
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

8-2008

TcruziKB: Enabling Complex Queries for Genomic Data TcruziKB: Enabling Complex Queries for Genomic Data

Exploration Exploration

Pablo N. Mendes
Wright State University - Main Campus

Bobby McKnight

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

Jessica C. Kissinger

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Mendes, P. N., McKnight, B., Sheth, A. P., & Kissinger, J. C. (2008). TcruziKB: Enabling Complex Queries for
Genomic Data Exploration. Proceedings of the IEEE International Conference on Semantic Computing,
432-439.
https://corescholar.libraries.wright.edu/knoesis/755

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in
Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis
Publications by an authorized administrator of CORE Scholar. For more information, please contact library-
corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/36753291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu
mailto:library-corescholar@wright.edu

TcruziKB: Enabling Complex Queries for Genomic Data Exploration
Pablo N. Mendes1, Bobby McKnight2, Amit P. Sheth1, Jessica C. Kissinger3

1 Kno.e.sis Center

Department of Computer Science
and Engineering

Wright State University, Dayton, OH
{mendes.2,amit.sheth}@wright.edu

2 LSDIS Laboratory

Department of Computer Science
University of Georgia, Athens, GA

mcknight@cs.uga.edu

3 The Department of Genetics,

Center for Tropical and Emerging
Global Diseases and Institute for

Bioinformatics
University of Georgia, Athens, GA

jkissing@uga.edu

Abstract
We developed a novel analytical environment to aid in the
examination of the extensive amount of interconnected data
available for genome projects. Our focus is to enable
flexibility and abstraction from implementation details,
while retaining the expressivity required for post-genomic
research. To achieve this goal, we associated genomics data
to ontologies and implemented a query formulation and
execution environment with added visualization capabilities.

We use ontology schemas to guide the user through the
process of building complex queries in a flexible Web
interface. Queries are serialized in SPARQL and sent to
servers via Ajax. A component for visualization of the
results allows researchers to explore result sets in multiple
perspectives to suit different analytical needs.

We show a use case of semantic computing with real world
data. We demonstrate facilitated access to information
through expressive queries in a flexible and friendly user
interface. Our system scores 90.54% in a user satisfaction
evaluation with 30 subjects. In comparison with traditional
genome databases, preliminary evaluation indicates a
reduction of the amount of user interaction required to
answer the provided sample queries.

1. Introduction
The contemporary scientist, when formulating a

hypothesis or looking for evidence to validate one,
commonly performs intensive queries of multiple
independent online databases. The technology associated
with the current information sources invariably require high
levels of human involvement to manually browse through
an extensive mass of data, observe the evidence, analyze
their interconnections and draw conclusions. This is a time
consuming and difficult task due to the size, diversity and
complexity of both the data and the tools.

We propose an ontology-based analytical environment to
provide greater flexibility and abstraction from
implementation details, while retaining the expressivity
required for post-genomic research. The richer
representation model of semantic Web ontologies and
associated query languages unveil new ways to approach

database queries and knowledge discovery. The use of
ontologies in this work goes beyond the reference to a
standardized vocabulary as is commonly seen in
bioinformatics. We explore the representation of conceptual
relationships between entities to help guide the researcher
with “connecting the dots” and take hypotheses to evidence.

The use case described in this work is a real-world effort,
focused on the human parasitic protist called Trypanosoma
cruzi. Approximately 18 million people, predominantly in
Latin America, are infected with the T.cruzi parasite1, the
cause of Chagas Disease for which there is no definitive
chemotherapeutic treatment. The parasite has a complex
life-cycle with four main stages occurring in two hosts. In
the insect host, T.cruzi is found in the form of epimastigotes
and metacyclic trypomastigotes. In the vertebrate host, it is
found in the form of bloodstream trypomastigotes and
intracellular amastigotes.

Research on T.cruzi, like many other organisms and
diseases, has reached a critical juncture with the quantities
of experimental data being generated by labs around the
world outstripping the community’s ability to synthesize
and understand all. In an attempt to provide integrated
resources for the research community, researchers have
created “Omics” databases that specialize in gathering as
much information as possible about one organism, or a
group of related organisms. TcruziDB [1] is an integrated
genome database for T.cruzi that incorporates and provides
online access to sequence data, “Omics” data and
supplementary bioinformatics analyses on the Web. We
have used semantic computing technologies to create a
knowledge base called TcruziKB (The Trypanosoma cruzi
Knowledge Base) as a complement to TcruziDB’s existing
functionality.

