
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

2006

Show Me What You Mean! Exploiting Domain Semantics in Show Me What You Mean! Exploiting Domain Semantics in

Ontology Visualization Ontology Visualization

Ravi Pavagada

Christopher Thomas

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

William S. York

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Pavagada, R., Thomas, C., Sheth, A. P., & York, W. S. (2006). Show Me What You Mean! Exploiting Domain
Semantics in Ontology Visualization. .
https://corescholar.libraries.wright.edu/knoesis/571

This Report is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled
Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an
authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/36753244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Show Me What You Mean!

Exploiting Domain Semantics in Ontology Visualization

Ravi Pavagada1, Christopher Thomas1, Amit Sheth1, William S. York2

1Large-scale Distributed Information Systems Laboratory,

Dept. of Computer Science, University of Georgia, Athens, GA, USA

2Complex Carbohydrate Research,

Dept. of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA

1{pavagada, cthomas, amit}@cs.uga.edu, 2will@ccrc.uga.edu

ABSTRACT

Ontologies build the backbone for many life-sciences
applications. These ontologies, however, are represented in XML-
based languages that are meant for machine-consumption and
hence are difficult for humans to comprehend. For a meaningful
visualization of these ontologies, it is important that the display of
entities and relationships captures the cognitive representation of
the domain as perceived by the domain experts. In this paper we
present OntoVista, an ontology visualization tool that is adaptable
to the needs of different domains, especially in the life sciences.
While keeping the graph structures as the predominant model, we
provide a semantically enhanced graph display that gives users a
more intuitive way of interpreting nodes and their relationships.
Additionally, OntoVista provides comfortable interfaces for
searching, semantic edge filtering and quick-browsing of
ontologies. To this end, we extended the Jambalaya plugin for
Protégé to allow for customization and integration of different
layouts.

As a use case, we demonstrate how the ontology-encoding of
complex carbohydrate structures is transformed into a standard
graphical representation of carbohydrates familiar to biochemists

1 INTRODUCTION

As more and more information is presented to us, we need
better ways to organize and visualize it. While most of the
information we see is in form of text, audio and video, the
underlying structure that connects the different pieces of
information can be seen as a network or a graph, which can either
be described as physical graph as in the case of different servers
that store different nodes of information, or as a conceptual graph
which are in the form of hyperlinks, relational tables or more
palpable graph formalisms represented in Resource Description
Framework or RDF. RDF [8] is a framework for defining
metadata (data about data) and is a key component of the
Semantic Web. The Semantic web is an extension of the current
web and can be seen as network of interconnected information
that can be readily processed by machines. The Semantic Web
aims at making the web contents machine processable by adding
metadata to the current web. This meta-data can be represented in

RDF. RDF can be used to formalize and share knowledge of a
domain. RDF is comprised of triples or statements made up of
subject, predicate and object. These triples can be visualized as a
directed graph where predicate or edges emanate from subjects
and incident on objects.

The RDF serialization of ontologies is hard to comprehend
for a human viewer and thus a good visualization needs to present
the information in a way that is easily understandable. Most
visualization tools visualize RDF in the form of a graph
represented as triples. Visualization of such graphs doesn’t
capture the cognitive representation of a domain, as perceived by
the domain experts. A visualization tool that helps the user to
comprehend the area of interest more quickly should be able to
show the connections of the graph that are most useful for the
viewer. More than that, it should as much as possible present the
information in a “meaningful” manner. The definition of a
meaningful display of information varies from domain to domain
A symbol that makes sense to e.g. a chemist might be meaningless
to a mathematician or even have a different meaning in the field
of mathematics. Different groups in the same fields of science
might also use different representation. Ontology can be described
as specification of conceptualization of a domain. Ontologies
represented in RDF are meant to unambiguously formalize
knowledge. Visualization however, should convert this
description back to the domain-specific view of the knowledge.
In analogy to the definition of ontologies in computer science,
Semantic Visualization can be defined as a “visualization that
provides a shared view of a conceptualization”.

