
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

2010

Semantics Centric Solutions for Application and Data Portability Semantics Centric Solutions for Application and Data Portability

in Cloud Computing in Cloud Computing

Ajith Harshana Ranabahu
Wright State University - Main Campus

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Ranabahu, A. H., & Sheth, A. P. (2010). Semantics Centric Solutions for Application and Data Portability in
Cloud Computing. Proceedings of the IEEE Second International Conference on Cloud Computing
Technology and Science, 234-241.
https://corescholar.libraries.wright.edu/knoesis/766

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in
Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis
Publications by an authorized administrator of CORE Scholar. For more information, please contact library-
corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu
mailto:library-corescholar@wright.edu

Semantics Centric Solutions for Application and Data Portability in Cloud
Computing

Ajith Ranabahu and Amit Sheth
Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis)

Wright State University,
Dayton, Ohio 45435

Email: { ajith, amit }@knoesis.org

Abstract

Cloud computing has become one of the key consider-
ations both in academia and industry. Cheap, seemingly
unlimited computing resources that can be allocated al-
most instantaneously and pay-as-you-go pricing schemes
are some of the reasons for the success of Cloud comput-
ing. The Cloud computing landscape, however, is plagued
by many issues hindering adoption. One such issue is ven-
dor lock-in, forcing the Cloud users to adhere to one service
provider in terms of data and application logic.
Semantic Web has been an important research area that
has seen significant attention from both academic and in-
dustrial researchers. One key property of Semantic Web is
the notion of interoperability and portability through high
level models. Significant work has been done in the areas of
data modeling, matching, and transformations. The issues
the Cloud computing community is facing now with respect
to portability of data and application logic are exactly the
same issue the Semantic Web community has been trying to
address for some time.
In this paper we present an outline of the use of well estab-
lished semantic technologies to overcome the vendor lock-in
issues in Cloud computing. We present a semantics-centric
programming paradigm to create portable Cloud applica-
tions and discuss MobiCloud, our early attempt to imple-
ment the proposed approach.

1 Introduction
Cloud computing has become one of the most important

evolutions computer science has seen recently. The suc-
cess for Clouds can be attributed to the ability to provide
seemingly unlimited computing resources almost instanta-
neously and also to the pay-per-use pricing schemes. The
consumer market, primarily small and medium businesses
has embraced the Cloud as the primary source of their com-

puting resource needs. Major enterprises and even the gov-
ernment has invested in private Clouds for efficiency and
energy considerations.

The Cloud computing landscape however is plagued by
many issues hindering adoption. One major issue is ven-
dor lock-in, where the data and applications are very hard
to be moved to other systems (thus locked-in) forcing the
Cloud users to adhere to one service provider. This lock-in
is present at two different levels with respect to the National
Institute of Science and Technology (NIST) categorization
[12].

• Within the same type of Clouds, termed vertical het-
erogeneity. For example, Infrastructure as a Service
(IaaS) is one category of Clouds where raw infrastruc-
ture resources are exposed as services. Heterogene-
ity between IaaS providers qualifies as vertical hetero-
geneity.
• Within different types of Clouds, termed horizon-

tal heterogeneity. Horizontal heterogeneity is always
present and fundamentally hard to overcome due to
the shift in the paradigm. For example, Platform
as a Service (PaaS) Clouds follow the philosophy of
making the device and platform details transparent to
the Cloud user. Such Clouds typically require the
use of specialized libraries and constrained runtimes.
An application that assumes the availability of control
over operating system would require extensive changes
when moving into a platform cloud.

Both types of heterogeneities force Cloud users to stick
to a single vendor or a particular type of Cloud or impose
heavy expense on porting.

In this paper we suggest a top-down methodology for the
application development process based on a semantic parti-
tioning of an application. The objective of this methodol-
ogy is to come up with a specification of an application at
a significantly higher level of abstraction, facilitating inter-
operability and portability. These specifications can later be

2nd IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-4302-4/10 $26.00 © 2010 IEEE

DOI 10.1109/CloudCom.2010.48

234

run through generic transformers to generate targeted (plat-
form specific) code and data specifications or used directly
with capable virtual machine. Our development process re-
lies heavily on Domain Specific Languages (DSL) to enable
convenient yet powerful descriptions.