In comparison with traditional genome databases, which
are based on flat files or relational databases, TcruziKB
offers several advantages. (i) flexibility on the query
perspective. Common query interfaces reflect the possible
uses of the system as designed by the development team
and/or the community of users involved in the development
stages. For instance, TcruziDB.org offers 5 perspectives,
where the user can search for/among different data types,
e.g. genes, ESTs, contigs, scaffolds and ORFs. In such a

1 http://www.who.int/tdr/diseases/chagas/diseaseinfo.htm

system, the user is limited to the available data types and
existing “pre-canned” queries. Complex queries are
generated in the query history when the user performs
Boolean operations on sets of independent queries to find
their union or intersection. For example, a query for all
genes could be intersected with a query for proteins
expressed in blood-stage forms of the infection to find the
desired subset of genes. To generate new queries however,
requires, human involvement by a database designer to
implement the necessary SQL statements and visualization
interfaces. In contrast, TcruziKB uses ontology schemas to
offer a high-level query system, where the user is guided by
the system throughout the process of posing a question in a
logical path such as: “?protein → expressed_in →
?any_stage → resident_in → Blood”. (ii) complex query
handling: a key component of genomics analyses is the
concept of “relationship”. Through the use of ontologies a
user will be able to ask questions not only about entities, but
also about how those entities are related. For instance, what
is the relationship between a given protein and blood? Such
a question could possibly reveal protein expression evidence
of an interaction between a life-cycle stage of the parasite
where the organism resides in the bloodstream of the host
and interacts with or modifies its environment in some way.
This type of query is viable through the use of ontologies to
reveal semantic associations, and is very difficult to institute
within the scope of a relational database. In relational
databases, although relationships may be present in the form
of join tables or foreign keys, they cannot be easily queried
(iii) loosely-coupled web aggregation of distributed data
sources: most genome databases aggregate data from
different sources at some level, usually by downloading,
parsing and storing external data in a centralized relational
database. In our system we provide loosely-coupled
dynamic integration with external sources on the client side.
Through the use of Ajax2 and SPARQL protocol3, our
system is able to dynamically query multiple sources and
“mash up” the results on one page for user visualization.

In addition to the provision of data aggregation for query
capabilities, we aim at facilitating the difficult task of
making sense of the information at hand. We implemented
multiple exploration interfaces to allow the user to visualize
and analyze query results in different formats: (i) the
tabular explorer lists the results in a spreadsheet format,
providing prompt access to all attributes of a group of items,
allowing for sorting and filtering of data in a well known
and widely used interface style. (ii) the graph explorer,
focuses on relationships, drawing each item and value as
nodes, while the attributes and relationships are represented
as edges. This perspective brings connectivity to the first
level, allowing the researcher to unveil hidden relationships
within the data. (iii) the pie-chart explorer offers a
summary of the results at a first glance, to allow researchers

2 http://www.adaptivepath.com/ideas/essays/archives/000385.php
3 http://www.w3.org/TR/rdf-sparql-protocol

to understand the general characteristics of the data set,
before more specific questions are posed.

The W3C Semantic Web Health Care and Life Sciences
(HCLS) Interest Group recently released a questionnaire
(http://www.w3.org/2007/06/HCLSForm) to assess research
areas and draft charters for Working Groups. With respect
to that questionnaire, this project meets the following
activities: it bridges and enhances biomedical vocabularies;
works with data providers to make data available in RDF;
explores/develops navigation and visualization tools;
explores/develops database federation; integrates “Omics”
data (e.g. genomics, proteomics, metabolomics); as well as
solicit participation from organism biologists (e.g.
taxonomy, ecology, biogeography).

This paper is organized as follows: in section 2 we
present related work; in section 3 we describe the
application domain; in section 4 we identify some
challenges and present our approach for data integration; in
section 5 we present the system architecture; in section 6 we
present user evaluation, and in section 7 we discuss
conclusions and future work.

