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ABSTRACT

Motivation: Common contemporary practice within the nuclear
magnetic resonance (NMR) metabolomics community is to evaluate
and validate novel algorithms on empirical data or simplified
simulated data. Empirical data captures the complex characteristics
of experimental data, but the optimal or most correct analysis
is unknown a priori; therefore, researchers are forced to rely on
indirect performance metrics, which are of limited value. In order
to achieve fair and complete analysis of competing techniques more
exacting metrics are required. Thus, metabolomics researchers often
evaluate their algorithms on simplified simulated data with a known
answer. Unfortunately, the conclusions obtained on simulated data
are only of value if the data sets are complex enough for results to
generalize to true experimental data. Ideally, synthetic data should
be indistinguishable from empirical data, yet retain a known best
analysis.
Results: We have developed a technique for creating realistic
synthetic metabolomics validation sets based on NMR spectroscopic
data. The validation sets are developed by characterizing the salient
distributions in sets of empirical spectroscopic data. Using this
technique, several validation sets are constructed with a variety of
characteristics present in ‘real’ data. A case study is then presented
to compare the relative accuracy of several alignment algorithms
using the increased precision afforded by these synthetic data sets.
Availability: These data sets are available for download at
http://birg.cs.wright.edu/nmr_synthetic_data_sets.
Contact: travis.doom@wright.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The science of metabolomics (Fiehn, 2002)—the quantitative
measurement of the metabolic response of biological systems to
pathology or genetic modification—is a relatively young field that
requires intensive signal processing and multivariate data analysis
for interpretation of experimental results. Metabolomics techniques
are used to identify biomarkers associated with: responses to toxin

∗To whom correspondence should be addressed.

and pathophysiologic changes (Azmi et al., 2005; Lindon et al.
2001; Shockcor and Holmes, 2002), sample classification based on
the type of toxic exposure (Beckonert, 2003), large scale human
studies (Bijlsma et al., 2006), clinical diagnosis (Brindle et al., 2002;
Griffin et al., 2001), differential gene expression (Bundy et al., 2002;
Gavaghan et al., 2000), and the study of genetic disorders (Griffin
et al., 2001).

Inherent to these data-driven applications is the need for
statistical and computational techniques to facilitate the associated
data analysis. As such, metabolomics is particularly subject to
the proliferation of data preparation and analysis methods. The
selection of the most appropriate data analysis techniques is a
common problem for researchers working in the ‘omics’ fields
(e.g. metabolomics, proteomics and genomics) (Robertson, 2005).
The interpretation of results requires in-depth knowledge of
both the biological aspects and the analytical methods. As with
other modern assays, there are a wide variety of potential data-
transformation methods at each of the many data analysis steps
(Davis et al., 2007; Stoyanova and Brown, 2002; van den Berg
et al., 2006; Webb-Robertson et al., 2005). In current practice,
selection methods are based upon the type of experiment, the specific
hypothesis, expediency, and investigators’ background, experience
and preference. The multivariate nature of these data can yield
varied results dependent upon the choice of analytical method, and
are highly subject to differing interpretations (Cloarec et al., 2005;
Holmes et al., 2000).

Two techniques most often used to measure metabolite
concentrations are nuclear magnetic resonance (NMR) (Lindon
et al., 2001) and mass spectrometry (MS). Mass spectrometry
includes an on-line separation step, such as high performance
liquid chromatography (LC-MS) (Wilson et al., 2005) or gas
chromatography (GC-MS) (Szopa et al., 2001). Both techniques
provide complementary information and can be used to analyze
urine, plasma and blood. Furthermore, NMR requires little sample
preparation and is non-destructive, while MS provides higher
sensitivity (Bezabeh et al., 2009; Gerszten and Wang, 2008; Lewis
et al., 2008; Reo, 2002; Robertson, 2005).

NMR-based metabolomics data processing and analysis is
typically divided into five steps: (i) standard post-instrumental
processing of spectroscopic data, (ii) quantification of spectral
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features, (iii) normalization, (iv) scaling and (v) multivariate
statistical modeling of data and pattern recognition. At each one
of these steps, researchers must select among several algorithms
for data processing and analysis. This task of selecting the ‘best’
technique for each step is complicated by several factors, including
the limited number of direct comparisons of competing techniques,
the ongoing creation of novel techniques, and the application-
dependent nature of selecting a technique.

Common contemporary practice within the NMR-based
metabolomics community is to evaluate and validate novel
algorithms on empirical data or on simplified simulated data (Davis
et al., 2007; Forshed et al., 2005; Webb-Robertson et al., 2005).
Empirical data captures the complex characteristics of experimental
data, but the optimal or most correct analysis is unknown a priori;
researchers are forced to rely on indirect performance metrics. For
example, two spectral alignment algorithms might be compared
based on their ability to enhance the class separation of data after
principal component analysis and partial least squares discriminant
analysis (Forshed, et al., 2005). Comparison of algorithms based
on their indirect performance on empirical data is of limited value.
More exacting performance metrics are necessary.

