(II) loadings from either the atmosphere or rivers 

because surface sediments in nearshore and remote continental shelf regions have 

accumulated massive reservoirs of Hg(II) since the beginning of human Hg loadings. 
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Benthic infauna mix this pool of “legacy” mercury throughout the upper 10+ cm of 

surface sediment. Its burial and removal from active zones of methylation (upper few 

centimeters) will occur only after centimeters of new sediment are added, which will take 

decades to centuries in most systems. Future changes in CH3Hg
+
 production and 

bioaccumulation in coastal ecosystems are most likely to result from alterations of water 

quality that is hypothesized to influence Hg(II) bioavailability, benthic CH3Hg
+
 flux, and 

the size and composition of the biological pool into which CH3Hg
+
 is accumulated, but 

these effects are poorly constrained (Driscoll et al., 2013; Amos et al., 2013). 

Global Change Impact on the Mercury Cycle 

In addition to the possibility of increased mercury loadings to the ocean in the future, 

other changes in the marine mercury cycle could occur as a result of changes in climate, 

ocean physics, and productivity, as well as land use and terrestrial mercury cycling. 

Several studies have contemplated the potential impact that global change might have on 

the mercury cycle (e.g., AMAP, 2011; Amos et al., 2013; Krabbenhoft and Sunderland, 

2013; UNEP, 2013). However, our current understanding of the dependencies of various 

aspects of mercury biogeochemistry on these various forcings is too limited to make firm 

predictions. For example, Table 3 shows a few of the forcings that have been considered, 

some of which display competing impacts on the mercury cycle. Thus, and as with many 

aspects of global change science, the impact on the mercury cycle is very uncertain and 

that realization complicates the job of planning for or mitigating the impact of future 

mercury loadings to the ocean. 
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Regional Impact Case Studies 

The future of human impacts on the ocean regarding Hg can already be seen in some 

locations. Below, we highlight two case studies: the South China Sea, which is directly 

downwind and downriver from the region of largest current anthropogenic Hg emissions, 

and the Arctic, where a changing climate and unusual atmospheric dynamics combine to 

threaten people and food webs.  

South China Sea 

The South China Sea (SCS) receives riverine and atmospheric loadings of Hg from China 

and surrounding areas, which are among the highest emitters of Hg at present. As a result, 

the concentrations of Hg found in the SCS are unusually high for a large marginal sea, 

ranging from 3–10 pM (Fu et al., 2010; Tseng et al., 2012). In contrast, the 

Mediterranean Sea, which is nearly the same size as the SCS, exhibits Hg concentrations 

that are about five times less and receives a total areal Hg load that is less than half that 

of the SCS. Indeed, the SCS is closer in areal loading to urbanized embayments like Long 

Island Sound than the Mediterranean (Table 2). So much Hg is in the air over the SCS 

that in winter, when winds are from the northwest, Hg
0
 invades the sea in a situation 

rarely observed anywhere else (evasion is the norm; Tseng et al., 2013). At most times of 

the year, the evasional flux of Hg from the SCS is virtually the same as that from the 

Mediterranean and other ocean regions, implying that evasion may not be proportional to 

total Hg as is frequently assumed (e.g., Amos et al., 2013). If this is the case, then 

progressively larger percentages of Hg loadings to the wider ocean can be expected to 

remain there than current models would predict. If the future of most ocean regions is 
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Table 2. First-order total Hg mass balances for several embayments and marginal seas. Fluxes in nmol m
–2

 yr
–1

. Data are from Fitzgerald et al. 

(2007), Rajar et al. (2007), Fu et al. (2010), and Tseng et al. (2012).  

