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Abstract. The primary challenge of machine perception is to define efficient 

computational methods to derive high-level knowledge from low-level sensor 

observation data. Emerging solutions are using ontologies for expressive 

representation of concepts in the domain of sensing and perception, which 

enable advanced integration and interpretation of heterogeneous sensor data. 

The computational complexity of OWL, however, seriously limits its 

applicability and use within resource-constrained environments, such as mobile 

devices. To overcome this issue, we employ OWL to formally define the 

inference tasks needed for machine perception – explanation and 

discrimination – and then provide efficient algorithms for these tasks, using 

bit-vector encodings and operations. The applicability of our approach to 

machine perception is evaluated on a smart-phone mobile device, 

demonstrating dramatic improvements in both efficiency and scale. 

Keywords: Machine Perception, Semantic Sensor Web, Sensor Data, Mobile 

Device, Resource-Constrained Environments 

1   Introduction 

In recent years, we have seen dramatic advances and adoption of sensor technologies 

to monitor all aspects of our environment; and increasingly, these sensors are 

embedded within mobile devices. There are currently over 4 billion mobile devices in 

operation around the world; and an estimated 25% (and growing) of those are smart 

devices1. Many of these devices are equipped with sensors, such as cameras, GPS, 

RFID, and accelerometers. Other types of external sensors are also directly accessible 

to mobile devices through either physical attachments or wireless communication 

protocols, such as Bluetooth. Mobile applications that may utilize this sensor data for 

deriving context and/or situation awareness abound. Consider a mobile device that’s 

capable of communicating with on-body sensors measuring body temperature, heart 

rate, blood pressure, and galvanic-skin response. The data generated by these sensors 

may be analyzed to determine a person’s health condition and recommend 

subsequent action. The value of such applications such as these is obvious, yet 

difficult challenges remain. 

                                                           
1 http://www.digitalbuzzblog.com/2011-mobile-statistics-stats-facts-marketing-infographic/ 



The act of observation performed by heterogeneous sensors creates an avalanche 

of data that must be integrated and interpreted in order to provide knowledge of the 

situation. This process is commonly referred to as perception, and while people have 

evolved sophisticated mechanisms to efficiently perceive their environment – such as 

the use of a-priori knowledge of the environment [1-2] – machines continue to 

struggle with the task. The primary challenge of machine perception is to define 

efficient computational methods to derive high-level knowledge from low-level sensor 

observation data. From the scenario above, the high-level knowledge of a person’s 

health condition is derived from low-level observation data from on-body sensors. 

Emerging solutions to the challenge of machine perception are using ontologies 

to provide expressive representation of concepts in the domain of sensing and 

perception, which enable advanced integration and interpretation of heterogeneous 

sensor data. The W3C Semantic Sensor Network Incubator Group [3] has recently 

developed the Semantic Sensor Network (SSN) ontology [4-5] that enables 

expressive representation of sensors, sensor observations, and knowledge of the 

environment. The SSN ontology is encoded in the Web Ontology Language (OWL) 

and has begun to achieve broad adoption within the sensors community [6-8]. Such 

work is leading to a realization of a Semantic Sensor Web [9]. 

OWL provides an ideal solution for defining an expressive representation and 

formal semantics of concepts in a domain. As such, the SSN ontology serves as a 

foundation for our work in defining the semantics of machine perception. And given 

the ubiquity of mobile devices and the proliferation of sensors capable of 

communicating with them, mobile devices serve as an appropriate platform for 

executing machine perception. Despite the popularity of cloud-based solutions, many 

applications may still require local processing, e.g., for privacy concerns, or the need 

for independence from network connectivity in critical healthcare applications. The 

computational complexity of OWL, however, seriously limits its applicability and use 

within resource-constrained environments, such as mobile devices [10]. 

To overcome this issue, we develop encodings and algorithms for the efficient 

execution of the inference tasks needed for machine perception: explanation and 

discrimination. Explanation is the task of accounting for sensory observations; often 

referred to as hypothesis building [2,11]. Discrimination is the task of deciding how 

to narrow down the multitude of explanations through further observation [1,2]. The 

efficient algorithms devised for explanation and discrimination use bit vector 

operations, leveraging environmental knowledge encoded within a two-dimensional 

bit matrix.  

To preserve the ability to share and integrate with knowledge on the Web, lifting 

and lowering mappings between the semantic representations and the bit vector 

representations are provided. Using these mappings, knowledge of the environment 

encoded in RDF (and shared on the Web, i.e., as Linked Data) may be utilized by 

lowering the knowledge to a bit matrix representation. On the other hand, knowledge 

derived by the bit vector algorithms may be shared on the Web (i.e., as Linked Data), 

by lifting to an RDF representation. 