2. Related work
We compare our work with traditional genome databases

in the introduction and throughout this paper as a way to
motivate and identify advancements with regard to current
practices. In this section, we compare our work with other
semantic Web applications focusing on queries as a way to
facilitate access to information.

The tool Openlink iSPARQL [2] offers a graph-based
interface for query formulation where the user can add
classes to the visual graph as nodes and connect them with
edges representing properties. The Semantic Discovery
System (SDS) [3] also allows for complex semantic queries
with a graph based approach, and offers additional methods
to apply constraints. The user is presented with a graphical
representation of the schema and can select properties and
classes on which to focus their attention. In addition, the
user can place constraints on relationships by selecting
properties from a tree representation. In both cases, some
familiarity with computer science is required. Other
approaches use a tree representation of the data as a
mechanism to construct queries. In GRQL [4] trees are used
to construct complex queries of connected data. Trees can
be useful because certain branches of interest can be
expanded/collapsed as needed to show data of interest and
hide irrelevant data. A problem arises when the data sets are
very large, as is the case in the realm of bioinformatics.
While a graph or tree-based construction mechanism allows
for complex graph based queries similar to our system, it
may seem alien to users or require extensive navigation to
find concepts. This is because it forgoes the traditional
search interface features such as typing keywords and
selecting items from drop-down menus in lieu of its purely
visual approach. TcruziKB aims at keeping common search

features such as keyword search and enhancing them with
the addition of suggestions to help the user construct the
query. In addition, we support queries involving complex
types (e.g. collections), as well as user-provided instances
(e.g. the amino-acid sequence “MFVAPKMAGF”). For
queries that require the execution of bioinformatics tools as
part of a query answer, we extend a SPARQL engine to
support query-triggered web service executions, as
explained in more details in section 5.

Other types of query systems such as, GINSENG [5] use
natural language query processing in conjunction with
ontologies to allow users to formulate questions in English
language. Like TcruziKB, GINSENG provides suggestions
as the user types and allows for graph based queries. The
drawback of this type of system is that the terms in the
system ontology may not lend themselves to natural
language because factors such as synonyms, tense of verbs
and noun forms come into play along with the style of
writing of the particular user performing the query. For
example, if the user wants to search for genes that are
expressed in a particular life-cycle stage they may want to
ask “Which genes are expressed in the epimastigote stage?”
The problem is that there may be no property labeled
“expressed”. Instead there may be a property labeled “life-
cycle stage”. This may require the user to enter in a query
that doesn't fit their particular writing style, such as, “Which
genes have proteins that have been observed in the life-cycle
stage epimastigote?” as opposed to the question they had
originally intended to ask. These factors greatly complicate
the query and mapping processes for both the system and
the user. It might not always be possible to correctly map a
question to a formal query if users ignore suggestions in
favor of their terminology. In TcruziKB we avoid the
ambiguities of natural language and provide a more
controlled environment that guides the user step by step
with suggestions of terms that are connected in the
ontology. Therefore only meaningful queries (with respect
to the ontologies adopted) will be formulated.

Another type of query interface, the form based query
construction method, such as used in GoGet [6] requires the
user to fill out a variety of information on HTML forms.
The Display of many fields at once may alienate users
because this type of query system is vastly different than the
more traditional web searches they are accustomed to.
GoGet also lacks portability, focusing itself on one set of
data.

3. Application domain and domain model
From simple char-delimited (flat) files to complex

relational database schemas, gigabytes of genome
annotation data are available for use in the field of
Genomics. We engineered an ontology to complement and
interconnect information in this domain. We use controlled
vocabularies and ontologies such as the Sequence Ontology
(SO) [7], Gene Ontology (GO) [8], Pfam C [9] as well as

newly created relationships to connect terms from these
sources. For example, every protein in our system will be an
instance of the class so:SO_0000104 (polypeptide) and
every Pfam domain will be an instance of so:SO_0000417
(polypeptide_domain) from the Sequence Ontology. To
connect instances of these two classes we created the
property “has_pfam_domain”.