In Section 4 of this paper we discuss a semantic based
separation of concerns for an application. Then we intro-
duce a DSL and and demonstrate an application specifica-
tion formulated using these DSLs in Section 5. We present
the results of our implementation and the lessons learned in
Section 6.

2 Motivation
While there are many cases that highlight the impor-

tance of portability, we chose two particularly representa-
tive cases from the Cloud computing usecases white paper
[1] and one case from academia. The Cloud computing use-
cases white paper is a result of on-going discussions among
professional software engineers and is based on real-world
scenarios. The scientific research use-case comes from the
authors collaborative work with biologists.

2.1 Payroll Processing in the Cloud

This scenario includes the experience in moving a
payroll processing application to an Infrastructure (IaaS)
Cloud. This application requires an Enterprise Java Bean
(EJB) enabled application server as well as a relational
(i.e. SQL supported) data store. An infrastructure Cloud
is clearly suitable for this type of installation since there
is flexibility to control features from the hardware specifi-
cations and up. However, the tight requirement of being
bound to an enterprise Java environment and also a rela-
tional data store makes this application almost impossible
to be ported to a platform based Cloud such as Google Ap-
pengine or Microsoft Azure. This is disadvantageous in a
business perspective, for example, platform Clouds offer
very competitive pricing for resources but it would not be
possible to port the code without significant upfront invest-
ments. In a technical perspective, prominent Infrastructure
Cloud providers have had catastrophic failures and hence it
is essential to place fail-safes in different Clouds to improve
availability. This is also not possible in this case without
significant porting effort. These considerations are high-
lighted in the white paper as serious concerns in porting the
application to different Clouds.

2.2 Cloud based Logistics Management
Application

In this scenario, an application was built from scratch to
automate a manual logistics control process for a medium
sized business. The center piece of this application is the
Cloud based global data store, exposed via services. Cur-
rent data store is managed in the Google Bigtable [3],

a highly scalable, schema less, document-oriented (i.e.
non relational) data store coupled with Google Appengine
Cloud. The primary portability concern in this scenario is
the dependence on the schema-less data store of which non
of the other Clouds directly support. The service imple-
mentations depend on queries written in Google Query Lan-
guage (GQL), a declarative language comparable to SQL,
built with a different paradigm. This dependency dictates
that when the data store is ported, the service implemen-
tations would also require transformations to the relevant
query language.

2.3 Cloud based Statistical Processing
Services for Life sciences

Some of the experiments that take place in the biology
domain, particularly the experiments that involve equip-
ment such as the Nuclear Magnetic Resonance (NMR)
Spectrometer, generate extremely large numerical datasets.
These datasets need to be passed through a number of sta-
tistical processes to get useful information. Many of the
statistical algorithms can be parallelized. Some of the most
frequent statistical processes were implemented based on
Apache Hadoop by the Kno.e.sis Cloud team, enabling
some of the computations to be run on a small internal clus-
ter as well as on public infrastructure Clouds [9]. How-
ever, an opportunity to use a commercially available plat-
form Cloud came up later which could not be utilized pri-
marily due the significant effort needed to port the existing
implementation to suit the platform Cloud.

These real world scenarios highlight two different as-
pects of the Cloud landscape today.

• Legacy applications may require significant effort in
porting to Cloud environment due to the tight coupling
with particular technologies and/or data organization.
• Even when applications are written from scratch, they

are targeted and thus locked for a particular Cloud. A
porting effort for a different Cloud becomes a one time
exercise.

The above scenarios motivated us to take a closer look at
the current application development practices and investi-
gate methodologies for developing applications in a Cloud
agnostic manner. Both industry and academia suffer from
the current practice of developing exclusively for a target
Cloud, economically, technically, or both. Some experts
even argue that vendors will never standardize their ser-
vices for business reasons [5], highlighting the importance
of catering for heterogeneity.