The applicability of our approach to machine perception is evaluated on a smart-

phone mobile device, demonstrating dramatic improvements in both efficiency and 

scale. In this paper, we present three novel contributions towards efficient machine 

perception in resource-constrained environments: 

 



1. Formal definition of two primary inference tasks, in OWL, that are generally 

applicable to machine perception – explanation and discrimination. 

2. Efficient algorithms for these inference tasks, using bit vector operations. 

3. Lifting and lowering mappings to enable the translation of knowledge between 

the high-level semantic representations and low-level bit-vector representations. 

 

Section 2 discusses the application of the SSN ontology for representing sensor 

observations and a-priori environmental knowledge. Section 3 specifies explanation 

and discrimination, as an extension to the SSN ontology. The efficient bit vector 

algorithms, as well as the lifting and lowering mappings, are provided in Section 4. 

Our approach is evaluated in Section 5, followed by related work in Section 6, and 

conclusions in Section 7.  

2   Semantic Sensor Network Ontology 

The Semantic Sensor Network (SSN) ontology [4-5] was developed by the W3C 

Semantic Sensor Network Incubator Group [3] to serve the needs of the sensors 

community. This community is currently using it for improved management of 

sensor data on the Web, involving annotation, integration, publishing, and search [6-

8]. The ontology defines concepts for representing sensors, sensor observations, and 

knowledge of the environment.  

The SSN ontology serves as a foundation to formalize the semantics of perception. 

In particular, the representation of observations and environmental knowledge are 

employed. An observation (ssn:Observation) is defined as a situation that 

describes an observed feature, an observed property, the sensor used, and a value 

resulting from the observation (note: prefix ssn is used to denote concepts from the 

SSN ontology).  A feature (ssn:FeatureOfInterest; for conciseness, 

ssn:Feature will be used throughout the paper) is an object or event in an 

environment, and a property (ssn:Property) is an observable attribute of a feature. 

For example, in cardiology, elevated blood pressure is a property of the feature 

Hyperthyroidism. To determine that blood pressure is elevated requires some pre-

processing; however, this is outside the scope of this work. An observation is related 

to its observed property through the ssn:observedProperty relation. 

Knowledge of the environment plays a key role in perception [1-2]. Therefore, the 

ability to leverage shared knowledge is a key enabler of semantics-based machine 

perception. In SSN, knowledge of the environment is represented as a relation 

(ssn:isPropertyOf) between a property and a feature. To enable integration with 

other ontological knowledge on the Web, this environmental knowledge design 

pattern is aligned with concepts in the DOLCE Ultra Lite ontology2. Figure 1a 

provides a graphical representation of environmental knowledge in SSN, with 

mappings to DOLCE. An environmental knowledgebase, storing facts about many 

features and their observable properties, takes the shape of a bipartite graph. 

(Throughout the paper, KB will be used to refer to environmental knowledgebase). 

Figure 1b shows an example KB with concepts from cardiology.  

                                                           
2 http://www.loa-cnr.it/ontologies/DUL.owl  



 
Figure 1.  (a) Graphical representation of environmental knowledge in the SSN ontology, with 

mappings to DOLCE Ultra Lite (prefix dul). (b) Graphical representation of an example 

environmental knowledgebase in cardiology, taking the shape of a bipartite graph. This 

knowledgebase is derived from collaboration with cardiologists at ezDI (http://www.ezdi.us/). 

3   Semantics of Machine Perception 

Perception is the act of deriving high-level knowledge from low-level sensory 

observations [11]. The challenge of machine perception is to define computational 

methods to achieve this task efficiently. Towards the goal of providing a formal 

semantics of machine perception, we will define the primary components (inference 

tasks) of perception in OWL, as an extension of the SSN ontology. The two main 

components of perception are explanation and discrimination.  

3.1 Semantics of Explanation  

Explanation is the act of accounting for sensory observations; often referred to as 

hypothesis building [2,11]. More specifically, explanation takes a set of observed 

properties as input and yields the set of features that explain the observed properties. 

A feature is said to explain an observed property if the property is related to the 

feature through an ssn:isPropertyOf relation. A feature is said to explain a set of 

observed properties if the feature explains each property in the set. Example: Given 

the KB in Figure 1b, Hyperthyroidism explains the observed properties elevated 

blood pressure, clammy skin, and palpitations. 

Explanation is used to derive knowledge of the features in an environment from 

observation of their properties. Since several features may be capable of explaining a 

given set of observed properties, explanation is most accurately defined as an 

abductive process (i.e., inference to the best explanation) [11]. Example: the 

observed properties, elevated blood pressure and palpitations, are explained by the 

features Hypertension and Hyperthyroidism (discussed further below). While OWL 

has not been specifically designed for abductive inference, we will demonstrate that 

it does provide some of the expressivity needed to derive explanations.  