Semantic Visualization basically consists of nodes and edges
that are labelled, color-coded, assigned different shapes and
arranged such that some of the connected nodes are closer to each
other than others, indicating that these nodes are semantically
closer. It (Our implementation?) also captures extended graph
display that allows nesting of sub-graphs with in nodes. This
representation suggests some kind of containment relationship
between the enclosing node and the enclosed subgraph, which is
one of many different ways things can be related. This multitude
of relationships however, can be seen as a hierarchy starting with
a root relationship that broadly defines a particular type of
relationship. The relationship hierarchy is defined by specifying
more specific types of relationships, which are subsumed by more
general relationships. The most common relationships in an
ontology include subclass_of (inheritance), instance_of

(instantiation) and part_of (aggregation), all of which can be
conceptually or physically viewed as different types of
containment relationships.

 Suppose B and A are both classes, and if Class B related
to Class A by is_a relationhip, then all things that are
described by A will be contained in the set of things that
are described by B.

 Suppose A is a class and a is an instance, thus if a
is_intsance_of A, then a is contained in the set that is
the extension of that class.

 Suppose a and b are both instances, thus if b is_part_of
a, then b is contained in the aggregate set which defines
a.

Other concepts and relationships have conventional symbols
that are domain dependent. For example, a chemical reaction is
commonly shown as an arrow between the reactant and product
involved in the reaction. In an ontology, however, a chemical
reaction will require a much more complicated representation that
is meaningful to a machine, but not necessarily to the human
observer. Thus, a visualization tool should be able to translate this
machine-centric representation into a human discernible format.
To take a more obvious example, the visualization of a geometry
ontology can show entities in simple shapes such as squares,
circles, triangles etc. More specifically, in the domain of life-
sciences there are standard symbolic representations of entities
that are commonly used by domain experts to visualize these
entities in a graph. Entities in a chemical ontology describing
simple molecules could be visualized showing an abstraction of
their molecular structure instead of a simple shape.

In this paper we present OntoVista, a semantic visualization
tool with unique capabilities related to complex
(representationally rich) biological and biochemical ontologies.
OntoVista was developed by extending Jambalaya [19], an
existing ontology visualization plugin for the Protégé [15]
ontology editor. We propose a custom layout which can generate
domain specific views that are familiar to domain experts.

The information describing how to visualize contents of an
ontology does not belong in the ontology itself. Rather, for this
purpose we use layout settings provided by the domain experts to
display a view that is meaningful to the users. Custom Layout was
initially designed to display complex carbohydrates in a way that
domain experts are used to; the so-called Cartoonist [4]
representation. However, the layout is customizable and can
generate domain specific views for any ontology. We have also
refined searching and filtering in Jambalaya. Taking
advantage of a hierarchical representation of the relationships (i.e.
properties and their sub-properties) in the ontology, Semantic Arc
Filter was developed to help user to quickly visualize the nodes
connected through particular sets of relationships such as
partonomy/containment, chemical interaction/ reaction etc. Thus,
Semantic Arc Filter allows users to show/hide all partonomy
relationships such as part_of and its sub-properties or chemical
interaction relationships such as interacts_with and its sub-
properties at once. We have enhanced the basic search capabilities
that are there in Jambalaya by adding advanced searches such as
relationship search, description or comment search, domain-range
search, triple search and semantic search. Additionally, OntoVista
provides a Quick Ontology Browser for easy access of class, sub-
classes, properties and sub-properties which can be later used in
queries while performing searches.

The rest of the paper is organized as follows. Section 2 gives
a brief introduction to Jambalaya and GlycO [7] which is a
complex bio-chemical ontology. In Section 3, we describe
OntoVista’s custom layout, Semantic Arc Filter, Ontology
Browser and advanced Searches. Section 4 talks about the related
work in the area of ontology visualization.

