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Abstract

Pathogen incidence rate prediction, which can be considered as time series
modeling, is an important task for infectious disease incidence rate predic-
tion and for public health. This paper investigates applying a genetic com-
putation technique, namely GEP, for pathogen incidence rate prediction. To
overcome the shortcomings of traditional sliding windows in GEP based time
series modeling, the paper introduces the problem of mining effective sliding
window, for discovering optimal sliding windows for building accurate pre-
diction models. To utilize the periodical characteristic of pathogen incidence
rates, a multi-segment sliding window consisting of several segments from
different periodical intervals is proposed and used. Since the number of such
candidate windows is still very large, a heuristic method is designed for enu-
merating the candidate effective multi-segment sliding windows. Moreover,
methods to find the optimal sliding window and then produce a mathemat-
ical model based on that window are proposed. A performance study on
real-world datasets shows that the techniques are effective and efficient for
pathogen incidence rate prediction.
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1. Introduction

1.1. Pathogen Incidence Rate Prediction (PIRP)

Infectious diseases are a serious threat to the health and well-being of
the citizens of the world. Effectively preventing and responding to infectious
disease outbreaks is an important issue for various national governments
and international organizations. To better allocate financial and medical
resources on such prevention and response, it is crucial to accurately predicate
the incidence rates of various infectious diseases over time.

In this paper we study the pathogen incidence rate prediction (PIRP)
problem. Pathogens are infectious microbes such as viruses, bacteria, prions,
or fungi, which are responsible for propagating infectious diseases in the
population. Thus, solutions for the PIRP problem can be used to predict
incidence rates of infectious diseases. Moreover, solutions to PIRP can be
useful to other health related prediction problems such as predicting the
occurrence of new virus variants and providing early warning of outbreaks of
novel strains of infectious diseases.

Several traditional time series analysis methods, such as ARMA and ARI-
MA [1, 2, 3], and Artificial Neural Networks (ANN) [4, 5, 6], have been widely
used in PIRP. However, these methods may fail to generate accurate models
due to several reasons, including their inability to capture nonlinear dynamic
behavior (both ARMA and ARIMA are limited by the linear basis function-
s), and their inability to effectively select a small number of incidence rate
values at key previous time points for use as input by the prediction function.
Moreover, the ANN approach has the disadvantage of producing complicated
hard-to-understand prediction models.

In contrast, the genetic programming based solution proposed in this
paper uses nonlinear as well as linear functions, selects a “multi-segment”
sliding window (involving a small number of non-consecutive short segments
of continuous time points), and produces accurate and easy-to-understand
prediction models based on the time points in the window.

Specifically, our approach to solving PIRP is based on a recently devel-
oped evolutionary computation algorithm, named GEP (Gene Expression
Programming) [7]. The details of GEP will be given in Section 2. The main
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advantages of applying GEP to time series prediction include: (a) GEP uses
evolution to perform global search to efficiently find optimal solutions. (b)
GEP is well suited to learning mathematical models from numerical data au-
tomatically without the need for substantial background knowledge on the
application. (c) For time series prediction, GEP can generate models to ac-
count for trends and changes. Previous studies on GEP based time series
prediction have produced very good results [8, 9, 10, 11, 12].

To apply GEP to time series prediction for a given time series R, we train
a mathematical model that describes the relationship between R’s value for
time point t and R’s historical values before time t. Instead of using all
historical values to build a complicated model, a sliding window containing
key time points before t is used for building an accurate and yet easy-to-
understand prediction model. GEP takes R’s values for time points contained
in the sliding window as the independent variables. In previous GEP-based
time series prediction studies, GEP uses some pre-determined sliding window
to develop a mathematical model. In this study, we design a method to find
the optimal sliding window and then produce a mathematical model based
on that window.

Using flexible sliding windows Selecting the optimal sliding window is
important for GEP based time series modeling. The simple sliding window
consisting of a series of continuous time points before the target time point of
prediction, has often been used in previous GEP based time series modeling
studies. The simple sliding window of size ℓ for a target time point t is the
time interval [t − ℓ − 1, t − 1]. (The size of a sliding window is the number
of time points the window contains.) Example 1 illustrates that using such
simple sliding windows may not lead to accurate prediction models, and
using “multi-segment” sliding windows is more flexible and can lead to more
accurate prediction models. This paper’s novelty mainly lies with using GEP
and “multi-segment” sliding windows for time series prediction.

Example 1. Consider the monthly incidence rates (per thousand persons),
which we refer to as time series R, of bacillary dysentery in a region, given
in the following table. Let R(t) denote R’s value at time point t.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2005 0.067 0.054 0.062 0.091 0.188 0.281 0.505 0.352 0.383 0.191 0.074 0.051

2006 0.046 0.028 0.039 0.076 0.181 0.276 0.502 0.348 0.379 0.184 0.055 0.023
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Figure 1 shows two approaches using two different sliding windows; (a)
uses a simple sliding window of size 3, and (b) uses a multi-segment sliding
window consisting of two segments separated by a gap. For (a) we produce
a model to predict R’s value at time point t using the sliding window W1 =
{t− 3, t− 2, t− 1}, trained from the dataset D1 = {(R(t− 3), R(t− 2), R(t−
1), R(t)) | 4 ≤ t ≤ 24}. For (b) we produce a model to predict R’s value at
time point t using a multi-segment sliding window W2 = {t−13, t−12, t−1},
trained from the dataset D2 = {(R(t − 13), R(t − 12), R(t− 1), R(t)) | 14 ≤
t ≤ 24}.

Figure 1: Time series prediction using two kinds of sliding windows

In our experiments, GEP found the following accurate model R(t) = R(t−
12)+(R(t−1)−R(t−13))∗(R(t−13)/R(t−12)) for the multi-segment window
W2 but it failed to find an accurate model for the simple sliding window W1.

Example 1 is synthetic. (All other examples and datasets used in this
paper are from real world applications.) Example 1 demonstrates that vari-
ous sliding windows can be constructed for GEP based time series modeling,
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and, importantly, different sliding windows may result in different prediction
accuracies – GEP may fail to develop an accurate prediction model unless
suitable sliding window is constructed.

With regard to applying GEP to PIRP, it may be beneficial to take
the periodicity factor into consideration. The reasons include: (a) For the
pathogens of an infectious disease, the increase and decrease of incidence
rates are related to certain temporal and environment factors such as season
and temperature. For example, it is unreasonable to predict the incidence
rates of pathogens of diarrhea in summer based on the rates in winter. (b)
The inherent periodical characteristic of a pathogen gives rise to a seasonal
or monthly fluctuation pattern of its incidence rates. Hence it makes sense
to predict the incidence rates of a pathogen in next spring, based on its
incidence rates in this spring.

1.2. Research Objectives and Contributions

This paper uses GEP-based methods to produce models for predicting
incidence rates of pathogens. As the prediction accuracy of models devel-
oped by GEP depends on the sliding window, we study the new problem of
mining effective sliding windows. In addition, we utilize voting in evaluating
candidate sliding windows in GEP’s evolution-based search of the prediction
model. To the best of our knowledge, there has been no previous work on
mining effective sliding window for GEP based time series modeling.

This paper makes the following four main contributions:
(a) Problem definition for effective sliding window mining: To overcome

the shortcomings of traditional sliding windows, we introduce the problem of
mining effective sliding window, for discovering optimal sliding windows for
building accurate prediction model, for GEP based time series modeling.

(b) Multi-segment sliding window: To utilize the periodical character-
istic of pathogen incidence rates, we construct a sliding window consisting
of several segments from different periodical intervals. This kind of sliding
window is named as multi-segment sliding window. Since the number of
such candidate windows is still very large, we propose a heuristic method for
enumerating candidate effective multi-segment sliding windows.

(c) Evaluation of multi-segment sliding window: By utilizing voting
theory [13] in GEP based time series modeling, we design a method where
individual genomes of GEP vote for the preferred multi-segment sliding win-
dows in the evolution process. Based on the voting scores, the multi-segment
sliding windows that are unsuitable for building accurate prediction models
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are eliminated. In this way, the effective multi-segment sliding window is
discovered more efficiently.