In order to achieve fair and complete analysis of competing
techniques, a true or ‘most correct’ analysis of that data must
be known. This is demonstrated for the assessment of alignment
algorithms for LC-MS by establishing a ground truth by identifying
peptides (Lange et al., 2008). As an alternative. metabolomics
researchers often evaluate their algorithms on simplified simulated
data with a known answer (Davis et al., 2007; Webb-Robertson
et al., 2005). Unfortunately, the conclusions obtained on simulated
data are only of value if the data sets are complex enough for results
to generalize to true experimental data.

In order for comparisons of technique performance on simulated
data to be of value, the data must emulate the salient features of
experimental data. Identifying the pertinent characteristics is the
most critical step in generating realistic synthetic data. Ideally,
synthetic data should be indistinguishable from empirical data, yet
retain a ‘known’ best analysis.

Herein, we propose a technique for creating realistic synthetic
metabolomics validation sets based on NMR spectroscopic data.
The validation sets are developed by characterizing the salient
distributions in sets of empirical spectroscopic data. Each spectrum
is modeled as a combination of Gaussian-Lorentzian peaks and a
piecewise cubic interpolated baseline. Using this technique, several
validation sets are constructed with a variety of characteristics
present in ‘real’ data. A case study is presented to compare the
relative accuracy of several alignment algorithms using the increased
precision afforded by these synthetic data sets (Wong et al., 2005a
and b).

2 SYSTEM AND METHODS
The process of characterizing 1H NMR spectroscopic data is divided into
seven general steps: (i) Collect experimental data. (ii) Divide each spectrum
into segments that are individually modeled by a set of Gaussian-Lorentzian
peaks and a baseline offset, where the initial locations of the peaks are
manually selected. The location and other peak parameters are adjusted by a
non-linear curve-fitting routine. The manual selection of the initial locations
is necessary due to the level of congestion typical of a 1H NMR spectrum.
The full automatic deconvolution of an entire 1H NMR spectrum is an open
research problem. (iii) Combine the segments to form a global model for

each spectrum that is optimized by non-linear curve-fitting. (iv) Optimize
the global model until the residual can be decomposed into normally
distributed regions (µ=0). (v) Characterize the within-peak variability by
matching peaks between spectra. (vi) Characterize the baseline variability by
comparing baseline intensities between spectra. (vii) Extract the distributions
for the peak parameters and baseline intensities.

After the characterization of the spectroscopic data, the process of
generating synthetic validation sets is divided into three general steps:
(i) Generate a reference spectrum that will serve as the base for the
entire data set. This spectrum contains the parameters for each peak (e.g.
height, width and location) in addition to a reference baseline. These
parameters are selected from the distributions extracted in the final step of
spectral characterization. (ii) Generate individual spectra by varying the peak
parameters and baseline intensities from the reference spectrum according
to the extracted distributions. (iii) Add Gaussian distributed noise to each
spectrum.

2.1 1H Spectroscopic data
The identification of biomarkers for a specific toxin is a common research
area in metabolomics (Beckwith-Hall et al., 2002; Holmes et al., 2000).
Here a biomarker is defined as a set of NMR signals that change after
exposure to the toxin. Such an experiment consists of at least two groups
(e.g. pre- and post-dose) for which spectroscopic data is compiled. Often,
this experimental data is obtained by analyzing animal urine before and after
acute toxic exposure.

The synthetic data sets developed in this manuscript are analogous to
a set of control samples for a typical urinary metabolomics study using
a rat animal model. The NMR spectral data were processed using Varian
software and employed exponential multiplication (0.3 Hz line-broadening),
Fourier transformation and baseline flattening (fifth-order polynomial and
spline fitting routines). The TSP signal was used as an internal chemical shift
reference, and the regions surrounding the residual water signal (∼4.8 ppm)
and the urea signal (∼5.8 ppm) were excluded from the analyses. The vertical
shift of the entire spectrum was adjusted such that the mean of the intensities
between 11.6 and 10 ppm was zero. Then the peak intensities of each
spectrum were normalized to a constant sum. The final data set consists of
22 1H spectra from individual normal healthy rats. Additional information
on the experimental techniques is given in the Supplementary Material.

2.2 Spectra characterization
2.2.1 Modeling the spectra Each spectrum is characterized by
decomposing it into its constituent components: peaks, noise and baseline.
The observable NMR free induction decay (FID) signal is an exponential
decaying sinusoid leading to an approximate Lorentzian peak shape
after Fourier transformation. Noise and baseline distortions arise from
congested areas of the spectrum with multiple overlapping peaks, naturally
broad signals from proteins or lipids, and the amplifier of a quadrature
detection magnet system (Grage and Akke, 2003). The peaks in this analysis
are modeled by Gaussian–Lorentzian functions that are defined by the
magnitude (M), SD of the Gaussian (σ), fraction Lorentzian (P), the center
(xc) and the width at half height of the Lorentzian (�):

S
([M,σ,P,xc],x

)=P×L
([M,�,xc],x

)+(1−P)×G
([M,σ,xc],x

)
, (1)

L
([M,�,xc],x

)= M ×�2

4(x−xc)2 +�2
, (2)

G
([M,�,xc],x

)=M exp
(
−(x−xc)2/(2×σ2)

)
, (3)

where �=2
√

2ln2σ, and P is a real value between 0.0 and 1.0 that weights
the contribution of the Lorentzian [L(...)] and Gaussian [G(...)] functions.
The mixture of the Gaussian and Lorentzian peaks is selected to provide
a flexible peak shape. The relationship between the width at half height
of the Lorentzian peak and the SD of the Gaussian peak is fixed by
assuming that both the height and the width at half height are the same
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Fig. 1. Graphical representation of the construction of a Gaussian-
Lorentzian peak and resulting mixture for different ratios of P.

for both peaks. This simplifies the model by avoiding a separate parameter
for both the SD and width at half height. A graphical representation of the
Gaussian–Lorentzian peak is shown in Figure 1.