2 BACKGROUND

2.1. Jambalaya

Jambalaya [19] is a protégé plugin, designed for visualization
of large complex ontologies. Jambalaya uses SHriMP [14]
visualization techniques i.e. nested graph view, combined with
pan, zoom and fisheye-view for interactive navigation. It provides
various layouts such as Radial Layout, Spring Layout, horizontal
Tree Layout and vertical Tree Layout, to meet different user’s
preferences. The Query View interface in Jambalaya can display
query results in form of a graph. Using Query View, users can
search for a specific class or an instance and can display
neighbourhood for a specified number of hops. However, the
layouts provided by Jambalaya are not customizable and cannot
display views that capture the cognitive representations of the
domain as perceived by the domain experts. This was the main
motivation behind the development of our customizable layout.
The search interface in Jambalaya only provides either class or
instance search. Users are able to navigate to the selected class or
instance after selecting them from the search result. While using
Jambalaya extensively for the design of ontologies, we found that
the searches provided in Jambalaya are not powerful enough for
analysis and navigation of complex ontologies. We found a need
for advanced search capabilities such as description search,
relationship search, triple search, domain-range search and
Semantic search while visualizing complex ontologies such as
GlycO [7]. Hence our goal was to design a search interface in
OntoVista that implements some of the capabilities of ontology-
query languages such as SPARQL [REF] without requiring the
user to learn their rather complex syntax. Jambalaya provides Arc
Filter that can be used to filter and un-filter edges from the graph
view of the ontology. This Arc Filter however does not take
advantage of the property hierarchy. Most ontologies have
relationships such as “part_of” which represent partonomy
relationships. In Glyco, for example, the property “part_of” has
sub-properties like “has_carbohydrate_residue”,
“has_glycan_root_residue”, and “has_carbohydrate_moiety”.
Thus, we felt the need for a semantic arc filter that can help user
visualize such relationships. Most complex and well structured
ontologies have property hierarchies that can be exploited for this
purpose.

2. 2 GlycO

The field of glycobiology deals with the structures,
chemistry, biosynthesis, and biological functions of complex
carbohydrates, so-called glycans. The structures of glycans are
more complicated than those of genes and proteins, which are
linear chains composed of nucleotide and amino acid residues,
respectively. Moreover, all of the residues in these biopolymers
are connected via a single type of linkage. Conversely, glycans
have a branched tree structure rather than a linear chain, and the
connection between carbohydrate residues shows significant
structural heterogeneity, varying, for example, in position and
anomeric configuration. Thus, modeling of primary structural

features is considerably more difficult for glycans than for genes
and proteins.

GlycO is a highly specialized ontology for the glycobiology
domain. It contains formalized descriptions of glycan structures,
enzyme functions and biosynthetic pathway information. The
individual glycans are modelled as collections of monosaccharide
residues. The relation between connected residues is called
"is_linked_to." This relation has a defined direction, which
provides the structure of the glycan model as a directed graph, or
more specifically, a tree. All residues which instantiate the
relation "is_linked_to" must also instantiate the property
"is_linked_via." When residue-A is_linked_to residue-B, the
property "is_linked_via" specifies the precise atomic attachment
point on residue-B where residue-A attaches, and the property
"has_linking_atom" specifies the site on residue-A that is attached
to residue-B. Both the local and remote binding sites are indexed
using a standard chemical numbering system. Within the
configuration property file, this number is called the LinkType and
is used by OntoVista to configure the visualization layout of
residues in a way that preserves a standard graphical
representation format used by glycobiologists to visualize glycans
and the residues they contain. Thus, OntoVista is capable of
presenting glycans in a format similar to the cartoon
representation commonly found within textbooks and current
research papers. The ubiquity and usefulness of this representation
for glycol-biologists was a key motivator behind the creation of
the custom layout in OntoVista.

3 ONTOVISTA

OntoVista is a semantic visualization tool developed by
extending the Protégé plugin Jambalaya. The key feature of
OntoVista is its ability to display domain specific views familiar
to domain experts. A visualization environment needs to provide
the ability to display the domain of interest in a meaningful way.
The burden of deciding what is meaningful in the domain
however is placed on the domain experts. Hence the ontology
designers can create layout settings that reflect their
conceptualization of the domain.