(d) Performance evaluation: We conduct comprehensive experiments to
evaluate the performance of all proposed algorithms on real world datasets.
The results indicate that the proposed methods are effective and outperform
other methods for PIRP, and the methods are desirable for mining effective
multi-segment sliding window and developing accurate prediction models.

1.3. Paper Outline

The remainder of this paper is organized as follows. Section 2 briefly
introduces the basic concepts of GEP. Section 3 formally defines the prob-
lem of mining effective multi-segment sliding window. Section 4 presents a
heuristic method for candidate effective multi-segment sliding window enu-
meration. Section 5 describes two GEP based methods for selecting effective
multi-segment sliding windows for time series modeling. Section 6 reports an
experimental study on some real world datasets. Section 7 discusses related
works. Section 8 discusses future works and concluding remarks.

2. Brief Introduction to GEP

Gene Expression Programming (GEP) [7] is a recently developed variation
of Genetic Algorithms and Genetic Programming for evolving with algebraic
models with arbitrary form. The details of GEP are beyond the scope of this
paper, we give a brief introduction below.

Both linear symbolic strings of fixed length (similar to the chromosomes
of GA) and tree structures of different sizes and shapes (similar to the parse
trees of GP) are used for encoding individuals (candidate solutions) in GEP,
so that GEP provides new and efficient ways to program evolutionary com-
putation [7].

As an evolutionary computation approach, the main steps of GEP are
similar to those of GA and GP: (a) using populations of individuals to rep-
resent candidate solutions; (b) selecting preferred individuals based on their
fitness; (c) using genetic modifications to generate new individuals of succes-
sive generations.

In GEP, the basic unit of an individual is called gene. The most distinctive
feature of GEP is that each gene has access to a genotype and a corresponding
phenotype: the genotype is a symbolic string of some fixed length, and the
phenotype is the tree structure for the expression coded by that symbolic
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string. The symbolic string of a gene is composed by two parts, a head part
and a tail part, both having fixed lengths. The head part contains either
function or term symbols, and the tail part contains term symbols only.
The function symbol represents a mathematical operator, such as addition,
subtraction, multiplication, division, log, sine. The term symbol represents
an attribute value. The length of the head (|head|) and the length of the tail
(|tail|) satisfy |tail| = |head| × (α− 1)+ 1, where α is the maximum arity of
the functions under consideration. The head length (|head|) is determined by
the user as the maximum number of functions in a gene; the length of a gene
(|head|+ |tail|) remains unchanged in the middle of an execution of a given
GEP algorithm. The coding region of a gene starts from the first symbol in
the head, and the coding region is determined by the level based traversal
(of the tree for the gene) that produces a valid arithmetic expression. As a
result, despite the length of the symbolic strings of the genes is fixed, each
gene can code for expression trees of different sizes and shapes.

The shortest and simplest expression of genes of a given length occurs
when the first element of the string is a term, and the longest one occurs
when all the symbols in the head are functions with the maximum arity (α).

The constraint between |head| and |tail| and the restriction that the tail
only contains term symbols guarantee that each gene produces a valid alge-
braic expression. In GEP, an individual may involve one or more genes to
encode a candidate solution. For multiple genes in an individual, the genes
are connected by the linking function, such as ‘+’.

Suppose the function set is {+,−,×, /}, the term set is {a, b, c, d, e, f},
the linking function is +. Figure 2 illustrates the expression tree and cor-
responding arithmetic expression of a 3-gene individual. The three genes in
the individual have the same head length (3) and total length (7); but their
expression trees (phenotype) are different, and so are their arithmetic expres-
sions. For gene1, the coding region is the first 5 symbols (so the expression
tree does not contain the “bd” at the end). For gene2, the coding region is
the first 5 symbols (so the expression tree does not contain the “fb” at the
end). For gene3 the coding region is the whole string. The linking function
(+) connects the expression trees of gene1, gene2 and gene3 together to
make up the expression tree of the individual.

The fitness function is critical for GEP algorithms since it evaluates the
goodness of candidate solutions and controls the direction of evolution. The

7



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 2: The genotype, phenotype and arithmetic expression of a three-gene individual

design of fitness function depends on the purpose of application. In time
series modeling, the absolute error or relative error between the predicted
value and the target is commonly used as fitness function.

GEP starts with a random generation of some number of individuals to
make up the initial population. Based on the principle of natural selection
and survival for the fittest, GEP evaluates the fitness of each individual,
selects the individuals according to their fitness, and reproduces new indi-
viduals by modifying the selected individuals. Genetic modification, which
creates the necessary genetic diversity, is important for GEP to eventually
produce the optimal solution in the long evolutionary process.

There are three kinds of genetic modifications, namely mutation, trans-
position, and recombination. Mutation and transposition operate on a single
individual, and recombination takes place on two individuals. A mutation
can change a symbol in a gene into another symbol, as long as it does not
introduce function symbols in the tail. Transposition rearranges short frag-
ments within a gene, under some limitations. Recombination exchanges some
elements between two randomly chosen individuals to form two new individu-
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als. All new individuals created by GEP-style modifications are syntactically
correct candidate solutions. This feature distinguishes GEP from GP, where
some genetic modifications (such as mutation) can produce invalid solutions.
More details can be found in [7]. The individuals of each new generation
undergo the same processes of evaluation, selection and reproduction with
modification as in the preceding generation. The evolution process repeats
until some stop condition (given in terms of number of generations, quality
of solutions, and so on) is satisfied.

Since GEP offers great potential to solve complex modeling and optimiza-
tion problems, it has been used in many applications concerning symbolic
regression, classification, time series analysis, cellular automata, and neural
network design, etc.

3. Problem Formulation

This section introduces the basic concepts related to sliding window in
GEP based PIRP and defines the problem we study in this paper.

The incidence rates of a given pathogen will be given as a time series R:
R(1), R(2), ..., R(n); R(t) is the incidence rate at time point t for 1 ≤ t ≤ n.
Each t is an integer representing a time interval for incidence monitoring,
such as one month. Figure 3 gives the diagram for the monthly incidence
rates of bacillary dysentery (per thousand persons) over 7 years.

Sliding window: A sliding window for a target time point t is a set of time
points earlier than time point t. We use |W | to denote the size of a sliding
window W , namely the number of time points contained in W . For example,
Wt = {t − 3, t − 2, t − 1} is a sliding window (template) for variable time
point t. When t = 64, {61, 62, 63} is the sliding window instance of Wt.

In general, any set of ℓ time points that are smaller than t, can be con-
sidered a sliding window of size ℓ, provided that ℓ < t. Thus, there are Cℓ

t

candidate sliding windows for target time point t. Even when we limit the
size of sliding window ℓ to be no greater than t

2
, we have the following:

Cℓ
t =

t!
(t−ℓ)!ℓ!

≥ (2ℓ)!
(2ℓ−ℓ)!ℓ!

= (2ℓ)!

ℓ!2
≥ 2ℓ

9
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Figure 3: Monthly incidence rates of bacillary dysentery

This above implies that it is impractical to find an effective sliding window
by enumerating all sliding windows. To overcome this difficulty, we utilize
periodicity in sliding window construction.

Periodic partition: Due to the inherent characteristic of many pathogens,
the incidence rates of a given pathogen is often periodic. Indeed, Figure 3
shows that the incidence rate of bacillary dysentery reaches its lowest point
in winter, then it increases to the peak value in summer, followed by a grad-
ual decrease to the lowest level again in winter, every year. Utilizing this
periodical factor in PIRP can improve prediction accuracy.

Definition 1. (Periodic Partition) Suppose τ is a period of a given time
series R. For a given time point t (1 ≤ t ≤ n), the time points in [1, t] are
divided into disjoint periodic partitions, starting from t. The |i|-th interval
(−⌊ t−1

τ
⌋ ≤ i ≤ 0) of the periodic partition, denoted by pi(t), is (max(0, t −

(|i|+1)∗τ), t−|i|∗τ ]. The set of all partitions is called the periodic partition
set of t, denoted as P (t); so P (t) = {pi(t) | −⌊ t−1

τ
⌋ ≤ i ≤ 0}.

