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Abstract 
We developed a novel analytical environment to aid in the 
examination of the extensive amount of interconnected data 
available for genome projects. Our focus is to enable 
flexibility and abstraction from implementation details, 
while retaining the expressivity required for post-genomic 
research. To achieve this goal, we associated genomics data 
to ontologies and implemented a query formulation and 
execution environment with added visualization capabilities.  

We use ontology schemas to guide the user through the 
process of building complex queries in a flexible Web 
interface. Queries are serialized in SPARQL and sent to 
servers via Ajax. A component for visualization of the 
results allows researchers to explore result sets in multiple 
perspectives to suit different analytical needs.  

We show a use case of semantic computing with real world 
data. We demonstrate facilitated access to information 
through expressive queries in a flexible and friendly user 
interface. Our system scores 90.54% in a user satisfaction 
evaluation with 30 subjects. In comparison with traditional 
genome databases, preliminary evaluation indicates a 
reduction of the amount of user interaction required to 
answer the provided sample queries. 

1. Introduction 
The contemporary scientist, when formulating a 

hypothesis or looking for evidence to validate one, 
commonly performs intensive queries of multiple 
independent online databases. The technology associated 
with the current information sources invariably require high 
levels of human involvement to manually browse through 
an extensive mass of data, observe the evidence, analyze 
their interconnections and draw conclusions. This is a time 
consuming and difficult task due to the size, diversity and 
complexity of both the data and the tools. 

We propose an ontology-based analytical environment to 
provide greater flexibility and abstraction from 
implementation details, while retaining the expressivity 
required for post-genomic research. The richer 
representation model of semantic Web ontologies and 
associated query languages unveil new ways to approach 

database queries and knowledge discovery. The use of 
ontologies in this work goes beyond the reference to a 
standardized vocabulary as is commonly seen in 
bioinformatics. We explore the representation of conceptual 
relationships between entities to help guide the researcher 
with “connecting the dots” and take hypotheses to evidence. 

The use case described in this work is a real-world effort, 
focused on the human parasitic protist called Trypanosoma 
cruzi. Approximately 18 million people, predominantly in 
Latin America, are infected with the T.cruzi parasite1, the 
cause of Chagas Disease for which there is no definitive 
chemotherapeutic treatment. The parasite has a complex 
life-cycle with four main stages occurring in two hosts. In 
the insect host, T.cruzi is found in the form of epimastigotes 
and metacyclic trypomastigotes. In the vertebrate host, it is 
found in the form of bloodstream trypomastigotes and 
intracellular amastigotes.  

Research on T.cruzi, like many other organisms and 
diseases, has reached a critical juncture with the quantities 
of experimental data being generated by labs around the 
world outstripping the community’s ability to synthesize 
and understand all. In an attempt to provide integrated 
resources for the research community, researchers have 
created “Omics” databases that specialize in gathering as 
much information as possible about one organism, or a 
group of related organisms. TcruziDB [1] is an integrated 
genome database for T.cruzi that incorporates and provides 
online access to sequence data, “Omics” data and 
supplementary bioinformatics analyses on the Web. We 
have used semantic computing technologies to create a 
knowledge base called TcruziKB (The Trypanosoma cruzi 
Knowledge Base) as a complement to TcruziDB’s existing 
functionality. 

In comparison with traditional genome databases, which 
are based on flat files or relational databases, TcruziKB 
offers several advantages. (i) flexibility on the query 
perspective. Common query interfaces reflect the possible 
uses of the system as designed by the development team 
and/or the community of users involved in the development 
stages. For instance, TcruziDB.org offers 5 perspectives, 
where the user can search for/among different data types, 
e.g. genes, ESTs, contigs, scaffolds and ORFs. In such a 