Term NY/NJ Harbor
 

(500 km
2
) 

San Francisco Bay
 

(1,236 km
2
) 

Long Island Sound
 

(3,250 km
2
) 

Chesapeake Bay
 

(12,000 km
2
) 

Mediterranean Sea 
(2,510,000 km

2
) 

South China Sea 
(3,500,000 km

2
) 

Sources 

Atmospheric Dep. 40 16.2 40 108 46 186 

River/Watershed 4500 977 298 177 26 49 

Water Treat. Facilities 460 15.4 18.5 n/a 37* n/a 

Sinks 

Evasion 120 2.4 123 48 99 108 

Net Ocean Export 3460 415 25 90 3 102 

Burial 1420 592 209 158 22 24 

 

Total Load 5000 1009 357 300 109 235 
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anything like the SCS, the impact of human emissions may be more serious than we 

currently appreciate.  

The Arctic 

There are two reasons that the Arctic is of concern with respect to global mercury change. 

First, during springtime, so-called Arctic Mercury Depletion Events regularly occur, 

where a large fraction of lower tropospheric Hg is oxidized and deposited to snow and 

ice. The chemistry behind this process is not perfectly understood, but likely involves 

reactive halogen species that are generated during polar sunrise. The result is a large 

deposition of Hg to the surface in a short period of time and could threaten Arctic 

ecosystems were it to remain. However, there is chemistry that occurs in snow and ice 

that results in the reduction and evasion of a substantial fraction of this deposited Hg, 

lowering the net effect of Depletion Events. The events themselves may not be new 

phenomena (Drevnick et al., 2012), but with the loss of sea ice in the Arctic, the process 

of re-emission of Hg deposited by Depletion Events may decrease in the future, 

dramatically increasing the net load to the Arctic Ocean (assuming snow is better at 

reducing/evading Hg than the ocean). 

A second cause for concern is the impact that global change is having on Hg 

loadings to the Arctic Ocean from rivers. The Arctic Ocean is a uniquely river-influenced 

basin, and warming appears to have resulted in a dramatic increase in riverine flow into 

this stretch of ocean. Much of this increased freshwater is thought to arise from the 

melting of permafrost and releases a substantial amount of organic carbon in the process. 

Mercury stored in permafrost soils is also released during this process, and modeling 
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estimates have suggested that the result could be a substantial increase in Hg loadings 

from rivers in the coming years (Fisher et al., 2012). The impact of all these forces might 

already be having an effect, as certain populations of two Arctic animals appear to be 

threatened by Hg-induced loss of fecundity (Tartu et al., 2013), and others are likely to 

follow (AMAP, 2011). As with global warming, the Arctic may be the “canary in the coal 

mine” for the impact of our past, present, and future releases of mercury to the 

environment. 

What Can Be Done? 

The future trajectory of ocean mercury depends on socioeconomic and technological 

factors. Historically, dramatic increases in mercury emission associated with 

industrialization have increased mercury loading to the ocean. While efforts in several 

developed countries (including the United States and Europe) have resulted in emissions 

decreases there, rapidly industrializing countries are currently the main source of 

atmospheric mercury emission. Depending on how countries industrialize, and what 

controls are put in place, particularly in Asia, anthropogenic mercury emissions in 2050 

could increase by 96%, or decrease by 4%, or anything in between, relative to 2006 

emissions (Streets et al., 2009). Under the highest emission scenario, net deposition to the 

global ocean is projected to increase by 33% (Corbitt et al., 2011).  

As present-day anthropogenic sources represent only a fraction (about one-third) 

of the global emission of mercury to the atmosphere, quantifying the time scales of 

legacy emission are critical to determining the future of ocean mercury. Importantly, 

mercury released now is tomorrow’s legacy mercury. Global simulations have shown that 
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future increases in legacy mercury substantially add to estimates of changes in 

atmospheric deposition under policy scenarios (Amos et al., 2013; Sunderland and Selin, 

2013). Thus, controlling emissions today has a long-term benefit.  