Example 2. For the incidence rates of bacillary dysentery (Figure 3), sup-
pose 12 is a period. The corresponding periodic partitions for time point t =

10
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82 are: p0(82) : (70, 82], p−1(82) : (58, 70], p−2(82) : (46, 58], p−3(82) : (34,
46], p−4(82) : (22, 34], p−5(82) : (10, 22] and p−6(82) : (0, 10] (see Figure 4).

Figure 4: Periodic partitions when t = 82

For a given periodic partition set P (t), a segment si of a periodic partition
pi(t) is a series of continuous time points in pi(t). The size of segment si,
denoted by |si|, is the number of time points contained in si. A size-ℓ multi-
segment sliding window W is a set of segment {si | pi(t) ∈ P (t)} satisfying
(i) there is exactly one segment si for each pi(t) and (ii)

∑ |si| = ℓ.

Example 3. For example, W3 = {58, 68, 69, 70, 80, 81} is a multi-segment
sliding window for predicting R(82) in Figure 4. The segments in W3 are:
{{58}, {68, 69, 70}, {80, 81}}. Observe that W4 = {52, 58, 68, 70, 74, 80} is
not a multi-segment sliding window, since there are more than one segment
for some periodic partitions.

The aim of this study is to find effective multi-segment sliding windows
that GEP uses to build highly accurate prediction models for PIRP. Our
method finds effective multi-segment sliding windows in two main steps:

11



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(i) constructing candidate effective multi-segment sliding windows of
a given size;

(ii) applying GEP to select the most effective multi-segment sliding
window for building the prediction model.

4. Heuristic Enumeration of Candidate Effective Sliding Windows

It is easy to observe that the number of candidate multi-segment sliding
windows is very large. So it is desirable to use some heuristic method to
efficiently find some high quality candidate effective multi-segment sliding
windows. From the monthly incidence rates of bacillary dysentery shown in
Figure 3, we get two observations:

(i) The periodical characteristic exists in the incidence rates of bacil-
lary dysentery. The increase and decrease trends of incidence
rates in each year change in a similar manner. So, when pre-
dicting the incidence rate in a particular time interval of a given
year, it is helpful to consider the incidence rates in the same time
interval of previous years.

(ii) In each year, the incidence rates of bacillary dysentery increase
gradually from the lowest level in January or February to the
highest level in July or August. Moreover, an approximately
linear increase can be found from a lowest incidence rate to the
next highest one. A similar observation can be made from a
highest incidence rate to the next lowest one.

Combining the two observations with the common characteristics of the
incidence rates of pathogens, we design a heuristic method to enumerate
candidate effective multi-segment sliding windows for PIRP.

The basic ideas of constructing a candidate effective multi-segment sliding
window W for predicting the value at time point t in PIRP are: (i) The
segments in W are selected from some κ periodic partitions nearest to t for
some positive integer κ; we call κ the segmentation length of W . (ii) We pay
more attention to the segments in periodic partitions closer to t than the
ones further away.

Formally, for a periodic partition set P (t) and an associated window W ,
let SW = {si | si ⊆ pi(t), pi(t) ∈ P (t), −κ < i ≤ 0} be the set of segments

12
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associated with W . For a given window size ℓ, W is a candidate effective
size-ℓ multi-segment sliding window if SW satisfies:

(i)
∑

si∈SW
|si| = ℓ.

(ii) Except t in p0(t), there is no time point later than si in pi(t).

(iii) For each i, |si−1| − |si| ≤ δ, where δ is a small positive integer.

In this study, we set δ = 3. Observe that condition (iii) implies that
segments from periodic partitions closer to t are not much smaller than those
further away. Moreover, there is no limit on how large |si| − |si−1| is.

For a candidate effective multi-segment sliding window, the position of
a segment in its corresponding periodical partition is determined (condition
(ii)). Thus we can use a κ-tuple consisting of the sizes of all the segments in
SW to represent a window W .

Example 4. Suppose the segmentation length is 3, and the sliding window
size is 7. Then the candidate effective multi-segment sliding windows, denoted
as triples in the form of < |s−2|, |s−1|, |s0| >, are < 0, 0, 7 >, < 0, 5, 2 >,
< 4, 1, 2 >, < 3, 2, 2 >, < 0, 4, 3 >, < 0, 3, 4 >, < 0, 2, 5 >, < 0, 1, 6 >,
< 3, 0, 4 >, < 2, 3, 2 >, < 3, 1, 3 >, < 1, 4, 2 >, < 1, 1, 5 >, < 5, 2, 0 >,
< 1, 2, 4 >, < 4, 3, 0 >, < 1, 0, 6 >, < 1, 3, 3 >, < 2, 1, 4 >, < 2, 0, 5 >, <
2, 2, 3 >, < 4, 2, 1 >, < 3, 3, 1 >, < 2, 4, 1 >. Once the sizes of segments are
determined, the sliding window is constructed. Figure 5 illustrates the multi-
segment sliding window < 3, 2, 2 > for predicting R(82); the corresponding
segments are s0 : {79, 80, 81}, s−1 : {69, 70}, s−2 : {57, 58}.

Proposition 1. For given sliding window size ℓ and segmentation length
κ, the number of candidate effective multi-segment sliding windows is not
greater than Cκ−1

ℓ+κ−1.

Proposition 1 indicates that the number of candidate effective multi-
segment sliding windows is polynomial when the segmentation length κ is
fixed. Our algorithm for enumerating candidate effective multi-segment s-
liding windows, namely EnumWin, is given in Algorithm 1, which we will
explain next.
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Figure 5: An example of a candidate effective multi-segment sliding window

Enumeration is started by calling EnumWin(0, ℓ, τ − δ − 1), and then
called upon recursively. Observe that in each sliding window the size of s0
is allocated at first, the total size of sliding window is ℓ, and the maximum
size of s0 is min(τ − 1, ℓ). Steps 1-8 state the terminal conditions of the
recursion. If the total size ℓ is allocated into κ segments satisfying the δ
constraint, the κ-tuple w which records the allocated segment sizes is added
to wOut (Step 6). Step 9 enumerates all valid sizes of si. Once a κ-tuple w
has been created (Step 11), a possible value is assigned to ℓi in w (Step 13).
Step 14 enumerates possible sizes of si−1 by calling EnumWin recursively.

Next, we analyze the time complexity of EnumWin. The time complex-
ity of finding a κ-tuple, which represents a valid candidate effective multi-
segment sliding window, is O(κ). By Proposition 1, the upper bound of time
complexity of EnumWin can be estimated as O(Cκ−1

ℓ+κ−1 ∗ κ). Note that,
besides ℓ, the number of possible sizes of a segment depends on both ℓpre+ δ
and τ (Step 9 in EnumWin). So the number of candidate effective multi-
segment sliding windows would be much smaller than Cκ−1

ℓ+κ−1, since τ is often
quite small and there are few possibilities for segment sizes to be allocated
when ℓpre + δ is small.

14
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Algorithm 1 EnumWin(i, ℓunall, ℓpre)

Call EnumWin(0, ℓ, τ − δ − 1) to begin mining.

Input: (1) i: the subscript of segment si; (2) ℓunall: the size of a sliding window
yet to be allocated; (3) ℓpre: the size of previous segment si+1;

Output:

wOut: the set of κ-tuples consisting of the sizes of all segments of all individual
candidate effective multi-segment sliding windows.

1: if ℓunall = 0 then

2: wOut← wOut+ w;
3: return;
4: end if

5: if |i| ≥ κ then

6: discard w;
7: return;
8: end if

9: for x← 0 to min(ℓunall, ℓpre + δ, τ) do
10: if i = 0 then

11: initialize a κ-tuple w: < ℓ−κ+1, ..., ℓ−1, ℓ0 >; // ℓi is the size of si
12: end if

13: w.ℓi ← x;
14: EnumWin(i− 1, ℓunall − x, x);

15: end for

5. Mining Effective Multi-Segment Sliding Window by GEP

Once the candidate multi-segment sliding windows have been enumerated
by EnumWin (Algorithm 1), the next step is evaluating them and selecting
the most suitable one for GEP based prediction. We propose two methods
for candidate effective multi-segment sliding windows evaluation.