In the subsequent sections of the paper, we will use a
todo list manager as our running example. This applica-
tion is non-trivial yet simple enough to illustrate the new
development process. Web based todo list managers (Such

235

as the popular Remember the milk online task manager1)
may need to scale horizontally due to the large volume. The
front-end, however, need to be readily accessible, ideally
through a mobile device.

3 Background
There are two areas of pertinent background work.

• Software Engineering research that has explored the
theoretical foundations of applications and language
abstractions.
• Semantic Web services research that introduced the

high level separation of concerns for Web services.
This research is helpful in understanding the use of se-
mantics.

Software applications have been studied for many years and
there has been many paradigm shifts already. Notable mile-
stones in these paradigm shifts include the transition from
sequential to object-oriented programming (OOP) as well
as the rise in aspect oriented programming (AOP) [6]. AOP
is the state of the art in addressing the isolation of cross cut-
ting concerns such as security and provenance. AOP how-
ever is not being adopted widely due to the difficulties of
readability and many other issues that conflict with the es-
tablished programming practices. Steimann [18] discusses
some of these issues in detail. It is clear, however, that AOP
is not considered to be the most appropriate method to sep-
arate the concerns governing an application, although such
a separation is immensely useful.
Another direction that has been taken by software engineer-
ing research community is to apply domain specific lan-
guages (DSL) to application development. The premise is
that general purpose programming languages do not always
provide the convenience a programmer would need when
addressing a particular domain. For example, in developing
a mathematics oriented program, it is convenient to have ab-
stract notions for functions, matrices and other mathemati-
cal operators such as exponents. In fact, introducing such
an abstraction enables domain experts (non-programmers)
to directly create programs with little or no knowledge in
programming. This approach has been used in many do-
mains at different levels of granularity as exemplified by
Matlab [8] SQL and many others.
The use of DSLs as a main stream programming tool has
been recently advocated by the Software Factories approach
by Greenfield et al. [7]. Their approach uses an array of
DSLs to create applications, letting the programmer choose
a suitable abstraction for the concern at hand. Thus an ap-
plication becomes a collection of specifications written in
multiple DSLs. In fact many of the current Microsoft (and
some opensource) development tool suites follow a simi-
lar theme. Greenfield argues that the inability of the OOP

1http://www.rememberthemilk.com/

Figure 1: Partitioning of the Modeling space for Clouds

based methods adhering to time and budgetary constraints
is primarily due to the lack of sufficient abstractions. DSLs
excel at providing these abstractions.

Apart from these major undertakings, there has been a large
number of small scale developments based on DSLs both in
academia and the industry, ranging from service mashups to
parallel programming.

A semantics based separation of concerns for a Web ser-
vice was first presented by Sheth et al. [15, 17], partition-
ing the semantics of a service to four types. They are data
semantics, functional semantics, non-functional semantics,
and execution semantics. The difference in using seman-
tics is that the separations are at a high level of abstrac-
tion and enables one to focus energy on specific concerns.
For example, Quality of Service (QoS) is a non-functional
concern that can be addressed and modeled separately from
the data considerations. Intertwining these considerations
is achieved by annotations that link different models and
descriptors addressing different concerns. This is the phi-
losophy followed by SAWSDL2 and SA-REST 3.

We present a partitioning in the modeling space that gives a
better perspective of the relationship of the high level mod-
els. This partitioning is based on our earlier categorization
presented in [16]. Figure 1 illustrates this partitioning. One
of the dimensions is the four types of semantics identified in
Section 4. The other two dimensions include the software
development life-cycle and the level of language abstrac-
tion. The key realization from this partitioning is the fact
that there is no single model that fits the needs of all the
modeling requirements.

2http://www.w3.org/TR/sawsdl/
3http://www.w3.org/Submission/SA-REST/

236

4 Semantics of an Application
The development strategy we propose is model-driven, i.e.
top-down. While bottom-up approaches are known to work
well for tightly integrated platforms, most of the loosely
coupled development processes are top-down. The best ap-
proach is debatable and often depends on the domain. In
this case model driven development has clear benefits in
terms of supporting portability.
We introduce four types of semantics for an application, in-
spired by the four types of semantics for a service, men-
tioned in Section 3. This partitioning is necessary to model
the different concerns at a sufficiently higher level. The
term application is used to mean a software program de-
signed to help the user to perform singular or multiple re-
lated specific tasks. The partitioning we provide is different
than the original four types of semantics identified for a ser-
vice.