We identified a manageable subset from the domain of
T.cruzi “Omics” research to test the system and its
underlying concepts. Our ontology schema is able to
represent genes, as well as the organisms they belong to and
the proteins that they encode. Protein family information
from Pfam is present, and families are grouped in clans.
Enzymatic function is linked to biochemical pathways,
providing information about the biological processes they
are involved in. Proteomic expression is also captured,
including the information about the life-cycle stage(s) in
which the protein is expressed, as well as quantitative
measures of that expression. This knowledge base allows
users to ask questions spanning multiple data sets such as:
(1) “Which parasite genes are expressed during the human
infective life-cycle stages?” Although this is possible on
TcruziDB, it currently assumes that the user knows which
life-cycle stages are human and which are insect. In
TcruziKB we have added this information by defining the
property “present_in” to relate a life-cycle stage and the
environment it naturally occurs.
(2) “What are the relationships between a gene X and any
gene that has the Pfam domain D?” This type of question is
exploratory in nature and may allow users to find out that
such genes have common features such as sequence
similarity, host, life-cycle stage, EC number, etc.

(3) “What are the common characteristics of the life-cycle
stages of Trypanosoma cruzi that express tubulin genes at
the protein level?” Suppose you find tubulins in amastigotes
and promastigotes. Perhaps these stages occur in the same
host? Although a biologist would know this, a computer
scientist would not, hence, it could be “discovered”. Other
“discovery” questions that are useful for biologists could be
similarly formulated.

4. Data integration
We obtain data from several sources, including Pfam flat

files, Interpro XML and relational data stored in the
Genome Unified Schema (http://www.gusdb.org/) for
TcruziDB. Several challenges for data integration arise in
this scenario, including format heterogeneity and loose vs
tight coupling. In this section we explain how we deal with
these challenges.

We use RDF [10] as the framework for data
representation. In an optimistic scenario, data sources would
expose their data sets on the Web already in RDF or through
a programmatic interface that is able to produce RDF
output. To emulate that scenario, we downloaded non-RDF

data sources and converted them to RDF files. We used
BioJava tools (http://biojava.org) to read flat file and XML
formats, and Jena Semantic Web Framework4 to output
RDF. Through that process, we imported data containing
information such as: 31,630 protein domain (Pfam)
annotations and 8,065 ortholog groups predicted by the
OrthoMCL algorithm. To acquire TcruziDB data, we
automatically mapped the GUS Schema to RDF using the
D2RQ mapping framework [11]. A manual step was
performed to identify terms that already existed in
ontologies, and thus promote reuse. This step was greatly
facilitated by the fact that the GUS schema was modeled to
reflect the domain of “Omics” research, much like
ontologies are usually built. For an example mapping from
the database to ontologies, consider the example of the table
DoTS.AminoAcidSequence, which was mapped to the
concept “polypeptide” (SO:0000104) in SO. This mapping
will generate an instance of SO:0000104 for each row in
Dots.AminoAcidSequence. The reference to an accepted
standard such as SO will facilitate the access to proteins by
other systems that also subscribe to SO.

The subset of the TcruziDB dataset used in this project
was extracted from Release 5.1 (Nov 07, 2006) and
includes: 19,613 automated gene predictions (protein
coding); 139,147 protein expression results from metacyclic
trypomastigotes (CL strain) and amastigotes,
trypomastigotes and epimastigotes (Brazil strain) of T.
cruzi. The data set already contained links to the sequence
ontology, gene ontology and enzyme commission numbers
at the row level. That is, a given record in a table has some
relationship with a given ontology term. However, the type
of relationship is not explicit. As part of the relational to
RDF mapping, we use existing and newly created
relationships to capture the semantics of the association
between records in the database, thus providing a richer
description of the dataset. We then expose all imported
sources on the Web through programmatically accessible
interfaces to emulate a possible future case where data
providers start to adopt RDF as data exchange format. From
Web-accessible data sources, we can perform loose-coupled
integration of data, in contrast with the tight-coupled
approach commonly observed in genome databases. The
term coupling in this case refers to the ability of one to
attach or detach data sources to the system. Current genome
databases adopt a “warehousing” approach, where data is
downloaded from several external sources, transformed and
stored in a local centralized source. In our system, the user
is able to plug-and-play data sources at query time. This
functionality is enabled by the SPARQL Protocol for
communication with external sources and RDF
representation for merging results.

