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Abstract

The concept of jumping emerging patterns
(JEPs) has been proposed to describe those dis-
criminating features which only occur in the pos-
itive training instances but do not occur in the
negative class at all; JEPs have been used to
construct classifiers which generally provide bet-
ter accuracy than the state-of-the-art classifiers
such as C4.5. The algorithms for maintaining the
space of jumping emerging patterns(JEP space)
are presented in this paper. We prove that JEP
spaces satisfy the property of convexity. There-
fore JEP spaces can beconcisely represented
by two bounds: consisting respectively of the
most generalelements and themost specificel-
ements. In response to insertion of new training
instances, a JEP space is modified by operating
on its boundary elements and the boundary ele-
ments of the JEP spaces associated with the new
instances. This strategy completely avoids the
need to go back to the most initial step to build
the new JEP space. In addition, our maintenance
algorithms can well handle such other cases as
deletion of instances, insertion of new attributes,
and deletion of attributes.

1. Introduction

The problem of how to discover powerful distinguishable
features from classes of data is an important research topic
in the field of machine learning and the field of data mining.
The concept ofjumping emerging patterns(JEPs) (Dong
& Li, 1999) has been proposed to describe those discrim-
inating features which only occur in the positive training
instances but do not occur in the negative class at all. The
most frequently appearing JEPs have been used to build ac-
curate classifiers (Dong et al, 1999; Li, Dong, & Ramamo-
hanarao, in press). Their accuracy is generally better than

the state-of-the-art classifiers such as C4.5 (Quinlan, 1993).
In this paper, we first propose the concept of thespace of
JEPs, called JEP space, consisting of all JEPs with respect
to a given set of positive and negative data. We prove that
JEP spaces satisfy the property of convexity, which means
that JEP spaces can be bounded and then they can be con-
cisely represented by the boundary elements. Forming the
concept of JEP space, we shift the perspective of looking
at JEPs individually to the perspective of examining all
JEPs as a whole. Furthermore, we can utilize its convexity
to develop efficient maintenance algorithms to modify its
boundary elements in response to changes to the data. This
point is extremely crucial for practical applications because
modifications to the previously processed data will be fre-
quent and the new JEP space will be constantly needed.

In this paper, the algorithms for maintaining JEP spaces
in response toinsertion of new instances, deletion of in-
stances, insertion of new attributes, and deletion of at-
tributes are proposed. As a proportion of the JEPs pre-
viously discovered before the change in the relations still
constitutes valid knowledge following the changes in the
data set, the maintenance algorithms take advantage of
nearly repeated computations on inputs that differ slightly
from one another, computing new JEP spaces incremen-
tally by making use of the previous JEP spaces rather than
recalculating from scratch. Therefore, the maintenance
procedure is a chain of operations on JEP spaces. The
high efficiency of these algorithms mainly stems from the
operations on the boundary elements of JEP spaces rather
than enumerating and examining all individual JEPs. Con-
sequently the maintenance algorithms will provide great
computational savings and validate the scalability of the
JEP-based classifiers.

Our JEP space is closely related toversion space(Hirsh,
1994; Mitchell, 1977, 1982). Given a set of positive and
a set of negative training instances, a version space is the
set of allgeneralizations(or item patterns) that each match



(or be contained in) every positive instance and no negative
instance in the training set. In contrast, a JEP space is the
set of all item patterns that each match (or be contained in)
one or more (not necessarily every) positive instances and
no negative instance in the set. Therefore, the consistency
restrictions with the training data are significantly differ-
ent between JEP spaces and version spaces. The different
consistency restrictions result in fundamentally different al-
gorithms for creating JEP spaces and version spaces. On
the other hand, the similar aspect of JEP space and ver-
sion space is that both of them are convex spaces (Gunter,
Ngair, & Subramanian, 1997) and both of them can be con-
cisely represented and efficiently maintained. Moreover,
often a JEP space still contains many discriminating fea-
tures where a version space may contain no elements.