The identified types of semantics are as follows:

• Data semantics
• Logic and process semantics
• Non-functional semantics
• System semantics

4.1 Data Semantics

Data semantics address the data aspects of an applica-
tion. This includes that definitions of data structures, rela-
tionships across multiple data structures as well as restric-
tions on the access of some of the data items.

4.2 Logic and process semantics

These are the semantics pertaining to the core function-
ality (commonly referred to as the business logic) of the ap-
plication. Unlike in a service, the functional and execution
semantics are tightly tied together for an application. For
example, behavior of a service during an exception may be
handled externally although exceptions are an integral part
of the core functionality of an application and seldom de-
signed separately.

4.3 Non-functional semantics

These are semantics not-directly relevant to the business
logic but requires consideration, perhaps at a different level.
Examples include access control and logging. While these
are not part of the core functions, an application neverthe-
less requires them to be defined. Some of these considera-
tions may require certain libraries or internal code changes.
A typical example is logging where the application inter-
nally implements the points of logging but the users get to
control the granularity of the entries such as INFO (infor-
mational content) vs ERROR (only errors).

Figure 2: Four types of semantics for an Application

4.4 System semantics

System semantics govern the system related concerns of
the application. Relevant considerations include deploy-
ment descriptions and dependency management. These
considerations are neither relevant for the business logic
nor the non-functional considerations but become important
when the application starts running on a system. Semantic
technologies are already being used in this space commer-
cially. Elastra Inc. uses three ontologies (semantic mod-
els) to describe the configuration, deployment and manage-
ment details for an application deployed to an Infrastructure
Cloud.

Table 1 shows the different aspects covered by these se-
mantics and also some example DSLs.

5 Applying DSL for Application Develop-
ment

We now present one of our experimental DSLs targeted
towards generating Cloud-mobile hybrid applications. A
Cloud-mobile hybrid is an application that implements the
back-end (data storage, partial business logic) in a Cloud
environment but has a mobile device based front-end (user
interface). Such an application has double the portability is-
sues since both the front-end and the back-end should sup-
port portability in different scopes.
This presented DSL, named MobiCloud is modeled after
the Model-View-Controller (MVC) pattern. Further details
of the language is available from the MobiCloud technical
report [10] as well as the online toolkit 4.
Figure 3 illustrates the todo list application. This particular
code generates a back-end data store for tasks, data access
code and a RESTful service capable of creating and retriev-

4http://knoesis.org/mobicloud

237

Type Application features Example DSLs
Data data definitions SQL(DDL)
Logic & process core functional description, excep-

tional behavior, user interfaces
ISC, MobiCloud, Sinatra a

Non-functional Security profiles, provenance data SAML b

System build configuration, deployment
configuration

GNU Make c, Apache Ant d

ahttp://www.sinatrarb.com/
bhttp://saml.xml.org/saml-specifications
chttp://www.gnu.org/software/make/
dhttp://ant.apache.org/

Table 1: Considerations for semantics

Figure 3: A task manager application written in MobiCloud DSL

ing the tasks message. The front-end consists of the UI and
service access code capable of creating and retrieving the
tasks. While the details of this DSL are omitted for brevity,
we use this DSL as a substrate to demonstrate the addition
of semantics to this process. Note that the code in Figure 3
has no semantic modeling attached to it.

5.1 Adding Semantics

Data semantics

The first point of addition of semantics to this DSL is
data. Although data definitions are present in the models
section and clearly separated from the process, these data
definitions are not reusable. Well established semantic data
definitions can be referenced in the DSL rather than the one-
off in-line definitions. The term semantic data definition is
been used to refer to concepts defined in an ontology where
detail-rich relationships can be attached.

Listing 1 illustrates how the model data can be external-
ized without compromising the simplicity of the DSL. The

snippet highlights the addition of a data item that adheres
to the description of the Friend-of-a Friend (FOAF) person
definition.