Our custom layout uses the information in the ontology as
described by the domain experts along with the settings to
generate a view that is meaningful to the user. The view generated
is very much dependent on the user configuration settings. The
user can also change the settings to generate views that are of
user’s interest. Additionally, OntoVista provides Semantic Arc
Filtering and advanced searches which are discussed in the later
sub sections.

3.1. Custom Layout

One of the shortcomings we found in the Jambalaya
visualization tool was that the choices of node shapes and colors
were limited to meta-properties of the nodes. All types of
instances have the same shape and color, the shapes and colors for
classes depends on formal properties of the class, not on its
possible reference. Layouts in Jambalaya are designed to capture
only the graph structure. They place nodes using standard layouts
such as Radial Layout, Spring Layout, horizontal Tree Layout and
vertical Tree Layout which cannot dynamically position the
nodes. In order to create domain specific views, layouts should
not only be able to change the shape and color of the nodes, but
also be able to adjust the physical locations of nodes based on a
conceptual location.

Custom layout creates containers or nested views using the
containment relationships such as “part_of” or
“has_component”. The layout is then applied to all the instances
of the root classes. Root classes are the names of the classes
whose instances are to be visualized. Visualization of these
instances/nodes will give a domain specific view of the ontology
as perceived by domain experts. These nodes may have internal
nodes (which they somehow contain) and the layout is applied on
the internal nodes. Custom layout is derived from Tree layout.
Custom layout lays the internal nodes from right to left starting
from the root node. It stops positioning of internal nodes once it
reaches the leaf of the tree. The Color and shape of a specific node
are determined using the layout settings. The position of each
internal node in the layout is based on information in ontology.
Each of the internal nodes can be can have positions such as
“Left”, “Down”, “Diagonal up” and “Diagonal down” relative
to the position of the previous internal node. Custom layout is
different from other layouts as it can generate domain specific
views based using the position information from the ontology and
can set shapes and colors for each of the internal nodes based on
the layout settings.

Custom layout uses the following layout properties to generate
views.

1. Containment relationship layout property is used to specify the
relationships upon which layout can cluster to create containers or
nested views of nodes.
2. Root class layout property is used to specify the names of the
classes whose instances are to be visualized. The layout can only
be applied to instances of the classes specified in this property.
3. Class layout property is used when the user wants to visualize a
set of instances of a class in a particular shape and color.
4. Class name layout property must be specified for each of the
individual class names mentioned in the Class layout property.
The desired shape and color of the instances of a particular class
must be specified using this layout property. This helps to set
specific shape and color for each of the internal nodes of the
layout.
5. Link relationship layout property is the relationship in the
ontology that specifies the position of the node. This property
allows the layout to access the position of the nodes from the
ontology.
6. Connection relationship layout property is the relationship in
the ontology that connects the internal nodes in the layout.
7. Link type layout property can be used to specify the possible
positions of the nodes based on physical linkage sites (e.g, atom 2,
3, 4, or 6).
8. Positions layout property is used to explicitly specify the actual
meaning for each of the positions in the link types property. For
example, link position value of 4 means that the node is to be
placed to the “Left”, link position value of 6 means that the node
is to be placed “Diagonally up”, link position value of 3 means
that the node is to be placed “Diagonally down”, link position
value of 2 means that the node is to placed directly “Below” the
previous node.

Figure 1 shows an image of a glycan generated using Custom
Layout.

Figure 2 shows the standard cartoonist representation of the
glycan shown in Figure 1.

We will demonstrate the custom layout using GlycO and a
car ontology which was specially designed for testing.
Initially, we will show how we can generate the cartoonist
representation of glycans using the custom layout. The GlycO
ontology is initially loaded in OntoVista along with the layout
configuration settings. The custom layout then generates images
of glycans using the layout settings and link information
(connection that exists between the residues) in the GlycO
ontology. Depending on the type of residue, the layout can display
instances of carbohydrate residues in various shapes such as
squares, diamond, circles, or triangles in different colors. The key
feature of Custom layout is that it can generate different images
for different glycans at runtime as shown in Figure 1. The
corresponding cartoonist representation of the glycan is shown in
Figure 2.