                                                 
1 http://www.who.int/tdr/diseases/chagas/diseaseinfo.htm 



system, the user is limited to the available data types and 
existing “pre-canned” queries. Complex queries are 
generated in the query history when the user performs 
Boolean operations on sets of independent queries to find 
their union or intersection. For example, a query for all 
genes could be intersected with a query for proteins 
expressed in blood-stage forms of the infection to find the 
desired subset of genes. To generate new queries however, 
requires, human involvement by a database designer to 
implement the necessary SQL statements and visualization 
interfaces. In contrast, TcruziKB uses ontology schemas to 
offer a high-level query system, where the user is guided by 
the system throughout the process of posing a question in a 
logical path such as: “?protein → expressed_in → 
?any_stage → resident_in → Blood”. (ii) complex query 
handling: a key component of genomics analyses is the 
concept of “relationship”. Through the use of ontologies a 
user will be able to ask questions not only about entities, but 
also about how those entities are related. For instance, what 
is the relationship between a given protein and blood? Such 
a question could possibly reveal protein expression evidence 
of an interaction between a life-cycle stage of the parasite 
where the organism resides in the bloodstream of the host 
and interacts with or modifies its environment in some way. 
This type of query is viable through the use of ontologies to 
reveal semantic associations, and is very difficult to institute 
within the scope of a relational database. In relational 
databases, although relationships may be present in the form 
of join tables or foreign keys, they cannot be easily queried 
(iii) loosely-coupled web aggregation of distributed data 
sources: most genome databases aggregate data from 
different sources at some level, usually by downloading, 
parsing and storing external data in a centralized relational 
database. In our system we provide loosely-coupled 
dynamic integration with external sources on the client side. 
Through the use of Ajax2 and SPARQL protocol3, our 
system is able to dynamically query multiple sources and 
“mash up” the results on one page for user visualization. 

In addition to the provision of data aggregation for query 
capabilities, we aim at facilitating the difficult task of 
making sense of the information at hand. We implemented 
multiple exploration interfaces to allow the user to visualize 
and analyze query results in different formats: (i) the 
tabular explorer lists the results in a spreadsheet format, 
providing prompt access to all attributes of a group of items, 
allowing for sorting and filtering of data in a well known 
and widely used interface style. (ii) the graph explorer, 
focuses on relationships, drawing each item and value as 
nodes, while the attributes and relationships are represented 
as edges. This perspective brings connectivity to the first 
level, allowing the researcher to unveil hidden relationships 
within the data. (iii) the pie-chart explorer offers a 
summary of the results at a first glance, to allow researchers 
                                                 
2 http://www.adaptivepath.com/ideas/essays/archives/000385.php 
3 http://www.w3.org/TR/rdf-sparql-protocol 

to understand the general characteristics of the data set, 
before more specific questions are posed. 

The W3C Semantic Web Health Care and Life Sciences 
(HCLS) Interest Group recently released a questionnaire 
(http://www.w3.org/2007/06/HCLSForm) to assess research 
areas and draft charters for Working Groups. With respect 
to that questionnaire, this project meets the following 
activities: it bridges and enhances biomedical vocabularies; 
works with data providers to make data available in RDF; 
explores/develops navigation and visualization tools; 
explores/develops database federation; integrates “Omics” 
data (e.g. genomics, proteomics, metabolomics); as well as 
solicit participation from organism biologists (e.g. 
taxonomy, ecology, biogeography). 

This paper is organized as follows: in section 2 we 
present related work; in section 3 we describe the 
application domain; in section 4 we identify some 
challenges and present our approach for data integration; in 
section 5 we present the system architecture; in section 6 we 
present user evaluation, and in section 7 we discuss 
conclusions and future work. 

2. Related work 
We compare our work with traditional genome databases 

in the introduction and throughout this paper as a way to 
motivate and identify advancements with regard to current 
practices. In this section, we compare our work with other 
semantic Web applications focusing on queries as a way to 
facilitate access to information. 

The tool Openlink iSPARQL [2] offers a graph-based 
interface for query formulation where the user can add 
classes to the visual graph as nodes and connect them with 
edges representing properties. The Semantic Discovery 
System (SDS) [3] also allows for complex semantic queries 
with a graph based approach, and offers additional methods 
to apply constraints. The user is presented with a graphical 
representation of the schema and can select properties and 
classes on which to focus their attention. In addition, the 
user can place constraints on relationships by selecting 
properties from a tree representation. In both cases, some 
familiarity with computer science is required. Other 
approaches use a tree representation of the data as a 
mechanism to construct queries. In GRQL [4] trees are used 
to construct complex queries of connected data. Trees can 
be useful because certain branches of interest can be 
expanded/collapsed as needed to show data of interest and 
hide irrelevant data. A problem arises when the data sets are 
very large, as is the case in the realm of bioinformatics. 
While a graph or tree-based construction mechanism allows 
for complex graph based queries similar to our system, it 
may seem alien to users or require extensive navigation to 
find concepts. This is because it forgoes the traditional 
search interface features such as typing keywords and 
selecting items from drop-down menus in lieu of its purely 
visual approach. TcruziKB aims at keeping common search 



features such as keyword search and enhancing them with 
the addition of suggestions to help the user construct the 
query. In addition, we support queries involving complex 
types (e.g. collections), as well as user-provided instances 
(e.g. the amino-acid sequence “MFVAPKMAGF”). For 
queries that require the execution of bioinformatics tools as 
part of a query answer, we extend a SPARQL engine to 
support query-triggered web service executions, as 
explained in more details in section 5. 