5.1. A Benchmark Evaluation Approach

Let R be a given time series, and W a multi-segment sliding window for
variable time point t. Let (z1(t), ..., zℓ(t)) be the sequence of time points in
W for t. The training dataset D associated with W is defined to be the set
{(R(z1(i)), ..., R(zℓ(i)), R(i)) | ℓ < i and i is a time point}; so D is the set
of tuples consisting of R’s values for the time points in the window for time
point i and R’s value at time point i. A GEP individual η is a function that
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takes (R(z1(t)), ..., R(zℓ(t)) as input (term set) to predict R’s value at time
point t.

We use the relative error between R(t) and η(R(z1(t)), ..., R(zℓ(t)) to eval-
uate the η’ fitness. The fitness of η on D, denoted as fit(η,D), is computed
as follows. (The pseudo-count of ǫ is used to avoid division by zero.)

fit(η,D) =
1

avgt
|η(R(z1(t)),...,R(zℓ(t))−R(t)|

R(t)
+ ǫ

Suppose DS is the set of datasets generated by all candidate effective
multi-segment sliding windows associated with R.

One straightforward approach to select the effective windows is using
GEP to evolve the prediction model over each dataset in DS independently.
Let D∗ ∈ DS be the dataset, over which the best prediction model is evolved.
Then the multi-segment sliding window which generates D∗ is selected as the
most effective window for GEP prediction. This straightforward approach is
named as SelectWin, and its pseudo code is described in Algorithm 2.

In Algorithm 2, Function CreateSeedPop(pSize) in Step 3 creates the
initial population by generating pSize individuals in a stochastic way. Func-
tion EvaluateIndividuals(pop,D) in Steps 4 and 14 evaluates the fitness of
each individual in pop on dataset D. If an individual with larger fitness is
evolved, it is reserved as well as its associated dataset (Steps 5-9 and Steps
15-19). Function Select(pop) in Step 12 selects the individuals based on the
fitness to compose a new population, and Function GeneticModify(pop) in
Step 13 reproduces new individuals by performing genetic modifications on
some selected individuals. The best individual η∗ with the largest fitness is
output as the prediction model. Alternatively, the initial population can be
identical for each evolution; in this case, Function CreateSeedPop(pSize) in
Step 3 is invoked only once.

From Algorithm 2, we can see that the main routines of SelectWin are
similar to the basic GEP algorithm, which is desirable for solving complex
modeling problem [7]. The candidate prediction models are represented as
the population of individuals in SelectWin. The fitness function evaluates
the accuracy of each candidate prediction model (Steps 4 and 14). By the
selection operation, the individuals with higher fitness value are more likely to
be selected for further evolution. The genetic modification (Step 13) creates
the necessary diversification on candidate prediction models to generates that
the final solution is globally optimal. When SelectWin finishes the evolution

16
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Algorithm 2 SelectWin(DS, pSize, ngmax)

Input: (1) DS: the set of datasets generated by all candidate effective multi-
segment sliding windows; (2) pSize: the number of individuals in a population;
(3) ngmax: the maximum number of generations for GEP evolution;

Output:

(η∗, D∗), η∗: an individual (prediction model) with the largest fitness; D∗:
the dataset that η∗ most prefer.

1: for each dataset D ∈ DS do

2: ng ← 1; // ng indicates the number of evolved generations;
3: pop← CreateSeedPop(pSize); // initialize the population;
4: EvaluateIndividuals(pop,D); // compute the fitness of individuals in pop;
5: η ← GetBest(pop); // get the individual with the largest fitness in pop;
6: if D∗ = ∅ or fit(η,D) > fit(η∗, D∗) then
7: η∗ ← η;
8: D∗ ← D;
9: end if

10: ng ← ng + 1;
11: while ng < ngmax do

12: pop← Select(pop); // select individuals to compose a new population;
13: GeneticModify(pop); // genetic modifications;
14: EvaluateIndividuals(pop,D);
15: η ← GetBest(pop);
16: if fit(η,D) > fit(η∗, D∗) then
17: η∗ ← η;
18: D∗ ← D;
19: end if

20: ng ← ng + 1;
21: end while

22: end for

on all datasets, the best prediction model is discovered as well as the optimal
multi-segment sliding window.

Next, we analyze the time complexity of SelectWin. The evolution
operations on a GEP individual include decoding, genetic operations, and
evaluation. As the individual length is much less than the dataset size
(|D|), the time complexity of operations on individuals (Steps 12-14) is
O(|pop| ∗ |D|). Then for |DS| datasets, the time complexity of SelectWin is
O(ngmax ∗ |DS| ∗ |pop| ∗ |D|).

SelectWin is simple and easy to implement, but its efficiency is relatively
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low, since the effective multi-segment sliding window cannot be found until
the evolution of GEP on all datasets stops. In this work, we use SelectWin
as a benchmark algorithm and will compare it against a better one described
next.

5.2. A Voting Theory based Evaluation Approach

Biological enlightenment By the biological principle known as “seek ad-
vantage, avoid disadvantage”, a living being tends to develop itself in a suit-
able environment. GEP mimics the process of natural evolution for gen-
erating solutions to optimization problems. In PIRP, we view a prediction
model under evolution as an individual, and the dataset generated by a multi-
segment sliding window as an environment. The fitness of an individual is
regarded as the adaption level of this individual to an environment.

Different from the benchmark approach SelectWin which evolves in-
dividuals in one dataset at a time, in this subsection, we present an ap-
proach, named V oteWin, to involve multiple datasets in GEP evolution at
the same time. In V oteWin, not only the individuals are evaluated on mul-
tiple datasets, but also the individuals vote for datasets generated by sliding
windows (enumerated by EnumWin).

By evaluating the fitness of individuals on each dataset, we get the prefer-
ence of the individuals for datasets. Let DS be the set of datasets generated
by candidate effective multi-segment sliding windows. For an individual η,
we define a partial order (called p-order) of η on DS to describe the datasets
preference of η: Di ≺ Dj if fit(η,Di) < fit(η,Dj) (Di, Dj ∈ DS, i 6= j). We
wish to select the dataset (generated by the effective multi-segment sliding
window) that most individuals prefer.

Voting for preferred dataset V oteWin uses a voting method for selecting
good datasets. The GEP individuals are regarded as voters and the datasets
in DS are regarded as candidates. Before describing the voting method
employed in V oteWin, we briefly introduce some basic concepts of Voting
Theory. In Voting Theory, a voting method is a mapping from a set of
voter preferences to an election outcome [13]. Different voting methods may
give very different results. Straffin lists several fairness criterion which seem
indispensable for a meaningful outcome of a voting method [14]:

• Pareto Criterion: If every voter prefers choice c1 over choice c2, then c2
should not be the winner.
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• Condorcet Winner Criterion: If c1 is a choice which would win in pair-
wise votes against each other choice, then c1 should be the winner.

• Condorcet Loser Criterion: If c1 is a choice which would lose in pairwise
votes against each other choice, then c1 should not be the winner.

• Monotonicity Criterion: If choice c1 is the winner under a voting method,
and one or more voters increase their preference for c1, then c1 should
still be the winner.

However, by Kenneth Arrow’s Impossibility Theorem [15], there is no
voting method that satisfies all the above fairness criteria when there are
more than two candidates. Due to the impossibility of a totally fair voting
method, the decision on which method to adopt should be based on what
seems most fair for the situation.

If a voting method asks a voter to state a preference among candidates,
it is called a preferential method. We employ two classical preferential meth-
ods [14], Borda Count and Copeland’s Method, in V oteWin. In the Borda
Count method, each voter’s vote is translated into position-based points for
the candidates; it selects the candidate with the most points is the winner.
Copeland’s Method is a voting method that elects the candidate that would
win by majority rule in all pairwise comparisons; it satisfies the Condorcet
Criterion. Formally, let C be the set of candidates, and V the set of voters.

• Borda Count: For candidate ci ∈ C, let rank(ci, vm) be the ranking
position of c by voter vm ∈ V . The voting score of ci is Borda(ci) =
∑

vm∈V (|C|− rank(ci, vm)). The candidate with the largest score wins.