Another work related to JEP space is the JEP-based clas-
sifiers, one of which called JEP classifier (Li, Dong, &
Ramamohanarao, in press). JEP classifier is a learning
method, which consists of two phases. In the first phase, all
JEPs are discovered. In the second phase, the frequencies
of JEPs are weighted to form classification scores when a
test instance is given. So, the efficiency for the maintenance
of JEP spaces is an important factor to make JEP classifier
up to date by including the new information as soon as pos-
sible.

As mentioned before, the notion of emerging patterns is a
previously proposed concept. For concise representation,
emerging patterns (with some constraints) and a special
type of them, JEPs, are represented bymultipleborders in
Dong and Li (1999) and Li, Dong, and Ramamohanarao (in
press). However, we use onlyoneborder instead of multi-
ple borders to represent all JEPs in this paper. Such a one-
border-representation greatly enhances the expressiveness
and succinctness of border representation mechanism.

The idea of decision trees has produced numerous classi-
fiers (e.g., C4.5). The problem of how to efficientlyre-
structurea decision tree when changes occur to the data has
also been addressed previously by many people. Schlim-
mer and Fisher (1986) proposed ID4, an incremental al-
gorithm for efficient maintenance of decision trees, and
threedimensionswhich differentiate incremental and non-
incremental tree induction systems. Utgoff, Berkman, and
Clouse (1997) proposed ITI (incremental tree inducer),
which makes extensive use of a tree transformation mech-
anism, for incrementally handle new data even some of
which contain noise and missing values.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the concept of JEP spaces and presents the
convexity of JEP spaces. A concise representation struc-
ture, calledborders, is also described in this section. Sec-
tion 3 and 4 propose our efficient incremental maintenance
algorithms. Section 5 uses experimental results to evaluate

the efficiency of our algorithms. Section 6 concludes this
paper.

2. JEP Spaces and Borders

The concept ofJEP spaces, borders, andhorizontal bor-
dersare frequently used throughout this paper. JEPs are
used to capture the frequency change of some patterns be-
tween two data sets. Borders (Dong & Li, 1999) and a
special type of them, horizontal borders, are efficient rep-
resentation structures of large collections of sets. We first
define some basic terminologies.

Relational data is described byattributes. Some attributes
are assigned with nominal values, e.g., the attribute COLOR

having nominal values ofred, yellow, andblue. The other
attributes are continuous attributes. For example, AGE

can have continuous values ranging from 0 to 150. An
attribute-value pairis defined as anitem. So, COLOR-red
is an item and AGE-[0; 10) is also an item after the dis-
cretization of the age values. Aninstanceis defined as a
set of items. An instance is calledpositiveif it is labeled
with the positive class. Otherwise it is callednegative. A
set of instances is called adata set. An item setis also
defined as a set of items, emphasizing some subset of an
instance. We say item setI1 is more generalthan item setI2 if I1 � I2; it is also said thatI2 is more specificthanI1. Given an item setA, the percentage of the instances in
data setD containingA is defined as thesupportof A inD, denotedsuppD(A).
2.1 JEP Spaces

We are interested in a type of item sets, JEPs, whose sup-
ports change abruptly from one data set to another. For-
mally,

Definition 2.1 Given a setDp of positive instances and a
setDn of negative instances, aJEP(with respect toDp andDn) is defined as an item set which occurs inDp but does
not occur inDn. A JEP spaceis defined as the set of all
JEPs with respect toDp andDn.

Here, an item set is considered tooccur in a data set if and
only if one or more instances in this data set contain this
item set.

Note that JEP space is significantly different from version
space (Mitchell, 1982) because of different consistency re-
strictions of their elements with the training data. As men-
tioned in the introduction, each element in a version space
must match (or be contained in) every positive instance
and no negative instance (under the partial order of set-
containment.) This condition is much stricter than that of
JEPs. In practice, for example, the data set in UCI repos-
itory (Blake & Murphy, 1998) always produce empty ver-



sion spaces rather than those discussed in Hirsh (1994) and
Mitchell (1982) which contain large, even sometimes infi-
nite, number of elements. With a weaker consistency re-
striction, JEP space becomes more useful in practice.

