CSI Revisited: The Science of Forensic DNA Analysis

Michael L. Raymer
Wright State University - Main Campus, michael.raymer@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis
Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons

Repository Citation

Raymer, M. L. (2007). CSI Revisited: The Science of Forensic DNA Analysis. . https://corescholar.libraries.wright.edu/knoesis/927

This Presentation is brought to you for free and open access by the The Ohio Center of Excellence in KnowledgeEnabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

CSI Revisited

The Science of Forensic DNA Analysis

Michael L. Raymer, Ph.D.

forensic
bioinformatics

Growth in the importance of DNA

- Roughly 900,000 felony convictions per year in the U.S.
- DNA profiles are generated prima rily for sexual offenses, murder, a nd a ssault
- Often the key source of physic al evidence
- The F.B.I. has established the CODIS database, with over 2 million DNA profiles
- Allows "cold hit" searches for unresolved cases

DNA evidence misconceptions

- Everyone's DNA profile is unique
- DNA testing is always an objective and scientific process
- DNA testing is infa llible
- DNA evidence is carefully evaluated by both the prosecution and the defense

Science and Art

The science of DNA testing is sound

 butnot all DNA testing is done scientific ally

Background: DNA

- DNA is found in each human cell

Type of Sample
Blood
$1 \mathrm{~cm}^{2}$ stain
$1 \mathrm{~mm}^{2}$ sta in
Semen
postcoital vaginal swab
Hair
plucked shed
Saliva
Unine

Amount of DNA $30,000 \mathrm{ng} / \mathrm{mL}$ 200 ng 2 ng
$250,000 \mathrm{ng} / \mathrm{mL}$ $0-3,000 \mathrm{ng}$

1-750 ng/hair 1-12 ng/hair $5,000 \mathrm{ng} / \mathrm{mL}$
$1-20 \mathrm{ng} / \mathrm{mL}$

Background: DNA structure

- DNA is a polymer of nucleotides
- Four building blocks: A, C, G, T

Nucleotides
G cuanine

A. Adenine

© M. Raymer, FBS

Background: DNA information content

- Most DNA (as much as 90\%) is noncoding, or"junk" DNA
- More than 99% of the DNA is identical between any two humans
- Regions of difference: "polymorphic"
- Changesto DNA are random, and usually bad

Non-coding DNA exhibits higher polymorphism

- Short Tandem Repeat = STR
- Describes a type of DNA polymorphism in which:
- a DNA sequence repeats
- overand overagain
- and has a short (usually 4 base pair) repeat unit
- A length polymornism - alleles differ in their length
3 repeats: AATG AATG AATG
4 repeats: AATG AATG AATG AATG
5 repeats: AATG AATG AATG AATG AATG
6 repeats: AATG AATG AATG AATG AATG AATG

13 CODIS core STR loci

Short Tandem Repeats (STRs)

the repeat region is variable between samples while the flanking regions where PCR primers bind are constant

Homozygote = both alleles are the same length
Heterozygote $=$ alleles differ and can be resolved from one another

Extract and Purify DNA

- Add primers and other reagents

PCR Amplification

- DNA regions fla nked by primers a re a mplified

Groups of a mplified STR products are labeled with different colored dyes (blue, green, yellow)

Profiler Plus: After Amplification

The ABI 310 Genetic Analyzer:

Capillary Electrophoresis

- Amplified STR DNA injec ted onto column
- Dectric curent applied
- DNA pulled towards the positive electrode - DNA separated out by size:
- Large STRs travel slower
- Small STRs travel faster
- Color of STR detected and rec orded as it passes the detector

Profiler Plus: Raw data

- GENESCAN divides the raw data into a separate electropherogram for each color:
- Blue
-Green
- Yellow
-Red
-D3: 16, 17
-vWA: 15, 15
-FGA: 21,23
-Amelogenin: X, Y
-D8: 16, 16
-D21: 28, 29
-D18: 14, 19
-D5: 8, 12
-D13: 11, 13
-D7: 1010
© M. Raymer, FBS

Reading an electropherogram

© M. Raymer, FBS

Statistical estimates: product rule

Allele Frequencies
Locus
RaceD3S 1358 $(\mathrm{N}$ Caucasian
Allele Frequency
12

Locus wWA
Race Caucasian $(\mathrm{N}=196)$

Allele	Frequency
11	0.012
12	0.012
13	0.012
14	0.102
15	0.082

S990-2849-2 (+) 25 Yellow s990-2849-2 (+)

S990-2849-2 (+) 25 Red S990-2849-2 (+)

The product rule

Allele Frequencies

Locus D3S 1358
Race Caucasian ($\mathrm{N}=203$)

Allele	Frequency
12	0.012
13	0.012
14	0.140
15	0.246
16	0.222
17	0.222
18	0.163
19	0.012

Locus wWA
Race Caucasian ($\mathrm{N}=196$)

Allele	Frequency
11	0.012
12	0.012
13	0.012
14	0.102
15	0.082

© M. Raymer, FBS

S990-2849-2 (+) 25 Green S990-2849-2 (+)