• Copeland′s Method: For candidates ci, cj ∈ C, let prefer(ci, cj, vm) =
1 if voter vm prefers ci over cj (it is 0 otherwise). Let count(ci, cj) =
∑

vm∈V prefer(ci, cj, vm) be the number of voters who prefer ci over cj.
Let

win(ci, cj) =







1 count(ci, cj) > count(cj, ci)
0 count(ci, cj) = count(cj, ci)
−1 count(ci, cj) < count(cj, ci)

The voting score of ci is Copeland(ci) =
∑

cj∈C
win(ci, cj). The candi-

date with the largest score wins.

Example 5. Suppose there are 4 candidates c1, c2, c3, c4, 4 voters v1, v2,
v3, v4. The preferences of the voters are listed as follows. Then the score of
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each candidate computed by Borda Count is c1:4, c2:9, c3:6, c4:5, respectively.
The score of each candidate computed by Copeland’s Method is c1:-2, c2:3,
c3:0, c4:-1, respectively.

voter 1st 2nd 3rd 4th voter 1st 2nd 3rd 4th
v1 c1 c2 c3 c4 v2 c2 c4 c3 c1
v3 c4 c2 c3 c1 v4 c3 c2 c1 c4

Sliding window elimination By making use of voting method, V oteWin
eliminates “ineffective” multi-segment sliding windows. The key points are
as follows.

(i) Get the p-order of individuals. V oteWin adopts the same fitness
function as SelectWin. The p-order of η is available once V oteWin gets
the fitness of η on all datasets. In GEP, the selection operation is based on
fitness. The individual with higher fitness value is more likely to be selected
into the next generation. For individual η, the fitness on its most preferred
dataset, denoted as fitselect(η), is used for selection.

(ii) Integrate the voting score with fitness. No matter which voting
method is adopted in V oteWin, the voting score of each dataset is 0 in
initial, and updated based on the p-order of each individual. Intuitively, the
individuals with larger fitness should have more weight on voting. V oteWin
takes the individual’s fitness into consideration when computing the voting
score of each dataset. Let η∗ be the best individual in pop, Di, Dj ∈ DS.
Then, the methods of integrating the voting score with the fitness are listed
as follows:

Borda(Di) =
∑

η∈pop
fitselect(η)
fitselect(η∗)

∗ (|DS| − rank(Di, η)), if Borda Count is
used.

count(Di, Dj) =
∑

η∈pop
fitselect(η)
fitselect(η∗)

∗prefer(Di, Dj, η), if Copeland’s Method
is used.

(iii) Eliminate the sliding window with the lowest voting score one by
one. V oteWin takes all datasets (generated by candidate effective multi-
segment sliding windows) in DS as candidates. The voting score of each
dataset is updated as the individuals evolve. Suppose the maximum number
of generations for GEP evolution is ngmax. V oteWin eliminates the sliding
window with the lowest voting score every ⌊ngmax

|DS|
⌋ generations until only one

dataset is left. During the evolution, the individual with the largest fitness
is cloned to the next generation to guarantee that the best solution is never
lost. In V oteWin, the fitness of an individual is associated with a dataset. If
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the dataset with the lowest voting score is also the one most preferred by η∗,
V oteWin eliminates the dataset with the second lowest voting score instead.
After a dataset is removed from DS, V oteWin resets the voting scores of
datasets for a new round of voting.

Like SelectWin, V oteWin also keeps the main routines of basic GEP
algorithm to evolve the prediction models. Different from SelectWin which
evaluates the fitness of candidate prediction models in one dataset at a time,
V oteWin evaluates the fitness of candidate prediction models in multiple
datasets in the mean time, and uses evolution to find the optimal dataset
and to evolve a prediction model based on the dataset.

Algorithm 3 describes the pseudo code of V oteWin. The upper bound
of time complexity of V oteWin is O(ngmax ∗ |pop| ∗ (|DS| ∗ |D| + |DS|2)).
However, V oteWin is more efficient than SelectWin due to the elimination
operation (Step 11) that accelerates the evolution by removing the datasets
that are not preferred by GEP individuals.

6. Experimental Study

In this section we assess the performance of our techniques for effective
multi-segment sliding windows mining and PIRP. Our algorithms were im-
plemented in Java. All experiments were conducted on an Intel i3 2.20 GHz
CPU with 4 GB memory running Windows 7 SP 3.
DatasetsWe apply our proposed methods to 5 real-world time series dataset-
s containing monthly incidence rates of bacillary dysentery. Due to the sensi-
tivity of the data, we omit the details of the sources and denote the five time
series datasets as China-A, China-B, China-C, China-D and China-E.
Each dataset records the monthly incidence rates of bacillary dysentery from
January 2004 to December 2010 in a province of China. So, there are 84
time points in total in each dataset.

Moreover, we select two health related datasets, namely Measlnyc and
Mumps, from Time Series Data Library at http://robjhyndman.com/TSDL.
The two datasets record monthly reported numbers of cases of measles and
mumps in New York City over 40 years, respectively. Firstly, we select 10
years’ data from January 1961 to December 1970 to test the effectiveness of
the proposed algorithms. The two datasets are denoted as Measlnyc10 and
Mumps10. Later, we will test the scalability of the proposed algorithms by
involving longer time interval. As the population of New York City in 1960s

21



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Algorithm 3 VoteWin(DS, pSize, ngmax)

Input: (1) DS: the set of datasets generated by all candidate effective multi-
segment sliding windows; (2) pSize: the number of individuals in a population;
(3) ngmax: the maximum number of generations for GEP evolution;

Output:

(η∗, id∗), η∗: an individual (prediction model) with the largest fitness; D∗:
the dataset that η∗ most prefer.

1: ng ← 1; // ng indicates the number of evolved generations;
2: eg ← ⌊ngmax

|DS| ⌋;
3: pop← CreateSeedPop(pSize); // initialize the population;
4: pOrders← FitEvaluate(pop,DS); // get the p-order of each individual;
5: vScores ← V ote(DS, pOrders); // compute the voting score of each dataset

in DS;
6: η∗ ← GetBest(pop); // get the individual with the largest fitness in pop;
7: D∗ ← RecordDataset(DS); // record the dataset that η∗ most prefer;
8: ng ← ng + 1;
9: while ng < ngmax do

10: if ng mod eg = 0 and |DS| > 1 then

11: DatesetElimination(DS, vScores); // eliminate the dataset with the
lowest voting score in DS\{D∗};

12: V ScoreReset(vScores); // reset the voting scores;
13: end if

14: pop← Select(pop); // select individuals to compose a new population;
15: GeneticModify(pop); // genetic modifications;
16: pOrders← FitEvaluate(pop,DS);
17: vScores← V ote(DS, pOrder);
18: η ← GetBest(pop);
19: D ← RecordDataset(DS);
20: if fit(η,D) > fit(η∗, D∗) then
21: η∗ ← η;
22: D∗ ← D;
23: end if

24: ng ← ng + 1;

25: end while

is over 16 million, which is far more than the monthly cases of measles or
mumps, we predict the number of cases directly in this experimental study.
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6.1. Effective Multi-segment Sliding Window Discovery

Efficiency test on EnumWin We now evaluate our heuristic algorithm
EnumWin for enumerating candidate effective multi-segment sliding win-
dows. The number of candidate effective multi-segment sliding windows de-
pends on three factors: the window size (ℓ), the limit on segment si−1 larger
than segment si (δ) and segmentation length (κ). Figure 6 illustrates the
number of candidate effective multi-segment sliding windows enumerated by
EnumWin, as well as the running time under different values of ℓ, δ and κ.
From Figure 6 (a) and (c), we can see that the number of candidate effective
multi-segment sliding windows increases as the values of ℓ, δ and κ increase,
and the number of enumerated multi-segment sliding windows increases in a
nearly linear manner when δ and κ are fixed. From Figure 6 (b) and (d), we
can see that EnumWin can enumerate the candidate effective multi-segment
sliding windows efficiently.

Effective multi-segment sliding window mining A total of 32 candi-
date effective multi-segment sliding windows were enumerated by EnumWin
when ℓ = 4, δ = 3 and κ = 4. We use a 4-tuple < |s−3|, |s−2|, |s−1|, |s0| >
(
∑0

i=−3 |si| = ℓ) to record the size of each segment in a sliding window,
and represent a multi-segment sliding window. In each dataset generated
by a candidate effective multi-segment sliding window, we reserve the last 5
samples as test set, and other samples as training set. The population size
in SelectWin is 100. The arithmetic operators involved in GEP evolution
include: +, −, ∗, /, √ . SelectWin stops evolution when the number of gen-
erations is 1000. We run SelectWin 20 times independently on each training
set. Table 1 lists the average relative errors of the best evolved models. The
minimum training error in a dataset is in bold.