The first step in decomposing a spectrum is to divide it into regions
separated by signal that has been removed (e.g. the water signal). For the
spectra considered in this paper, the signals that have been removed are
the water, urea and TSP signals. This results in two independent regions
divided by the water and urea signals. These regions are then divided
into non-overlapping segments ranging from 0.05 to 0.15 ppm in size. To
determine these segments, the spectrum is divided into uniform segments of
size 0.05 ppm. Then the location of the minimum intensity (local minimum)
in each odd numbered segment defines the adjusted segment boundaries.
Thus, the width of a segment is varied to avoid placing a boundary in
the middle of a peak. In congested areas of the spectrum, each segment
encompasses several peaks while remaining small to allow the initial fitting
routines to be performed interactively.

Following the creation of the segments, the initial locations of the
peaks are interactively selected. The final locations of the peaks and their
parameters (e.g. width, height) are determined algorithmically by solving
the corresponding non-linear curve-fitting problem. The parameters of the
non-linear curve-fitting problem are estimated by a subspace trust-region
method based on the interior-reflective Newton method (Coleman and Li,
1994, 1996). The parameters are adjusted to minimize the function:

1

2

m∑
i

(
F(β,xi)−yi

)2
, (4)

where xi and yi are the chemical shift and intensity of the i-th point in the
segment, m is the number of data points in the segment, β is a vector of the
parameters, and F is the model that will be fit by the algorithm, which is
composed of Gaussian–Lorentzian peaks and a baseline offset:

F(β,xi)=
N∑

j=1

S
([Mj,σj,Pj,xcj],xi

)+O, (5)

where [Mj,σj,Pj,xcj] and the baseline offset O(constant for an entire
segment) refer to parameters in the vector β. The parameters Mj , σj , Pj

and xcj refer to the height, SD, fraction of Lorentzian and center of the j-th
peak, respectively. An illustration of this model is shown in Figure 2, where
a region of a spectrum is modeled as a combination of six peaks.

The non-linear curve-fitting algorithm estimates the optimal model
parameters using their initial values and bounds. The initial location, xcj ,
of each peak is manually selected. The initial height, Mj , of each peak is
defined as the difference between the maximum and minimum intensities in
the region surrounding the peak. The initial value of the width at half height,
�j , is defined as double the distance (ppm) between the maximum intensity
in the region and the location of the peak’s half height (i.e. initial height
divided by two). The initial SD, σj , can then be computed from the width at
half height. The initial fraction Lorentzian, Pj , of each peak is defined as 0.5.

Fig. 2. Sample region of a spectrum decomposed into six peaks modeled as
Gaussian–Lorentzian functions with a baseline offset.

The initial offset, O, is defined as the minimum intensity in the segment. The
lower and upper bounds for parameters are defined as:

0 < Mj ≤ MAXj ,
0 < σj ≤ |sL −sR|,
0 ≤ Pj ≤ 1.0,

αj < xcj < ωj,

0 ≤ O ≤ MAXj,

(6)

where MAXj is the maximum height in the j-th segment, and sL and sR are the
left and right boundaries of the segment. The boundaries for location of each
peak, [αj ,ωj], are defined as the locations corresponding to the minimum
intensities between the current peak and the adjacent peaks. In the special
cases of the first and last peaks of each segment, the segment boundary is
used to define the region.

After defining the initial values and bounds for the parameters, the non-
linear curve-fitting algorithm optimizes the parameters to minimize the
difference between the model and the original data measured by Equation (4).
The resulting parameters are then used as inputs to a second iteration of the
non-linear curve-fitting algorithm. Additionally, the newly optimized peak
locations are used to update the lower and upper bounds of xcj . This second
iteration enhances the non-linear curve-fitting algorithm’s ability to find the
global optimum. Following this second iteration, the results are visually
inspected as a preliminary review; a statistically based stopping criterion is
introduced later. Each segment is then adjusted by adding, removing and
modifying the locations of the peaks. This procedure is repeated until the
model passes a visual inspection. At this point in the characterization, the
goal is an approximate model for each segment. These segments will be
combined to form a global model, which will be adjusted until the residual
can be decomposed into independent normally distributed regions, each with
a mean of zero.