S990-2849-2 (+)
1 in 79,531,528,960,000,000 1 in 80 quadrillion

\square

Profiler Plus

Identifiler

AMEL D5S818

Components of a DNA report

- The samples tested
- Evidence samples (crime scene)
- Reference samples (defendant, suspect)
- The lab doing the testing
- The test used:
- Profiler Plus, Cofiler, Identifiler, mtDNA
- The a nalyst who did the testing
- Results and conclusions:
- Table of alleles
- Narrative conclusions

Table of alleles

TABLE OF RESULTS

TTEM	DESCRIPTION	D3S1358	vWA	FGA	AMEL	D8S1179	D21S11	D18S51	D58818	D13S317	D7S820
1	Reference From Victim \qquad	15,18	18,20	26,28	X,X	10,13	30,31	12,17	12,12	11,12	10,12
2	Reference From Defendanf	15,16	15,16	19,26	\mathbf{X}, \mathbf{Y}	12,13	31,31	16,21	11,12	11,12	$10>11$
3	Neck Swab	15,16 (18)	$\begin{gathered} 15,16 \\ (18,20) \end{gathered}$	$\begin{gathered} 19,26 \\ (28) \end{gathered}$	X,Y	$\begin{gathered} 12,13 \\ (10) \end{gathered}$	$\begin{gathered} 31,31 \\ (30) \end{gathered}$	$\begin{gathered} 16,21 \\ (12,17) \end{gathered}$	11,12	11,12	$\begin{gathered} 10,11 \\ (12) \end{gathered}$
4	Chest Swab	$\begin{gathered} 15,16 \\ (17<18) \end{gathered}$	$\begin{gathered} 15,16 \\ (18,20) \\ \hline \end{gathered}$	$\begin{gathered} 19,26 \\ (28) \end{gathered}$	$\mathrm{X}>\mathrm{Y}$	$\begin{aligned} & 12,13 \\ & (10) \end{aligned}$	$\begin{aligned} & 31,31 \\ & (30) \end{aligned}$	$\begin{gathered} 16,21 \\ (12,17) \\ \hline \end{gathered}$	11,12	11,12	10,11
	Extraction Blarks	${ }^{\text {a }}$ NA	NA								

Key:	NA 0	$=$	No activity.
	$>$	$=$	Weak results for types in parenthesis
	$=$	Greater than.	

$<$	m	Less than.
$\mathbf{X} \mathbf{X}$	\mathbf{m}	Fernale DNA.
$\mathbf{X X} \mathbf{Y}$	\mathbf{y}	Male DNA.

- Some labsinclude more information than others
- Usua lly includes information about mixed samples
- May also include:
- Indication of low level results
- Indication of results not reported
- Relative a mounts of different alleles(in mixed samples)
- No standard format

Narrative conclusions

CONCLUSIONS

1. The neck and chest swabs (items 3 and 4) have an elevated level of amylase 1 present in the extracts. These results strongly indicate saliva on the swabs.
2. The genetic marker results in the DNA extracted from the neck and chest swabs (items 3 and 4) are a mixture of at least two persons, The results indicate a major (or stronger donor) and a secondary (or weaker donor). Defendant is, in my opinion, the major DNA donor on items 3 and 4. Due to the presence of weak typing results at some loci, it is possible that minor components of the mixture have dropped out in the larger loci. As a result, Victim cannot be excluded as a contributor to the secondary DNA profile obtained from the neck and chest swabs (items 3 and 4). In addition, a weak amount of D3S1358 type 17 was detected on item 4 which could not have originated from Victim or Defendant. It is unclear as to whether this allele is artifactual in origin or from another donor.

- Indicateswhich samplesmatch
- Includesa statistic al estimate
- Identifies samples as mixed
- May include an 'identity statement' i.e., samples are from the same source to a scientific degree of certa inty (FBI)
- May allude to problems (e.g. interpretative ambiguity, contamination)

Sources of ambiguity in STR interpretation

- Degradation
- Allelic dropout
- False peaks
- Mixtures
- Accounting for relatives
- Threshold issues -- marginal samples

Degradation

- When biological samples are exposed to adverse environmental conditions, they can become degraded
- Warm, moist, sunlight, time
- Degradation breaks the DNA at random
- Larger amplified regions are affected first
- Classic ‘ski-slope’ electropherogram
- Peaks on the right lower than peaks on the left

- Peaks in evidence samples all very low
- Mostly below 150 rfu
- Peaks in reference sample much higher
- All well above 800 rfu
- At D13S817:
- Reference sample: 8, 14
- Evidence sample: 8,8
- 14 allele has dropped out -- or has it?
- Tend to see with 'marginal samples'

False peaks \& machine problems

- False peaks:
- Contamination
- Dye blob
- Electric al spikes
- Pull-up
- Machine problems:
- Noise
- Ba seline insta bility
- Injection failures

Summary Sheet

Analysis Report

A locus by locus description of issues that may warrant further review by an expert, including:
 - Peakheight imbalance

- Presence of a mixture
- Possible degradation
- Possible pullup
- Inconsistent results from multiple runs
- Problems with control runsand reagent blanks
forensic bioinformatics

Genophiler Analysis Report

Forensic Bioinformatics

We reviewed the data using our standard screening procedure, which employs GeneScan v3.7.1 and GenoTyper v3.7 (the same software used by the forensic DNA testing laboratory) to examine the test results. Our analysis has identified the following issues that might be important to your interpretation of the DNA evidence in this case. All of these issues warrant further review by an expert.
All of the statements listed below about the data in your case can be verified by any competent expert who has access to GeneScan and GenoTyper software and to the data you provided to us. GeneScan and GenoTyper are proprietary software programs licensed by Applied Biosystems International.