Figure 3. shows the image of an Car engine displayed according
to the configuration settings.

The car ontology describes some internal components of
cars, such as engine, transmission, brakes, headlight etc. We will
be using engines of different cars to demonstrate our custom
layout. The internal components of the engine are connected to
each other by an is_connected_to relationship. A domain specific
view of an engine of the car ontology should display various spark
plugs in the engine along with other components such as engine
block, crank, and piston.
Figure 3, shows an image of a Chevy cavalier car engine that
comprises of engine block, spark plugs, crank and piston. This is
based on the layout settings. The above figure shows the
champion plugs in yellow squares and Chevy engine block in
green circle. These settings are specified in the layout
configuration.

3.2. Semantic Filtering

Relationships in the can be classified in a similar fashion as
classes. The semantic arc filter was developed to help users to
quickly visualize the nodes connected through particular sets of
relationships such as partonomy/containment, chemical
interaction/ reaction etc.

Semantic Arc Filter can be used to filter or un-filter the
properties and their respective sub properties. With few mouse
clicks the user can thus change the focus of ontology from
parthood relationships to chemical reactions. Without the
hierarchical arc filter, this process would require tedious selection
of every relationship involved in partonomy and chemical
reactions respectively. In Glyco, for example, the property
part_of has sub-properties, as described in Section 2.1. By
selecting part_of in Semantic Arc Filter, all its sub-properties are
also selected. This holds analogously for de-selection of a
property. In general selections are recursively applied to the full
branch of the tree that has been selected. Additionally, of course,
the user can select or deselect individual sub-properties. Each
selected OWL property can be of three types, namely schema
property, instance property, or restricted properties. Using the

semantic Arc Filter, the user can also visualize specific sub-
properties and its associated types such as property restriction,
schema property and instance property.

Figure 3 Semantic Arc Filter

Figure 4 shows the property hierarchy of the GlycO ontology
using Semantic Arc Filter. As mentioned earlier, GlycO ontology
has partonomy relationships such as has_part. Property has_part
has sub-properties property, has_integral_property,
has_improper_part and has_proper_part,etc. In turn, Property
has_integral_property has sub-properties such as
has_carbohydrate_moiety, has_non-carbohydrate_moiety,
has_carbohydrate_residue etc. Semantic Arc Filter allows users
to visualize all partonomy relationships or only the specific ones.
Further, Semantic Arc Filter gives flexibility for the users to

visualize only specific type of property such as restricted, schema
or individual/instance.

3.3. Ontology Browser

The ontology browser can be used for faster access of the
information in the ontology, such as classes, sub- classes,
properties, sub proprieties, and instances. Users can select a set of
classes, properties, or instances from the Ontology Browser and
later use them to create queries while performing searches.

Initially a list of all classes in the ontology will be displayed.
Upon selection of a class, Ontology Browser displays all its
properties, instances, sub-classes, and super-classes. Users can
then see super and sub properties upon selection of a particular
property. Users can use Left mouse click for dynamic navigation.
Right click in ontology browser brings up a popup. The user can
then select the type of selection from the popup menu. Ontology
Browser is linked to search interface. Thus, as the user selects the
classes, properties, and instances from the Ontology Browser, it’s
simultaneously added to the respective list fields in the search
interface.

Figure 4. Ontology Browser

Ontology Browser can display classes, sub-classes,
super-classes, properties, sub-properties, super-properties and
instances of a given ontology. Figure 4, shows the ontological
view of the GlycO ontology using OntoVista’s Ontology Browser.

3.4 Searches

OntoVista provides advanced search capabilities such as
class search, instance search, relationship search, RDF comment
or description search, triple search, domain-range search and
semantic search. OntoVista provides pattern based searches based
on patterns entered by the user. By default, searches in OntoVista
are pattern based searches. This is as far as I got.