Policy actions at national, regional, and global scales have addressed mercury 

pollution sources. In the United States, the recent Mercury and Air Toxics Standards 

mandate mercury emissions reductions for the first time from power generation sources, 

in particular, coal-fired power plants. Globally, the Minamata Convention is a new, 

legally binding international agreement with a goal of protecting human health and the 

environment from anthropogenic emissions and releases of mercury. The Convention, 

signed in October 2013, takes a life-cycle approach, addressing mercury production, use, 

trade, and emissions. Provisions that could have the largest impact on the global ocean 

are those on atmospheric emissions, releases to land and water, and artisanal and small-

scale gold mining (ASGM). On emissions, the Convention requires the application of 

best available techniques and best environmental practices (BAT/BEP) for new sources, 

starting five years after the treaty’s entry into force (which will likely be 2015 at the 

earliest). The concept of BAT/BEP takes into account both technical and economic 

feasibility of controls. For existing sources, parties are required to choose from a variety 

of measures to control, and where feasible reduce emissions, starting 10 years after entry 

into force.  

Convention provisions on ASGM could also impact future deposition to the 

ocean. Though previous mercury emission inventories identified stationary combustion as 

the largest global atmospheric emission sector, the most recent inventory by the United 

Nations Environment Programme estimates that ASGM is largest (UNEP, 2013). While 
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there is much uncertainty in the ASGM inventory, and the quantification of how much 

mercury enters the global atmosphere where it might affect the open ocean and/or remain 

in local waterways, reducing this source will have benefits on both local and global 

scales. Under the Minamata Convention, parties with more than insignificant ASGM are 

required to develop a national action plan and take steps to reduce, and where feasible 

eliminate, the use and release of mercury in these activities. 

Taken together, Minamata Convention provisions could, optimistically, result in 

emissions trajectory at the low end of those projected for 2050, with implementation of 

basic emissions controls on a large range of sources (Sunderland and Selin, 2013). These 

actions would result in avoiding the large increases projected under business-as-usual, but 

little change from today to 2050 in the amount of mercury in the ocean. This scenario 

suggests that environmental improvements would require more aggressive action in the 

future, and that the initial importance of the Minamata Convention may be in raising 

awareness legally and politically about mercury as a global environmental contaminant.  

Moving forward, several lessons emerge for future mercury policy. Experience 

with regional mercury management suggests that future policy should take into account 

transboundary influences, coordinate across environmental media, and better assess 

human and ecological impacts in regulatory analyses. With the new Minamata 

Convention, coordinating policies across scales—ensuring that national, regional, and 

international actions are consistent and reinforcing—will become more important. In 

addition, because mercury is a legacy pollutant, population risks could be further 

minimized by improved adaptive measures such as fish advisories, before the benefits of 

international policy are fully realized.  
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Mercury (Hg) is a toxic, bioaccumulating trace metal whose emissions to the 

environment have increased significantly as a result of anthropogenic activities such 

as mining and fossil fuel combustion
1,2

. Several recent models have estimated that 

these emissions have increased the oceanic Hg inventory by 36-1313 Mmoles since 

the 1500’s
2-9

. Such predictions have remained largely untested due to a lack of 

appropriate historical data and natural archives. Here we show oceanographic 

measurements of Hg and related parameters from several recent expeditions to the 

Atlantic, Pacific, Southern and Arctic Oceans. We find that deep North Atlantic 

waters and most intermediate waters are anomalously enriched in Hg relative to 

deep waters of the South Atlantic, Southern and Pacific Oceans, likely as a result of 

the incorporation of anthropogenic Hg. We estimate the total amount of 

anthropogenic Hg present in the global ocean to be 290±80 Mmoles, with almost two 

thirds residing in water shallower than 1000 m. Our findings suggest that 

anthropogenic perturbations to the global Hg cycle have led to a ~150% increase in 
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the amount of Hg in thermocline waters and have more than tripled the Hg content 

of surface waters. This information may aid our understanding of the processes and 

the depths at which inorganic Hg species are converted into toxic methylmercury 

and subsequently bioaccumulated in marine food webs. 