The reference samples of the victim, "Jane Doe", and "Jane Doe-C",
Jane Doe-C displays peak height imbalance at the locus
CSF. The difference in the peak heights of the 13 and 11 alleles for the CSF locus (51 and 889, respectively) could be the result of a technical artifact (such as primer binding site mutations), or be evidence of more than one contributor to that sample.

Jane Doe is consistent with its source being a mixture of two or more individuals. Two loci, D3 (Allele 14-1079 RFUs, Allele 15-926 RFUs, Allele 16*a - 102 RFUs) and D21 (Allele 27 806 RFUs, Allele 32.2-695 RFUs, Allele 34.2-56 RFUs) appear to have more than two alleles. The additional peaks in this reference sample were found to be below the threshold of 150 RFUs, indicating that they are possibly caused by stochastic effects. Some additional peaks may be due to an uncommon technical artifact known as +4 stutter. A mixture in a reference sample could indicate that contamination has occurred.

What can be done to make DNA

 testing more objective?- Distinguish between signal and noise - Deducing the number of contributors to mixtures
- Accounting for relatives

Where do peak height thresholds come from (originally)?

- Applied Biosystems validation study of 1998
- Wallin et al., 1998, "TWGDAM validation of the AmpFISTR blue PCR Amplification kit for forensic c a sework a na lysis." J FS 43:854-870.

Where do peak height thresholds come from (originally)?

PCR products were examined on both the 377 DNA Sequencer and the 310 Genetic Analyzer. The results of 0.25 to 1.0 ng were clearly typable with peak heights of approximately 150 RFU and greater (data not shown). At 0.125 ng and less, the peak heights in both samples were not significantly above the background ($<$ 150 RFU) or were undetectable. At 0.0313 ng specifically, peaks were extremely low or undetectable, and thus, DNA quantities as low as approximately 35 pg did not produce a typable result. Based on these results, we employed a peak height threshold of 150 RFU , below which peaks were interpreted with caution. Laboratories should determine a minimum peak height threshold for their instruments using high quality, single source genomic DNA samples which provides them with the desired sensitivity while not allowing for detection of low copy DNA. This is particularly important as the overall sensitivity of the assay may vary between laboratories.

Where do peak height thresholds come from?

- "Conservative" thresholds established during validation studies
- Eliminate noise (even at the cost of eliminating signal)
- Can a rbitrarily remove legitimate signal
- Contributions to noise vary over time (e.g. polymer a nd capillary age/condition)
- Ana lytic al chemists use LOD and LOQ

Signal Measure

Opportunities to measure baseline

 S990-2849-2 (+) 25 Yellow S990-2849-2 (+)
 S990-2849-2 (+) 25 Red S990-2849-2 (+)

Control samples

- Negative controls: 5,932 data collection points (DCPs) per run ($\sigma=131 \mathrm{DCPs}$)
- Reagent blanks: 5,946 DCPs per run ($\sigma=87$ DCPs)
- Positive controls: 2,415 DCP per run ($\sigma=198$ DCPs)
- DCP regions corresponding to size sta nd a rds and 9947A peaks (plus a nd minus 55 DC Ps to a c count for stutter in positive controls) were masked in all colors

RFU levels at all non-masked data collection points

Variation in baseline noise levels

Positive Control		μ_{b}	σ_{b}	$\mu_{\mathrm{b}}+3 \sigma_{\mathrm{b}}$	$\mu_{\mathrm{b}}+10 \sigma_{\mathrm{b}}$
	Maximum	6.7	6.9	27.4	75.7
	Average	5.0	3.7	16.1	42.0
	Minimum	3.7	2.4	10.9	27.7
Negative Control					
	Maximum	μ_{b}	σ_{b}	$\mu_{\mathrm{b}}+3 \sigma_{\mathrm{b}}$	$\mu_{\mathrm{b}}+10 \sigma_{\mathrm{b}}$
	Average	5.4	13.2	53.0	145.4
	Minimum	4.0	3.9	17.1	44.4
				11.8	30.0
Reagent Blank		μ_{b}	σ_{b}	$\mu_{\mathrm{b}}+3 \sigma_{\mathrm{b}}$	$\mu_{\mathrm{b}}+10 \sigma_{\mathrm{b}}$
	Maximum	6.5	11.0	39.5	116.5
	Average	5.3	4.0	17.3	45.3
All three controls	Minimum	4.0	2.6	11.8	30.0
averaged					$\sigma_{\mathrm{b}}+3 \sigma_{\mathrm{b}}$
		$\mu_{\mathrm{b}}+10 \sigma_{\mathrm{b}}$			
	Maximum	7.1	7.3	29.0	80.1
	Average	5.2	3.9	16.9	44.2
	Minimum	3.9	2.5	11.4	28.9

Average $\left(\mu_{\mathrm{b}}\right)$ and standard deviation $\left(\sigma_{\mathrm{b}}\right)$ values with corresponding LODs and LOQs from positive, negative and reagent blank controls in 50 different runs. BatchExtract: ftp://ftp.ncbi.nlm.nih.gov/pub/forensics/

Lines in the sand: a 2-person mix?