Other types of query systems such as, GINSENG [5] use 
natural language query processing in conjunction with 
ontologies to allow users to formulate questions in English 
language. Like TcruziKB, GINSENG provides suggestions 
as the user types and allows for graph based queries. The 
drawback of this type of system is that the terms in the 
system ontology may not lend themselves to natural 
language because factors such as synonyms, tense of verbs 
and noun forms come into play along with the style of 
writing of the particular user performing the query. For 
example, if the user wants to search for genes that are 
expressed in a particular life-cycle stage they may want to 
ask “Which genes are expressed in the epimastigote stage?” 
The problem is that there may be no property labeled 
“expressed”. Instead there may be a property labeled “life-
cycle stage”. This may require the user to enter in a query 
that doesn't fit their particular writing style, such as, “Which 
genes have proteins that have been observed in the life-cycle 
stage epimastigote?” as opposed to the question they had 
originally intended to ask. These factors greatly complicate 
the query and mapping processes for both the system and 
the user. It might not always be possible to correctly map a 
question to a formal query if users ignore suggestions in 
favor of their terminology. In TcruziKB we avoid the 
ambiguities of natural language and provide a more 
controlled environment that guides the user step by step 
with suggestions of terms that are connected in the 
ontology. Therefore only meaningful queries (with respect 
to the ontologies adopted) will be formulated. 

Another type of query interface, the form based query 
construction method, such as used in GoGet [6] requires the 
user to fill out a variety of information on HTML forms. 
The Display of many fields at once may alienate users 
because this type of query system is vastly different than the 
more traditional web searches they are accustomed to. 
GoGet also lacks portability, focusing itself on one set of 
data. 

3. Application domain and domain model 
From simple char-delimited (flat) files to complex 

relational database schemas, gigabytes of genome 
annotation data are available for use in the field of 
Genomics. We engineered an ontology to complement and 
interconnect information in this domain. We use controlled 
vocabularies and ontologies such as the Sequence Ontology 
(SO) [7], Gene Ontology (GO) [8], Pfam C [9] as well as 

newly created relationships to connect terms from these 
sources. For example, every protein in our system will be an 
instance of the class so:SO_0000104 (polypeptide) and 
every Pfam domain will be an instance of so:SO_0000417 
(polypeptide_domain) from the Sequence Ontology. To 
connect instances of these two classes we created the 
property “has_pfam_domain”. 

We identified a manageable subset from the domain of 
T.cruzi “Omics” research to test the system and its 
underlying concepts. Our ontology schema is able to 
represent genes, as well as the organisms they belong to and 
the proteins that they encode. Protein family information 
from Pfam is present, and families are grouped in clans. 
Enzymatic function is linked to biochemical pathways, 
providing information about the biological processes they 
are involved in. Proteomic expression is also captured, 
including the information about the life-cycle stage(s) in 
which the protein is expressed, as well as quantitative 
measures of that expression. This knowledge base allows 
users to ask questions spanning multiple data sets such as: 
(1) “Which parasite genes are expressed during the human 
infective life-cycle stages?” Although this is possible on 
TcruziDB, it currently assumes that the user knows which 
life-cycle stages are human and which are insect. In 
TcruziKB we have added this information by defining the 
property “present_in” to relate a life-cycle stage and the 
environment it naturally occurs. 
(2) “What are the relationships between a gene X and any 
gene that has the Pfam domain D?” This type of question is 
exploratory in nature and may allow users to find out that 
such genes have common features such as sequence 
similarity, host, life-cycle stage, EC number, etc. 

(3) “What are the common characteristics of the life-cycle 
stages of Trypanosoma cruzi that express tubulin genes at 
the protein level?” Suppose you find tubulins in amastigotes 
and promastigotes. Perhaps these stages occur in the same 
host? Although a biologist would know this, a computer 
scientist would not, hence, it could be “discovered”. Other 
“discovery” questions that are useful for biologists could be 
similarly formulated.  