The formalization of explanation in OWL consists of two steps: (1) derive the set 

of observed properties from a set of observations, and (2) utilize the set of observed 

properties to derive a set of explanatory features. 
 



ObservedProperty: An observed property is a property that has been observed. Note 

that observations of a property, such as elevated blood pressure, also contain 

information about the spatiotemporal context, measured value, unit of measure, etc., 

so the observed properties need to be “extracted” from the observations. To derive 

the set of observed properties (instances), first create a class ObservedProperty. 

For each observation o in ssn:Observation create an existentially quantified 

property restriction for the ssn:observedProperty— relation, and disjoin them as 

follows (note: x— represents the inverse of relation x):   
 

DEF 1: ObservedProperty ≡ ∃ssn:observedProperty—
.{o1} ⊔ … ⊔ 

∃ssn:observedProperty—
.{on} 

 

ExplanatoryFeature: An explanatory feature is a feature that explains the set of 

observed properties. To derive the set of explanatory features, create a class 

ExplantoryFeature, and for each observed property p in ObservedProperty 

create an existentially quantified property restriction for the ssn:isPropertyOf
—

 

relation, and conjoin them as follows:   
 

DEF 2: ExplanatoryFeature ≡  ∃ssn:isPropertyOf—
.{p1} ⊓ … ⊓ 

∃ssn:isPropertyOf—
.{pn}  

 

To derive the set of all explanatory features, construct the ObservedProperty 

class and execute the query ObservedProperty(?x) with an OWL reasoner. Then, 

construct the ExplanatoryFeature class and execute the query 

ExplanatoryFeature(?y).  
 

Example: Assume the properties elevated blood pressure and palpitations have been 

observed, and encoded in RDF (conformant with SSN): 
 
ssn:Observation(o1), ssn:observedProperty(o1, elevated blood pressure) 

ssn:Observation(o2), ssn:observedProperty(o2, palpitations) 

 

Given these observations, the following ExplanatoryFeature class is constructed: 
 

ExplanatoryFeature ≡  ∃ssn:isPropertyOf—
.{elevated blood pressure} ⊓ 

∃ssn:isPropertyOf—
.{palpitations} 

 

Given the KB in Figure 1b, executing the query ExplanatoryFeature(?y) can 

infer the features, Hypertension and Hyperthyroidism, as explanations: 
  

ExplanatoryFeature(Hypertension)  

ExplanatoryFeature(Hyperthyroidism) 

 

This encoding of explanation in OWL (see DEF 2) provides an accurate 

simulation of abductive reasoning in the Parsimonious Covering Theory [12], with 

the single-feature assumption3 [13-14]. The Description Logic expressivity of the 

explanation task is ALCOI4,5, with ExpTime-complete complexity [15]. 

                                                           
3 Single-feature assumption specifies that an explanatory feature is a single individual. 
4 Using DL constructs: ⊓, ⊔,  ∃, {a}, R— 
5 http://www.cs.man.ac.uk/~ezolin/dl/ 



3.2 Semantics of Discrimination  

Discrimination is the act of deciding how to narrow down the multitude of 

explanatory features through further observation. The innate human ability to focus 

attention on aspects of the environment that are essential for effective situation-

awareness stems from the act of discrimination [1,2,16]. Discrimination takes a set of 

features as input and yields a set of properties. A property is said to discriminate 

between a set of features if its presence can reduce the set of explanatory features. 

Example: Given the KB in Figure 1b, the property clammy skin discriminates 

between the features, Hypertension and Hyperthyroidism (discussed further below). 

The ability to identify discriminating properties can significantly improve the 

efficiency of machine perception [17]. Such knowledge can then be used to task 

sensors capable of observing those properties. 

To formalize discrimination in OWL, we will define three types of properties: 

expected property, not-applicable property, and discriminating property. 
 

ExpectedProperty: A property is expected with respect to (w.r.t.) a set of features if 

it is a property of every feature in the set. Thus, if it were to be observed, every 

feature in the set would explain the observed property. Example: the property 

elevated blood pressure is expected w.r.t. the features, Hypertension, 

Hyperthyroidism, and Pulmonary Edema. To derive the set of expected properties, 

create a class ExpectedProperty, and for each explanatory feature f in 

ExplanatoryFeature, create an existentially quantified property restriction for the 

ssn:isPropertyOf relation, and conjoin them as follows:   
 

DEF 3: ExpectedProperty ≡  ∃ssn:isPropertyOf.{f1} ⊓ … ⊓ 

∃ssn:isPropertyOf.{fn} 
 

NotApplicableProperty: A property is not-applicable w.r.t. a set of features if it is 

not a property of any feature in the set. Thus, if it were to be observed, no feature in 

the set would explain the observed property. Example: the property clammy skin is 

not-applicable w.r.t. the features, Hypertension and Pulmonary Edema. To derive the 

set of not-applicable properties, create a class NotApplicableProperty, and for 

each explanatory feature f in ExplanatoryFeature, create a negated existentially 

quantified property restriction for the ssn:isPropertyOf relation, and conjoin 

them as follows: 
 