Two reference samples in a 1:10 ratio (male:female). Three different thresholds are shown: 150 RFU (red); LOQ at 77 RFU (blue); and LOD at 29 RFU (green).

Familial searching

- Database search yields a close but imperfect DNA match
- Can suggest a relative is the true perpetrator
- Great Brita in performs them routinely
- Reluctance to perform them in US since 1992 NRC report
- Current CODIS software cannot perform effective searches

Three approaches to familial searches

- Search for rare alleles(inefficient)
- Count matc hing alleles (arbitrary)
- Likelihood ratios with kinship analyses

Pair-wise similarity distributions

- Given a closely matching profile, who is more likely to match, a relative or a randomly chosen, unrelated individual?

$$
\text { - Use a } L R=\frac{P(E \mid \text { relative })}{P(E \mid \text { random })}
$$

- What is the likelihood that a relative of a single initial suspect would match the evidence sample perfectly?
- What is the likelihood that a single randomly chosen, unrelated individual would match the evidence sample perfectly?

$$
L R=\frac{P(E \mid \text { relative })}{P(E \mid \text { random })}
$$

Probabilities of siblings matching at 0,1 or 2 alleles

$$
P(E \mid \text { sib })=\left\{\begin{array}{ccc}
\frac{P_{a} \cdot P_{b} \cdot H F}{4}, & \text { if } & \text { shared }=0 \\
\frac{P_{b}+P_{a} \cdot P_{b} \cdot H F}{4}, & \text { if } & \text { shared }=1 \\
\frac{1+P_{a}+P_{b}+P_{a} \cdot P_{b} \cdot H F}{4}, & \text { if } & \text { shared }=2
\end{array}\right.
$$

HF = 1 for homozygous loci and 2 for heterozygous loci; P_{a} is the frequency of the allele shared by the evidence sample and the individual in a database.

Probabilities of parent/child matching at 0,1 or 2 alleles

HF $=1$ for homozygous loci and 2 for heterozygous loci; P_{a} is the frequency of the allele shared by the evidence sample and the individual in a database.

Other familial relationships

Cousins:

$$
P(E \mid \text { cousins })=\left\{\begin{array}{ccc}
\frac{6 \cdot P_{a} \cdot P_{b} \cdot H F}{8}, & \text { if } & \text { shared }=0 \\
\frac{P_{b}+6 \cdot P_{a} \cdot P_{b} \cdot H F}{8}, & \text { if } & \text { shared }=1 \\
\frac{P_{a}+P_{b}+6 \cdot P_{a} \cdot P_{b} \cdot H F}{8}, & \text { if } & \text { shared }=2
\end{array}\right.
$$

$$
P(E \mid G G / \text { AUNN /HS })=\left\{\begin{array}{ccc}
\frac{2 \cdot P_{a} \cdot P_{b} \cdot H F}{4}, & \text { if } & \text { shared }=0 \\
\frac{P_{b}+2 \cdot P_{a} \cdot P_{b} \cdot H F}{4}, & \text { if } & \text { shared }=1 \\
\frac{P_{a}+P_{b}+2 \cdot P_{a} \cdot P_{b} \cdot H F}{4}, & \text { if } & \text { shared }=2
\end{array}\right.
$$

HF $=1$ for homozygous loci and 2 for heterozygous loci; P_{a} is the frequency of the allele shared by the evidence sample and the individual in a database.

Familial search experiment

- Randomly pick related pair or unrelated pairfrom a synthetic database
- Choose one profile to be evidence and one profile to be initial suspect
- Test hypothesis:
- H_{0} : A relative is the source of the evidence
- H_{A} : An unrelated person is the source of the evidence

Paoletti, D., Doom, T., Raymer, M. and Krane, D. 2006. Assessing the implications for close relatives in the event of similar but non-matching DNA profiles. Jurimetrics, 46:161-175.

Hypothesis testing: LR threshold of 1 with prior odds of 1

		True state	
		Evidence from Unrelated individual	Evidence from sibling
Decision	Evidence from unrelated individual	$\sim 98 \%$ [Correct decision]	$\sim 4 \%$ [Type II error; false negative]
	Evidence from sibling	$\sim 2 \%$ [Type I error; false positive]	$\sim 96 \%$ [Correct decision]

Two types of errors

- False positives (Type I): an initial suspect's family is investigated even though an unrelated individual is the actual source of the evidence sample.
- False negatives (Type II): an initial suspect's fa mily is not be investigated even though a relative really is the source of the evidence sample.
- A wide net (low LR threshold) catches more criminals but comes at the cost of more fruitless investigations.