OntoVista’s search interface is closely linked to its Ontology
Browser, which helps in providing an ease of use search interface
that does not require users to type in names of classes, instances or
properties. That is, the user can select a class, instance or a
property from the dropdown list of the respective list field and can
use them in queries. OntoVista has a very simple search interface
based on the RDF triple model. In RDF, triples are represented by
subject, predicate and object. RDF schema has triples of the form
domain, property and range. Figure 5 shows the view of the
search interface in OntoVista. The search interface is divided into
three columns. The first column allows the subject class or
instance to be specified; the second column allows the predicate to
be specified; the third column allows the object class or instance
to be specified. The number of search fields that are filled in by
the user depends on the type of search to be performed. For a
class search, instance search, description search and relationship
search, only one field is filled in, and the classes and instances
that match the pattern are returned. For a triple search, domain-
range search and semantic search, two fields (one in each column)
are filled in by the user, and the search returns the classes,
instances and properties, as appropriate, that complete RDF triples
containing the two search fields. This search interface was
designed for biochemist who had no knowledge of ontology or the
query language. Thus, we gave prime importance to ease of use.

Figure 5. Search Interface

3.4.1. Relationship search and Description search

Descriptions are comments in the RDF or OWL ontology.
The user can enter the description text in the search pattern list
box. Description search returns all the classes and instances that
contain the entered description pattern. The user can also navigate
to the specific class/instance by selecting the class/instance from
the search result.

Relationship searches can be used to when users are
interested in finding classes and instances that contain the queried
relationship. The users can either enter the relationship in the
property list field of the search interface or select a property from
the dropdown after adding the properties using the Ontology
Browser. Relationship search returns all the classes and instance

that define, restrict or instantiate the relationship. The user can
then navigate to the specific class/instance by selecting the
class/instance from the search result. An example in GlycO
would be to find all glycans and its class types that has
relationship “has_carbohydrate_residue”.

3.4.2. Triple Search and Domain-Range Search

Triples are comprised of subject, predicate and object. Triple
search can be used to search for either the subject or object
instance, given a subject instance and a property or an object
instance and a property. The user can either enter these query
terms or select them from the list fields. The results of the triple
search are object/subject instances and its respective classes. An
example of a triple search in GlycO would be to find all glycan
instances that have relationship “has_carbohydrate_residue” with
residue instance “N-glycan_b-D-GlcpNAc_14”.

The output of a domain-range search is dependent on the
input. Given a domain and a property, the search returns the range
classes and their respective instances. Similarly while searching
for a domain, given a range class and a property, it finds all the
possible domain classes and their respective instances.

3.4.3. Semantic Search

Semantic search can be used for analysis of the ontology.
The user enters a subject class or instance and an object class to
determine whether some hypothesis about the knowledge in the
ontology is true. For example, a user may want to know if the
glycans in the GlycO ontology are comprised of residues.
Semantic search on the above query would return all the glycans
that have some relationship with residues

Semantic search can also be used to disambiguate instances
and reduce the number of entries in the search result. For
example, there could be multiple classifications of instances in the
ontology. Ontology might consist of a different people of the
same name, for example Michael Jordan. One MJ is an
Entrepreneur and the other MJ is a Basketball player. Using
semantic search the users can actually find the desired instance.
Thus, by specifying the object class “Entrepreneur”, Semantic
search will return Michael Jordon who is an Entrepreneur.

4. RELATED WORK

To date, no literature has been published that directly
describes Semantic Visualization. However, many visualization
tools/applications that, like OntoVista, can visualize ontology
have been described. Ontology visualization tools can be
classified based on the techniques they use to visualize ontology.
Among them, three most common techniques are ClusterMap
technique, nested view techniques as in Jambalaya and graph
based visualization.

ClusterMap [1] technique groups nodes in to clusters to
reduce the visual complexity and focuses on visualizing populated
instances and their classification based on concepts in the
ontology. It visualizes ontologies through classes and hierarchical
relationships, and by grouping instances in clusters. There are
many applications developed using the ClusterMap technique.

One such application is Spectacle [21] which displays classes by
means of hierarchical relations, while hiding any relations at the
instance level. DOPE Browser [10] is another tool that uses the
ClusterMap technique for visualization of large document sets. It
provides support for thesaurus-based search using Elsevier's
EMTREE thesaurus and makes extensive use of Cluster Maps for
both visualizing and exploring query results.