Mercury is emitted to the atmosphere by natural and human sources primarily as Hg
o
, 

which is unusually volatile for a metal
1
. The elemental form is removed from the 

atmosphere after oxidation to Hg
2+

 which is then deposited to land and ocean. Within the 

ocean, Hg
2+

 is readily reduced to Hg
o
, resulting in surface waters being supersaturated in 

the elemental form with respect to the atmosphere. With an atmospheric lifetime between 

a few months and a year as well as the evasion of Hg
o
 from the ocean to the atmosphere, 

Hg from any source can be widely dispersed across the globe
5
. Hg in the ocean is also 

subject to bioaccumulation and scavenging by organic-rich particles. Such particles 

eventually sink out of the surface ocean and are respired at deeper depths, transporting 

carbon, nutrients and metals like Hg in the process. In this way, Hg is very much like 

CO2 in that it is a biologically active gas that exhibits wide dispersal in the atmosphere, 

vigorous air-sea exchange and vertical transport in the ocean as a result of the particulate 

“biological carbon pump
10

.” Like the other Group 12 elements (Zn and Cd)
11

 we might 

expect that Hg distributions in the ocean should mimic macronutrients like PO4
3-

 (low in 

the surface, increasing through the thermocline, higher in the deep Pacific than deep 

Atlantic). As can be seen in some representative vertical profiles of Hg concentrations 

(Figure 1), this general trend is indeed observed. 

However, oceanic Hg distributions are a combination of pre-anthropogenic, nutrient-

like and transient signals resulting from human activities over the past several centuries.  
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Figure 1. Mercury and Premin distributions in the Ocean. Panel a, representative profiles of 

total dissolved Hg from the North Atlantic near Bermuda (triangles), from the South Atlantic 

(circles) and NE Pacific Ocean (the “SAFe” station) as well as (Panel b) world-wide vertical 

distribution of Premin as interpolated from WOCE data (www.ewoce.org).  
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Figure 2 shows the concentrations of Hg and dissolved phosphate released during 

organic matter remineralization (Premin=AOU/170) measured in a variety of water masses 

from GEOTRACES cruises to the North and South Atlantic Oceans, the Pacific sector of 

the Southern Ocean, a GEOTRACES Intercalibration cruise to the subtropical NE Pacific 

Ocean and non-GEOTRACES cruises to the tropical Pacific (the “Metalloenzyme 

Cruise”), the North Pacific (CLIVAR Repeat P16), and the central Arctic Ocean (2011 

Polarstern cruise TransArc ARK XXIV/3) 
12-17

. In the water masses other than Northern 

Hemisphere North Atlantic Deep Water and recently subducted Antarctic Bottom Water 

(henceforth referred to as “un-impacted” deep waters), a striking correlation between Hg 

and Premin is seen (the reduced major axis regression line in Figure 2). This correlation 

offers several important insights: 1) these water masses possess little anthropogenic Hg 

delivered by the biological pump, otherwise a good correlation along and a y-intercept 

that is essentially zero (-0.07± 0.03 µmole Hg) would not have been observed (see 

supplemental material for more discussion); 2) the slope of the line is an expression of 

the Hg/P ratio in sinking organic matter formed in surface waters from before the 

anthropogenic impact (1.02 ± 0.03 µmole Hg/mole P); 3) the relationship allows us to use 

it as a benchmark against which water masses that do contain anthropogenic Hg can be 

compared. 

The impact of anthropogenic Hg emissions in the deep North Atlantic and various 

thermocline water masses is evident in Figure 2, with data  points that lie above the 

unimpacted deep water regression line showing evidence of anthropogenic Hg 

contributions, and the vertical distance between the data and the line representing the 

amount of Hg in that water mass contributed from human sources. It is immediately  
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Figure 2. The concentration of Hg and Premin in various water masses. The gray symbols are 

the data from deep waters (>1000 m depth) not suspected of possessing anthropogenic Hg. 

The remaining symbols include North Atlantic Deep Water in the North Atlantic 

(1), Antarctic Bottom Water sampled between Tasmania and Antarctica (2), and 

thermocline waters from the North Atlantic (6), South Atlantic (4), the southern Ocean 

between Tasmania and Antarctica (8), the Arctic Ocean (7), the Northeast Pacific (5) 

and tropical Pacific (3).  
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apparent, however, that the degree of Hg perturbation for each water mass is not equal. 

