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Abstract
We discuss an approach for predicting microscopic (individ-

ual) and macroscopic (collective) user behavioral patterns

with respect to specific trending topics on Twitter1. Going be-

yond previous efforts that have analyzed driving factors in

whether andwhen a user will publish topic-relevant tweets,

here we seek to predict the strength of content generation

which allows more accurate understanding of Twitter users’

behavior and more effective utilization of the online social

network for diffusing information.

Unlike traditional approaches, we consider multiple dimen-

sions into one regression-based prediction framework cover-

ing network structure, user interaction, content characteris-

tics and past activity. Experimental results on three large

Twitter datasets demonstrate the efficacy of our proposed

method. We find in particular that combining features from

multiple aspects (especially past activity information and net-

work features) yields the best performance. Furthermore, we

observe that leveraging more past information leads to bet-

ter prediction performance, although the marginal benefit is

diminishing.

Keywords
Social Networks, User Engagement, Volume Prediction,

People-Content-Network Analysis (PCNA)

ACM Classification Keywords
H.2.8 Database Management: Database Applications - Data
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1http://www.twitter.com



Introduction
The ubiquitousness of Twitter as a micro-blogging service

has revolutionized and reshaped how information spreads in

cyber-space. By sending short tweets from computers and

mobile devices, Twitter users can easily publish content, in-

teract with others and engage in online discussion. Apart

from being a social network, Twitter has also proved valuable

in many situations including epidemic surveillance [3], emer-

gency response [10], political campaigns [13], etc.

Researchers have been studying Twitter and other social net-

works from multiple facets in recent years, and an affluence

of works have been presented [2, 9, 5, 14, 7]. Here we are

interested in predicting Twitter users’ behavior of generating

topic-relevant tweets, and especially estimating the amount

of relevant tweets they will write in the future. Accurate pre-

diction of this value can benefit understanding online commu-

nity sustainability (i.e. to estimate the amount of discussion

within a community in the future), viral marketing (i.e. to de-

sign strategy which maximizes the reach of viral messages)

and many more applications. Unfortunately, previous studies

modeled the prediction problem as binary classification (for

instance, “whether a user writes tweet or not in given time

frame” [8] , “whether the group size exceeds a threshold or

not” [5]), which has a coarse granularity and cannot provide

a precise estimate of topic discussion volume.

In this paper, we focus on two tasks: predicting the micro-

scopic (individual) and macroscopic (collective) volume of

topical tweets that Twitter users will generate within a time

frame. Beyond prior tweeting activity and content analysis,

we posit that the underlying follower-followee network has a

critical role to play in predicting the strength of this signal.

We extract a series of features from tweet content, user net-

work structure, neighboring friends’ influence and user past

activity, and build a linear regression model extending our

earlier effort [8] on building a unified framework for effec-

tive study usingmultiple dimensions, namely People-Content-

Network analysis (PCNA). Experiment results show that our

model achieves decent accuracy on both tasks.

Methodology
Problem Statement

The first (microscopic) task of our study is to predict how

many tweets relevant to a topic each user will write on each

day in a time interval. Specifically, given a topic t we want to

estimate the relevant tweet volume voltiu by each user u on

each day di ∈ [ds, de], using only information from the past h
days before di (i.e. [di−h, di−1]). The second (macroscopic)

task is to predict the total amount of relevant tweets that a

group of users will generate on each di, i.e.
∑

voltiu. Please
refer to Table 1 for notations.

Let us start with explaining the notion of a tweet “being

relevant” to a topic. For each topic, we initially collect

tweets based onmanually-selected seed keywords using Twit-

ter Streaming API. We build a topic-context set by fetching

concepts and entities from the top 3 Wikipedia pages re-

trieved from Google search for the topic, inspired from ap-

proach in [12]. This set is complemented by extracting top

10% frequent terms (uni-grams, bi-grams and hashtags) from

the tweet corpus. We keep human in the loop to maintain this

set’s relevancy. A tweet is considered relevant to the topic if

its text contains at least one element in this set.