4. Data integration 
We obtain data from several sources, including Pfam flat 

files, Interpro XML and relational data stored in the 
Genome Unified Schema (http://www.gusdb.org/) for 
TcruziDB. Several challenges for data integration arise in 
this scenario, including format heterogeneity and loose vs 
tight coupling. In this section we explain how we deal with 
these challenges. 

We use RDF [10] as the framework for data 
representation. In an optimistic scenario, data sources would 
expose their data sets on the Web already in RDF or through 
a programmatic interface that is able to produce RDF 
output. To emulate that scenario, we downloaded non-RDF 



data sources and converted them to RDF files. We used 
BioJava tools (http://biojava.org) to read flat file and XML 
formats, and Jena Semantic Web Framework4 to output 
RDF. Through that process, we imported data containing 
information such as: 31,630 protein domain (Pfam) 
annotations and 8,065 ortholog groups predicted by the 
OrthoMCL algorithm. To acquire TcruziDB data, we 
automatically mapped the GUS Schema to RDF using the 
D2RQ mapping framework [11]. A manual step was 
performed to identify terms that already existed in 
ontologies, and thus promote reuse. This step was greatly 
facilitated by the fact that the GUS schema was modeled to 
reflect the domain of “Omics” research, much like 
ontologies are usually built. For an example mapping from 
the database to ontologies, consider the example of the table 
DoTS.AminoAcidSequence, which was mapped to the 
concept “polypeptide” (SO:0000104) in SO. This mapping 
will generate an instance of SO:0000104 for each row in 
Dots.AminoAcidSequence. The reference to an accepted 
standard such as SO will facilitate the access to proteins by 
other systems that also subscribe to SO. 

The subset of the TcruziDB dataset used in this project 
was extracted from Release 5.1 (Nov 07, 2006) and 
includes: 19,613 automated gene predictions (protein 
coding); 139,147 protein expression results from metacyclic 
trypomastigotes (CL strain) and amastigotes, 
trypomastigotes and epimastigotes (Brazil strain) of T. 
cruzi. The data set already contained links to the sequence 
ontology, gene ontology and enzyme commission numbers 
at the row level. That is, a given record in a table has some 
relationship with a given ontology term. However, the type 
of relationship is not explicit. As part of the relational to 
RDF mapping, we use existing and newly created 
relationships to capture the semantics of the association 
between records in the database, thus providing a richer 
description of the dataset. We then expose all imported 
sources on the Web through programmatically accessible 
interfaces to emulate a possible future case where data 
providers start to adopt RDF as data exchange format. From 
Web-accessible data sources, we can perform loose-coupled 
integration of data, in contrast with the tight-coupled 
approach commonly observed in genome databases. The 
term coupling in this case refers to the ability of one to 
attach or detach data sources to the system. Current genome 
databases adopt a “warehousing” approach, where data is 
downloaded from several external sources, transformed and 
stored in a local centralized source. In our system, the user 
is able to plug-and-play data sources at query time. This 
functionality is enabled by the SPARQL Protocol for 
communication with external sources and RDF 
representation for merging results. 

                                                 
4 http://jena.sourceforge.net/ 

5. System architecture and implementation 
TcruziKB is composed by a Web interface on the client side 
and communicates through the SPARQL Protocol with the 
server side (SPARQL Endpoint) over the Web. In order to 
use this Web interface, the user just needs a common Web 
browser with Javascript support (tested on Firefox 2.0.0.14). 
Queries are built through a friendly interface in the query 
formulation module, translated to SPARQL in the 
SPARQL-JS module and sent to the server side via 
asynchronous background calls (Ajax) for execution. Once 
returned to the client side, the controller module notifies the 
visualization modules subscribed, providing the results to be 
displayed to the user. We also extend a SPARQL Endpoint 
implementation to support Web services executions as a 
way to obtain parts of query results. Each component is 
explained in more detail in the following sections. 
 

 
Figure 1 – System architecture 

5.1. Visual query formulation 
The key enabler of the visual query builder is the 

ontology schema. We read from the schema the types of 
data and possible interconnections to guide the user in 
creating a query. Therefore, the user interface enables the 
user to perform queries involving any terms in the ontology 
schema (and thus all parts of a database schema that are 
mapped to the ontology). Please refer to Figure 2 for an 
illustrative user interaction between Joe (fictional) and our 
system. 