This can be explored further by dividing the amount of anthropogenic Hg in each water 

mass by a tracer, preferably a pollutant that has a similar emissions history. This will 

allow the derived amount of Hganth to be cross-checked against expectations as well as 

greatly simplify the conversion of our measurements to a scaled-up estimate of the total 

amount of pollutant Hg in the ocean. For this purpose, we have selected the amount of 

CO2anth present in each water mass (Table 1). The CO2anth estimates were derived with the 

18
 from a variety of data sets,

19
 and then gridded 

over the whole ocean (the GLODAP database).
20

 The Hganth/CO2anth ratios in most of the 

water masses are not statistically different from either each other or the Hg/CO2 ratio in 

primary anthropogenic atmospheric emissions (9.6-12.4 Mmole Hg/y; 0.79±0.04 Pmole 

C/y; Hg/C=14±2 nmole/mole).
21-23

 However, shallower water masses appear to have 

smaller mean Hganth/CO2anth ratios than either North Atlantic Deep Water (NADW) or 

Antarctic Bottom Water (AABW), which contain mean Hganth/CO2anth ratios that exceed 

those in most known emissions sources
22

. The cause of this higher ratio is unclear, but it 

may be attributed to either high localized rates of atmospheric Hg deposition due to high 

rates of precipitation (Southern Ocean), enrichment caused by salt rejection during ice 

formation
14

, proximity to historically strong regions of Hg emissions in North America 

and Europe (North Atlantic) or the prevalence of coal burning as a source of CO2 early in 

the Industrial Revolution. For example, surface waters near Iceland (the site of NADW 

formation) and Antarctica (AABW) are enriched in Hg (~2 pM)
14,24

 with respect to 

average surface waters (0.6 pM; see below), which is consistent with greater mean 

Hg/CO2 ratios in these deep waters. Some alteration in Hganth/CO2anth ratios should also  
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Table 1. Summary of Hg, Premin and CO2anth data.  

Basin/Water Mass 
Hg (pmole 

kg-1) 

Premin (µmole 

kg-1) 

Hganth 

(pmole kg-1) 

CO2anth 

(µmole 

kg-1) 

(Hg/CO2)anth 

(nmole 

mole-1) 

Unimpacted deep waters 

South Atlantic/NADWa 0.47±0.08 0.52±0.06 0 0 --- 

South Atlantic/AABWb 0.67±0.19 0.75±0.19 0 0 --- 

Tropical Pacific/PDW and PBWc 1.10±0.33 1.13±0.15 0 0 --- 

Subtropical Northeast Pacific/ 

PDW and PBWd 
1.55±0.01 1.60±0.05 0 0 --- 

Impacted deep waters 

North Atlantic/NADWa 1.1±0.2 0.40±0.05 0.72±0.17 10.2±9.7 58±29 

Southern Ocean/AABWg 0.98±0.17 0.75±0.10 0.29±0.20 5±4 76±8 

Thermocline waters 

South Atlantic/thermoclinee 0.41±0.14 0.49±0.35 -0.02±0.28 25±13 --- 

Tropical Pacific/thermoclinee 0.82±0.35 0.98±0.48 -0.10±0.60 16±16 --- 

North Atlantic/thermoclinee 0.94±0.27 0.47±0.30 0.52±0.21 42±14 15±8 

Northeast Pacific/thermoclinee 1.22±0.39 0.92±0.72 0.35±0.59 25±14 23±18 

Arctic Ocean/thermoclinef 1.00±0.11 0.26±0.03 0.80±0.12 ~30 ~27 

Southern Ocean/thermoclineg 0.95±0.057 0.47±0.33 0.66±0.57 22±12 37±24 

Hg, Premin and CO2anth values are water mass averages. The Hganth and (Hg/CO2)anth values shown 
are averages of sample-by-sample calculations. 

Selection criteria: 

aall stations from section, depths between 1500 and 4000 m. 

ball stations from section, depths below 4000 m. 

call stations from section, depths below 1000 m. 

done station, depths below 1000 m. 
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eall stations, depths 100-1000 m. 

ftwo stations, depths 200-1000 m. 

gall stations south of 50o S, depths 100-1000 m. 
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be expected from the differential behaviors in the ocean between these two biologically 

active gases (Hganth will be moved into the thermocline and mode waters by both the 

biological as well as the solubility pump,
10

 while CO2anth will not be pumped biologically 

as oceanic primary productivity is not C limited). 