The size of JEP spaces can be large; for example, the JEP
space of the mushroom data (Blake & Murphy, 1998) con-
tains up to108. To enumerate all the elements is time
consuming. Interestingly, JEP spaces hold a nice prop-
erty, calledconvexity, or interval closure. By exploiting
this property, JEP spaces can be succinctly represented by
the most general and the most specific elements in them.

Definition 2.2 (Gunter, Ngair, & Subramanian, 1997;
Dong & Li, 1999) A collectionC of sets is said to be a
convex spaceif the conditionsX � Y � Z andX;Z 2 C
imply thatY 2 C.
If a collection is a convex space, we say it holds convexity
or it is interval closed.

Example 2.3 All of the setsf1g, f1; 2g, f1; 3g, f1; 4g,f1; 2; 3g, andf1; 2; 4g form a convex space. The setL
of all the most general elements in this space isff1gg;
the setR of all the most specific elements in this space
is ff1; 2; 3g; f1; 2; 4gg. All the other elements can be con-
sidered “between”L andR.

Theorem 2.4 Given a setDp of positive instances and a
setDn of negative instances, the JEP space with respect toDp andDn is a convex space.

Proof: Suppose item setsX andZ satisfy (i)X � Z; (ii)X andZ are two JEPs. Then, for any item setY satisfyingX � Y � Z, Y is also a JEP. This is because� X does not occur inDn. So, all of its supersets, which
are more specific thanX , cannot occur inDn. There-
fore,Y cannot occur inDn.� the support inDp of item setZ is not zero. So, all
subsets ofZ, which are more general thanZ, have a
non-zero support inDp. Therefore,Y occurs inDp
indeed.

Consequently, the JEP space with respect toDp andDn
holds convexity.

Using this property, JEP spaces can be represented and
bounded by two sets like the setsL andR in Example 2.3,
which play the boundary role.

With theL-and-R representation, all JEPs in a JEP space
can be generated and recognized by examining its bounds.
We next formalize the two boundary sets as the concept of
borders.

2.2 Using Borders to Represent JEP Spaces

A border is a structure, consisting of two bounds. A sim-
ple example might be<ffag; fbgg; ffa; b; 
g; fb; dgg>,
which represent all those sets which are supersets offag
or fbg and subsets offa; b; 
g or fb; dg. Formally,

Definition 2.5 (Dong & Li, 1999) An ordered pair<L;R> is called aborder, L the left boundof this bor-
der andR the right bound, if (i) each one ofL andR is
an antichain — a collection of sets in which any two el-
ementsX andY satisfyX 6� Y andY 6� X , (ii) each
element ofL is a subset of some element inR and each
element ofR is a superset of some element inL. The col-
lection of setsrepresentedby a border<L;R> consists
of those item sets which are supersets of some element inL but subsets of some element inR. This collection is
denoted[L;R℄ = fY j 9X 2 L; 9Z 2 R such thatX � Y � Zg.
Note the difference and similarity between the two nota-
tions of<L;R> and[L;R℄. A border<L;R> is a syn-
tactic object consisting of the two boundsL andR, and its
semantics is[L;R℄ consisting of the interval sets bounded
by the sets inL from below and by the sets inR from
above.

There is a one-to-one correspondence between borders and
convex spaces.

Proposition 2.6 Each convex spaceC has a unique border<L;R>, whereL is the collection of the most general sets
in C andR is the collection of the most specific sets inC.
In summary, it can be seen that� Given a border<L;R>, then its corresponding col-

lection[L;R℄ is a convex space.� Given a convex space, then it can be represented by a
unique border.

