
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

2007

SA-REST: Semantically Interoperable and Easier-to-Use Services SA-REST: Semantically Interoperable and Easier-to-Use Services

and Mashups and Mashups

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

Karthik Gomadam
Wright State University - Main Campus

Jonathan Lathem

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Sheth, A. P., Gomadam, K., & Lathem, J. (2007). SA-REST: Semantically Interoperable and Easier-to-Use
Services and Mashups. IEEE Internet Computing, 11 (6), 91-94.
https://corescholar.libraries.wright.edu/knoesis/731

This Article is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled
Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an
authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/36753086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F731&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F731&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F731&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F731&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F731&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F731&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F731&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Semantics & Services

84 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

SA-REST: Semantically
Interoperable and Easier-
to-Use Services and Mashups

S ervices based on the representational state
transfer (REST) paradigm, a lightweight
implementation of a service-oriented archi-

tecture, have found even greater success than their
heavyweight siblings, which are based on the Web
Services Description Language (WSDL) and SOAP
(see www.w3.org/2005/Talks/1115-hh-k-ecows/ for
a comparison). By using XML-based messaging,
RESTful services can bring together discrete data
from different services to create meaningful data
sets; mashups such as these are extremely popu-
lar today.1

Mashups
Although mashups fully embrace the idea of cus-
tomization on the Web, read–write is another story.
Without technical training, it’s difficult for aver-
age users to create a mashup — they need to
understand not only how to write the code but also
the APIs and descriptions of data elements for all
the services to be included. To solve this problem,
several companies are developing tools for mashup
creation that require little or no programming
knowledge. These tools, exemplified by Yahoo’s
pipes, IBM’s QEDwiki, and Google’s Mashup Edi-
tor, facilitate the selection of some number of
RESTful Web services or other Web resources and
chain them together by piping one service’s out-
put into the next service’s input while filtering
content and making slight format changes.

One drawback of these tools is that they’re lim-
ited in the number of services with which they can
interact — typically, they deal with services inter-
nal to the company that created them or to serv-
ices that have standard types of outputs such as
RSS or Atom. Anyone with experience in data
interoperability and integration also knows that
it’s hard to integrate data through purely syntac-
tic and structural means — semantic techniques are

required. If a company developing a mashup tool
wanted to add a new service that didn’t have a
standard output or that wasn’t internal to their
tool, it could modify its existing tooling in order
to incorporate the new service’s interface. Howev-
er, this solution isn’t scalable because of the rate
at which new services are coming online. The need
to change the tool itself also negates the idea of a
customizable Web.

How, then, to address these limitations and find
a less complex yet scalable approach? Reuse and
data mediation have led to several proposals for
Semantic Web services, leading to the W3C recom-
mendation for the Semantic Annotation of WSDL
and XML Schemas (SAWSDL; www.w3.org/TR/
sawsdl/). But adding semantics to REST is more
challenging than adding semantics to WSDL.
Unlike WSDL, REST-based services are often
embedded in Web pages written largely in XHTML.
Although WSDL was specifically created to cap-
ture service descriptions and has a supporting
schema for doing so, XHTML is a more general-
purpose language that adds semantic annotations
only to those page elements that wrap a service or
a service description.

For an open, flexible, and standards-based
approach to adding semantics to RESTful servic-
es, we built the SA-REST description by borrow-
ing the idea of grounding service descriptions to
semantic metamodels via model reference anno-
tations from SAWSDL. The key difference between
SAWSDL and SA-REST is that although SAWSDL
annotations were added to formal service descrip-
tions in WSDL, SA-REST annotations will have to
be added to the services that are usually described
in Web pages composed in HTML. Consequently,
SA-REST uses RDFa (www.w3.org/TR/xhtml-rdf
a-primer/) and Gleaning Resource Descriptions
from Dialects of Languages (GRDDL; www.w3.

Amit P. Sheth and Karthik Gomadam • Wright State University
Jon Lathem • University of Georgia

org/TR/grddl/) to add and capture
annotations.