We used the observed Hganth/CO2anth ratios in each impacted water mass to estimate 

the inventory of Hganth in the ocean as a whole by multiplying these ratios by the 

estimated amount of CO2anth in the ocean (9.8 ± 1.6 Pmole C)
19

. Given the still small and 

evolving amount of oceanographic Hg data available, we chose to use one Hganth/CO2anth 

ratio for intermediate waters (100–1000 m; 25 ± 11 nmole/mole) and another for the deep 

North Atlantic (66 ± 14 nmole/mole), and use the GLODAP model estimate for the 

percentage of CO2anth in each ocean layer: 15% in surface water, 71% in intermediate 

waters, and 16% in deep. This calculation suggests that there is about 170 ± 80 Mmoles 

of anthropogenic Hg between 100 and 1000 m depth and about 100 ± 20 Mmoles deeper 

than 1000 m.  

Identifying the anthropogenic impact on Hg in waters shallower than 100 m using 

Premin is not appropriate because atmospheric deposition is the primary source of Hg to 

the surface ocean, not particle remineralization. Alternatively, we estimated Hganth in 

surface waters by comparing the slope of the regression in Figure 2 with the Hg/P ratio in 

contemporary suspended particulate matter. The Hg/P ratio was derived from analysis of 

Hg and P in mixed-layer particulate matter collected by in situ pumping performed 

during both the North Atlantic GEOTRACES and tropical Pacific Metalloenzyme 

cruises. This ratio is 3.4 ± 1.3 µmole Hg/mole P, indicating a factor of 3.4 ± 1.3 increase 

in the concentration of Hg in microseston since industrialization. This degree of secular 
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change of Hg in surface waters is consistent with archives of atmospheric Hg deposition 

that indicate a 2–5× increase worldwide since industrialization
25

. The data presented here 

suggest that the total amount of Hg in the top 100 m of the ocean is about 22 Mmole (an 

average concentration of 0.6 pM).  Accordingly, Hganth in this layer is about 16 ± 6 

Mmoles.  

Our overall estimate of 290 ± 80 Mmoles (rounded to 2 significant figures) of Hganth 

in the ocean is in reasonable agreement with a number of model-based predictions,
4,7,8,26

 

but suggests the highest and lowest estimates are implausible. On the high end is the 

prediction of Streets and colleagues,
2
 who estimated an amount of Hganth in the ocean of 

1313 Mmoles, which required a major contribution from artisanal and small-scale gold 

mining currently and in the past. This particular inventory is important to test as it has 

featured prominently in recent negotiations concerning international efforts to curb 

emissions of Hg to the environment.
27

 Our measurements and calculations here suggest 

that either the Streets estimate for past Hg anthropogenic releases are too high, or that 

much of the Hg they predicted to be in the ocean resides elsewhere, such as in soils. 

Recent work by Lyatt Jaegle, Yanxu Zhang and colleagues has provided support for this 

as well using modeling fits to water column profiles that also suggest loadings to the 

ocean are lower than those of Streets and colleagues.
28

 It should be noted that the 

estimate for total CO2anth to which we have indexed
19

 is for the year 1994. Estimates for 

more recent times and with different methods suggest greater CO2anth (e.g., 12.9 Pmole
29

) 

which would predict higher values of Hganth as well (380 Mmole). However, this higher 

estimate is still much less than that of Streets et al. 
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As noted, we found that about a third of anthropogenic Hg loadings to the ocean are 

in deep water, particularly NADW. One model with which our results agree quite well is 

that of Sunderland and Mason
7
, who used a multi-box model that explicitly included deep 

water formation in the North Atlantic. In their simulation, 129 Mmoles of Hganth reside 

shallower than 1500 m in the ocean, with another 124 Mmoles in deeper waters. Thus, 

the prevalence of anthropogenic Hg in deep waters of the North Atlantic indicate the 

importance, as captured by the Sunderland and Mason model, of deep water formation 

for sequestration of surface Hg on millennial timescales. This observation also leads to 

the conclusion, given that Hg emissions from anthropogenic sources are predicted to 

increase at a rate faster than in the previous few centuries,
21

 that future loadings may 

somewhat overwhelm the deep water formation sink. Thus, we should expect that the rate 

of increase of Hg in surface waters in the next few decades should be greater than the rate 

of increase in emissions during the same time period. 