Listing 1: Referring to an established concept for data

. . .
model : u se r , { : r e f => ” f o a f : Pe r so n ”}

. . .

Logic and process semantics

The least reused component of an application is the busi-
ness logic. While all other aspects may be composed from
ready made components, this is not the norm for busi-
ness logic. There are, however, well studied solutions that
may be applied to recurring problems. These solutions are
known as design patterns and applied throughout the soft-
ware industry. Semantics can be used to specify these pat-
terns at a higher level and then linked to the DSL. The gen-
erators can then identify the pattern and generate the neces-
sary code or augment the logic accordingly.

Listing 2 shows using an annotation to specify that the
application is shared multi-tenant, i.e each user date is sep-
arated but the system uses a shared schema [4].

Listing 2: Specifying functional characteristic with high level de-
sign patterns

. . .
metadata{ . . . ,

: p a t t e r n => ” s h a r e d m u l t i t e n a n t ”}
. . .

Non-functional semantics

Figure 3 does not specify any non-functional characteris-
tics or QoS. QoS characteristics have been heavily studied
in the Semantic Web service research where the value of
semantically defined QoS features have been highlighted.
For example, there are multiple research attempts to en-
able QoS matching for services based on semantic models

238

[14]. These semantic models have been extensively dis-
cussed although most of them are services centric. Nev-
ertheless, the experience in designing service based QoS
ontologies is very useful in building an application oriented
non-functional ontology. The exact nature or the granularity
of such an ontology is out of the scope of this paper. Instead
we illustrate the capability to add non-functional character-
istics defined in ontologies.

There are two methods to incorporate non-functional
characteristics to a DSL based program.

• Use annotations in the script to point to externally de-
fined constraints.
• Use a wrapper language to associate a configuration

script, possibly written in a different DSL.

Listing 3 demonstrates the use of annotations to attach
security constraints in our running example. We use an
already available security profile ontology to annotate the
DSL and highlight that the specified controller actions need
to be secured.

Listing 3: Using a reference to a security profile

. . .
c o n t r o l l e r : t o d o h a n d l e r do

a c t i o n : c r e a t e , : t odo i t em ,
{ : s e c u r i t y p r o f i l e => ’ s s l ’}

. . .
end
. . .

System semantics

System semantics are not as tightly coupled to an appli-
cation as data or process semantics. Some system aspects
are handled separately from development process. In this
case we suggest adding system details or constraints as meta
data to the DSL. The meta data section in the DSL is explic-
itly provided for this purpose. For example, the DSL can re-
fer to a ECML and EDML script to define the configuration
and the deployment description.

Listing 4 shows a reference to a known software stack
description.

Listing 4: Using an external deployment description

. . .
metadata{ . . . ,

: d e p l o y m e n t p r o f i l e
=> ” . . . ApacheStack− f u l l . t t l ”}

. . .

We now present the DSL complete with all the semantic
annotations. Figure 4 shows all the semantic annotations
with relevant details highlighted for each type.

6 Results and Experience
We are confident about the soundness and practicality

of this approach based on the results we obtained using the
MobiCloud DSL. The MobiCloud DSL supports only a lim-
ited set of semantic additions as of now.

Importance of Semantics

A DSL can be thought of as a lower grade semantic
model. A DSL is a grounding of a portion of a high level
semantic model. To specify higher level concepts in a plat-
form agnostic fashion, semantic models are essential.

In the case of MobiCloud we experienced that while the
DSL is capable of expressing some of the core specifica-
tions, it was difficult to clearly and elegantly specify some
aspects of the application. For example, rather than specify-
ing security in a case by case basis, it is always convenient
and specify a security profile separately and then attach it to
the program. How the particular profile applies to a given
platform depends on the platform features and may be de-
fined independently of any other features on an application.

Portability

In this approach developers would only be concerned
about the DSL and would not be exposed to any of the
platform specific complexities. The use of semantic mod-
els help to link to well defined and established concepts at
a higher level of abstraction although the DSL provides a
more developer friendly representation. The development
effort will focus only on the DSL. Although the generated
artifacts are platform dependent, they are at a layer trans-
parent to the developers.