SA-REST: Foundations
and Annotations
Following several efforts to add formal
semantics to traditional Web services,
the W3C recommendation for SAWS-
DL has became the baseline for devel-
oping a Semantic Web service based
on WSDL (http://knoesis.wright.edu/
library/resource.html?id=00068).2 SA-
REST borrows many ideas first pre-
sented in our work on WSDL-S (www.
w3.org/Submission/WSDL-S/) and then
adapted in SAWSDL, specifically the
model reference attribute, which links
and maps a service element to the
ontological concepts that describe it.

The basic annotations that SAWS-
DL adds are inputs, outputs, operation,
interfaces, and faults; in SAWSDL,
semantic annotations are simply bits
of XML embedded as properties in
WSDL (basically, URIs of ontology
objects). In other words, the annota-
tion of a concept in SAWSDL or SA-
REST ties that concept to an ontology
or a conceptual model. As with SAWS-
DL, SA-REST doesn’t enforce the
choice of language for representing an
ontology or a conceptual model, but it
does allow the use of OWL or RDF,
which are now accepted as preferred
and standards-based approaches to
represent ontologies. Because SAWS-
DL and SA-REST are more concerned
with data structure than with the rela-
tionships between objects and reason-
ing, developers will likely use RDF
more frequently in the near future
because of its simplicity.

Annotation Techniques
and Languages
In SAWSDL, semantic annotations that
describe a service appear in that ser-
vice’s WSDL, which is logical because
of the one-to-one correlation between
WSDL and a traditional SOAP-based
Web service. Most RESTful Web servic-
es don’t have WSDL because the main

objective of REST is simplicity
(WSDL facilitates significant
tooling support).

Most RESTful Web services
have HTML pages that describe
to users what the service does
and how to invoke it — in one
sense, this HTML is somewhat
equivalent to WSDL for REST-
ful Web services, making it an
ideal place to add semantic
annotations. The problem,
however, with treating HTML
like WSDL is that the former is
meant to be human readable
whereas the latter was
designed to be machine read-
able. Microformats might offer
a solution: they offer a way to
add semantic metadata to
human-readable text in such a
way that machines can glean
semantics. Recently the W3C
has worked on standardizing
two different microformat
technologies, GRDDL and
RDFa. GRDDL, which recently
became a W3C recommenda-
tion, offers a way for the
human-readable text’s author
to choose any microformat
and specify a translation into
machine-readable text; RDFa
offers a way to embed RDF
triples into an XML, HTML, or XHTML
document. For SA-REST, we recom-
mend using RDFa because it’s a subset
of RDF, extends XHTML to annotate
with markups or annotations, has
built-in support URIs and namespaces,
and is recognized by the W3C.

In SA-REST descriptions, we embed
semantic annotations in RDFa into the
HTML page that describes the service,
thus making the page both human and
machine readable and creating a single
place to make an update if the service
changes. SA-REST leaves it up to the
user as to how and where to embed
triples — they can be intermingled with
the HTML or clustered together and not
rendered by the Web browser. The triple’s

subject should be the URL at which the
service is invoked; the predicate of the
triple should be sarest:input,
sarest:output, sarest:operation,
sarest:lifting, sarest:lowering,
or sarest:fault, where sarest is the
alias to the SA-REST namespace. The
triple’s object should be either a URI or a
URL to a resource, depending on the
predicate. Figure 1 gives a detailed
example of an SA-REST document for a
Web service to search for houses on
craigslist.com.

Using GRDDL
To build in more flexibility and lower
the barriers to entry, SA-REST also
allows the use of GRDDL for attaching

NOVEMBER • DECEMBER 2007 85

SA-REST Mashups

Figure 1. SA-REST document. For a
craigslist.com service, this document describes
semantic annotations both inside the <meta>
tag as well as inside formatting tags such as
.Annotations in the <meta> tags
aren’t visible to the user, but he or she can see
annotations in the .