From Table 1, we can see that the effective multi-segment sliding win-
dows are not fixed. The training accuracies are associated with the sliding
windows. Thus, mining effective multi-segment sliding window is necessary
for improving the prediction precision. Note that, multiple effective multi-
segment sliding windows are discovered for China-B and China-C. (In either
China-B or China-C, the best prediction models evolved over these sliding
windows are identical.)

Table 2 lists the best prediction model evolved by SelectWin on each
dataset over the effective multi-segment sliding window.
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Figure 6: Performance results on enumerating candidate effective multi-segment sliding
windows

6.2. Effectiveness of VoteWin

We apply V oteWin to the training sets. The algorithm using Borda
Count is denoted by V oteWin-B and the algorithm using Copeland’s Method
is denoted by V oteWin-C. The population size is 100. The evolution stop-
s when the number of generations is 1000. We also run V oteWin-B and
V oteWin-C 20 times independently on each training set.

The prediction models discovered by V oteWin-B and V oteWin-C are the
same as the models discovered by SelectWin (see Table 2). Figure 7 illus-
trates the average running time of SelectWin, V oteWin-B and V oteWin-C
for discovering the optimal sliding window and the prediction model on each
training set. From Figure 7, we can see that the running time of V oteWin-B
and V oteWin-C are almost equal, and both of them use less than SelectWin.
The reason is that the optimal sliding window and prediction model cannot
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Table 1: Average relative errors in training sets

window China-A China-B China-C China-D China-E Measlnyc10 Mumps10

< 3, 1, 0, 0 > 0.2948 0.1509 0.1616 0.1478 0.2293 0.6645 0.4029

< 2, 2, 0, 0 > 0.3039 0.1558 0.1617 0.1465 0.2324 0.6561 0.3990

< 1, 3, 0, 0 > 0.2950 0.1538 0.1595 0.1479 0.2372 0.6582 0.3986

< 3, 0, 1, 0 > 0.2460 0.1286 0.1404 0.1289 0.2425 0.6267 0.4415

< 2, 1, 1, 0 > 0.2499 0.1265 0.1288 0.1215 0.2428 0.6312 0.3822

< 1, 2, 1, 0 > 0.2521 0.1284 0.1269 0.1225 0.2372 0.6177 0.3986

< 0, 3, 1, 0 > 0.2523 0.1587 0.1547 0.1775 0.2737 0.6408 0.4189

< 2, 0, 2, 0 > 0.2499 0.1349 0.1408 0.1282 0.2428 0.6303 0.4365

< 1, 1, 2, 0 > 0.2521 0.1284 0.1269 0.1225 0.2656 0.6458 0.3986

< 0, 2, 2, 0 > 0.2318 0.1590 0.1552 0.1797 0.2734 0.6400 0.4061

< 1, 0, 3, 0 > 0.2502 0.1426 0.1434 0.1331 0.2656 0.6456 0.4461

< 0, 1, 3, 0 > 0.2291 0.1578 0.1554 0.1819 0.2754 0.6635 0.4261

< 3, 0, 0, 1 > 0.1945 0.1652 0.1411 0.1042 0.2054 0.4725 0.2325

< 2, 1, 0, 1 > 0.2094 0.1368 0.1414 0.1207 0.2137 0.4778 0.2414

< 1, 2, 0, 1 > 0.1641 0.1358 0.1269 0.1161 0.1731 0.4581 0.2157

< 0, 3, 0, 1 > 0.1721 0.1308 0.1412 0.1204 0.1765 0.4344 0.2119

< 2, 0, 1, 1 > 0.2094 0.1281 0.1338 0.1207 0.2137 0.4778 0.2414

< 1, 1, 1, 1 > 0.2264 0.1262 0.1269 0.1225 0.2372 0.4808 0.2615

< 0, 2, 1, 1 > 0.1851 0.1304 0.1470 0.1257 0.1813 0.4303 0.2104

< 1, 0, 2, 1 > 0.1434 0.1262 0.1321 0.1110 0.1468 0.4824 0.1964

< 0, 1, 2, 1 > 0.1394 0.1315 0.1440 0.1136 0.1498 0.4992 0.1908

< 0, 0, 3, 1 > 0.1426 0.1313 0.1519 0.1140 0.1718 0.5007 0.1928

< 2, 0, 0, 2 > 0.2094 0.1429 0.1492 0.1207 0.2137 0.4565 0.2414

< 1, 1, 0, 2 > 0.2526 0.1358 0.1409 0.1479 0.2372 0.4570 0.2573

< 0, 2, 0, 2 > 0.1851 0.1304 0.1470 0.1257 0.1813 0.4303 0.2104

< 1, 0, 1, 2 > 0.2255 0.1262 0.1321 0.1331 0.2429 0.4570 0.2573

< 0, 1, 1, 2 > 0.2148 0.1315 0.1554 0.1720 0.2391 0.4373 0.2623

< 0, 0, 2, 2 > 0.1543 0.1324 0.1640 0.1209 0.1745 0.4295 0.1923

< 1, 0, 0, 3 > 0.2572 0.1323 0.1338 0.1661 0.2491 0.4570 0.2557

< 0, 1, 0, 3 > 0.2678 0.1472 0.1378 0.1745 0.2711 0.4373 0.2610

< 0, 0, 1, 3 > 0.2352 0.1508 0.1479 0.1751 0.2398 0.4317 0.2689

< 0, 0, 0, 4 > 0.3274 0.1854 0.1651 0.1720 0.3021 0.4320 0.2740

be found until SelectWin finishes the evolution on all datasets. In contrast,
SelectWin removes non-preferred datasets in the process of prediction mode
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Table 2: Prediction model evolved on each training set

time series dataset prediction model

China-A R(t) = R(t− 12)/(R(t− 13)/R(t− 1)), R(t) ∈ China-A, t ≥ 25

China-B R(t) =
√

R(t− 12) ∗R(t− 1), R(t) ∈ China-B, t ≥ 37

China-C R(t) =
√

R(t− 12) ∗
√

R(t− 24), R(t) ∈ China-C, t ≥ 37

China-D R(t) = R(t− 36) ∗R(t− 1)/R(t− 37), R(t) ∈ China-D, t ≥ 39

China-E R(t) = R(t− 1) ∗R(t− 12)/R(t− 13), R(t) ∈ China-E, t ≥ 37

Measlnyc10 R(t) = R(t− 1) ∗R(t− 1)/R(t− 2), R(t) ∈ Measlnyc10, t ≥ 14

Mumps10 R(t) = R(t− 12)/(R(t− 13)/R(t− 1)), R(t) ∈ Mumps10, t ≥ 25

evolution, so that individual evaluation is accelerated. Figure 8 illustrates
the average number of generations when the optimal prediction model is dis-
covered. We can see that the optimal prediction models are got within 400
generations in average, and both V oteWin-B and V oteWin-C can discover
the optimal prediction model in less number of generations than SelectWin
in most training sets. We conjecture that in V oteWin each individual is e-
valuated by several datasets, and assigned the highest fitness for selection, so
that the individuals with higher fitness are more likely to be selected for fur-
ther evolution. As a result, the optimal prediction model may be generated
in less number of generations.

As the total number of candidate effective multi-segment sliding windows
is 32, either V oteWin-B or V oteWin-C eliminates a window with the lowest
voting score every ⌊1000

32
⌋ generations until only one is left. As stated before,

the sliding window with the second lowest voting score will be eliminated,
if the window with the lowest voting score is the most preferred one of the
best individual. We call this situation a voting conflict. Table 3 presents the
average number of voting conflicts in the process of effective multi-segment
sliding window mining. From Tables 1 and 3, we can see that the number of
voting conflicts is related to the accuracy of prediction model. The conflict
occurs rarely when the accuracy of prediction model is high, and vice versa.