After the segments are modeled individually, all of the segments are
combined to obtain a global model, which is defined as follows:

�(β,xi)=
N∑

j=1

S
([Mj,σj,Pj,xcj],xi

)+baseline(β,xi), (7)

where �(β,xi) is the global model with the model parameters, β.
Furthermore, N is the number of peaks in the entire spectrum, thus, Mj , σj , Pj

and xcj refer to the height, SD, fraction of Lorentzian, and center of the j-th
peak. The baseline model, baseline(β,xi), is the piecewise cubic interpolation
of baseline intensities (i.e. height of the baseline) spaced 0.05 ppm apart
(Fritsch and Carlson, 1980). The baseline intensities are parameters of the
model (β), and thus, they are determined by the non-linear curve-fitting
algorithm.

Due to the large number of peaks (i.e. parameters) in the rat urine spectra
described above, the global model is fit in an iterative fashion. First, the
peaks determined from independently fitting the segments are held constant
as the baseline model is fit. The initial values of the baseline intensities are the
offsets of the independent segments. These baseline intensities are uniformly
spaced at an interval of 0.05 ppm. The interval between baseline intensities
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Fig. 3. Illustration of a region showing the residual (i.e. signal minus model).
The curve-fitting procedure is repeated until the residual can be decomposed
into independent normally distributed regions.

must be large enough to prevent the baseline from modeling individual
peaks, while remaining small enough to accurately model the baseline. These
intensities are interpolated to create a smooth baseline. Second, with the
baseline held constant, the peaks are fit using a sliding window of width
0.04 ppm, encompassing several peaks. The window is used to select those
peaks that will be fit during the current iteration. Those peaks outside of the
window are held constant. A step size of 0.01 ppm is used to provide overlap
between adjacent windows. Finally, after the sliding window has covered the
entire spectrum, the baseline is updated again with the peaks held constant.
This procedure results in the first global model.

The noise from the amplifier of a quadrature detection magnet system
has been shown to follow a white and Gaussian distribution about the
baseline (Grage and Akke, 2003). Thus, the global model is interactively
modified until the residual can be decomposed into independent normally
distributed regions (µ = 0). The Anderson–Darling test is used to determine
if each region follows a normal distribution (α = 0.01) (Stevens, 1974, 1976,
1977, 1979), and the t-test is used to determine if a normally distributed
region has a mean of zero (α = 0.01). The minimum width of each region is
0.025 ppm (60 data points). Each region is extended until it no longer follows
a normal distribution with a mean of zero. To provide flexibility, a number of
small (<0.01 ppm) non-normal segments are allowed between the normally
distributed regions. The number of non-normal segments is determined by
the following formula:

(xmax −xmin)

0.01
×α (8)

where α is the significance level, and xmax and xmin are the maximum and
minimum chemical shift values of the spectrum, respectively. An example
region is shown in Figure 3.

In addition to defining a stopping condition for the interactive procedure
described above, analyzing the residual can also be used to refine the model
for each spectrum. Where two models satisfy the requirement that the residual
can be decomposed into independent normally distributed regions equally
well, the more parsimonious model is preferred. To achieve this objective,
each peak (smallest to largest) is tested for removal from the model until the
residual no longer satisfies the stopping condition. Furthermore, a second
condition is added to check the local region around the selected peak,
specifying that a region of 0.15 ppm (containing multiple peaks) centered on
the peak can be decomposed into independent normally distributed regions
with a mean of zero.

This process is repeated until no additional peaks can be removed. Once
this is finished, a single peak is considered as a replacement for every pair
of adjacent peaks. Two potential peaks are fit independently as a single
Gaussian–Lorentzian peak. The two adjacent peaks are then replaced by the
single peak, if the two stopping conditions are met and the R2 value is above
0.98. This is repeated until no two peaks can be combined, and results in
a global model for each spectrum consisting of Gaussian–Lorentzian peaks
and a cubic interpolated baseline.

Fig. 4. Illustration of a set of Gaussian–Lorentzian peaks divided into three
groups: foreground, background and baseline.

Once each spectrum is modeled by a set of Gaussian–Lorentzian peaks and
a piecewise cubic interpolation baseline model, the peaks are separated into
three groups: baseline, background and foreground. The distinction between
background and foreground facilitates the characterization of within-peak
variation. Such real spectral features arise since the 1H spectra of biofluids are
very congested with multiple overlapping peaks, or can sometimes contain
naturally broad signals from proteins or lipids (more prevalent in blood
samples). In urinary spectra, these broad signal regions are mostly due
to numerous overlapping metabolite signals that are at or near the limits
of NMR detection (sometimes referred to as chemical noise). In practice,
measurement of these signals is not possible because they are too weak and
poorly resolved, but their presence tends to distort the baseline; therefore,
our peak-fitting algorithm must address these spectral features.

A heuristic identifies baseline peaks whose width at half height is
greater than six times their height. The background and foreground peaks
are distinguished by the minimum distance between a maximum and its
corresponding minima, where maxima are matched to the nearest peak. The
minimum distance from maximum to minimum is calculated from the model
consisting of Gaussian–Lorentzian peaks and piecewise cubic interpolated
baseline. If this distance is above four times the SD of the entire residual, then
it is considered a foreground peak (i.e. observable). A sample illustration of a
set of Gaussian–Lorentzian peaks divided into groups is shown in Figure 4.