Type I and II errors with prior odds of 1

- What is the likelihood that a close relative of a single initial suspect would match the evidence sample perfectly?
- What is the likelihood that a single randomly chosen, unrelated individual would match the evidence sample perfectly?

$$
L R=\frac{P(E \mid \text { relative })}{P(E \mid \text { random })}
$$

- What is the likelihood that the source of the evidence sample wasa relative of an initial suspect?

$$
P(s i b \mid E)=\frac{P(E \mid \text { sib }) \cdot P(\text { sib })}{P(E \mid \text { sib }) \cdot P(\text { sib })+P(E \mid \text { random }) \cdot P(\text { random })}
$$

$$
\begin{aligned}
& P(\text { sib })=\frac{s}{\text { popsize }} \\
& P(\text { random })=\frac{\text { popsize }-s}{\text { popsize }}
\end{aligned}
$$

- This more diffic ult question is ultimately govemed by two considerations:
- What is the size of the altemative suspect pool?
- What is an acceptable rate of false positives?

$$
L R=\frac{P(E \mid \text { sib })}{P(E \mid \text { random })}
$$

Pair-wise similarity distributions

How well does an LR approach perform relative to alternatives?

- Low-stringenc y C ODIS sea rch identifies all 10,000 parent-child pairs (but only 1,183 sibling pairs and less than 3% of all other relationships and a high false positive rate)
- Moderate and high-stringency CODIS searches failed to identify a ny pairs for any relationship
- An a llele count-threshold (set at 20 out of 30 a lleles) identifies 4,233 siblings a nd 1,882 parent-child pairs (but fewerthan 70 of a ny other relationship and with no false positives)

How well does an LR approach perform relative to alternatives?

- LR set at 1 identifies $>99 \%$ of both sibling and pa rent-child pairs (with false positive rates of 0.01% and 0.1%, respectively)
- LR set at 10,000 identifies 64\% of siblings a nd 56\% of parent-child pairs (with no false positives)
- Use of non-cognate allele frequencies results in an increase in false positives and a decrease in true positives (that are largely offset by either a ceiling or consensusapproach)

Introduction to Mixtures

Contributor 2

Mixture

- Mixturescan exhibit up to two peaks per contributorat any given locus
- Mixturescan exhibit asfew as 1 peak at a ny given locus (regardless of the number of contributors)

Introduction to Mixtures

Contributor 2

- Determining if two genotypes could be contributors is relatively easy

Possible contributors to a mixture:
D3 locusgenotype 15, 18
Individual \#1:
14, 18

Mixture:
$14,15,18$

- But beware - the opposite is not true

Introduction to Mixtures

- Determining what genotypes created the mixture is non-trivial

D3 locus genotype

Mixture:
14, 15, 18

Option \#1
Individual A: 15, 18
Individual B: 14, 18

Option \#2
Individual B: 14, 18
IndividualC: 15, 15

Option \#3
Individual \#D: 14,15
Individual \#E: $\quad 18,18$

Option \#4
Individual \#A: 15,18
Individual \#F: 14, 14

Introduction to Mixtures

- Even determining the number of contributors is non-trivial

D3 locus genotype
Mixture: $\quad 14,15,18$

Another Option
Individual C:
15, 15
Individual D:
14, 15
Individual E:

- There is no "hard" mathematical upperbound to the number of contributors possible

Introduction to Mixtures

D3 $\$ 1358$

- Usually the victim's genotype is known, but this does not always make the defendant's genotype clear

D3 locus genotype
Mixture:
14, 15, 18
Victim:
14, 15

Possible genotypes for a single perpetrator: IndividualC: $\quad 14,18$
Individual D:
15, 18
Individual E:
18, 18

Individual F:
14,14 ?

Introduction to Mixtures

- The large number of potential genotypes consistent with the mixture allows for a VERY wide net to be cast
- This greatly inc reases the likelihood of accusing an innocent suspect, particularly in database trawls
- This is generally not reflected in the statistics reported by the DNA testing laboratory
- Case History: Sutton

Making sense of mixtures

- There are two majoropen research areas:
- Determining the most likely number of contributors
- Determining the genotypes of each contributor
- Factors that can aid in deconvolution
- Mixture ratios
- Peak height a dditivity
- Factors that can greatly complicate deconvolution results
- Allowing alleles to be discarded as artifacts ("a nalyst's discretion")

Mixture ratios

- Different individuals may contribute different "amounts" of DNA to the mixture. This difference should be reflected (relatively uniformly) throughout the entire sa mple.

Peak height additivity

Mixture

- Assume one individual c ontributes an a mount of DNA that measured at n RFUs
- Assume a second individual contributes an a mount of DNA that measures at m RFUs
In a two person mixture, a ny allele which they share should measure at roughly $\mathrm{n}+\mathrm{m}$ RFUs

Evidence of additivity

Relationship between the smaller and largerpeaks in heterozygous loci of reference samples.