Example 2.7 (Horizontal space). Given a data setD, all
non-zero supportitem setsXs, namely,suppD(X) 6= 0,
construct a convex space. This is mainly due to the fact that
any subset of a non-zero support item set has a non-zero
support. This convex space is specially calledhorizontal
space. Horizontal spaces can be used toexcludethose item
setsY s which do not occur inD, namelysuppD(Y ) = 0.
As horizontal space is a convex space, then it can be rep-
resented by a border. This border is specially calledhor-
izontal border. The left bound of this border isf;g and
the right bound is the setR of all most specific non-zero
support item sets. The right boundR can be imagined as
a horizontal line which separates all non-zero support item
sets from those zero support item sets. The most specific



non-zero support item sets can be simply identified inD,
viewing each instance as an item set.

Differences between JEP space and horizontal space are
obvious. A JEP space is associated with two data setsDp
andDn, while a horizontal space is associated with one
data set. The sharp difference between two data sets can be
described by JEP space, but the support trend of item sets
within a data set can be described by horizontal space.

Next, horizontal spaces are very useful for rewriting and
computing JEP spaces.

Proposition 2.8 Given a setDp of positive instances and
a setDn of negative instances, then the JEP space with
respect toDp andDn is[f;g;Rp℄� [f;g;Rn℄
where, [f;g;Rp℄ is the horizontal space ofDp and[f;g;Rn℄ is the horizontal space ofDn.

Proof: By definition, all elements of a JEP space must oc-
cur in the positive data set but not in the negative data set.
So, subtracting all non-zero support item sets inDn from
all non-zero support item sets inDp produces all the JEPs.

Therefore, it can be seen that a JEP space can be repre-
sented by two horizontal borders. Based on this idea, the
border representation of a JEP space can be efficiently de-
rived by border-based algorithms proposed in (Dong & Li,
1999), which will be reviewed later. This idea also lays
down a foundation for maintaining JEP spaces efficiently.
Throughout this paper, when we say there is agivenJEP
space, then it means that the border<L;R> of the JEP
space is known.

3. Maintenance Algorithms for JEP Spaces

Efficient algorithms for maintaining JEP spaces should at
least avoid totally going back to the most initial stage to
construct a new space when some change occurs to the
original training data setsDp andDn. Given a JEP space
based on one set of training data and assuming a set�p
of new positive instances are inserted, our maintenance al-
gorithms show that the new JEP space, in which all JEPs
consistent with all the previously processed instances and
plus the new instances, is theunion of the previous JEP
space and a JEP space associated with�p. Similarly, when
a set�n of new negative instances are inserted, the new
JEP space is theintersectionof the previous JEP space
and some JEP space associated with�n. Therefore, the
maintenance procedure is a “chain” of intersection or union
of old JEP spaces and some JEP spaces created by new
data. More importantly, the border of the resulting new

JEP space can be derived by manipulating the borders of
the two provided JEP spaces rather than selecting the most
general and the most specific elements from the intersec-
tion or union of the two provided JEP spaces. Next, we
discuss the maintenance algorithms in length.

3.1 Insertion of New Positive Instances

SupposeDp andDn are the old data sets of positive and
negative instances respectively, and suppose�p is the set
of newly inserted positive instances. Let their horizon-
tal borders be respectively<f;g;Rp>, <f;g;Rn>, and<f;g;R�p >. Then the JEP space with respect to(Dp+�p)
andDn is precisely the following set([f;g;Rp℄ [ [f;g;R�p ℄)� [f;g;Rn℄= ([f;g;Rp℄� [f;g;Rn℄) [ ([f;g;R�p ℄� [f;g;Rn℄)
Here, the first term is exactly the JEP space with respect

toDp andDn, whose border is known explicitly. The sec-
ond term is exactly the JEP space with respect to�p andDn, which is brought by the insertion of a set of new pos-
itive instances. As the union of the two JEP spaces is a
JEP space as well, the border of the resulting JEP space
can be efficiently computed by manipulating the borders of
the operand JEP spaces. Therefore, the maintenance in re-
sponse to the insertion of new positive instances consists of
two steps:

1. Discovering the border of the JEP space with respect
to�p andDn;

2. Taking a union operation on two borders. (The union
operation is introduced shortly.)

As will be seen in Section 5, our experiments show that
this maintenance algorithm is much more efficient than the
naive approach of recomputing from scratch.