2.2.2 Characterizing the variability of the spectra The model of each
spectrum is comprised of a set of Gaussian–Lorentzian peaks and a piecewise
cubic interpolated baseline. Each model is constructed such that the residual
can be broken into independent normally distributed regions (µ = 0). All of
the peaks are further divided into foreground, background and baseline. The
foreground (i.e. clearly observable) peaks provide a mechanism to estimate
the within-peak variability of the 22 1H spectra.

The peak parameters (Mj,σj , and Pj) for the signal peaks (combination of
foreground and background peaks) and the baseline peaks are tested using
the Anderson–Darling statistical test (α = 0.05) to determine if they follow
one of the following parametric distributions: Weibull, exponential (specific
case of the Weibull distribution), normal, lognormal and Gumbel (also known
as the extreme value type 1 distribution) (Krishnamoorthy, 2006). These
common distributions are tested to discover if the parameters follow any of
the aforementioned underlying distributions.

The peak parameters are common to both the signal and baseline
peaks; however, the signal and baseline peaks are analyzed independently.
Furthermore, there are parameters that are specific to each group. This is a
result of the process that will be used to create a synthetic spectrum, where the
signal peaks are placed first, followed by the piecewise interpolated baseline
and baseline peaks. The distance between adjacent peaks, the distance from
the start of the spectrum to the first peak, and the distance from the end of
the spectrum to the last peak are calculated to characterize the signal peaks.

The baseline intensities for the piecewise cubic interpolated baseline are
calculated in relationship to the number of signal peaks per ppm, and the
previous baseline intensity. The baseline peaks are then determined in relation
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to the number of signal peaks per ppm and the baseline intensity. These values
are calculated for each baseline segment of size 0.05 ppm. In addition, the
distance to the first baseline peak and the distance to the last baseline peak
is measured. Finally, the normalized sum of squared error is calculated to
capture the within-baseline variability using the following formula:

NSSE =
∑

i

(
µi −sigmai

µi

)2

, (9)

where µi is the mean of the i-th baseline intensity and sigmai is the
corresponding SD.

The residual is characterized by employing a sliding window of
size 0.1 ppm with a step size of 0.05 ppm to calculate the SD of the residual
along the spectrum. The number of signal peaks and the number of baseline
peaks per ppm are calculated for each window.

For all of the components (peaks and baseline), the relationships
between the parameters must be determined to create an accurate synthetic
spectrum. This relationship is evaluated using the Spearman rank correlation
(α = 0.05) (Spearman, 1904), if the parameters do not follow a parametric
distribution; otherwise, the correlation is evaluated using the Pearson
correlation coefficient.

The distributions described above detail the components of a single
spectrum. The baseline peaks and residual are independently generated for
each spectrum; however, the variation of the signal peaks and the piecewise
cubic interpolated baseline between spectra must be estimated. The degree of
this variability can be modified when creating a validation set. The variability
within each signal peak can be approximated from the foreground peaks,
which can be matched between spectra. After the peaks are matched the
task of modeling the within-peak variation is straight-forward; however, the
results of a peak-matching algorithm cannot be verified on the experimental
data set. This type of evaluation will be available after the creation of a
synthetic data set. The goal of characterizing the within-peak variation is
to provide an approximation that will be used as a basis for the synthetic
data sets. The resulting within-spectrum distributions can be varied to create
several synthetic data sets to achieve a more robust validation.

The peak-matching algorithm begins by arbitrarily selecting one of the
spectra to serve as a reference spectrum. The rest of the spectra are then
matched to this spectrum by matching its foreground peaks to the nearest peak
in the reference spectrum. If two or more peaks from the same spectrum are
matched to the same reference peak, these ambiguous matches are removed
from the data used to characterize within-peak variability. This algorithm
will result in a set of peaks that have been matched between spectra that
characterize within-peak variation. The within-peak distributions include
distance from center (capturing misalignment and pH effects), difference
from average height, difference from average width and the difference from
average fraction Lorentzian. The Anderson–Darling statistical test (α = 0.01)
is repeated for each peak and each of the aforementioned distributions. If
<1% of the tests are significant (i.e. does not follow the distribution), then
the parameter is assumed to follow the test distribution.

2.3 Generating a synthetic spectral data set
Any number of synthetic data sets can be generated from the characteristics of
the experimental 1H NMR spectroscopic data set.Asynthetic data set is based
on a single base spectrum. The base spectrum is constructed in two stages:
(i) generation of the signal peaks; and (ii) generation of the piecewise cubic
interpolated baseline. The data set is then constructed by modifying the base
spectrum to introduce between spectra variability to emulate the 1H spectral
data set. Specifically, the height, width, fraction Lorentzian and location of
the peaks are altered from the base spectrum to simulate real experiments. In
addition, the piecewise cubic interpolated baseline is varied between spectra.
Finally, the baseline peaks and Gaussian noise are independently generated
for each spectrum.

2.3.1 Signal peaks During the first stage, the signal peaks are generated
by sampling the corresponding characteristic parameter distributions for the

Fig. 5. Generation of a new peak by sampling the distributions for the height,
width at half height, fraction Lorentzian and distance between adjacent peaks.