Making sense of mixtures

- There are two major research areas:
- Determining the most likely number of c ontributors
- Determining the genotypes of each contributor
- How can we determine the mostly likely number of contributors?
- We (Paoletti et al.) create mixtures from an existing database in order to determine how often the a ctual number of contributors differs from the perceived number of contributors.
- The Minnesota BCA database uses twelve (12) loci

Minnesota BCA database

BCA ID\#	D3S1358	vWA	FGA	TH01	TPOX	CSF1P0	D5S818	D13S317	D7S820	D8S1179	D21S1
PB0005	17,18	16,16	21, 24	6,8	10,11	11, 12	12,14	11, 12	8,10	13,14	29,29
PH0070	15,17	16,17	21, 25	7,7	10,11	11, 12	11,12	11, 12	8,10	13, 14	29.2,
PH0138	17,17	14,16	24,25	7,8	11,11	10, 11	11,11	10,10	10,11	14,14	29,30
Mixture1	15,17,18	14,16,17	21,24,25	6,7,8	10,11	10,11,12	11,12,14	10,11,12	8,10,11	13,14	29,29
PB0155	16,17	16,16	24, 24	8,9.3	10,11	11, 12	11,13	12,12	10,11	12,15	29,29
PH0014	17,17	17,18	19, 22	6,9.3	11,12	12,12	11,11	9,9	11,11	13,15	28,29
PN0166	15,16	17,17	19, 22	9.3,9.3	11,11	12,13	11,11	12,13	9,10	12,12	30,30
Mixture2	15,16,17	16,17,18	19,22,24	6,8,9.3	10,11,12	11,12,13	11,13	9,12,13	9,10,11	12,13,15	28,29
PB0022	15,16	15,16	22, 23	7,7	9,11	11, 12	11,12	14, 14	11,12	14,15	32.2 ,
PB0078	15,17	15,15	23, 24	7,8	10,10	11, 12	11,12	13,13	10,10	13,13	28,28
PH0146	17,17	16,16	24,24	8, 9.3	9,11	10,12	12,12	8,8	10,12	13, 14	28,32
Mixture3	15,16,17	15,16	22,23,24	7,8,9.3	9,10,11	10,11,12	11,12	8,13,14	10,11, 12	13,14,15	28,32
PB0024	17,18	16,18	22, 24	7,8	6,9	10,11	11,11	9,12	8,10	15,15	29,29
PB0067	17,18	16,19	22, 24	7,8	11,11	10,10	12,13	11, 12	8,8	12,13	29,30
PB0111	15, 18	16,16	23, 24	8,9.3	6,9	10, 11	11,12	11, 12	10,12	12,15	30,31
Mixture4	15,17,18	16,18,19	22,23,24	7,8,9.3	6, 9, 11	10, 11	11,12,13	9,11,12	8,10,12	12,13,15	29,30
PB0024	17,18	16,18	22, 24	7,8	6,9	10,11	11,11	9,12	8,10	15,15	29,29
PB0075	16,18	16,16	22, 24	9.3, 9.3	8,8	7,10	8,11	11, 11	8,8	14,14	29,32
PC0090	16,17	14,18	22, 25	7,8	8,8	10, 11	12,12	11, 11	8,12	12,15	29,30
Mixture5	16,17,18	14,16,18	22,24,25	7,8,9.3	6,8,9	7,10,11	8,11,12	9,11,12	8,10,12	12,14,15	29,30
PB0030	14,16	15,15	22, 22	7,7	8,9	11, 11	11,13	12,13	10,11	14,16	28,29
PH0055	16,16	16,18	24,24	7,9	8,11	11, 12	11,12	12,14	8,11	13, 14	28,29
PN0108	15,16	18,18	22, 23	9.3,9.3	11,11	11, 11	11,11	12,14	8,8	14,16	29,30
Mixture6	14,15,16	15,16,18	22,23,24	7, 9, 9.3	8,9,11	11, 12	11,12,13	12,13,14	8,10,11	13,14,16	28,29

All 3-way MN BCA mixtures

- There are $45,139,896$ possible different 3-person mixtures of the 648 individuals in the MN BCA database

Maximum \# of alleles observed	\# of occumences	As Percent
2	0	0.00%
3	310	0.00%
4	$2,498,139$	5.53%
5	$29,938,777$	66.32%
6	$12,702,670$	28.14%

- 6% of three contributors mixtures "look like" two contributors

All 3-way MN BCA mixtures

- What if "a na lyst's disc retion" is invoked exactly once (at the "worst" locus)

Maximum \# of alleles obsenved

1,2	0	0.00%
	0	0.00%
3	310	0.00%
	8,151	0.02%
4	$2,498,139$	5.53%
	$11,526,219$	25.53%
5	$29,938,777$	66.32%
	$32,078,976$	71.01%
6	$12,702,670$	28.14%
	$1,526,550$	3.38%

- 26% of three contributors mixtures "look like" two contributors

All 4-way MN BCA mixtures

Maximum \# of
alleles obsenved
$1,2,3$
4
5
6
7
8
\# of occurences
0
6
42,923
731,947
9,365,770
30,471,965
34,067,153
25,872,024
13,719,403
1,328,883
1,214,261
4,695