Considering the use cases presented in Section 2, if all
the applications were indeed built using a platform agnostic
DSL, porting the code would be have been effortless given
the presence of the relevant generators. To port data, one
would have to generate a transformation using the generic
data format. These transformations will be using the lifting-
lowering mechanism where the data is first transformed to
a common format (lifted) and then transformed back to the
target format (lowered) [13].

Manageability

Using the generator based strategy a quadratic explosion
of application combinations can be avoided. In the case of
MobiCloud the total number of combinations (Tc) is

Tc =

m∑
i=0

{MVi} ×
c∑

j=0

{CVj} (1)

Where m is the number of mobile platforms, c is the number
of Cloud platforms, MVi is the number of versions of the
ith mobile platform and CVj is the number of versions of
the jth Cloud platform.

239

Figure 4: Semantically annotated DSL script

However the number of generators that need to be main-
tained (Tg) is

Tg =

m∑
i=0

{MVi}+
c∑

j=0

{CVj} (2)

Approximating the real world numbers, assuming there
are 4 mobile platforms with 2 versions each and 3 Cloud
platforms with 2 versions each, the total combinations that
exist is 48 (Equation 1). The total number of generators re-
quired is 14 according to (Equation 2). Adding one more
Cloud platform with 2 versions increase the combinations
by 8 but adds only 2 extra generators. The number of
needed generators may be far less than this theoretical max-
imum since many platform versions are backward compati-
ble. The number of generators grows linearly with the num-
ber of new platform additions in a manageable fashion.

Developer Convenience

The todo list program presented in Figure 3 is in fact
a working program and can be compiled using the online
tools. Table 2 shows a preliminary program metric com-
parison for the generated artifacts. Some generated artifacts
such as the XML configuration files are not considered for
these metrics.

These results clearly indicate that there is a significant
amount of relieved effort in creating these applications via
the DSL. For example, generating the combination of An-
droid and Google Appengine, the developers only provide
approximately 3% of the code they would have written oth-
erwise.

Apart from the amount of generated code, the generators

Application DSL
LoC
a

Target platform LoC
b

NC
c

NM
d

Todolist 12

Android 225 10 6
Blackberry 324 8 19
Amazon EC2 215 5 27
Google Appengine 158 5 22

aLines of Code in DSL
bLines of Code Generated
cNumber of Classes
dNumber of Methods

Table 2: Comparison of Code Metrics for the Generated Applica-
tion in the Todo list program

also provide the proper organization of files and optionally
a build script. This also attributes to developer convenience
since it facilitates a convenient way to generate the final ex-
ecutables.

Efficiency of the Generated Code

DSLs by nature are focused on specific domains and do
not offer flexibility when deviating from the target domain.
In this case, the code is generated via templates and is func-
tional but may not be optimal for the given platform.

We follow the argument that it is economical to upgrade
the hardware than using human effort to optimize the code
[2]. This has long being the subject of debate. Many practi-
tioners agree that although there are some cases where code
optimization is necessary, it is indeed cheaper to just up-
grade the hardware for many of the cases. In this case, even
though the generators do not provide the optimum code for

240

a platform, increasing the available computing power to the
given type of application is always economical. The con-
venience the DSL provides far out weighs the drawbacks of
the generated code.

Limitations

Deployment Complexity
Deploying the generated artifacts is a complicated work

flow. Some of these work flows have been deliberately kept
as human centric operations by the vendors. Even when
there are Web APIs present, managing keys, security certifi-
cates and other deployment operations require the presence
of a different layer of automation. Although such facilities
are out of scope of this work, adding a middleware layer
capable of managing deployments and subsequent manage-
ment tasks would improve the reach and the usability of the
DSL. IBM Altocumulus [11] is one such Cloud middleware
that the authors have first hand experience in.
Feature Abstractions

Many seasoned developers see a lack of flexibility in us-
ing a DSL based (model driven) approach. The primary
concern is the limiting of the abstractions to the set of small-
est common sub set of features. This means that fully
portable applications can only be made at the level of the
least capable platform. This becomes a serious limitation
when the applications need to be well integrated to the tar-
get platform. One strategy is to use the DSL to generate the
boiler plate code and then customize the generated code.
The customization can be loosely attached to avoid overrid-
ing by subsequent updates.