Fig. 6. Process of generating piecewise baseline (� = 0.5 ppm) by applying
a weighted mean to the intermediate baseline.

height, width, fraction Lorentzian and location. For example, the positions of
the peaks are determined by sampling the distance between adjacent peaks
distribution, and the heights of each peak are selected by sampling the peak
height distribution. The generation of a new peak is illustrated in Figure 5.
The location of the first and last signal peaks are selected by sampling the
corresponding distributions.

2.3.2 Baseline The second component, the baseline, is composed of a
piecewise cubic interpolated baseline of uniform segments of size 0.05 ppm
and baseline peaks. The baseline is divided into three regions to accurately
model segments of the baseline with different characteristics. The first and
third regions contain the baseline intensities (i.e. height of the baseline) from
the beginning of the spectrum to the first peak and the baseline intensities
from the end of the spectrum to the last peak, respectively. The second
region consists of the intervening baseline intensities. The first and third
regions remain relatively flat, while the third region contains the majority
of the baseline distortion. The process of generating a synthetic baseline is
shown in Figure 6, where the first step is to generate a reference baseline
that will serve as a base for the baselines of the individual spectra.

The reference baseline is generated by smoothing an intermediate baseline
that is created by sampling the baseline intensities distributions. The
reference baseline intensities, si, are computed as the weighted average of the
adjacent intermediate baseline intensities, uj , within a minimum distance, �:

si =
∑

j

wijuj, (10)

wij = 1−∣∣xi −xj
∣∣∑

∀k
1−|xi −xk | , (11)

where
∣∣xi −xj

∣∣ is the distance between the baseline intensities. Furthermore,
the degree of variation of a baseline can be controlled by modifying the
minimum distance, � (i.e. for a gradual baseline use a large minimum
distance).
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Fig. 7. Two simplified spectra with their associated base spectrum.

The individual spectrum baselines are generated to conform to the overall
shape of the reference baseline. The amount of variation from the base
spectrum is determined by generating a target NSSE. A specific baseline
is then generated from the reference baseline by individually adjusting
its intensities using their corresponding SDs. The SDs control the regions
of the spectrum that have higher variability (i.e. the third region). These
intermediate intensities are then smoothed according to Equation (11). The
smoothed intensities are then iteratively adjusted until they reach the target
NSSE.

The baseline peaks are introduced to each spectrum by selecting the
number of baseline peaks per segment with relation to the number of
signal peaks and the baseline intensity. The baseline peaks are generated
by sampling the characteristic parameter distributions for their height, width
and fraction Lorentzian. The locations of the baseline peaks are randomly
selected within each segment. The location of the first and last baseline peaks
are selected by sampling the corresponding distributions.

2.3.3 Noise The SD of the noise is not constant throughout the spectrum.
This may be the result of a mixture of chemical noise in some regions and
true white thermal noise in other regions. This is modeled by estimating
the SD of the noise every 0.05 ppm with respect to the number of signal
peaks in the neighborhood (0.1 ppm). These estimates are then interpolated
to determine the SD of the noise along the entire spectrum.

2.3.4 Within-spectrum variability Each spectrum in the synthetic data set
is constructed by adding the spectrum independent components (baseline
peaks and noise) and by modifying the base spectrum. The within-peak
variability is introduced to the signal peaks, and finally, the piecewise
baseline of the base spectrum is modified for each spectrum. A simplified
base spectrum and two synthetic spectra with peak variability are shown
in Figure 7.

After adding the spectrum independent components, the within-peak
variability is introduced by adjusting the peak parameters based on the
matched foreground peak distributions. The parameter values of the matched
peaks are normalized as fractional differences from their means. Then for
each signal peak, a matched peak is randomly selected as a model for its
within-peak variability.

The last step to creating a synthetic spectrum is to introduce variability
to the piecewise baseline. The variability of the baseline is modeled by the
sum of squared error from the mean baseline of the empirical data. For each
baseline in the synthetic data set, a target sum of squared error is estimated.
The intensities are modified according to their SD until the sum of squared
error from the baseline of the base spectrum reaches the target.

2.3.5 Generating parameters Due to the large number of peaks (∼1500)
in each of the 22 spectra, sampling directly from the parameter values
approximates the actual distribution. The method for selecting a parameter
(e.g. peak height and location) for the synthetic spectrum depends on whether
that parameter is correlated with one or more parameters, and whether the
values of any of these parameters are preexisting. For example, if the height

and width of a peak are correlated, they must be selected from an appropriate
multivariate distribution. An example of the second case is if the height and
width of a signal peak are correlated with the fraction Lorentzian, but that
the distance between adjacent peaks is correlated with the height and width
but not the fraction Lorentzian. To solve this problem, the height, width and
fraction Lorentzian are selected from a multivariate distribution. Then the
height and width are used as preexisting values to select the distance between
adjacent peaks.

The correlated parameters are drawn from a multivariate distribution
represented as a table of values. If these parameters are not correlated to any
preexisting parameters, then they can be selected from a table that captures
the underlying multivariate distribution. The final value is determined by
sorting the values for each parameter independently and then generating a
uniform random number between previous and next parameter. This resolves
the problem of fixing the exact values of the parameters. When there are
preexisting parameters, they constrain the range of values that can be selected
from the table.