The impact of anthropogenic loadings on the oceanic Hg reservoir can be estimated 

with knowledge of the total amount of Hg in the ocean. Using the North and South 

Atlantic concentration profiles to each represent a quarter of the whole ocean and the 

Pacific profiles to represent the other half, we estimated that the ocean contains 1390 

Mmoles of dissolved total Hg, with 22 Mmoles in the 0–100 m surface ocean, 292 

Mmoles in the 100–1000 m intermediate depths and 1260 Mmoles in waters deeper than 

1000 m (the average concentration in these three layers being 0.6, 0.9 and 1.0 pM, 

respectively
13-15,17,30

). These amounts are less than most previous estimates; for example, 

Sunderland and Mason
7
 estimated 666 Mmoles shallower than 1500 m and 1095 Mmoles 

in deeper water. Thus, analysis of the new data presented here suggests that the relative 
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impact of human Hg emissions on the ocean is greater than previously thought: waters 

shallower than 1000 m appear to have contained 120 Mmole in the pre-industrial past, 

and exhibit a factor of 2.6× increase, while the ocean as a whole has experienced a 1.1× 

increase. 

As our analysis reveals, and as has been noted elsewhere,
26

 the impact of human Hg 

emissions is not uniform within the ocean. Therefore, the extent to which methylmercury 

concentrations in fish have changed since industrialization, and might change in response 

to further perturbation (perhaps as much as a 5× increase over pre-industrial by 2050)
21

 

can be determined only following studies of the vertical patterns in Hg methylation 

dynamics as well as basin-scale controls on methylation of anthropogenic Hg.  
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Methods 

Dissolved water samples were collected using ultra-clean techniques,
31

 including the 

use of a largely metal-free collection system and pressure filtration to 0.45 µm of water 

samples directly from the sampling GO-Flo bottles. Aliquots for total dissolved Hg were 

collected in 250-mL, acid-washed, borosilicate glass bottles, digested with BrCl and 

analyzed by Cold Vapor Atomic Fluorescence Spectrometry following SnCl2 reduction 

and gold-trap pre-concentration
32-34

. 

Premin was calculated according to Anderson and Sarmiento
12

 as Premin = AOU / 

170±10, where AOU is the apparent oxygen utilization and is calculated as [O2]sat – 

[O2]obs, where [O2]sat is determined from depth, temperature and salinity
35

. 

Particulate Hg and P were determined from subsamples of QMA or polyethersulfone 

(PES) filters loaded with suspended matter (<51 µm) using McLane pumps. For Hg, the 

filter aliquots were digested with 2 M HNO3, and the digest treated as dissolved 

samples
36

. For P, PES filter subsamples were digested in a 3:1 sulfuric acid:hydrogen 

peroxide solution to oxidize and dissolve the PES filter, dried down, and then particles 

were digested in a 4N HCl/HNO3/HF mixture
37

.  The digest was analyzed for multiple 

elements including P on a high resolution Inductively Coupled Plasma Mass 

Spectrometer and standardized using multi-element external standards (similar to 

Lamborg et al.
38

).   

Water masses were defined primarily based on depth (as noted in Table 1), in 

accordance with those suggested by Talley and colleagues.
39

 This definition represents an 
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approximation for more refined definitions made of the basis of temperature, salinity and 

basin.   
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(Appendix C) Mercury in the anthropocene ocean 
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(Appendix D) A global ocean inventory of anthropogenic mercury based on water 

column measurements 
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