Table 3: Average number of voting conflicts

algorithms China-A China-B China-C China-D China-E Measlnyc10 Mumps10

V oteWin-B 3.50 0.35 7.90 2.90 1.20 13.90 11.60

V oteWin-C 3.80 1.00 6.35 1.55 1.70 15.30 11.70

In each running of V oteWin, candidate effective multi-segment sliding
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Figure 7: Running time for mining the optimal sliding window and prediction model

Figure 8: Number of generations for evolving the optimal prediction model

windows are eliminated one by one. We record the elimination order of
all candidate effective multi-segment sliding windows in each running of
V oteWin-B and V oteWin-C. The elimination order starts from 1. That
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is, the elimination order of the first eliminated sliding window is 1, and
the elimination order of the optimal multi-segment sliding window equals
to the total number of candidate effective multi-segment sliding windows.
Compared with Table 1, we find that for most sliding windows having low
training accuracies, the average elimination order is small. In other words,
V oteWin eliminates the windows that are not suitable for prediction model
evolution as early as possible. Tables A.1 and A.2 in Appendix list the aver-
age elimination order of each sliding window eliminated by V oteWin-B and
V oteWin-C, respectively.

6.3. Prediction Accuracy

From the prediction models listed in Table 2, we get the predicted values
on the 5 samples in each test set. Moreover, we apply ARIMA and Wavelet-
ANN (WNN) for prediction. Table 4 lists the average relative errors between
the predicted values and target values in each test set. For each test set, the
minimum prediction error is in bold. As the prediction models evolved by
SelectWin, V oteWin-B and V oteWin-C are identical, the prediction errors
of these three algorithms are the same. The errors in Table 4 show that the
prediction models evolved by GEP based algorithm can get higher prediction
precisions in all test sets except China-C. Thus, it is desirable to apply our
proposed algorithms to PIRP problem.

Table 4: Prediction errors on each test set
algorithms China-A China-B China-C China-D China-E Measlnyc10 Mumps10

ARIMA 0.2421 0.1476 0.0792 0.2180 0.3451 3.8319 0.4003

WNN 0.4064 0.1385 0.2509 0.1985 0.5288 1.3585 0.7170

SelectWin 0.1836 0.1032 0.1372 0.1160 0.2439 0.2691 0.2507

V oteWin-B 0.1836 0.1032 0.1372 0.1160 0.2439 0.2691 0.2507

V oteWin-C 0.1836 0.1032 0.1372 0.1160 0.2439 0.2691 0.2507

6.4. Scalability Test

To test the scalability of SelectWin and V oteWin, we generate 6 time
series datasets covering longer time intervals in Measlnyc and Mumps.
Specifically, Measlnyc20 and Mumps20 include the data from January 1951
to December 1970 (20 years), Measlnyc30 and Mumps30 include the data
from January 1941 to December 1970 (30 years), datasets Measlnyc40 and
Mumps40 include the data from January 1931 to December 1970 (40 years).
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We use the same experiment settings as the one used in the effectiveness
tests on Measlnyc10 and Mumps10, and apply SelectWin and V oteWin to
other datasets containing more data in longer time intervals. Figure 9 illus-
trates the average running time of SelectWin, V oteWin-B and V oteWin-C
for evolving effective multi-segment sliding window on each training set. The
running time of SelectWin, V oteWin-B and V oteWin-C increase linearly
as more data (in longer time interval) are included for training. So that it is
practicable to apply our proposed algorithms to larger datasets.

Figure 9: Comparison on the running time for discovering optimal sliding window and the
prediction model on different training sets

The optimal sliding windows discovered for Measlnyc20, Measlnyc30 and
Measlnyc40 are < 0, 2, 1, 1 >, < 1, 2, 0, 1 >, < 0, 2, 1, 1 >, respectively.
The best prediction models evolved over these sliding windows are identical:
R(t) = R(t−1)∗R(t−24)/R(t−25). The prediction error of this prediction
model on the test set is 0.3077 in average, which is worse than the prediction
model discovered for Measlnyc10 (see Table 4). For Mumps20, Mumps30
and Mumps40, the optimal sliding windows are < 0, 0, 2, 2 >, < 0, 0, 2, 2 >,
< 1, 0, 2, 1 >, respectively, and the best prediction models evolved over these
sliding windows are identical to the one discovered for Mumps10.

From the test results, we can see that the suitable time interval for train-
ing the prediction model should be closer to the prediction target and not
too long. As the prediction model evolved by GEP may not involve all da-
ta in the sliding window, the optimal prediction model for different sliding
windows may be identical.
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7. Related Works

Time Series Modeling Time series study is distinct from other data mining
problems due to the existence of natural temporal ordering in time series
data. Time series study is important since scientists can extract meaningful
characteristics of the data, and develop the model to predict future data
points based on the historical data. Time series study has been widely applied
in many domains, such as econometrics [16, 17], medical data analysis [18, 19,
20], meteorology [8]. Representative research topics on time series include:
semantics [21], fingerprinting [22], subsequence search [23, 24, 25], anomaly
detection [26, 27], similarity measure [28, 29], etc. Research on time series is
often part of research on streaming data [30] or on temporal databases [31].

There are a wide range of time series modeling methods in the literature,
making it impossible to give a comprehensive overview in this paper. In gen-
eral, time series modeling methods can be classified into three types: linear
model, such as ARMA, ARIMA [32], non-linear, such as ARCH, GARCH
[33, 34], and model-free, such as some wavelet transform based methods [35].

Time series modeling for health informatics Traditional time series
modeling methods have been widely applied to infectious disease prevention
and control [1, 2, 3, 4, 5, 6]. For instance, using time series methods, the
authors in [3] develop some models of emergency department utilization for
identifying abnormally high visit rates that may be an early warning of a
bioterrorist attack. The authors in [1] use ARIMA to predict the number of
beds occupied during a SARS outbreak in a tertiary hospital in Singapore.
In [2], ARIMA is used to predict the incidence of pulmonary tuberculosis.
ANN can overcome the linear-modeling limitation of ARIMA, so it has been
applied to many disease incidence predictions, such as cancer and hepatitis
[4, 5]. Moreover, reference [6] proposes a hybrid methodology that combines
both ARIMA and ANN models to take advantage of the unique strength of
ARIMA and ANN models in both linear and nonlinear modeling.

Evolutionary computation for time series modeling As time series
prediction can be considered as a particular case of a symbolic regression
problem [36], evolutionary computation models have been used for chaotic,
nonlinear and empirical time series. For example, Genetic Programming
(GP) can be used for modeling and forecasting chaotic time series [37, 38,
39], and discriminating between chaotic signals and noise [40]. GP based
time series prediction has been successfully used in a wide range of areas,
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such as financial time series [41, 42], traffic data [43], meteorological data
[44]. Furthermore, there are some efforts to improve the effectiveness and
adaptiveness of GP based time series modeling [45, 46, 47].

GEP has been used successfully to solve various time series problems
so far. Besides Ferreira’s work in [7], the authors in [12] design a GEP-
based method, called Differential by Microscope Interpolation, for sunspot
series prediction. In [9], the authors apply an adaptive GEP-based method
to predict the precipitation and temperatures in a region of Romania. The
authors in [8, 10] perform a comparison between GEP and ARIMA in pre-
cipitation modeling and wind prediction, respectively. The experimental s-
tudies demonstrate that the results of GEP are satisfactory and better than
ARIMA. The authors in [11] develop a GEP system EGIPSYS for symbolic
regression problems and demonstrated its utility for time series modeling.

8. Discussions and Conclusions

In this paper, we have introduced the problem of mining effective sliding
window, for discovering optimal sliding windows for building accurate pre-
diction model, for GEP based time series modeling. We investigated how
to efficiently mine effective multi-segment sliding window, which consists of
several segments from different periodical intervals. The main contributions
of this paper include designing a heuristic method for enumerating the candi-
date effective multi-segment sliding windows, proposing GEP based methods
to find the optimal sliding window and then produce a mathematical model
based on that window. Experiment results show that the proposed methods
are efficient and effective. We are not aware of other work on mining such
multi-segment sliding window for GEP based time series modeling consid-
ered.