2.3.6 Available data sets The procedure to generate spectral data sets can
be modified to produce validation sets with different characteristics. Some of
these modifications include selecting a fraction of the peaks to create a sparser
spectrum, selecting a subset of the peaks to be consistent across spectra and
modifying the distributions via transformations (e.g. multiplication, addition,
logarithm and exponential). In addition to generating control data sets,
treatment data sets are also created with varying degrees of response. These
data sets are available for download and have been organized according to
their characteristics (Anderson et al., 2009).

2.4 Case study: comparing alignment algorithms
Three preexisting alignment algorithms were chosen to illustrate the
advantages of using synthetic validation sets that accurately capture the
characteristics of empirical data (Wong et al., 2005a, b). These three
alignment algorithms are available in the spectral processing software
suite: SpecAlign (Wong et al., 2005a). These algorithms were developed
specifically for the alignment of SELDI and MALDI type clinical proteomics
data. Thus, this case study will also provide an evaluation of their
applicability to NMR spectral data. The three algorithms include alignment
algorithms based on peak matching or fast Fourier transform cross-
correlation.

The first algorithm aligns peaks that have been automatically selected in
each spectrum. Potential peaks are selected by sliding a window across the
spectra to determine if there is a change in the gradient from positive to
negative. These peaks are selected if they are above the baseline cutoff and
also above the average intensity across the local region of the spectrum. The
baseline cutoff is defined as the fraction of the baseline under the baseline
intensity at which the algorithm should ignore picking peaks. The baseline
is automatically determined via a restrained moving average, where only
values less than the local average are added to the global moving average.
The local average is defined as 1/100th the size of the entire spectrum. For
the peak-picking algorithm, the default parameters were used (window: 21,
baseline cutoff: 0.5, height ratio: 1.5). After the peaks have been identified,
each spectrum is aligned to an arbitrarily chosen target spectrum. For each
spectrum, the peaks are individually aligned to the closest peak in the target
spectrum. The alignment is performed by adjusting the minima adjacent to
the selected peaks, where points that are inserted are estimated by least-
squares fitting about the neighboring points.

The next two alignment algorithms are based on the fast Fourier transform
cross-correlation. These alignment algorithms are the peak alignment by
fast Fourier transform (PAFFT) and the recursive alignment by fast Fourier
transform (RAFFT). These two algorithms do not depend on peak picking
and are therefore more suitable to highly congested spectra (Wong et al.,
2005b). These algorithms divide the spectra into segments before the
evaluation of the best shift via the fast Fourier transform cross-correlation.
The recursive alignment by fast Fourier transform (RAFFT) extends PAFFT
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by recursively searching for the optimal minimum size to divide the spectra
(i.e. segment size). Both algorithms require the maximum shift of a segment
to be specified. This comparison used a maximum shift of 20 points
(∼0.01 ppm).

The use of a synthetic data set facilitates the development of metrics that
can directly measure the relative performance of the algorithms. For the
alignment algorithms, the optimal alignment is known a priori. To compute
the optimal alignment the peak shift is removed from each spectrum to
align the peaks with the target spectrum. This alignment can then be directly
compared to the alignment results from the aforementioned algorithms. This
is quantified by the average sum of squares error that is defined as follows:

ASSE =
∑M

j=1
∑N

i=1

(
yj,i −aj,i

)2

M
, (12)

where yj,i is the perfectly aligned value of the i-th data point in the
j-th spectrum, and M and N are the number of spectra to align to the
target and the number of data points in each spectrum, respectively. The
ASSE of the unaligned spectra is compared to the ASSE after alignment.
The relative increase (RI) in ASSE measures the ability of an alignment
algorithm to correct for misalignment, where a positive increase indicates an
improvement. The RI metric is calculated as follows:

RI= ASSEu −ASSEa

ASSEu
, (13)

where ASSEu is the average sum of squares error for unaligned spectra and
ASSEa is the average sum of squares error for aligned spectra.

3 RESULTS

3.1 Parameters
The creation of synthetic spectral data set begins by characterizing
the underlying parameter distributions. These distributions are
extracted using the procedure described in Section 2.2.2. The
components of a synthetic spectrum are the signal peaks, baseline
peaks, baseline intensities that define the cubic interpolated baseline
and the noise. Furthermore, each spectrum is decomposed into
∼1700 peaks. Most of the parameters do not follow one of the
parametric distributions listed in Section 2.2.2; therefore, they are
treated as non-parametric. The exceptions include the baseline
intensities and sum of squared error from the mean baseline; these
parameters follow a normal distribution (α = 0.05).

After analyzing each parameter individually, the relationship
between parameters for each component was tested using the
Spearman rank correlation. These relationships will determine the
details of how a synthetic spectrum is constructed. For example,
if the peak height and width are not correlated, then they can
be selected independently. This procedure is described in detail
in Section 2.3. The significant correlations (α = 0.05) for each
component are shown in Table 1.