After starting the Web browser and pointing it to 
TcruziKB’s URL, the user interaction begins with a search 
for a term to start the query construction. In Step 1, Joe 
types in “gene.” Based on the ontology schema definitions, 
the system will suggest terms such as “gene”, 
“gene_identifier”, and “gene_prediction_task” as possible 
candidates. Upon selection of the first term “gene”, Joe can 
indicate that he is interested in “any gene” by setting the 
placeholder “?gene” or he may choose to constrain the 
search to a specific set of genes. In Step 2, the system will 
suggest possible relationships associated with “gene”.  



 

 
Figure 2 – Example user interaction through the query formulation interface 

Examples of relationships could be “has_product”, 
“has_function” and “homologous_to” or others, which will 
be displayed through the user interface through a drop-down 
box. In Step 3, Joe will select “has_product”, and then the 
system will suggest terms possibly associated with “gene” 
through relationship “has_product” in Step 4. Here Joe will 
select “protein” from the suggested list. This process 
continues until Joe has finalized the desired query pattern. 

The queries composed by the visual query builder are 
directed graph patterns to be searched in a knowledge base. 
A variable in a graph pattern is represented by a question 
mark prefixing a variable name – e.g. ?protein. Variables 
represent gaps to be filled by classes, instances or 
properties. This is a major difference with respect to 
standard genome databases, where no query can be asked 
about “relationships” or “classes”, since those are not 
explicitly represented in the database. An example of a 
query involving a relationship would be “what are all the 
relationships between gene A and gene B.” An example of a 
query involving a class would be “what are the types of 
proteins expressed in a given life cycle stage.”  

We also support queries involving collections: “Find all 
enzymes with orthologs in genomes G1, G2, …, Gn.” This 
query requires the formulation of a collection (or set) of 
genomes as part of the query pattern. Patterns containing 
collections are represented internally as follows “enzyme → 
common_to → (genome1, genome2, genome3)." A utility 

tool to test the membership in a given collection is provided 
at the query engine. 

 

 
Figure 3 – Support for structured input in the query 

formulation interface.  

An important feature of the query builder is its ability to 
guide the user through a directed graph pattern from any 
standpoint, in any direction desired. For example, a user is 
able to start in a “Protein” and find any “(?protein, 
has_expression, ?proteinExpression)”, as well as start in 
“ProteinExpression” and find any “(?proteinExpression, 
is_expression_of, ?protein).” We anticipate that not all data 
sources will explicitly state the inverse of every property, so 
the query builder implements the ability to navigate any 
relationship in both directions. As a matter of fact, we 
anticipate that some data sources will not present an 
ontology schema of any kind. In that case, the visual query 
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builder would lack the information to predict the next 
possible elements to be added to the query. However, for 
cases where the schema is not present, but the metadata is – 
i.e. there are no domain and range descriptions, but the type 
of the instances is known – we can infer domain and range 
by inspecting all property instances and the types of their 
subjects and objects.  

After the user has built the desired graph pattern to be 
searched, the visual query builder proactively enhances the 
query by adding triples to retrieve optional extra 
information about the results. The enhancements retrieved 
include annotation properties such as label (rdfs:label), type 
(rdf:type) and a web page link for each resource 
(rdfs:seeAlso). As an example, for the class so:SO_0000104, 
the property rdfs:label would contain “polypeptide” and 
rdf:type would contain so:SO_0000001 (region). These 
additions are valuable in analytical interfaces to facilitate 
the understanding of the information presented.  

5.2. Query execution 
We support queries to multiple SPARQL endpoints by 

storing a list of servers and performing calls to all of them 
each time a query is executed. The results are 
asynchronously received back from the SPARQL endpoints 
and aggregated in a result set for presentation to the user. 
The addition and configuration of new SPARQL endpoints 
is supported through our user interface. As a consequence, 
researchers using our system can “plug-and-play” new data 
sources without any development intervention. 

In Genomics, the need to combine results from database 
searches as well as tools executions to answer a given query 
is commonly observed. Consider, for example, the case 
where the user wants to retrieve all genes that encode 
proteins similar to a sequence provided by the user, e.g. 
“MRGVSAAEIGKFR”. Protein similarity cannot be 
computed with simple string comparison, but in fact 
requires more sophisticated algorithms such as the one 
implemented by Blast (http://www.ncbi.nlm.nih.gov/blast/). 