3.2 Insertion of New Negative Instances

Suppose the horizontal border of the set�n of new nega-
tive instances is<f;g;R�n>, following the notations dis-
cussed in the above subsection, then the JEP space with
respect toDp andDn +�n is precisely the following set[f;g;Rp℄� ([f;g;Rn℄ [ [f;g;R�n ℄)= ([f;g;Rp℄� [f;g;Rn℄) \ ([f;g;Rp℄� [f;g;R�n ℄)
Once again the first term signifies a JEP space already

known. The second term generates the JEP space with re-
spect toDp and�n.

With a new specification of how the intersection of two JEP
spaces is taken, the maintenance algorithm in response to
the insertion of new negative instances is similar to the case
where in response to the insertion of new positive instances.
The two steps are as follows.



1. Discovering the border of the JEP space with respect
toDp and�n;

2. Taking an intersection operation on two borders.

It can be seen again that significant computational savings
will be achieved in our maintenance algorithm.

3.3 Border Operations: Difference, Union, and
Intersection

There are three border operations involved in the mainte-
nance algorithm as discussed above. These operations in-
cludeborder unionof two JEP spaces,border intersection
of two JEP spaces, andborder differenceof two horizon-
tal spaces. Note that border difference of two horizontal
spaces is used to derive the border of a JEP space, e.g., the
border of[f;g;Rp℄� [f;g;Rn℄, of [f;g;Rp℄� [f;g;R�n ℄,
and of[f;g;R�p ℄� [f;g;Rn℄. The most important charac-
teristics of border operations is that the outcome of bound-
ary element operations can still be used to represent convex
spaces. Border union of two JEP spaces and border inter-
section of two JEP spaces are new in this paper, while the
operation of border difference is fundamentally similar to
MBD-LL BORDER(Dong & Li, 1999) with a slight differ-
ence in output.

3.3.1 BORDERUNION OF TWO JEP SPACES

The problem of how to take border union operation is de-
scribed as follows:� Given:

1. Two setsDp1 andDp2 of positive instances and
one setDn of negative instances.

2. The border<L1;R1> of the JEP space with re-
spect toDp1 andDn.

3. The border<L2;R2> of the JEP space with re-
spect toDp2 andDn.� Determine: The border of[L1;R1℄ [ [L2;R2℄.� Algorithm:

1. R3  the set of the most specific elements inR1 [ R2;

2. L3  L1 [ L2;

3. <L3;R3> is the border of[L1;R1℄ [ [L2;R2℄.
The algorithm is correct because: (i) the most specific ele-
ments inR1 [ R2 are exactly the most specific JEPs with
respect to(Dp1 [ Dp2) andDn; (ii) the most general JEPs
with respect toDpi andDn (i = 1; 2) remain the most
general JEPs with respect to(Dp1 [ Dp2) andDn. The
second point means that there is no elementX in L1 and

no elementY in L2 such thatX � Y or X � Y . This
point is proved as follows. Suppose there existX 2 L1
andY 2 L2 satisfyingX � Y . Then all proper subsets
of Y , definitely includingX , must occur inDn (becauseY is a most general JEP with respect toDp2 andDn); this
is contradictorywith the fact thatX does not occur inDn
(becauseX is a JEP with respect toDp1 andDn).

We note that the algorithm above for the border union of
two JEP spaces is correct, due to the constraint that the
set of negative instances of the two input borders are the
same. However, this algorithm does not work for the union
of arbitrary general borders.

3.3.2 BORDER INTERSECTION OFTWO JEP SPACES

Similarly as discussed above, the problem of how to take
border intersection operation is described as follows:� Given:

1. One setDp of positive instances and two setsDn1 andDn2 of negative instances.
2. The border<L1;R1> of the JEP space with re-

spect toDp andDn1.
3. The border<L2;R2> of the JEP space with re-

spect toDp andDn2.� Determine: The border of[L1;R1℄ \ [L2;R2℄.� Algorithm:

1. R3  R1 \ R2;
2. L03  fA [ B j A 2 L1; B 2 L2g;
3. L3  the set of the most general elements inL03;
4. remove those elementsC in L3 such that no ele-

ments inR3 containC;
5. <L3;R3> is the border of[L1;R1℄ \ [L2;R2℄.