4 http://jena.sourceforge.net/

5. System architecture and implementation
TcruziKB is composed by a Web interface on the client side
and communicates through the SPARQL Protocol with the
server side (SPARQL Endpoint) over the Web. In order to
use this Web interface, the user just needs a common Web
browser with Javascript support (tested on Firefox 2.0.0.14).
Queries are built through a friendly interface in the query
formulation module, translated to SPARQL in the
SPARQL-JS module and sent to the server side via
asynchronous background calls (Ajax) for execution. Once
returned to the client side, the controller module notifies the
visualization modules subscribed, providing the results to be
displayed to the user. We also extend a SPARQL Endpoint
implementation to support Web services executions as a
way to obtain parts of query results. Each component is
explained in more detail in the following sections.

Figure 1 – System architecture

5.1. Visual query formulation
The key enabler of the visual query builder is the

ontology schema. We read from the schema the types of
data and possible interconnections to guide the user in
creating a query. Therefore, the user interface enables the
user to perform queries involving any terms in the ontology
schema (and thus all parts of a database schema that are
mapped to the ontology). Please refer to Figure 2 for an
illustrative user interaction between Joe (fictional) and our
system.

After starting the Web browser and pointing it to
TcruziKB’s URL, the user interaction begins with a search
for a term to start the query construction. In Step 1, Joe
types in “gene.” Based on the ontology schema definitions,
the system will suggest terms such as “gene”,
“gene_identifier”, and “gene_prediction_task” as possible
candidates. Upon selection of the first term “gene”, Joe can
indicate that he is interested in “any gene” by setting the
placeholder “?gene” or he may choose to constrain the
search to a specific set of genes. In Step 2, the system will
suggest possible relationships associated with “gene”.

Figure 2 – Example user interaction through the query formulation interface

Examples of relationships could be “has_product”,
“has_function” and “homologous_to” or others, which will
be displayed through the user interface through a drop-down
box. In Step 3, Joe will select “has_product”, and then the
system will suggest terms possibly associated with “gene”
through relationship “has_product” in Step 4. Here Joe will
select “protein” from the suggested list. This process
continues until Joe has finalized the desired query pattern.

The queries composed by the visual query builder are
directed graph patterns to be searched in a knowledge base.
A variable in a graph pattern is represented by a question
mark prefixing a variable name – e.g. ?protein. Variables
represent gaps to be filled by classes, instances or
properties. This is a major difference with respect to
standard genome databases, where no query can be asked
about “relationships” or “classes”, since those are not
explicitly represented in the database. An example of a
query involving a relationship would be “what are all the
relationships between gene A and gene B.” An example of a
query involving a class would be “what are the types of
proteins expressed in a given life cycle stage.”

We also support queries involving collections: “Find all
enzymes with orthologs in genomes G1, G2, …, Gn.” This
query requires the formulation of a collection (or set) of
genomes as part of the query pattern. Patterns containing
collections are represented internally as follows “enzyme →
common_to → (genome1, genome2, genome3)." A utility

tool to test the membership in a given collection is provided
at the query engine.

Figure 3 – Support for structured input in the query

formulation interface.

An important feature of the query builder is its ability to
guide the user through a directed graph pattern from any
standpoint, in any direction desired. For example, a user is
able to start in a “Protein” and find any “(?protein,
has_expression, ?proteinExpression)”, as well as start in
“ProteinExpression” and find any “(?proteinExpression,
is_expression_of, ?protein).” We anticipate that not all data
sources will explicitly state the inverse of every property, so
the query builder implements the ability to navigate any
relationship in both directions. As a matter of fact, we
anticipate that some data sources will not present an
ontology schema of any kind. In that case, the visual query

11

33

Search ontology for possible
terms for the selected relationship.

55

88

Start typing a term
to include in your query.
Select desired term from the
list or choose “any term.”

22 Search ontology for possible
relationships for the selected term.

Choose relationship of interest.
Alternatively, say “any relationship.”

44

Repeat process until the desired
query is achieved. Choose to execute query
when done. System encodes SPARQL and
submits query. 66 Execute SPARQL query over dataset.

77
Check policies for:
- triggering service executions for computable
relationships.

Display results in all visualization
components.