3.2 Case study: comparing alignment algorithms
The case study illustrates the advantages of using the synthetic
validation sets to directly compare algorithms. Three spectral
alignment algorithms were selected to test their applicability to
NMR spectral data. The algorithms were compared on 30 synthetic
validation sets each containing five spectra. A sample region of one
of these data sets is shown in Figure 8, and additional examples are
available in the Supplemental Material.

Each alignment algorithm was applied to the data sets using the
first spectrum in the data set as the reference. The algorithms are

Table 1. Relationships between the parameters for each of the components:
(a) signal peaks, (b) baseline peaks, (c) piecewise baseline and (d) noise

Height, M ↔ Width, σ

Height, M ↔ Fraction Lorentzian, P
Height, M ↔ Distance between adjacent signal peak
Width, σ ↔ Fraction Lorentzian, P
Width, σ ↔ Distance between adjacent signal peaks

(a) Signal peaks

Height, M ↔ Width, σ

Width, σ ↔ Fraction Lorentzian, P
Number of baseline peaks per ppm ↔ number of signal peaks per ppm
Number of baseline peaks per ppm ↔ baseline intensities

(b) Piecewise baseline

Baseline intensity ↔ number of signal peaks per ppm
Baseline intensity ↔ Previous baseline intensities

(c) Baseline peaks

Standard deviation,SD ↔ number of signal peaks per ppm
(d) Noise

Fig. 8. Sample region of one of the synthetic data sets used in the evaluation
of the alignment algorithms (∼4.5 ppm).

Table 2. Average and SD of the RI of the ASSE for 30 synthetic data sets

Algorithm Average Standard deviation P-value

Peak matching method 3.59 12.33 0.0935
PAFFT correlation method 2.78 3.09 0.0002
RAFFT correlation method 5.16 7.30 0.0016

The P-value of applying the t-test to determine if the RI is >0.

tested to determine if a statistically significant positive change in RI
is observed. These results are shown in Table 2.

The PAFFT and RAFFT correlation alignment algorithms show
a significant positive change after alignment (α = 0.05). The peak
matching alignment algorithm fails to improve the alignment as
measured by ASSE. This is most likely a result of the congestion
typical of 1H spectra according to the authors (Wong et al., 2005b).
A second comparison between RAFFT and PAFFT using the two-
sample t-test showed that RAFFT was significantly better than
PAFFT (α = 0.05).
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4 DISCUSSION
Novel algorithms for metabolomics data analysis are commonly
compared and evaluated on empirical and simulated data. While
simulated data is attractive as it enables the quantification of
direct performance metrics, its value is directly tied to its ability
to capture the salient features of empirical data. In contrast,
empirical data captures the complex characteristics of experimental
data, but comparisons are often formed on indirect performance
metrics because the optimal or correct output is difficult to obtain
a priori.

In this manuscript, we develop a technique for creating synthetic
validation sets that characterize the salient features based on NMR
spectroscopic data of rat urine samples from a metabolomics
experiment. The validation sets were developed by modeling
each spectrum as a combination of Gaussian–Lorentzian peaks
and a piecewise cubic interpolated baseline. Each spectrum was
constructed such that the residual could be decomposed into regions
that follow a normal distribution, each with a mean of zero.
The characterization time on a typical desktop machine (Pentium
4, 2 GB of RAM) averages several hours/spectrum. Using the
distributions resulting from the characterization, the validation sets
are automatically generated, and their running time depends on the
number of data sets requested and the number of spectra for each data
set. For 100 data sets with 50 spectra each, the worst-case running
time for this procedure is several hours. To provide instant access
to these data sets, several validation sets were constructed with a
variety of characteristics and are publicly available (Anderson et al.,
2009). Furthermore, additional synthetic data sets are actively being
developed, including 13C NMR synthetic data sets.

Three alignment algorithms are selected to illustrate the procedure
of comparing algorithms on the novel validation sets. Two of
the alignment algorithms based on the cross-correlation (PAFFT
and RAFFT) showed a significant positive change after alignment
as measured by ASSE (α = 0.05). The peak matching alignment
algorithm fails to improve the alignment. According to the authors,
this is a result of the congestion typical of 1H spectra (Wong et al.,
2005b). Comparing the PAFFT and RAFFT alignment algorithms,
the RAFFT algorithm was significantly better than PAFFT using the
two-sample t-test (α = 0.05) as measured by ASSE. This is due to the
ability of the RAFFT algorithm to optimize the minimum segment
size employed during the alignment. This comparison illustrates the
advantages of the synthetic validation sets. A more detailed analysis
of the three aforementioned algorithms in addition to other alignment
algorithms is an area of future research (Forshed et al., 2003; Torgrip
et al., 2003).

The case study demonstrates the procedure of comparing and
validating algorithms on the novel synthetic data sets. Specifically,
a direct performance metric, ASSE, is calculated using the correct
spectral alignment, which is unavailable for experimental data. In
addition, the distributions associated with peak specific parameters
may be employed by quantification techniques as a statistical basis.
The data sets will facilitate the development of novel algorithms
in addition to improving the quality of algorithm comparisons.
The availability of this data significantly improves the ability of
researchers to select the most appropriate algorithms for their
experimental data analysis.
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