Ontologies represented in RDF or OWL are often visualized
as graphs. Most visualization tools allow users to navigate to
different portions of the ontology and provide basic search
capabilities such as instance or a class search. Protégé-2000 [15]
developed at Stanford University, is a knowledge-modelling tool
that helps users to build domain specific knowledge acquisition
systems. It allows ontologies and knowledge-bases to be edited
and browsed interactively. OntoViz, Jambalaya, TGVizTab, and
OWLViz are some of the visualization tools developed as protégé
plugins.

OntoViz [18] supports visualization of several disconnected
graphs at once. The users can select a set of classes or instances to
visualize. OntoViz generates graphs that are static and non-
interactive which makes it less suitable for the visualization of
large ontologies. Searches in OntoViz are restricted to classes.
Jambalaya [20], described in section 2.1, is another protégé
plugin, designed for visualization of large complex ontologies.
OWLViz is designed to be used as a Protege plugin to visualize
the schema hierarchy, based only on the subclass relationship. In
OWLViz, searches are restricted to classes.

TouchGraph (www.touchgraph.com) uses a spring-
embedding algorithm to display the graph. Some users find
TouchGraph difficult to use as it keeps re-adjusting the graph to
create a layout that is best suitable for display. There are many
applications that are built using TouchGraph. TGVizTab [2] is a
protégé plugin that uses TouchGraph. It provides incremental
graph navigation of ontology. Using TGVizTab, users can search
for classes or instances. OI-Modeler [13] is a tool specifically
designed for creation and maintenance of ontologies. It uses
TouchGraph for graphical display.

5. CONCLUSION

In this paper we have demonstrated how OntoVista can
generate domain specific views familiar to domain experts. We
have done this using two ontologies namely GlycO and Car
ontology. We have also shown how Ontology Browser in
OntoVista can be used to create queries. We demonstrated
OntoVista’s Semantic Arc Filter using GlycO ontology. We
showed how OntoVista’s Semantic Filtering can be used in
visualizing relationships such as partonomy. Finally, we described
the searches in OntoVista and explained how these searches can
be used in analysis of a complex ontology such as GlycO.

6. ACKNOWLEDGEMENTS

7. REFERERNCE

[1] Aduna Cluster Map Library version 2005.1 (Integration Guide),
2005.

[2] Alani, H., TGVizTab: An Ontology Visualisation Extension for
Protégé. In Proceedings of Knowledge Capture (K-Cap'03),
Workshop on Visualization Information in Knowledge Engineering ,
Sanibel Island, Florida, USA.

[3] Contreras, J., Benjamins, V.R., Prieto, J.A., Patón, D., Losada, S.,
González, D.: Duontology: an Approach to Semantic Portals based
on a Domain and Visualisation Ontology. KTWeb,2003
http://www.drecommerce.com/doc/Benjamins-Duontology-a.pdf

[4] David Goldberg, Mark Sutton-Smith, James Paulson, Anne Dell,
Automatic annotation of matrix-assisted laser desorption/ionization
N-glycan spectra, PROTEOMICS (2005) 5(4): 865-875

[5] David J. Duke, K. W. Brodlie, D. A. Duce. "Building an Ontology of
Visualization," vis, p. 7p, 15th IEEE Visualization 2004 (VIS'04),
2004. http://doi.ieeecomputersociety.org/10.1109/VISUAL.2004.10

[6] David J. Duke, Ken W. Brodlie, David A. Duce, Ivan Herman. "Do
You See What I Mean?," IEEE Computer Graphics and
Applications, vol. 25, no. 3, pp. 6-9, May/June, 2005
http://doi.ieeecomputersociety.org/10.1109/MCG.2005.55

[7] Glyco-Ontology. http://lsdis.cs.uga.edu/Projects/Glycomics.
[8] Graham Klyne, Jeremy Carroll: Resource Description Framework

(RDF): Concepts and abstract syntax.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (2004)

[9] H. Alani, “Tgviztab: An ontology visualisation extension for
protege,” in Knowledge Capture 03 - Workshop on Visualizing
Information in Knowledge Engineering. Sanibel Island, FL: ACM,
2003.