As Percent
0.00\%
0.00\%
0.07\%
1.25\%
15.03\%
52.18\%
58.32\%
44.29\%
23.49\%
2.28\%
2.08\%
0.01\%

- 73% of four contributors mixtures "look like" three contributors

All 4-way MN BCA mixtures

Maximum \# of
alleles obsenved 1, 2, 3

4
5
6
7
8
\# of occurrences

6
42,923
731,947
9,365,770
30,471,965
34,067,153
25,872,024
13,719,403
1,328,883
1,214,261
4,695

As Percent
0.00\%
0.00\%
0.07\%
1.25\%
15.03\%
52.18\%
58.32\%
44.29\%
23.49\%
2.28\%
2.08\%
0.01\%

- 96% of four contributors mixtures "look like" three contributors when one locuscan be dropped from consideration

Removing possible relationships

Individual	vWA	
	Original	Redistributed
1	18,19	15,18
2	18,18	18,18
-	-	
648	14,15	14,19

- Redistribute alleles at each locus randomly
- New database of "synthetic" unrelated individuals with the same allele frequencies

3-way mixtures with all 12 loci

Maximum \# of alleles obsemed in a 3-person mixture	\# of occumences	Percent of mixtures
$\mathbf{2}$	0	0.00%
$\mathbf{3}$	$2,498,139$	
$\mathbf{4}$	$29,938,777$	
$\mathbf{5}$		0.00%
$\mathbf{6}$	$12,702,670$	26.32%

Maximum \# of alleles observed in a 3- person mixture	\# of occumences	Percent of mixtures
$\mathbf{2}$	0.0	0.00%
$\mathbf{3}$	139.4	0.00%
$\mathbf{4}$	$2,233,740.8$	4.95%
$\mathbf{5}$	$29,829,482.0$	66.08%
$\mathbf{6}$	$13,076,533.8$	28.97%

How many loci until 4-way mixture doesn't look like a 3-way mixture?

4-Way Mixtures, CAU MN Data, Average

- Redistribute a lleles across all individuals (by locus) and add to database
© M. Raymer, FBS

What if contributors are related?

- Clearly, determining the number of contributors to a DNA mixture is difficult when the contributors are unrelated
- How much harderdoes it become when they are related?

Virtual families

- Parents randomly chosen from unrelated (randomized) database
- Random mating
- Creates data bases of grandparents, parents, and grandchildren

Distributions of shared alleles

Likelihoods of shared alleles

Analysis of Allele Sharing

- Clearly, it is diffic ult to definitively assign the number of contributors to a mixture
- This diffic ulty must be fairly reported in random probability match statistics in order forsuch statistics to rema in objective
- Analyst discretion should be invoked cautiously, and always carefully doublechecked forerror
- Likelihoods allow a a nalysts to infer the possible relationship between two individuals

Mixture Deconvolution

- Even when the number of contributors is known (or assumed), separating mixtures into their components can be diffic ult

Current Methods

- Most methods start by infering the mixture ratio:

Simple example: All loci heterozygous, two contributors

Minimal Basic Assumptions

- A primary a ssumption of all methods is peak additivity
- Most labs assume peaks from the same source will vary by $\leq 30 \%$

Contributor 2

Mixture

Objectives

- Start with simple assumptions:
- Additivity with constant va riance: c
- Peaks below a minimum threshold (often 50 or 150 RFU) a re not observable
- Peaks above the saturation threshold (often 4000 RFU) are not mea surable
- Obta in provably comect dec onvolution where possible
- Identify when this is not possible

Method

- Assume the number of contributors
- Enumerate all possible mixture contributor combinations
- Determine which pairs of profiles conta in peaks in balance

Peak Balance

- Example: assume two contributors, four peaks:
- Forthis locus, and c
$=1.3$, the combination ($\mathrm{P} 1, \mathrm{P} 3$) is out of balance because:

$180 \times c<2030$
Peaks are numbered by height

Example: Mixture of four peaks

Contributor 1	Contributor 2	Mixture Condition 1	Mixture Condition 2
P4 P3	P 2 P 1	$\mathrm{P} 4 \leq c \mathrm{P} 3$	$\mathrm{P} 2 \leq c \mathrm{P} 1$
P4 P2	P 3 P 1	$\mathrm{P} 4 \leq c \mathrm{P} 2$	$\mathrm{P} 3 \leq c \mathrm{P} 1$
P4 P1	P 3 P 2	$\mathrm{P} 4 \leq c \mathrm{P} 1$	$\mathrm{P} 3 \leq c \mathrm{P} 2$

- $\mathrm{P} 4>=\mathrm{P} 3>=\mathrm{P} 2>=\mathrm{P} 1>=$ Min. Threshold

Sweet Spot

Contributor 1	Contributor 2	Mixture Condition 1	Mixture Condition 2
P4 P3	P2 P1	$\mathrm{P} 4 \leq c \mathrm{P} 3$	$\mathrm{P} 2 \leq c \mathrm{P} 1$
P4 P2	P3 P1	$\mathrm{P} 4 \leq c \mathrm{P} 2$	$\mathrm{P} 3 \leq c \mathrm{P} 1$
P4 P1	P3 P2	$\mathrm{P} 4 \leq c \mathrm{P} 1$	$\mathrm{P} 3 \leq c \mathrm{P} 2$