<html xmlns:sarest=”http://lsdis.cs.uga.edu/SAREST#”>

…

<p about=” http://craigslist.org/search/”>

The logical input of this service is an

http://lsdis.cs.uga.edu/ont.owl#Location_Query

object.The logical output of this service is a list of

http://lsdis.cs.uga.edu/ont.owl#Location

objects.This service should be invoked using an

HTTP GET

<meta property=”sarest:lifting” content=

“http://craigslist.org/api/lifting.xsl”/>

<meta property=”sarest:lowering” content=

“http://craigslist.org/api/lowering.xsl”/>

<meta property=”sarest:operation” content=

“http://lsdis.cs.uga.edu/

ont.owl#Location_Search”/>

</p>

86 www.computer.org/internet/ IEEE INTERNET COMPUTING

Semantics & Services

annotations. To annotate an HTML
page with GRDDL, the author must
first embed the annotations in a micro-

format and add a profile attribute to
the <head> tag in the HTML docu-
ment. This attribute is the GRDDL pro-

file’s URL, which tells the agents com-
ing to the HTML page that it was
annotated with GRDDL. The final step

Figure 2. Mashup architecture. User query (1) results in invocation of service1 (2.1 and 2.2); data mediation (DM1 and
DM2) of output XML from service 1(2.2) maps the input of service2; and the proxy server is the container for the
smashup editor, ontologies, and data mediation rules (as XSLT).

Client machine

Smashup editor

Ontology

2.1 Input to
SA-REST
service 1

2.2 Output
of SA-REST
service 1

3.2 Output to SA-REST
service 2

Data
mediation

using
lifting and
lowering

Proxy server

1.URLs of the SA-REST services to be mashedup

Movie finder service output XML (Service 1 output)
<theater xmlann:modelReference="MovieOnt#Cinema">
<name>AMC 30 At The Block</name>
<location xmlann:modelReference="MovieOnt#Location">
<address xmlann:modelReference= "MovieOnt#StreetAddress">
20 City Blvd West Ste. 1, Orange, CA, USA</address>
<Coordinates xmlann:modelReference="MovieOnt#Coordinates">
<lat>33.68278</lat>
<long>-1 17.816743</long>
</Coordinates>
</location>
<movieID xmlann:modelReference="MovieOnt#Movie_Name">
Underdog
</movieID>
<movieTime xmlann:modelReference="MovieOnt#Screening_Time">
1:30 3:50
</movieTime>
</theater>

<pointLocation
xmlann:modelReference="MovieOnt#Location">

<streetAddress
xmlann:modelReference=
"MovieOnt#StreetAddress">
20 City Blvd W est Ste. 1, Orange, CA,
USA</streetAddress >
</pointLocation >

Data mediation between the output of service 1
and the input of service 2 using semantic annotations.

Map service
output
(Service 2
output)

Map service input XML (Service 2 input)

Annotated
HTML

Service provider 1

SA-REST
service

Address: > go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

Lifting and lowering

<?xml v
 <ref:
 <gr

XML

Data
mediation

using
lifting and
lowering Output of

Service 1
Input of
Service 2

<?xml v
 <ref:
 <gr

XML

<?xml v
 <ref:
 <gr

XML

3.1 Input to
SA-REST
service 2

Annotated
HTML

Service provider 2

SA-REST
service

Movie finder service
INPUT XML (Service 1 input)

...
<zipCode
xmlann:modelReference="
MovieOnt#zipCode">
92604
</zipCode>
..,

is to add a link tag inside the head ele-
ment that contains the translation doc-
ument’s URL. Although you can use
any format to add annotations to this
page, the data extracted after transla-
tion must result in RDF triples identi-
cal to those that would be generated
via RDFa embedding. In other words,
a page annotated with GRDDL must
still produce triples whose subject is
the URL used to invoke the service,
whose predicate is the type of SA-
REST annotation applied, and whose
object is the URI or URL of the
resource to which the predicate refers.

GRDDL’s advantage is that it’s less
intrusive than RDFa, and it lets the
user embed annotations in whatever
way is most convenient to them.
RDFa’s advantage is that annotations
are self-contained in the HTML page,
so the user only needs to create and
maintain a single document (GRDDL
forces the user to create two docu-
ments, the HTML page and the trans-
lation document). RDFa also has the
advantage of being a standardized
microformat, which makes it simpler
for a developer to maintain and under-
stand a page created by someone else.

Creating Mashups
with SA-REST
A mashup uses RESTful Web services
to query providers and get content,
usually in XML format. However, the
different data definitions and represen-
tations used by various providers
necessitate a semantic approach for
seamless data integration. Using
semantics to integrate and coordinate
mashups thus gives us smashups
(semantic mashups).3

Annotations give smashups the
ability to know more about a service’s
inputs and outputs and what the serv-
ice does, which facilitates data media-
tion. Figure 2 shows a typical smashup
architecture that uses two RESTful
Web services, (a movie finder service
and a mapping service).