DEF 4: NotApplicableProperty ≡  ¬∃ssn:isPropertyOf.{f1} ⊓ … ⊓ 

¬∃ssn:isPropertyOf.{fn} 
 

DiscriminatingProperty: A property is discriminating w.r.t. a set of features if it is 

neither expected nor not-applicable. Observing a discriminating property would help 

to reduce the number of explanatory features. Example: As stated above, the property 

clammy skin is discriminating w.r.t. the features, Hypertension and Hyperthyroidism, 

as it would be explained by Hyperthyroidism, but not by Hypertension. To derive the 

set of discriminating properties, create a class, DiscriminatingProperty, which 

is equivalent to the conjunction of the negated ExpectedProperty class and the 

negated NotApplicableProperty class. 
 



DEF 5: DiscriminatingProperty ≡  ¬ExpectedProperty ⊓ 
¬NotApplicableProperty 

 

To derive the set of all discriminating properties, construct the 

ExpectedProperty and NotApplicableProperty classes, and execute the query 

DiscriminatingProperty(?x).  
 

Example: Given the explanatory features from the previous example, Hypertension 

and Hyperthyroidism (Section 3.1), the following classes are constructed: 
 

ExpectedProperty ≡  ∃ssn:isPropertyOf.{Hypertension} ⊓ 
∃ssn:isPropertyOf.{Hyperthyroidism} 

 

NotApplicableProperty ≡  ¬∃ssn:isPropertyOf.{Hypertension} ⊓ 
¬∃ssn:isPropertyOf.{Hyperthyroidism} 

 

Given the KB in Figure 1b, executing the query DiscriminatingProperty(?x) 

can infer the property clammy skin as discriminating:  
 
DiscriminatingProperty(clammy skin) 
 

To choose between Hypertension and Hyperthyroidism, task a sensor to measure 

galvanic skin response (i.e., for clammy skin). The Description Logic expressivity of 

the discrimination task is ALCO6, with PSpace-complete complexity [15]. 

4   Efficient Bit Vector Algorithms for Machine Perception 

To enable their use on resource-constrained devices, we now describe algorithms for 

efficient inference of explanation and discrimination. These algorithms use bit vector 

encodings and operations, leveraging a-priori knowledge of the environment. Note 

that this work does not support reasoning for all of OWL, but supports what is 

needed for machine perception, which is useful in a variety of applications. Table 1 

summarizes the data structures used by our algorithms. 
 

Table 1. Quick summary of data structures used by the bit vector algorithms 

(note: |x| represents the number of members of x). 

Name Description About (type, size) 

KBBM Environmental knowledge Bit matrix of size |ssn:Property| x |ssn:Feature| 

OBSVBV Observed properties Bit vector of size |ssn:Property| 

EXPLBV Explanatory features Bit vector of size |ssn:Feature| 

DISCBV Discriminating properties Bit vector of size |ssn:Property| 

4.1 Lifting and Lowering of Semantic Data 

To preserve the ability to share and integrate with knowledge on the Web, lifting and 

lowering mappings between the semantic representations and bit vector 

                                                           
6 using DL constructs: ⊓,  ∃, {a}, ¬C 



representations are provided. Using these 

mappings, knowledge of the environment 

encoded in RDF, as well as observed 

properties encoded in RDF, may be 

utilized by lowering them to a bit vector 

representation. Knowledge derived by 

the bit vector algorithms, including 

observed properties, explanatory 

features, and discriminating properties, 

may be shared on the Web, by lifting 

them to an RDF representation. 

 

Environmental knowledge: An 

environmental knowledgebase is 

represented as a bit matrix KBBM, with 

rows representing properties and columns 

representing features. KBBM[i][j] is set to 

1 (true) iff the property pi is a property of 

feature fj. To lower an SSN KB encoded 

in RDF: for all properties pi in 

ssn:Property, create a corresponding 

row in KBBM, and for all features fj in 

ssn:Feature, create a corresponding 

column. Set KBBM[i][j] to 1 iff there 

exists a ssn:isPropertyOf(pi,fj) 

relation. Figure 2a shows an example 

KB, from Figure 1b, which has been lowered to a bit matrix representation. Index 

tables are also created to map between the URI’s for concepts in the semantic 

representation to their corresponding index positions in the bit vector representation. 

Figures 2b and 2c show example index tables for properties and features.  
 