In order to support queries that require combinations of 
data lookups and web-service executions, we extend ARQ5 
the SPARQL interpretation and execution module from Jena 
Semantic Web Framework. ARQ offers property functions 
as a way to extend the basic pattern matching performed by 
a common SPARQL query engine. A typical SPARQL 
query engine builds a candidate solution set by matching the 
query pattern to the RDF triples in the target database. 
ARQ’s property functions are executed when the SPARQL 
query engine is about to test the presence of a given 
relationship, in case this relationship is registered with the 
engine as a property function. We introduce special property 
functions that are able to execute Web services to compute 
parts of query results. Once a service is executed and the 
results are computed, the query engine then binds the results 

                                                 
5 http://jena.sourceforge.net/ARQ/ 

to the query solution and the query execution resumes. The 
results obtained are also saved to the knowledge base so the 
same process does not have to be performed again in the 
future.  

5.3. Exploration of results 
We provide a component for visualization of query 

results to allow for researchers to perform data exploration 
in different presentation formats, including tables, graphs or 
summarization charts to suit different analytical needs. We 
package each component as a Javascript module (widget) 
that can be easily plugged into other web-based SPARQL 
query systems. 

5.3.1. Tabular Explorer 
The tabular explorer displays a result set in the form of a 

spreadsheet (rows and columns), with each row representing 
a solution to the query. The columns represent variables that 
can assume as values a set of instances, properties or classes 
that match the query executed. The interface allows the user 
to further filter or reorder the results in the table, providing 
extra exploration functionality. 

5.3.2. Pie-chart Explorer 
To allow for an overview of a result set, we created the 

pie-chart explorer. It displays a summary for each result set. 
Consider a query for all instances of the class 
ProteinExpression with respect to T. cruzi. This class has a 
property “life_cycle_stage” to indicate in what stage of 
T.cruzi a given protein was expressed. An intuitive way to 
summarize the results is to analyze the proportion of 
instances that were expressed in each stage (Figure 4). 

 

 

In general terms, the pie-chart explorer is built as 
follows. For each instance returned in a query, the system 
obtains the ontology class. For each class-property pair, the 

Figure 4 - The pie-chart explorer showing 
the percentage of expression results for 
Tcruzi by life cycle stage). 



system retrieves the possible values of the property. For 
instance, for ProteinExpression and life_cycle_stage, the 
possible values are metacyclic, amastigote, epimastigote 
and trypomastigote. For each of those class-property pairs, 
the system presents a chart showing the proportion of 
instances that assume each of the values in the result set. For 
instance, for a query for all protein expression results, the 
system would present one pie chart for each property of the 
class ProteinExpression (e.g. life_cycle_stage, 
ortholog_group, etc.), reflecting the distribution of values 
for those properties (e.g. 23% have the value “amastigote” 
for the property “life_cycle_stage”).  

5.3.3. Graph Explorer 
The nature of ontologies lends itself naturally to a 

directed graph representation. The query results can be 
organized on a graph with classes/instances corresponding 
to nodes and properties corresponding to edges. By spotting 
clusters or paths between classes, researchers can gain 
additional insight on the data. The graph explorer allows the 
extension of the results with additional classes and 
properties through mouse commands. For a visual example 
refer to Figure 5. 

We recognize that graphs can get easily encumbered with 
too much information. The graph explorer offers the option 
to arbitrarily collapse or expand edges of a node according 
to user commands. In addition, techniques to automatically 
rank important relationships [12] can be applied and 
displayed in this component. 

 
 

 

6. Evaluation 
We evaluated TcruziKB both subjectively and 

objectively with regard to its parent system, TcruziDB. A 
panel of 30 university members including professors, 
graduate students, and undergraduates were asked to 
perform searches using TcruziKB and TcruziDB and record 
their experience. For the subjective evaluation, the System 

Usability Scale (SUS) [13] was used as the benchmark. SUS 
is a 10 question form that rates the usability of the system 
from 0, very user unfriendly, to 100, highly user friendly. 
The average SUS scores for each system can then be used to 
compare the usability of the systems.  