The key component of this architec-

ture is the proxy server, which hosts the
smashup editor; the ontologies that
capture the semantics are also deployed
here, which lets a smashup developer
achieve various tasks including seman-
tic reasoning and data mediation. Users
can also specify data mediation using
the principles of lifting and lowering
with the XSLTs that capture these
mediation rules. In Figure 2, we used
two services to create a smashup, and
the user submits the URLs of the anno-
tated HTML pages to the proxy server.
The proxy server applies an XSLT to
the annotated pages and extracts (or
gleans, in the case of GRDDL) the RDF
triples captured in the annotations and
thus creates the service descriptions.
The user then uses these descriptions to
create the smashup.

At this time, the user can go through
and specify from where all the inputs
should be gathered and whether each
input should be an input to the service
or an output from a service higher up the
chain. In other words, if the first service
returns a location object as an output,
the input to the second service can either
be obtained as an input to the smashup
or be the location object from the first
service. In the example in Figure 2, the
user sends a zip code object to the movie
finder service. The proxy server extracts
the location information from the out-
put of the movie finder service and sends
it as an input to the mapping service.
Once the mapping service returns the
map canvas, the rest of the information
about the movie title and the timings are
displayed in the map.

W e discuss SA-REST in more detail
elsewhere;4 it’s still in an early

form, but just as WSDL-S matured into
SAWSDL with community participation
in the W3C working group, we hope
additional effort will make SA-REST
more mature and useful. The W3C’s
Semantic Web services testbed incuba-
tor, SWS-XG (www.w3.org/2005/
Incubator/swsc), is also expected to pro-

vide a forum for community discussion.
Additional discussions on the role of
semantics in the broader context of
services science that encompasses Web
services and technical issues, as well as
human and organizational issues,
appear elsewhere,4 as does a view of the
number of experts in the Semantic Web
services area.5

References

1. B. Worthen, “Mashups Sew Data Together:

Software Tools Can Cut Costs, Time for

Linking Information Sources,” The Wall

Street J., 31 July 2007, p. B4.

2. K. Verma and A. Sheth, “Semantically

Annotating a Web Service,” IEEE Internet

Computing, vol. 11, no. 2, 2007, pp. 83–85.

3. A. Sheth, K. Verma, and K. Gomadam,

“Semantics to Energize the Full Services Spec-

trum: Ontological Approach to Better Exploit

Services at Technical and Business Levels,”

Comm. ACM, vol., 49, no. 7, 2006, pp. 55–61.

4. J. Lathem, K. Gomadam, and A. Sheth, “SA-

REST and (S)mashups: Adding Semantics to

RESTful Services,” Proc. IEEE Int’l Conf.

Semantic Computing, IEEE CS Press, 2007,

pp. 469–476.

5. D. Martin et al., “Semantic Web Services:

Part 2,” Part 1," IEEE Intelligent Systems, vol.

22, no. 5, pp. 12-17. Also, D. Martin et al.,

"Semantic Web Services: Part 2," to appear

in IEEE Intelligent Systems, vol. 22, no. 6.

Amit P. Sheth is the LexisNexis Ohio Eminent

Scholar and director of the Knowledge-

enabled Information and Services Science

(Kno.e.sis) Center (http://knoesis.wright.edu)

at Wright State University. He is an IEEE fel-

low. Contact him via http://knoesis.

wright.edu/amit.

Karthik Gomadam is a PhD student and a

researcher at the Kno.e.sis Center in the

areas of semantic middleware and Seman-

tic Web services. Contact him at gomadam

-rajagopal.2@wright.edu .

Jon Lathem is a software engineer at National

Crash Registry (NCR). He has an MS in com-

puter science from the University of Georgia.

Contact him at lathem@cs.uga.edu.

NOVEMBER • DECEMBER 2007 87

SA-REST Mashups

	SA-REST: Semantically Interoperable and Easier-to-Use Services and Mashups
	Repository Citation

	tmp.1410982182.pdf.joepF