In practice, almost all the modern Cloud and mobile
platforms have comparable features. Hence the least com-
mon subset of features is not significantly different from the
available features of a given platform.

7 Conclusion
This research clearly indicates that using a DSL shows

promise in developing portable applications for the Cloud
and other related platforms. We have identified a semantic
separation of concerns for applications and demonstrated
how these can be used with an experimental DSL. Although
there are many details to iron out, the preliminary results are
very encouraging and we would be investigating the use of
semantics for Cloud application development further.

References
[1] D. Amrhein, P. Anderson, A. de Andrade, J. Armstrong,

B. Arasan, R. Bruklis, K. Cameron, R. Cohen, A. Easton,
R. Flores, et al. Cloud Computing Use Cases.

[2] J. Atwood. Hardware is Cheap, Programmers are Expen-
sive, 2008. Available online at http://bit.ly/avyNiN - Last
accessed Spt 3rd 2010.

[3] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable:

A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4, 2008.

[4] F. Chong, G. Carraro, and R. Wolter. Multi-Tenant Data
Architecture. MSDN Library, Microsoft Corporation, 2006.

[5] D. Durkee. Why cloud computing will never be free. Com-
munications of the ACM, 53(5):62–69, 2010.

[6] T. Elrad, R. Filman, and A. Bader. Aspect-oriented pro-
gramming: Introduction. Communications of the ACM,
44(10):29–32, 2001.

[7] J. Greenfield and K. Short. Software factories: assem-
bling applications with patterns, models, frameworks and
tools. In OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, pages 16–27, New York,
NY, USA, 2003. ACM.

[8] D. Hanselman and B. Littlefield. Mastering MATLAB 5: A
comprehensive tutorial and reference. Prentice Hall PTR
Upper Saddle River, NJ, USA, 1997.

[9] A. Manjunatha, A. Ranabahu, P. Anderson, S. S. Sahoo,
M. Raymer, and A. Sheth. Cloud based scientific workflow
for nmr data analysis, 2010. Conference poster.

[10] A. Manjunatha, A. Ranabahu, A. Sheth, and
K. Thirunarayan. A Domain Specific Language
Based Method to Develop Cloud-Mobile Hybrid
Applications. Technical report, Kno.e.sis Center,
Wright State University, 2010. Available online at
http://knoesis.wright.edu/library/publications/MobiCloud.pdf
: Last accessed August 27th 2010.

[11] E. Maximilien, A. Ranabahu, R. Engehausen, and L. Ander-
son. Toward cloud-agnostic middlewares. In Proceeding of
the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications,
pages 619–626. ACM, 2009.

[12] P. Mell and T. Grance. NIST Definition of Cloud Computing
v15. National Institute of Standards and Technology, 2009.

[13] M. Nagarajan, K. Verma, A. Sheth, J. Miller, and J. Lathem.
Semantic interoperability of web services-challenges and
experiences. 2006.

[14] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Seman-
tic WS-agreement partner selection. In Proceedings of the
15th international conference on World Wide Web, page 706.
ACM, 2006.

[15] A. Sheth. Semantic Web Process Lifecycle: Role of Se-
mantics in Annotation, Discovery, Composition and Orches-
tration. In Workshop on E-Services and the Semantic Web
(ESSW 03) in 12th International World Wide Web (WWW)
Conference, Budapest, Hungary, 2003. Invited Presentation.

[16] A. Sheth and A. Ranabahu. Semantic modeling for cloud
computing, part 1. IEEE Internet Computing, 14:81–83,
2010.

[17] K. Sivashanmugam, A. Sheth, J. Miller, K. Verma, R. Ag-
garwal, and P. Rajasekaran. Metadata and semantics for Web
services and processes. Databases and Information Systems,
60:245–271, 2003.

[18] F. Steimann. The paradoxical success of aspect-oriented
programming. SIGPLAN Not., 41(10):481–497, 2006.

241

	Semantics Centric Solutions for Application and Data Portability in Cloud Computing
	Repository Citation

	tmp.1411500310.pdf.9RN39