Observed properties: Observed properties are represented as a bit vector OBSVBV, 

where OBSVBV[i] is set to 1 iff property pi has been observed. To lower observed 

properties encoded in RDF: for each property pi in ssn:Property, OBSVBV[i] is set 

to 1 iff ObservedProperty(pi). To lift observed properties encoded in OBSVBV: 

for each index position i in OBSVBV, assert ObservedProperty(pi) iff OBSVBV[i] 

is set to 1. To generate a corresponding observation o, create an individual o of type 

ssn:Observation, ssn:Observation(o), and assert 

ssn:observedProperty(o,pi). 
 

Explanatory features: Explanatory features are represented as a bit vector EXPLBV. 

EXPLBV[j] is set to 1 iff the feature fj explains the set of observed properties 

represented in OBSVBV (that is, it explains all properties in OBSVBV that are set to 1). 

To lift explanatory features encoded in EXPLBV: for each index position j in EXPLBV, 

assert ExplanatoryFeature(fj) iff EXPLBV[j] is set to 1. 
 

Discriminating properties: Discriminating properties are represented as a bit vector 

DISCBV where DISCBV[i] is set to 1 iff the property pi discriminates between the set 

Figure 2. (a) Example environmental 

knowledgebase in the domain of cardiology, 

from Figure 1b, represented as a bit matrix. 

Index tables are used for lifting and lowering 

environmental knowledge between a 

semantic representation and bit vector 

representation. (b) Index table for properties. 

(c) Index table for features. 



of explanatory features represented in EXPLBV. To lift discriminating properties 

encoded in DISCBV: for each index position i in DISCBV, assert 

DiscriminatingProperty(pi) iff DISCBV[i] is set to 1. 

4.2 Efficient Bit Vector Algorithm for Explanation  

The strategy employed for 

efficient implementation 

of the explanation task 

relies on the use of the bit 

vector AND operation to 

discover and dismiss those 

features that cannot 

explain the set of observed 

properties. It begins by 

considering all the features as potentially explanatory, and iteratively dismisses those 

features that cannot explain an observed property, eventually converging to the set of 

all explanatory features that can account for all the observed properties. Note that the 

input OBSVBV can be set either directly by the system collecting the sensor data or 

by translating observed properties encoded in RDF (as seen in Section 4.1).   

We will now sketch the correctness of the explanation algorithm w.r.t. the OWL 

specification (Section 3.1). For each index position in EXPLBV that is set to 1, the 

corresponding feature explains all the observed properties. (See note about indices7).  
 

Theorem 1: Given an environmental knowledgebase KB, and it’s encoding as 

described in Section 4.1 (i.e., KBBM), the following two statements are equivalent: 

S1:  The set of m observed properties {pk1, …, pkm},  i.e., ObservedProperty(pk1) 

⊓ … ⊓ ObservedProperty(pkm), is explained by the feature fe, implies 
ExplanatoryFeature(fe). 

S2:  The Hoare triple8 holds:  { i  {1, …, m}: OBSVBV[ki] = 1 }  

                        Algorithm 1: Explanation                   

                        { EXPLBV[e] = 1 }. 
 

Proof (S1  S2): The ObservedProperty assertions are captured by the proper 

initialization of OBSVBV, as stated in the precondition. Given (i) S1, (ii) the 

single-feature assumption, (iii) the definition: ExplanatoryFeature ≡ 

∃ssn:isPropertyOf—
.{pk1} ⊓ … ⊓ ∃ssn:isPropertyOf—

.{pkm}, and 

(iv) the fact that ExplanatoryFeature(fe) is provable, it follows that i  

{1, …, m}: ssn:isPropertyOf(pki,fe) is in KB. By our encoding, i  {1, 

…, m}: KBBM[ki][e] = 1. Using lines 5-7, the fact that EXPLBV[e] is initialized 

                                                           
7  Note that property pki has property index ki and feature fej has feature index ej. So ki ranges 

over 0 to |ssn:Property|-1 and e/ej range over 0 to |ssn:Feature|-1. i and j are merely indices 

into the enumeration of observed properties and their explanatory features, respectively. 

Thus, i ranges over 1 to |ssn:Property| and j ranges over 1 to |ssn:Feature|. (In practice, 

initially i is small and j is large, and through each cycle of explanation and discrimination, i 

increases while j diminishes.) 
8  {P} S {Q} where P is the pre-condition, S is the program, and Q is the post-condition. 



to 1 and is updated only for i  {1, …, m} where OBSVBV[ki] = 1, we get the 

final value of EXPLBV[e] = KBBM[k1][e] AND … AND KBBM[km][e] = 1 (true). 

(S2  S1): Given that {i  {1, …, m}: OBSVBV[ki] = 1} and {EXPLBV[e] = 1} 

(pre and post conditions), it follows that i  {1, …, m}: KBBM[ki][e] = 1 must 

hold. According to our encoding, this requires that i  {1, …, m}: 

ssn:isPropertyOf(pki,e) holds. Using the definition of 

ExplanatoryFeature, it follows that ExplanatoryFeature(e) is 

derivable  (that is, fe explains all the observed properties {pk1, …, pkm}).   
 