RESEARCHER DATA

WEB SERVICE

11 (simultaneously while typing)
Search ontology for possible
terms that match the typed text.

has_product ?gene involved_in ?protein ?pathway

builder would lack the information to predict the next
possible elements to be added to the query. However, for
cases where the schema is not present, but the metadata is –
i.e. there are no domain and range descriptions, but the type
of the instances is known – we can infer domain and range
by inspecting all property instances and the types of their
subjects and objects.

After the user has built the desired graph pattern to be
searched, the visual query builder proactively enhances the
query by adding triples to retrieve optional extra
information about the results. The enhancements retrieved
include annotation properties such as label (rdfs:label), type
(rdf:type) and a web page link for each resource
(rdfs:seeAlso). As an example, for the class so:SO_0000104,
the property rdfs:label would contain “polypeptide” and
rdf:type would contain so:SO_0000001 (region). These
additions are valuable in analytical interfaces to facilitate
the understanding of the information presented.

5.2. Query execution
We support queries to multiple SPARQL endpoints by

storing a list of servers and performing calls to all of them
each time a query is executed. The results are
asynchronously received back from the SPARQL endpoints
and aggregated in a result set for presentation to the user.
The addition and configuration of new SPARQL endpoints
is supported through our user interface. As a consequence,
researchers using our system can “plug-and-play” new data
sources without any development intervention.

In Genomics, the need to combine results from database
searches as well as tools executions to answer a given query
is commonly observed. Consider, for example, the case
where the user wants to retrieve all genes that encode
proteins similar to a sequence provided by the user, e.g.
“MRGVSAAEIGKFR”. Protein similarity cannot be
computed with simple string comparison, but in fact
requires more sophisticated algorithms such as the one
implemented by Blast (http://www.ncbi.nlm.nih.gov/blast/).

In order to support queries that require combinations of
data lookups and web-service executions, we extend ARQ5
the SPARQL interpretation and execution module from Jena
Semantic Web Framework. ARQ offers property functions
as a way to extend the basic pattern matching performed by
a common SPARQL query engine. A typical SPARQL
query engine builds a candidate solution set by matching the
query pattern to the RDF triples in the target database.
ARQ’s property functions are executed when the SPARQL
query engine is about to test the presence of a given
relationship, in case this relationship is registered with the
engine as a property function. We introduce special property
functions that are able to execute Web services to compute
parts of query results. Once a service is executed and the
results are computed, the query engine then binds the results

5 http://jena.sourceforge.net/ARQ/

to the query solution and the query execution resumes. The
results obtained are also saved to the knowledge base so the
same process does not have to be performed again in the
future.

5.3. Exploration of results
We provide a component for visualization of query

results to allow for researchers to perform data exploration
in different presentation formats, including tables, graphs or
summarization charts to suit different analytical needs. We
package each component as a Javascript module (widget)
that can be easily plugged into other web-based SPARQL
query systems.

5.3.1. Tabular Explorer
The tabular explorer displays a result set in the form of a

spreadsheet (rows and columns), with each row representing
a solution to the query. The columns represent variables that
can assume as values a set of instances, properties or classes
that match the query executed. The interface allows the user
to further filter or reorder the results in the table, providing
extra exploration functionality.

5.3.2. Pie-chart Explorer
To allow for an overview of a result set, we created the

pie-chart explorer. It displays a summary for each result set.
Consider a query for all instances of the class
ProteinExpression with respect to T. cruzi. This class has a
property “life_cycle_stage” to indicate in what stage of
T.cruzi a given protein was expressed. An intuitive way to
summarize the results is to analyze the proportion of
instances that were expressed in each stage (Figure 4).

In general terms, the pie-chart explorer is built as
follows. For each instance returned in a query, the system
obtains the ontology class. For each class-property pair, the

Figure 4 - The pie-chart explorer showing
the percentage of expression results for
Tcruzi by life cycle stage).

system retrieves the possible values of the property. For
instance, for ProteinExpression and life_cycle_stage, the
possible values are metacyclic, amastigote, epimastigote
and trypomastigote. For each of those class-property pairs,
the system presents a chart showing the proportion of
instances that assume each of the values in the result set. For
instance, for a query for all protein expression results, the
system would present one pie chart for each property of the
class ProteinExpression (e.g. life_cycle_stage,
ortholog_group, etc.), reflecting the distribution of values
for those properties (e.g. 23% have the value “amastigote”
for the property “life_cycle_stage”).