We also observe the need for limiting the user search space

as it is impractical and unnecessary to consider all tens of

millions of registered Twitter users. Therefore, on the day di
we only consider the prediction of users in a candidate set

Ct
i . A user u belongs to the candidate set for topic t on di if

and only if 1) u wrote at least one tweet relevant to t during
the whole time period [ds, de], and 2) u follows some users

who also wrote a tweet relevant to t during di−h and di−1.

The first condition is because we are focusing on predicting

how many relevant tweets a user would write, and the prob-

lem of determiningwhether a user would write relevant tweet



has been addressed in our previous work [8]. This restriction

also removes Twitter users who were simply offline or inac-

tive during the period. The second condition is because social

network users’ behavior is greatly influenced by their social

circles. Since tweets written by a user are broadcast to all

followers, those followers will become aware of the topic dis-

cussed in the tweets and are likely to write about the topic,

too.

Table 1 summarizes notations used in the paper.

Notation Meaning

t topic

u Twitter user

di day i

voltiu number of tweets rel-

evant to t written by

u on di

[ds, de] time period for pre-

diction

h number of past days

used for modeling

U t
i authors that wrote

tweets relevant to t
on di

U t ∪
ds≤di≤de

U t
i

Γ(u) u’s followers

Γ−1(u) u’s friends (i.e. fol-

lowees)

Ct
i {u | u ∈ U t ∧ (∃v ∈∪

dp−h≤di<dp
U t

i

s.t. u ∈ Γ(v))}

Table 1: Notation Table

Feature Description

We introduce the set of features considered by our model,

which can be divided into four categories: network, author,

content and past activity.

Network Features (NF)

Network features are structural features which, on a coarse

level, measure the amount of topic-related information a user

u has received from his/her online friends on a day di.

• Connectivity: number of u’s friends who wrote tweets

relevant to t on di. According to the notations, it is

|{v | v ∈ U t
i ∧ v ∈ Γ−1(u)}|.

• Highly-engaged Connectivity: number of u’s highly-

engaged friends. An author v is said to be highly-

engaged on topic t on di if vol
t
iv is within the top 3%

of voltiw for all w ∈ U t
i .

• Friends’ total tweet volume: total number of relevant

tweets written by u’s friends on di.
• Interaction: total number of times u was mentioned

(via the @username symbol) by friends in U t
i on di.

We use this feature to capture interactions between

users and friends, which reflect much stronger ties than

ordinary follower-friend relationships. Mention also in-

cludes retweet (via the RT@username convention), an-

other type of user interaction.

Author Features (AF)

Author features are designed to capture the online influence

of a user. Intuitively, the more influential and authoritative an

author is, the more likely his/her followers will be “activated”

and spread the information further. For an author u, the two

author features are:

• Klout score: u’s klout score2, which is a unified

third-party score composed of influence characteristics

across multiple social networks.

• Logarithm of number of followers: log10 |Γ(u)|.
Though simple, this feature is often well correlated with

a user’s influence and network reach [1, 14].

Content Features (CF)

There exist intrinsic differences between 140-character

tweets and traditional documents. First of all, tweets tend

to have a more informal writing style, including heavy usage

of acronyms and emoticons. Moreover, space constraints en-

courage the inclusion of hyperlinks that point to full-length

articles or multimedia contents. For example, almost 50%

of tweets relevant to the Occupy Wall Street movement con-

tain at least one hyperlink3. Lastly, several features includ-

ing retweet, mention and hashtag are Twitter-specific and do

not appear on other platforms. In previous studies [11, 1],

those content features were also shown to encourage spread

of tweets. We define the following features for each tweet:

• Retweet count: number of RT@username patterns.

• Mention count: number of @username patterns.

• Hashtag count: number of #phrase patterns.