Theorem 2: The explanation algorithm (Algorithm 1) computes all and only those 

features that can explain all the observed properties. 

Proof: The result follows by applying Theorem 1 to all explanatory features. Q.E.D. 

4.3 Efficient Bit Vector Algorithm for Discrimination  

The strategy employed for 

efficient implementation of the 

discrimination task relies on the 

use of the bit vector AND 

operation to discover and 

indirectly assemble those 

properties that discriminate 

between a set of explanatory 

features. The discriminating 

properties are those that are 

determined to be neither 

expected nor not-applicable.  

In the discrimination 

algorithm, both the 

discriminating properties bit vector DISCBV and the zero bit vector ZEROBV, are 

initialized to zero. For a not-yet-observed property at index ki, the bit vector 

PEXPLBV can represent one of three situations: (i) PEXPLBV = EXPLBV holds and 

the ki
th

 property is expected; (ii) PEXPLBV = ZEROBV holds and the ki
th

 property is 

not-applicable; or (iii) the ki
th

 property discriminates between the explanatory 

features (and partitions the set). Eventually, DISCBV represents all those properties 

that are each capable of partitioning the set of explanatory features in EXPLBV. Thus, 

observing any one of these will narrow down the set of explanatory features. 

We will now sketch the correctness of the discrimination algorithm w.r.t. the 

OWL specification (Section 3.2). Each explanatory feature explains all the observed 

properties. Lemma 1 shows that this is equivalent to all the observed properties being 

expected properties of the explanatory features.  
 

Lemma 1:  If m observed properties {pk1, …, pkm}, i.e., ObservedProperty(pk1) 

⊓ … ⊓ ObservedProperty(pkm), are explained by n features {fe1, …, fen}, i.e., 

ExplanatoryFeature(fe1) ⊓ … ⊓ ExplanatoryFeature(fen), then the 

following holds: i: 1 ≤ i ≤ m:  ObservedProperty(pki)  

ExpectedProperty(pki). 



Proof Sketch: The result is obvious from the definition: ExplanatoryFeature ≡ 

∃ssn:isPropertyOf—
.{pk1} ⊓ … ⊓ ∃ssn:isPropertyOf—

.{pkm}. So, i, 

j: 1 ≤ i ≤ m /\ 1 ≤ j ≤ n: ssn:isPropertyOf(pki,fej). 
ExpectedProperty ≡ ∃ssn:isPropertyOf.{fe1} ⊓ … ⊓ 

∃ssn:isPropertyOf.{fen}. 
 

Lemma 2 restates the assertion (from Lemma 1) that observed properties are also 

expected properties of explanatory features, in terms of the bit vector encoding. 
 

Lemma 2: The initial values of EXPLBV and OBSVBV satisfy the assertion: ki: 

(OBSVBV[ki] = 1)  [e: (EXPLBV[e] = 1)  (KBBM[ki][e]) = 1)]. And hence, 

i: (OBSVBV[ki] = 1)  [e: (EXPLBV[e] /\ KBBM[ki][e]) = EXPLBV[e])]. 

Proof Sketch: The claim follows from Lemma 1 and the bit vector encoding. 
 

Lemma 3 generalizes Lemma 2 to elucidate an efficient means to determine when a 

not-yet-observed property is expected, w.r.t. a set of explanatory features. 
 

Lemma 3:  Given property ki (pki) has not-yet been observed, i.e., OBSVBV[ki] = 0, 

ExpectedProperty(pki)  iff    e: (EXPLBV[e] /\ KBBM[ki][e]) = EXPLBV[e]. 
 

Lemma 4 demonstrates an efficient means to determine when a not-yet-observed 

property is not-applicable, w.r.t. a set of explanatory features. 
 

Lemma 4:  For explanatory features EXPLBV {fe | EXPLBV[e] = 1}, 

NotApplicableProperty(pki) iff  e:  (EXPLBV[e] /\ KBBM[ki][e]) = 

ZEROBV[e]. 

Proof Sketch: The result follows from: (i) the definition of 

NotApplicableProperty w.r.t. the set of explanatory features: 

NotApplicableProperty(pki) iff ki, e: ExplanatoryFeature(fe) 

 ¬∃ssn:isPropertyOf(pki,fe); (ii) [e: ExplanatoryFeature(fe) iff 

EXPLBV[e] = 1]; and (iii) ki, e: [¬∃ssn:isPropertyOf(pki,fe)  

KBBM[ki][e] = 0].  
 

Theorem 3: The discrimination algorithm (Algorithm 2) computes all and only those 

properties that can discriminate between the explanatory features. 