5.3.3. Graph Explorer
The nature of ontologies lends itself naturally to a

directed graph representation. The query results can be
organized on a graph with classes/instances corresponding
to nodes and properties corresponding to edges. By spotting
clusters or paths between classes, researchers can gain
additional insight on the data. The graph explorer allows the
extension of the results with additional classes and
properties through mouse commands. For a visual example
refer to Figure 5.

We recognize that graphs can get easily encumbered with
too much information. The graph explorer offers the option
to arbitrarily collapse or expand edges of a node according
to user commands. In addition, techniques to automatically
rank important relationships [12] can be applied and
displayed in this component.

6. Evaluation
We evaluated TcruziKB both subjectively and

objectively with regard to its parent system, TcruziDB. A
panel of 30 university members including professors,
graduate students, and undergraduates were asked to
perform searches using TcruziKB and TcruziDB and record
their experience. For the subjective evaluation, the System

Usability Scale (SUS) [13] was used as the benchmark. SUS
is a 10 question form that rates the usability of the system
from 0, very user unfriendly, to 100, highly user friendly.
The average SUS scores for each system can then be used to
compare the usability of the systems.

After using the system for several minutes to answer
sample queries, the panel members scored their results on
the SUS forms. The SUS averages show that the usability of
TcruziKB is very similar to TcruziDB. TcruziKB received
an average SUS score of 90.54 while TcruziDB scored
88.11. This implies that even though TcruziKB incorporates
many advanced features it does not sacrifice usability, in
fact it became slightly more usable than its parent system.
The scores are broken down by area expertise in Table 1.

Table 1: SUS Scores for each system broken down by area

of expertise.

For the objective evaluation, five members of the panel
were asked to record the time taken and the number of
computer interactions (the number of mouse clicks and
keystrokes) needed to perform a query on each system. For
benchmarking, the following queries, of variable
complexity, were given to the panel:
“Which genes have protein expression during a parasite
life-cycle stage that is in the human host?” This query can
be executed as a single path query on TcruziKB of the form:
“Gene → codes for → Protein → expressed in → Life Cycle
Stage → resident in → Human Body.” On TcruziDB, the
query is less straightforward to execute because it requires
the user have knowledge of the parasite, specifically which
life cycle stages are relevant to the search.
“What are the relationships between gene
Tc00.1047053409117.20 and any gene that has protein
family PF03645?” This query will require the user to search
for the gene by ID, search for PFAM by ID (or name) and
then intersect the results through the query history. In
TcruziKB the user obtains the same results without
browsing pages or issuing separate queries.
“Which genes encode proteins that are expressed in both
the epimastigote and trypomastigote life-cycle stages?”
With TcruziDB the user will need to view all genes that are
in proteins expressed in the epimastigote stage and then the
trypomastigote stage and then “Combine the Results.” This
three step process on TcruziDB can be done from a single
query in our system. “Gene → codes for → Protein →
expressed in → epimastigote AND Gene → codes for →
Protein → expressed in → trypomastigote.”

Background Area #users TcruziKB Score TcruziDB Score

Overall 30 90.54 88.11

Computer Science 20 95 84.77

Biology 10 91.43 90.03

CS and Biology 5 100 97.61

Figure 5 – The graph explorer

While both TcruziKB and TcruziDB were similar in
terms of usability TcruziKB had a significant edge in time
taken and the number interactions needed to obtain the
query results. 117.33s TcruziKB and 211.33 s TcruziDB,.
This is because backtracking is needed to construct complex
queries on TcruziDB. The user actually conducts several
queries to the system then must combine the results of each.
In TcruziKB complex queries can be constructed all at once,
eliminating the backtracking and thus reducing the time
needed. The need for backtracking in TcruziDB is also
reflected in the number of interactions needed requiring an
average of 53.33 interactions as opposed to an average of
21.33 interactions in TcruziKB. This implies that time
needed to do the backtracking is not only unnecessary
computer processing time but is also time spent by the user
doing unnecessary work.