- If only one row is satisfied, then the genotypes can be unambiguously and provably determined

Example: In the sweet spot

Contributor 1	Contributor 2	Mixture Condition 1	Mixture Condition 2
P 4 P 3	P 2 P 1	$\mathrm{P} 4 \leq c \mathrm{P} 3$	$\mathrm{P} 2 \leq c \mathrm{P} 1$
P 4 P 2	P 3 P 1	$\mathrm{P} 4 \leq c \mathrm{P} 2$	$\mathrm{P} 3 \leq c \mathrm{P} 1$
P 4 P 1	P 3 P 2	$\mathrm{P} 4 \leq c \mathrm{P} 1$	$\mathrm{P} 3 \leq c \mathrm{P} 2$

- $\mathrm{P} 4>c \mathrm{P} 2$
so we can't have
(P4,P2)
- $\mathrm{P} 4>c \mathrm{P} 1$
so we can't have
(P4, P1)

Example: Ambiguous Locus

Contributor 1	Contributor 2	Mixture Condition 1	Mixture Condition 2
P4 P3	P 2 P 1	$\mathrm{P} 4 \leq c \mathrm{P} 3$	$\mathrm{P} 2 \leq c \mathrm{P} 1$
P 4 P 2	P 3 P 1	$\mathrm{P} 4 \leq c \mathrm{P} 2$	$\mathrm{P} 3 \leq c \mathrm{P} 1$
P 4 P 1	P 3 P 2	$\mathrm{P} 4 \leq c \mathrm{P} 1$	$\mathrm{P} 3 \leq c \mathrm{P} 2$

- P 2 is within c of both P1 and P4, so we can have
- (P1,P3) (P2,P4), or
- (P1,P2) (P3,P4)
- P4 cannot pair with P1

Example: No row satisfied

Contributor 1	Contributor 2	Mixture Condition 1	Mixture Condition 2
P 4 P 3	P 2 P 1	$\mathrm{P} 4 \leq c \mathrm{P} 3$	$\mathrm{P} 2 \leq c \mathrm{P} 1$
P 4 P 2	P 3 P 1	$\mathrm{P} 4 \leq c \mathrm{P} 2$	$\mathrm{P} 3 \leq c \mathrm{P} 1$
P 4 P 1	P 3 P 2	$\mathrm{P} 4 \leq c \mathrm{P} 1$	$\mathrm{P} 3 \leq c \mathrm{P} 2$

- P4 (for example) cannot pair with any other peak
- One of our assumptions (c or the number of contributors) is incorrect

Three Peaks

Contributor 1	Contributor 2	Mixture Condition 1	Mixture Condition 2
P3 P3	P2 P1	None (homozygote)	$\mathrm{P} 2 \leq c \times \mathrm{P} 1$
P3 P2	P 3 P 1	$\mathrm{P} 3 \leq c \times(\mathrm{P} 2+\mathrm{P} 1)$	$\mathrm{P} 3 \geq(1 / c) \times(\mathrm{P} 2+\mathrm{P} 1)$
P3 P2	P 2 P 1	$\mathrm{P} 2 \leq c \times(\mathrm{P} 3+\mathrm{P} 1)$	$\mathrm{P} 2 \geq(1 / c) \times(\mathrm{P} 3+\mathrm{P} 1)$
P3 P2	P 1 P 1	$\mathrm{P} 3 \leq c \times \mathrm{P} 2$	$\mathrm{P} 1 \leq c \times \mathrm{Pmpht}$
P3 P2	P 2 Pmpht	$\mathrm{P} 3 \leq c \times \mathrm{P} 2$	None
P3 P1	P 2 P 2	$\mathrm{P} 3 \leq c \times \mathrm{P} 1$	$\mathrm{~N} 2 \leq c \times \mathrm{Pmpht}$
P3 P1	P 2 P 1	$\mathrm{P} 1 \leq c \times(\mathrm{P} 3+\mathrm{P} 2)$	$\mathrm{P} 1 \geq(1 / c) \times(\mathrm{P} 3+\mathrm{P} 2)$
P3 P1	P 2 P 1	$\mathrm{P} 2 \leq c \times \mathrm{P} 1$	
P3 Pmpht			

Advantages of the method

- If you accept the simple a ssumptions, the resulting mixture interpretations directly follow
- Interprets mixtures on a locus by locus basis
- Does not interpret a mbiguous loci

Future work

- Mixture ratio can be inferred only from una mbiguous loci, and then applied to perform an more aggressive interpretation of the a mbiguous loci when desired
- Confidence valuescan be applied to the more aggressively interpreted possitions

Acknowledgements

- Research Students
- Da vid Paoletti (a nalysis of a llele sharing)
- J ason Gilder (data collection, additivity study, mixture deconvolution)
- Faculty
- Travis Doom
- Dan Krane
- Mic hael Raymer