Proof: A not-yet-observed property is discriminating if it is neither expected nor not-

applicable. The result follows from the definition of discriminating property, 

Lemma 3, and Lemma 4. Q.E.D. 

5 Evaluation 

To evaluate our approach, we compare two implementations of the explanation and 

discrimination inference tasks. The first utilizes an OWL reasoner as described in 

Section 3, and the second utilizes the bit vector algorithms described in Section 4. 

Both implementations are coded in Java, compiled to a Dalvik9 executable, and run 

                                                           
9 http://code.google.com/p/dalvik/  



on a Dalvik virtual machine within Google’s Android10 operating system for mobile 

devices. The OWL implementation uses Androjena11, a port of the Jena Semantic 

Web Framework for Android OS. The mobile device used during the evaluation is a 

Samsung Infuse12, with a 1.2 GHz processor, 16GB storage capacity, 512MB of 

internal memory, and running version 2.3.6 of the Android OS. 

To test the efficiency of the two approaches, we timed and averaged 10 

executions of each inference task. To test the scalability, we varied the size of the KB 

along two dimensions – varying the number of properties and features. In the OWL 

approach, as the number of observed properties increase, the ExplanatoryFeature 

class (DEF 2) grows more complex (with more conjoined clauses in the complex 

class definition). As the number of features increase, the ExpectedProperty class 

(DEF 3) and NotApplicableProperty class (DEF 4) grows more complex. In the 

bit vector approach, as the number of properties increase, the number of rows in 

KBBM grows. As the number of features increase, the number of columns grows. 

To evaluate worst-case complexity, the set of relations between properties and 

features in the KB form a complete bi-partite graph13. In addition, for the explanation 

evaluations, every property is initialized as an observed property; for the 

discrimination evaluations, every feature is initialized as an explanatory feature. This 

creates the worst-case scenario in which every feature is capable of explaining every 

property, every property needs to be explained, and every feature needs to be 

discriminated between. The results of this evaluation are shown in Figure 3. 
 

 
 

Figure 3. Evaluation results: (a) Explanation (OWL) with O(n3) growth, (b) Explanation (bit 

vector) with O(n) growth, (c) Discrimination (OWL) with O(n3) growth, and (d) 

Discrimination (bit vector) with O(n) growth. 

                                                           
10 http://www.android.com/  
11 http://code.google.com/p/androjena/  
12 http://www.samsung.com/us/mobile/cell-phones/SGH-I997ZKAATT  
13 http://en.wikipedia.org/wiki/Complete_bipartite_graph (accessed: June 8, 2012) 



Result of OWL evaluations: The results from the OWL implementations of 

explanation and discrimination are shown in Figures 3a and 3c, respectively. With a 

KB of 14 properties and 5 features, and 14 observed properties to be explained, 

explanation took 688.58 seconds to complete (11.48 min); discrimination took 

2758.07 seconds (45.97 min). With 5 properties and 14 features, and 5 observed 

properties, explanation took 1036.23 seconds to complete (17.27 min); 

discrimination took 2643.53 seconds (44.06 min). In each of these experiments, the 

mobile device runs out of memory if the number of properties or features exceeds 14. 

The results of varying both properties and features show greater than cubic growth-

rate (O(n
3
) or worse). For explanation, the effect of features dominates; for 

discrimination, we are unable to discern any significant difference in computation 

time between an increase in the number of properties vs. features. 
 

Result of bit vector evaluations: The results from the bit vector implementations of 

explanation and discrimination are shown in Figures 3b and 3d, respectively. With a 

KB of 10,000 properties and 1,000 features, and 10,000 observed properties to be 

explained, explanation took 0.0125 seconds to complete; discrimination took 0.1796 

seconds. With 1,000 properties and 10,000 features, and 1,000 observed properties, 

explanation took 0.002 seconds to complete; discrimination took 0.0898 seconds. 

The results of varying both properties and features show linear growth-rate (O(n)); 

and the effect of properties dominates. 
 

Discussion of results: The evaluation demonstrates orders of magnitude 

improvement in both efficiency and scalability. The inference tasks implemented 

using an OWL reasoner both show greater than cubic growth-rate (O(n
3
) or worse), 

and take many minutes to complete with a small number of observed properties (up 

to 14) and small KB (up to 19 concepts; #properties + #features). While we 

acknowledge the possibility that Androjena may have shortcomings (such as an 

inefficient reasoner and obligation to compute all consequences), our results are in 

line with Ali et al. [10] that also found OWL inference on resource-constrained 

devices to be infeasible. On the other hand, the bit vector implementations show 

linear growth-rate (O(n)), and take milliseconds to complete with a large number of 

observed properties (up to 10,000) and large KB (up to 11,000 concepts).  