7. Conclusion
We present an application of ontology-based information

aggregation, querying and exploration in the context of
Trypanosoma cruzi Genomics. The system is available at:
http://knoesis.wright.edu/tools/tcruzikb

We constructed a query builder capable of composing
complex queries through the navigation of ontology
schemas. This approach enables complex queries that were
only possible in traditional genome databases through
multiple executions of simple queries and subsequent
combination of results. User-provided addition and querying
of new data sources is supported in a plug-and-play fashion.

Complex queries that require Web services executions to
obtain parts of query results are supported through an
extension to a SPARQL Endpoint implementation. As part
of such queries, services are invoked and the results
obtained are merged to the result set and returned to the user
for presentation. The presentation and exploration of results
in multiple interfaces is also investigated, helping to
highlight for the researcher a manageable subset of interest
from an extensive mass of information.

We expect the above mentioned contributions to
compose a valuable toolkit for data sharing and analysis on
the Web that can be reused and extended for any domain for
which ontologies exist. We are extending both the query
formulation software (Cuebee6) and the components for
results exploration (Exparql7) for application to other
domains of knowledge besides Tcruzi “Omics”.

As future work for TcruziKB, we envision the expansion
of the dataset, support for path queries [14], and subgraph
discovery queries [15].

6 http://knoesis.wright.edu/library/tools/cuebee/
7 http://knoesis.wright.edu/library/tools/exparql/

8. Acknowledgements
Pablo Mendes was supported in part through an American
Heart Association award 0330338N to J.C.K. This research
was also supported in part by the NIH-NHLBI funded
"Semantics and Services enabled Problem Solving
Environment for T.cruzi" (1R01HL087795-01A1) project.
Thanks to Maciej Janik and Matthew Eavenson (Cuadro
project), Sena Arpinar and Ying Xu (collaborators at IOB),
members of the J.C.K. Laboratory and the TcruziDB team
(for facilitating access to data and providing valuable
advice).

9. References

1. Agüero, F., et al., TcruziDB: an integrated, post-

genomics community resource for Trypanosoma cruzi.
Nucleic Acids Res, 2006. 34(Database issue).

2. Openlink iSPARQL. [cited; Available from:
http://demo.openlinksw.com/isparql/.

3. Semantic Discovery System. [cited; Available from:
http://www.insilicodiscovery.com/.

4. Athanasis, N., V. Christophides, and D. Kotzinos,
Generating On the Fly Queries for the Semantic Web:
The ICS-FORTH Graphical RQL Interface (GRQL), in
The Semantic Web â€“ ISWC 2004. 2004. p. 486-501.

5. Bernstein, A., et al., Querying Ontologies: A Controlled
English Interface for End-Users, in 4th International
Semantic Web Conference (ISWC 2005). 2005. p. 112-
126.

6. Shoop, E., et al., Data exploration tools for the Gene
Ontology database. Bioinformatics. 20(18): p. 3442.

7. Eilbeck, K., et al., The Sequence Ontology: a tool for the
unification of genome annotations. Genome Biol, 2005.
6(5).

8. Ashburner, M., et al., Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium.
Nat Genet, 2000. 25(1): p. 25-29.

9. Finn, R.D., et al., Pfam: clans, web tools and services.
Nucleic Acids Res, 2006. 34(Database issue).

10. Lassila, O. and R.R. Swick. Resource Description
Framework (RDF) Model and Syntax Specification.
1999 [cited; Available from:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

11. Bizer, C. and A. Seaborne, D2RQ – Treating Non-RDF
Databases as Virtual RDF Graphs, in 3rd International
Semantic Web Conference (ISWC2004). 2004:
Hiroshima, Japan.

12. Aleman-Meza, B., et al., Ranking Complex Relationships
on the Semantic Web, in IEEE Internet Computing. 2005.
p. pp. 37-44.

13. Brooke, J., SUS - A quick and dirty usability scale.
14. Anyanwu, K. and A. Sheth. ρ-Queries: enabling

querying for semantic associations on the semantic web.
in WWW '03: Proceedings of the 12th international
conference on World Wide Web. 2003: ACM.

15. Ramakrishnan, C., et al., Discovering informative
connection subgraphs in multi-relational graphs.
SIGKDD Explor. Newsl., 2005. 7(2): p. 56-63.

	TcruziKB: Enabling Complex Queries for Genomic Data Exploration
	Repository Citation

	tmp.1411072399.pdf.k7bjs