• Relevant URL count: number of relevant hyperlinks. To

determine the relevancy of URLs, we used the topic-

2http://www.klout.com
3Check http://twitris.knoesis.org/ows/insights/



context set. If the hyperlinked content contains two or

more of the concepts, the URL is regarded as relevant.

Otherwise, the count is reduced by one.

• Multimedia URL count: number of hyperlinks to multi-

media contents.

• Subjectivity score: weighted average of subjectivity

scores of words4, symbols and emoticons5.

Past Activity (PA)

On the day di, the feature group of past activity contains

voltju for dj ∈ [di−h, di−1]. It is included for two reasons.

First, past activity is helpful in showing a user’s inertia of writ-

ing topic-relevant tweets, which is in turn a good predictor

for the user’s future behavior. Second, it is easy to curate in

practice.

Modeling Process
For each prediction day dp, features described above are

computed for all candidates and all days over [dp−h, dp−1].
A two-stage feature consolidation is then performed to ma-

terialize all features for a candidate user as a single vector.

For a user u and a day di ∈ [dp−h, dp−1], the first step is to

sum up author features of u’s friends in U t
i as well as content

features of tweets written by those friends. The assumption

behind this operation is that the likelihood of a user gener-

ating relevant content is positively correlated to the amount

of influence received from his/her friends. The second step is

to, for each u, perform weighted summation of network, au-

thor and content features over the time period [dp−h, dp−1],
where the weight is exponentially decaying with time. For a

day di ∈ [dp−h, dp−1], the weight is calculated as αdp−di ,

where 0 < α < 1. This is a common approach used in so-

cial network analytics in order to emphasize the importance

of more recent information [15, 4, 8]. For this study we let α

be 0.8. Past activity features are not aggregated, and each

of them is treated as a separate feature.

We then build a linear regression model using feature vectors

on dp. All or a part of feature elements are used as regres-

sors, and voltpu, the number of u’s relevant tweets on dp is

the regressand. Compared with other tools, linear regression

has multiple advantages including higher efficiency, low stor-

age overhead and statistical interpretability on model coeffi-

cients. We discuss the prediction performance of our model

in detail in the following section.

Experiments
Datasets
In this section, we present experimental results following the

methodology described above. We crawled tweets relevant

to three topics frequently discussed in late 2011 for nearly a

month: Anti-corruption movement in India (IAC), former foot-

ball coach Jerry Sandusky’s scandal (JSS) and Occupy Wall

Street movement (OWS). Table 2 lists basic information of the

three datasets.

Topic Period # Tweets # Unique Authors

IAC 11/06 - 12/02 93,525 19,705

JSS 11/06 - 11/30 251,316 152,174

OWS 11/06 - 12/02 2,042,653 320,415

Table 2: Datasets Statistics

In this paper, we focus on the study of efficacy of each feature

group as a unit. For brevity, studies on the effects of individ-

ual features is not presented due to the exponential number

of possible combinations of them.
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h = 2

Topic maxP (f ≥ F ∗ | H0)
Full vs. Strawman

IAC 2.094323× 10−3

JSS 1.142266× 10−10

OWS 9.977034× 10−156

Table 3: Partial F-tests Results
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Figure 2: R2
a on Microscopic Predic-

tion with Varying h Values

Microscopic (User-Level) Prediction
We first tested the prediction of individual users’ relevant

tweet volume. We use R language’s linear regression pack-

age, and report adjusted R2 value (R2
a) for each model. For

4http://www.cs.pitt.edu/mpqa/subj_lexicon.html
5Compiled from emoticons listed on http://en.wikipedia.org/wiki/List_of_emoticons and their variants.



a regression model with n records and p regressors (i.e. fea-

tures), R2
a it is defined as R2

a = 1 − (n−1
n−p )

SSE
SSTO , where

SSTO and SSE are sum of squares of regressands and

residuals, respectively [6]. Higher R2
a value indicates that

a larger proportion of total sum of squares is explained, thus

a higher explanatory power of the model.