Consider the mobile application in which a person’s health condition is derived   

from on-body sensors. A person’s condition must be determined quickly, i.e., within 

seconds (at the maximum), so that decisive steps can be taken when a serious health 

problem is detected. Also, for the application to detect a wide range of disorders (i.e., 

features) from a wide range of observed symptoms (i.e., properties) the KB should be 

of adequate size and scope. In practice, an application may not require a KB of 

11,000 concepts; however, many applications would require more than 19 concepts. 

The comparison between the two approaches is dramatic, showing asymptotic 

order of magnitude improvement; with running times reduced from minutes to 

milliseconds, and problem size increased from 10’s to 1000’s. For the explanation 

and discrimination inference tasks executed on a resource-constrained mobile device, 

the evaluation highlights both the limitations of OWL reasoning and the efficacy of 

specialized algorithms utilizing bit vector operations.  



6   Related Work 

The ability to derive high-level knowledge from low-level observation data is a 

challenging task. As argued in this paper, a promising approach to machine 

perception involves the use of Semantic Web technologies. This approach is quickly 

evolving into an active area of research. Our work differs from related efforts in three 

ways: (1) the use of OWL for defining the perception inference tasks, (2) the 

definition of perception as an abductive process, and (3) the efficient execution of the 

inference tasks using bit vector operations. 

Previous works have utilized OWL for representing concepts in the domain of 

sensing [4,5,18,19]. Subsequently, First-Order Logic (FOL) rules were often 

employed to derive knowledge of the features in the environment [20-22].  Taylor et 

al. [23] have used Complex Event Processing to derive knowledge of events from 

observation data encoded in SSN. However, as we have shown, several inference 

tasks useful for machine perception do not require the full expressivity of FOL; they 

are expressible in OWL, a decidable fragment of FOL.  

Second, as opposed to approaches using deductive (FOL) rules, we believe that 

perception is an abductive process [11]. The integration of OWL with abductive 

reasoning has been explored [24]; requiring modification of OWL syntax and/or 

inference engine [25]. We demonstrated that, under the single-feature assumption, 

abductive consequences can be computed using standard OWL reasoners. 

And third, while OWL is decidable, the computational complexity still limits its 

practical use within resource-constrained environments. A recent W3C Member 

Submission [26] proposes a general-purpose RDF binary format for efficient 

representation, exchange, and query of semantic data; however, OWL inference is 

not supported. Several approaches to implementing OWL inference on resource-

constrained devices include [10,27,28,29]. Preuveneers et al. [28] have presented a 

compact ontology encoding scheme using prime numbers that is capable of class-

subsumption. Ali et al. [10] have developed Micro-OWL, an inference engine for 

resource-constrained devices implementing a subset of OWL constructs, but it is not 

expressive enough for our inference tasks. McGlothlin et al. [30] serialize RDF 

datasets and materialize data inferred through OWL reasoning using bit vectors. For 

our inference tasks, however, it is not scalable. Since we cannot predict which 

observed properties require explanation, this approach would generate and 

materialize an ExplanatoryFeature class for all possible (exponentially many) 

combinations of observable properties. In contrast, we have deployed specially 

tailored linear algorithms that compute explanation and discrimination efficiently.  

7   Conclusions and Future Work 

We have demonstrated an approach to machine perception on resource-constrained 

devices that is simple, effective, and scalable. In particular, we presented three novel 

contributions: (1) a simple declarative specification (in OWL) of two inference tasks 

useful for machine perception, explanation and discrimination; (2) efficient 

algorithms for these inference tasks, using bit vector operations; and (3) lifting and 



lowering mappings to enable the translation of knowledge between semantic 

representations and the bit vector representations. 

The bit vector encodings and algorithms yield significant and necessary 

computational enhancements – including asymptotic order of magnitude 

improvement, with running times reduced from minutes to milliseconds, and problem 

size increased from 10’s to 1000’s. The approach is prototyped and evaluated on a 

mobile device, with promising applications of contemporary relevance (e.g., 

healthcare/cardiology). Currently, we are collaborating with cardiologists to develop 

a mobile app to help reduce hospital readmission rates for patients with congestive 

heart failure. This is accomplished through the creation of a cardiology 

knowledgebase and use of the explanation and discrimination inference tasks to 

recognize a person’s health condition and suggest subsequent actions. 

In the future, we plan to investigate more expressive approaches to explanation 

(beyond the single-feature assumption), rank explanatory features based on 

likelihood and/or severity, and rank discriminating properties based on their ability to 

reduce the number of explanatory features. In addition, we plan to extend our 

approach to stream reasoning by incorporating (i) periodic sampling and updating of 

observations, and (ii) explaining observations within a time window.  

As the number and ubiquity of sensors and mobile devices continue to grow, the 

need for computational methods to analyze the avalanche of heterogeneous sensor 

data and derive situation awareness will grow. Efficient and scalable approaches to 

semantics-based machine perception, such as ours, will be indispensable. 
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