To keep our discussion simple, in this paper we only considered using basic
arithmetic operators in developing prediction models. More operators can be
used in the GEP based model evolution. For example, the authors in [12]
applied the differential operator for building the prediction model, and got
desirable prediction results on sunspot series. We believe that more accurate
prediction models can be evolved by introducing more complex operators.

There are many interesting issues that deserve research effort in the fu-
ture. For example, it is interesting to consider how to add the environment
factors in effective multi-segment sliding window mining, how to describe the
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relationships among historical data, and how to evaluate the candidate effec-
tive multi-segment sliding windows more efficiently. Moreover, as periodicity
exists in many time series data, it is of interest to generalize the proposed
methods to solve applications in a more general scenario, including in other
domains such as economics, meteorology and finance.
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2005), Vilanova i la Geltrú, Barcelona, Spain, 2005, pp. 968–975.

[47] I. Yoshihara, T. Aoyama, M. Yasunaga, GP-based modeling method for
time series prediction with parameter optimization and node alternation,
in: Proceedings of the 2000 Congress on Evolutionary Computation, La
Jolla, CA, USA, 2000, pp. 1475–1481.

Appendix A.

37



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table A.1: Average elimination order of sliding windows eliminated by V oteWin-B

window China-A China-B China-C China-D China-E Measlnyc10 Mumps10

< 3, 1, 0, 0 > 3.30 16.90 22.70 9.20 1.10 9.60 8.20

< 2, 2, 0, 0 > 4.60 20.30 21.70 4.90 2.50 11.00 5.60

< 1, 3, 0, 0 > 5.00 7.40 20.70 6.80 2.40 12.00 9.10

< 3, 0, 1, 0 > 15.70 20.60 31.00 13.20 4.80 1.00 7.10

< 2, 1, 1, 0 > 23.70 29.90 30.00 11.80 12.50 3.00 5.30

< 1, 2, 1, 0 > 22.70 26.20 29.30 20.70 9.90 5.80 3.70

< 0, 3, 1, 0 > 22.30 12.80 25.80 21.20 11.10 8.50 10.20

< 2, 0, 2, 0 > 15.20 24.30 29.00 5.90 11.00 2.00 3.30

< 1, 1, 2, 0 > 20.30 27.80 29.10 15.40 13.60 5.40 1.80

< 0, 2, 2, 0 > 19.20 15.70 23.90 17.50 14.50 8.20 10.40

< 1, 0, 3, 0 > 22.50 14.50 27.40 15.80 7.90 4.30 1.30

< 0, 1, 3, 0 > 22.10 10.40 24.70 19.00 12.80 7.20 12.20

< 3, 0, 0, 1 > 20.20 7.40 16.10 32.00 24.40 16.70 22.20

< 2, 1, 0, 1 > 18.40 23.60 19.30 22.90 26.20 16.60 24.70

< 1, 2, 0, 1 > 24.90 18.70 16.30 28.10 28.70 24.10 27.30

< 0, 3, 0, 1 > 19.00 7.30 7.70 22.80 22.50 19.10 17.20

< 2, 0, 1, 1 > 20.90 27.20 18.60 19.30 22.40 17.20 23.50

< 1, 1, 1, 1 > 25.50 30.40 18.50 26.80 27.80 23.00 28.20

< 0, 2, 1, 1 > 19.90 22.50 11.30 22.60 21.20 26.30 18.10

< 1, 0, 2, 1 > 27.30 29.30 13.20 30.40 32.00 24.00 28.40

< 0, 1, 2, 1 > 32.00 19.10 8.10 28.50 27.50 28.90 32.00

< 0, 0, 3, 1 > 20.80 10.50 4.70 25.30 25.30 13.30 14.20

< 2, 0, 0, 2 > 8.30 12.80 18.50 9.40 18.70 20.10 23.60

< 1, 1, 0, 2 > 11.80 20.50 12.40 13.50 19.70 23.60 29.90

< 0, 2, 0, 2 > 4.60 8.80 8.40 2.20 10.10 28.10 18.70

< 1, 0, 1, 2 > 13.00 25.70 13.30 12.30 16.10 22.00 28.70

< 0, 1, 1, 2 > 7.70 17.10 6.00 7.70 10.00 30.00 20.90

< 0, 0, 2, 2 > 2.30 10.30 1.70 4.90 6.80 32.00 15.30

< 1, 0, 0, 3 > 21.10 4.00 10.00 21.50 26.20 22.40 28.50

< 0, 1, 0, 3 > 15.20 2.90 4.30 6.90 22.40 30.90 20.10

< 0, 0, 1, 3 > 11.70 2.10 1.50 17.70 18.30 14.90 15.50

< 0, 0, 0, 4 > 6.80 1.00 2.80 11.80 15.60 17.10 13.00
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Table A.2: Average elimination order of sliding windows eliminated by V oteWin-C

window China-A China-B China-C China-D China-E Measlnyc10 Mumps10

< 3, 1, 0, 0 > 2.70 21.30 22.50 8.10 1.10 10.00 8.00

< 2, 2, 0, 0 > 5.60 19.80 21.40 4.40 2.60 11.00 5.50

< 1, 3, 0, 0 > 5.30 8.10 20.30 6.70 2.30 12.00 9.00

< 3, 0, 1, 0 > 12.90 23.50 31.00 12.50 5.10 1.00 7.00

< 2, 1, 1, 0 > 21.70 29.90 30.00 13.70 13.20 3.00 5.30

< 1, 2, 1, 0 > 20.30 27.60 29.10 20.90 10.60 5.90 3.60

< 0, 3, 1, 0 > 16.60 15.70 25.60 20.10 11.60 8.50 10.20

< 2, 0, 2, 0 > 12.00 22.90 29.00 7.40 11.70 2.00 3.40

< 1, 1, 2, 0 > 16.90 25.80 28.10 17.40 14.10 5.20 1.80

< 0, 2, 2, 0 > 14.70 15.40 23.60 16.90 14.20 8.10 10.80

< 1, 0, 3, 0 > 18.70 18.50 27.40 17.20 8.10 4.20 1.40

< 0, 1, 3, 0 > 17.40 12.60 24.60 18.90 13.20 7.10 12.00

< 3, 0, 0, 1 > 24.80 7.30 16.00 32.00 24.80 15.70 22.10

< 2, 1, 0, 1 > 19.30 22.50 18.90 21.10 26.90 16.60 24.80

< 1, 2, 0, 1 > 27.90 21.60 15.90 28.70 28.40 23.70 27.30

< 0, 3, 0, 1 > 24.40 9.10 7.50 21.10 22.90 19.60 17.10

< 2, 0, 1, 1 > 22.90 26.70 19.10 18.50 25.60 18.00 24.00

< 1, 1, 1, 1 > 27.50 31.50 21.90 26.30 27.80 23.80 27.90

< 0, 2, 1, 1 > 24.70 19.40 11.50 21.10 21.00 27.00 18.10

< 1, 0, 2, 1 > 29.00 30.40 13.60 31.00 32.00 25.00 28.60

< 0, 1, 2, 1 > 32.00 21.30 8.20 27.50 27.10 29.00 32.00

< 0, 0, 3, 1 > 27.20 12.40 5.20 24.40 24.50 13.00 14.30

< 2, 0, 0, 2 > 6.50 10.20 18.30 8.50 19.50 19.70 23.10

< 1, 1, 0, 2 > 9.20 17.30 12.60 13.10 19.30 22.80 29.80

< 0, 2, 0, 2 > 3.60 5.80 8.70 2.50 8.70 28.10 18.80

< 1, 0, 1, 2 > 8.70 20.70 12.30 12.20 14.40 22.40 28.80

< 0, 1, 1, 2 > 5.20 12.80 5.70 6.60 9.40 30.00 20.90

< 0, 0, 2, 2 > 2.30 7.20 1.60 3.80 5.60 32.00 15.50

< 1, 0, 0, 3 > 23.30 4.60 9.90 22.00 25.50 22.50 28.60

< 0, 1, 0, 3 > 19.00 2.90 4.10 12.80 22.60 30.90 20.10

< 0, 0, 1, 3 > 14.70 2.20 1.50 16.50 18.20 14.00 15.20

< 0, 0, 0, 4 > 11.00 1.00 2.90 14.10 16.00 16.20 13.00
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