We used two days of past information (i.e. h = 2) to build

models, and computed average R2
a value over the period.

Figure 1 shows the results of five models using different se-

lections of features. The name of each model indicates which

feature groups it uses, where PA stands for past activity, NF

for network features, AF for author features and CF for content

features. For example, modelPA+AF includes past activity

information and author features as regressors. As observed

from the plot, higher R2
a values are obtained when extra fea-

tures are added on top of past activity. Another finding is that

author features introduce additional explaining power beyond

network features and content features. Although there is no

guarantee of causality, it may suggest that the motivation

behind users’ involvement in topical discussion is attributed

more to the general influence of friends than the specific con-

tent.

R2
a value could be inflated when more regressors are in-

cluded. To address this concern, we further performed partial

F-tests on the full model (PA+AF +NF +CF ) against the

simple strawman (PA). The null hypothesisH0 is that all ad-

ditional features’ coefficients are zero, and a statistic F ∗ will

follow an F distribution if H0 holds [6]. As shown in Table 3,

for all topics the conditional probability P (f ≥ F ∗ | H0)
never exceeds 10−2 on any single day’s data. Therefore, we

reject H0 and conclude that the additional explaining power

from extra features is statistically significant.

For the JSS dataset we note that the overall user-level (mi-

croscopic) prediction accuracies are low. We should point out

that on this dataset the average number of tweets per user is

under 2. Thus, there is by and large insufficient information

on most users to predict how much they will tweet on this

topic. However, it is interesting to note that if we look at a

subset of the users that tweet more frequently (> 5 tweets

on this topic, results not shown) and also when one aims at

predicting the output of the collection of users in its entirety,

the accuracy increases significantly (see sectionmacroscopic

prediction and Figure 3).

Impact of Amount of Past Information
To investigate the impact of past information amount on

model performance, we ran another set of experiments where

parameter h was varied from 1 to 5. Figure 2 shows the re-

sult. The first observation is that the more past information

is available, the higher R2
a values. A second observation is

that improvement from additional past information is often

diminishing, suggesting that recent information has larger in-

fluence than older. Such a finding is consistent with those

from previous works.
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Macroscopic prediction
Finally, we present the results on predicting the behavior of

users en masse. For a prediction day dp, we use the coeffi-

cients learned from previous day’s regression model to fit the

feature vectors on dp. Then we compute the accuracy value

as 1−
|
∑

i∈Ct
p
v̂ol

t
pu−

∑
i∈Ct

p
voltpu|

max(
∑

i∈Ct
p
v̂ol

t
pu,

∑
i∈Ct

p
voltpu)

, where v̂ol
t

pu is the es-

timated total volume and voltpu is the real total volume.

Figures 3 and 4 show results with varying models and h val-

ues, respectively. For each topic, the average accuracy over

days is reported. Compared with that on microscopic predic-

tion, the performance of topic JSS has significant improve-

ment. Again, the trend of diminishing return on the amount

of past information is observed.

Conclusion
In this abstract, we introduce an effective framework for mod-

eling and predicting the volume of topic-specific tweets that



will be generated by Twitter users in the future. Experimental

results show that including features based on content, net-

work structure and online influence provides higher explain-

ing power than using past activity information alone, and the

benefit is statistically significant. We also find that newer

knowledge contributes more to the prediction accuracy than

older knowledge. Apart from being able to predict an individ-

ual user’s future tweet volume, our model also obtains rea-

sonable accuracy when modeling aggregated volume from all

users. For future works, we would like to devise topic-specific

influence measures of social network users and use the ex-

tracted features in a non-linear regression model, as the non-

linear correlation between features and regressand could be

higher. Finally, we are also interested in investigating the per-

formance of each single feature to see the effect across the

feature dimensions.
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