[10] H. Stuckenschmidt, F. van Harmelen, A. de Waard, T. Scerri, R.
Bhogal, J. van Buel, I. Crowlesmith, C. Fluit, A. Kampman, J.
Broekstra, and E. van Mulligen, "Exploring large document
repositories with RDF technology: the DOPE project", Intelligent
Systems, IEEE, vol. 19, no. 3, 2004, pp. 34- 40.

[11] Harmelen, F. van, Broekstra, J., Fluit, C., Horst, H., Kampman, A.,
van der Meer, J., Sabou, M.: Ontology-based Information
Visualisation. Workshop on Visualisation of the Semantic Web,
London, 2001.

[12] Ian Horrocks, Peter Patel-Schneider, Frank van Harmelen. From
SHIQ and RDF to OWL: The Making of a Web Ontology Language.
Journal of Web Semantics, 1(1), 2003.

[13] Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: An
Infrastructure for Searching, Reusing and Evolving Distributed
Ontologies. Proc. 12th Int. World Wide Web Conference
(WWW'03), Budapest, Hungary, ACM, 439-448, 2003.

[14] Margaret-Anne Storey. "SHriMP Views: An Interactive
Environment for Exploring Java Programs," Proceedings of the
International Conference on Software Engineering: Workshop on
Software Visualization, Toronto, 13-14 May 2001

[15] Musen, M.A., Fergerson, R.W., Grosso, W.E., Noy, N.F., Grubezy,
M.Y., Gennari, J.H.: Component-based support for building
knowledge-acquisition systems. Proc. Intelligent Information
Processing (IIP 2000) Conf. Int. Federation for Processing (IFIP),
World Computer Congress (WCC'2000), Beijing, China. pp 18-22,
2000.

[16] Neil A. Ernst and Margaret-Anne D. Storey. A preliminary analysis
of visualization requirements in knowledge engineering tools.
Technical report, CHISEL Technical Report, University of Victoria,
August 2003. http://www.neilernst.net/docs/pubs/ernst-kcap03.pdf

[17] Noy, F.N., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W.,
and Musen, M.A. Creating Semantic Web contents with Protégé-
2000. IEEE Intelligent Systems, 16(2):60–71, 2001.

[18] OntoViz, Intelligence, Agents, Multimedia Electronics and
Computer Science Dept. University of Southampton,
http://www.ecs.soton.ac.uk/~ha/TGVizTab/TGVizTab.htm, 7-6-
2004.

[19] Roxborough, T., Sen, A.: Graph Clustering Using Multiway Ratio
Cut. Proceedings of Symposium on Graph Drawing (GD'97), Berlin,
Germany, LNCS, vol. 1353, Springer-Verlag, pp 291-296, 1997

[20] Storey, M.A., Musen, M., Silva, J., Best, C., Ernst, N., Fergerson, R.,
Noy, N.: Jambalaya: Interactive visualisation to enhance ontology
authoring and knowledge acquisition in Protégé. Workshop on

Interactive Tools for Knowledge Capture, K-CAP-2001, Victoria,
B.C. Canada, 2001.

[21] Fluit, C., Sabou, M., van Harmelen, F.: Ontology-based Information
Visualisation. In Geroimenko, V., ed.: Visualising the Semantic
Web. Springer Verlag (2002)

[22]

Borst 1997 W. N. Borst.
Construction of Engineering
Ontologies. PhD thesis, University of
Twente, Enschede, 1997.
Berners-Lee et al 2001 Tim
Berners-Lee, James Hendler, Ora
Lassila. The Semantic Web. Scientific
American 284(5):34-43 (May 2001)

	Show Me What You Mean! Exploiting Domain Semantics in Ontology Visualization
	Repository Citation

	tmp.1409680442.pdf.5kcK6