After using the system for several minutes to answer 
sample queries, the panel members scored their results on 
the SUS forms. The SUS averages show that the usability of 
TcruziKB is very similar to TcruziDB. TcruziKB received 
an average SUS score of 90.54 while TcruziDB scored 
88.11. This implies that even though TcruziKB incorporates 
many advanced features it does not sacrifice usability, in 
fact it became slightly more usable than its parent system. 
The scores are broken down by area expertise in Table 1. 

 

 
Table 1: SUS Scores for each system broken down by area 

of expertise. 

For the objective evaluation, five members of the panel 
were asked to record the time taken and the number of 
computer interactions (the number of mouse clicks and 
keystrokes) needed to perform a query on each system. For  
benchmarking, the following queries, of variable 
complexity, were given to the panel:  
“Which genes have protein expression during a parasite 
life-cycle stage that is in the human host?” This query can 
be executed as a single path query on TcruziKB of the form: 
“Gene → codes for → Protein → expressed in → Life Cycle 
Stage → resident in → Human Body.” On TcruziDB, the 
query is less straightforward to execute because it requires 
the user have knowledge of the parasite, specifically which 
life cycle stages are relevant to the search. 
“What are the relationships between gene 
Tc00.1047053409117.20 and any gene that has protein 
family PF03645?” This query will require the user to search 
for the gene by ID, search for PFAM by ID (or name) and 
then intersect the results through the query history. In 
TcruziKB the user obtains the same results without 
browsing pages or issuing separate queries. 
“Which genes encode proteins that are expressed in both 
the epimastigote and trypomastigote life-cycle stages?” 
With TcruziDB the user will need to view all genes that are 
in proteins expressed in the epimastigote stage and then the 
trypomastigote stage and then “Combine the Results.” This 
three step process on TcruziDB can be done from a single 
query in our system. “Gene → codes for → Protein → 
expressed in → epimastigote  AND  Gene → codes for → 
Protein → expressed in → trypomastigote.” 

Background Area #users TcruziKB Score TcruziDB Score

Overall 30 90.54 88.11 

Computer Science 20 95 84.77 

Biology 10 91.43 90.03 

CS and Biology 5 100 97.61 

Figure 5 – The graph explorer 



While both TcruziKB and TcruziDB were similar in 
terms of usability TcruziKB had a significant edge in time 
taken and the number interactions needed to obtain the 
query results. 117.33s TcruziKB and 211.33 s TcruziDB,. 
This is because backtracking is needed to construct complex 
queries on TcruziDB. The user actually conducts several 
queries to the system then must combine the results of each. 
In TcruziKB complex queries can be constructed all at once, 
eliminating the backtracking and thus reducing the time 
needed. The need for backtracking in TcruziDB is also 
reflected in the number of interactions needed requiring an 
average of 53.33 interactions as opposed to an average of 
21.33 interactions in TcruziKB. This implies that time 
needed to do the backtracking is not only unnecessary 
computer processing time but is also time spent by the user 
doing unnecessary work. 

7. Conclusion 
We present an application of ontology-based information 

aggregation, querying and exploration in the context of 
Trypanosoma cruzi Genomics. The system is available at: 
http://knoesis.wright.edu/tools/tcruzikb 

We constructed a query builder capable of composing 
complex queries through the navigation of ontology 
schemas. This approach enables complex queries that were 
only possible in traditional genome databases through 
multiple executions of simple queries and subsequent 
combination of results. User-provided addition and querying 
of new data sources is supported in a plug-and-play fashion. 

Complex queries that require Web services executions to 
obtain parts of query results are supported through an 
extension to a SPARQL Endpoint implementation. As part 
of such queries, services are invoked and the results 
obtained are merged to the result set and returned to the user 
for presentation. The presentation and exploration of results 
in multiple interfaces is also investigated, helping to 
highlight for the researcher a manageable subset of interest 
from an extensive mass of information. 

We expect the above mentioned contributions to 
compose a valuable toolkit for data sharing and analysis on 
the Web that can be reused and extended for any domain for 
which ontologies exist. We are extending both the query 
formulation software (Cuebee6) and the components for 
results exploration (Exparql7) for application to other 
domains of knowledge besides Tcruzi “Omics”.  

As future work for TcruziKB, we envision the expansion 
of the dataset, support for path queries [14], and subgraph 
discovery queries [15]. 

 

                                                 
6 http://knoesis.wright.edu/library/tools/cuebee/ 
7 http://knoesis.wright.edu/library/tools/exparql/ 
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