The algorithm is correct because: (i) the most specific JEPs
with respect toDp andDn1 [Dn2 are exactly the elements
in R1 \ R2; (ii) the setfA [ B j A 2 L1; B 2 L2g
is a candidate set of the most general JEPs with respect toDp andDn1 [ Dn2. According to the definition of border,
the non-most general elements and those elements which
are not contained in any elements inR3 must be removed
from this candidate set.

Note that a more general case of border intersection opera-
tion was proposed in (Hirsh, 1994; Gunter, Ngair, & Sub-
ramanian, 1997).

3.3.3 BORDERDIFFERENCE

The operation of border difference is mainly used to dis-
cover the border of a JEP space when a setDp of posi-
tive instances and a setDn of negative instances are given,



namely to discover the border of the difference of two hor-
izontal spaces. Suppose the horizontal border ofDp is<f;g; fA1; A2; � � � ; Ak1g> and the horizontal border ofDn is<f;g; fB1; B2; � � � ; Bk1g>, a pseudo code of the al-
gorithm to discover the border of the JEP space associated
with Dp andDn is as follows.

DIFF(<f;g; fA1; � � � ; Ak1g>,<f;g; fB1; � � � ; Bk2g>)
;; return <L;R> such that [L;R℄ =[f;g; fA1; � � � ; Ak1g℄� [f;g; fB1; � � � ; Bk2g℄
1) L  fg; R fg;
2) for j from 1 tok1 do
3) if someBki is a superset ofAj thencontinue;
4) border= BORDER-DIFF(<f;g; fAjg>,<f;g; fB1; � � � ; Bk2g>);
5) R = R [ right bound ofborder;
6) L = L [ left bound ofborder;
7) return <L;R>;

The correctness of this algorithm is obvious according to
the proof for border union of two JEP spaces. The subrou-
tine BORDER-DIFF is detailed in (Dong & Li, 1999). Its
code is optimized in this paper.

4. Handling Other Maintenance Problems

In addition to the insertion of new instances, many other
changes such asinsertion of new items, deletion of items,
anddeletion of instancesmay happen to a given set of in-
stances. The algorithms for maintaining JEP spaces in re-
sponse to these cases are presented here.

4.1 Insertion of a New Iteme
Following the insertion of a new iteme into the database
we denote the new states of the original data setsDp andDn asnewDp andnewDn. Because of the insertion of the
iteme, the non-zero support item sets innewDp can be de-
noted[f;g;Rp℄ [ [ffegg;R0p℄, where[f;g;Rp℄ is the hor-
izontal space ofDp, <ffegg;R0p> is the border of the col-
lection of the item sets innewDp containinge. Similarly,
the non-zero support item sets innewDn can be denoted[f;g;Rn℄[ [ffegg;R0n℄, where[f;g;Rn℄ is the horizontal
space ofDn, <ffegg;R0n> is the border of the collection
of the item sets innewDn containinge. Therefore, the JEP
space with respect tonewDp andnewDn is the following
set ([f;g;Rp℄ [ [ffegg;R0p℄)� ([f;g;Rn℄ [ [ffegg;R0n℄)= ([f;g;Rp℄� [ffegg;R0n℄� [f;g;Rn℄) [([ffegg;R0p℄� [f;g;Rn℄� [ffegg;R0n℄)= ([f;g;Rp℄� [f;g;Rn℄) [ ([ffegg;R0p℄� [ffegg;R0n℄)
Obviously, the maintenance algorithm in response to the
insertion of a new item consists of the following two steps:

1. Take border difference operation to discover the bor-
der of [ffegg;R0p℄� [ffegg;R0n℄;

2. Take border union operation to discover the border of([f;g;Rp℄�[f;g;Rn℄)[([ffegg;R0p℄�[ffegg;R0n℄).
4.2 Deletion of an Iteme
Following the removal of an iteme from the database,
the state of the original data setsDp andDn are denoted
asnewDp andnewDn. Two borders<ffegg;R0p> and<ffegg;R0n> are used respectively to represent those item
sets that are lost inDp and inDn due to the removal. There-
fore, the JEP space with respect tonewDp andnewDn is
the following set([f;g;Rp℄� [ffegg;R0p℄)� ([f;g;Rn℄� [ffegg;R0n℄)= ([f;g;Rp℄� [ffegg;R0p℄� [f;g;Rn℄) [(([f;g;Rp℄� [ffegg;R0p℄) \ [ffegg;R0n℄)= [f;g;Rp℄� [f;g;Rn℄� [ffegg;R0p℄
This highlights the fact that any previously discovered
JEPs must be removed if they contain the iteme. Proce-
durely, this can be done efficiently, assuming the border of[f;g;Rp℄� [f;g;Rn℄ is<L1;R1>, by� Removing those item sets inL1 which containe;� Removing iteme from those item sets inR1 which

containe;� R1  the set of the most specific elements inR1.
Therefore, the current<L1;R1> is the border of the JEP
space with respect tonewDp andnewDn.

4.3 Deletion of Instances

Suppose a set�p of positive instances are removed from
the original positive data setDp and the original negative
data setDn remains unchanged, then the JEP space with
respect to the originalDp andDn will be reduced by taking
away all elements occurring in�p. Procedurely, this can
be done efficiently, assuming the border of the original JEP
space is<L1;R1>, by� Discovering the horizontal border of(Dp � �p) and

denote this border as<f;g;R0p>;� Removing those elementsC in L1 such that no ele-
ments inR0p containC.

Therefore,<L1;R0p> is the border of the JEP space with
respect to(Dp ��p) andDn.

The problem of how to efficiently maintain a JEP space
when a set�n of negative instances are removed is as yet
unsolved. A naive maintenance method is to take a border
difference operation to discover the border of the JEP space
with respect toDp and(Dn ��n).



Table 1.Details about four data sets.
DATA SETS #INSTANCES #ATTRI #ITEMS

MUSHROOM 4208(+), 3916 (-) 22 125
PIMA 268(+), 500 (-) 8 17
TIC-TAC-TOE 626(+), 332 (-) 9 27
NURSERY 4320(+), 8640(-) 8 27

5. Experimental Results

We choose four data sets in UCI repository (Blake & Mur-
phy, 1998) to experimentally examine the maintenance al-
gorithms, especially their efficiency. These data sets are
mushroom, pima, tic-tac-toe, and nursery. More details can
be seen in Table 1.
Note that the continuous attributes in the pima data set are
discretized by MLC++ techniques (Kohavi et al, 1994).
An interesting thing is that this discretization method com-
pressed some different instance points into one point in the
pima data set. The original nursery data set has five classes.
Here, we consider classnot recom as positive class and
the remaining four classes all as negative.

We would like to point out that the 10-fold average test-
ing accuracies achieved by JEP classifier for the mush-
room, pima, tic-tac-toe, and nursery data sets are very high,
which are100%, 79:6%, 99:06%, and98:96% respectively,
with comparison respectively to99:8%, 75:5%, and98:6%
achieved by C4. 5. The accuracy of nursery by C4.5 was
not available. If version spaces were used for classification,
the version spaces for the four data sets would contain no
elements. Then, the classification problem would fall into
a real dilemma.

We first examine the efficiency of the maintenance algo-
rithms in response to insertion of newpositive instances.
The experimental steps are as follows.

1. Divide data setD (mushroom, pima, or tic-tac-toe)
into Dwholep andDwholen containing all positive and
negative instances respectively;

2. PartitionDwholep into k(k = 20; 10; or 5) number of
parts, denotedD1p;D2p; � � � ;Dkp ;

3. Using border difference operation, discover the borderB1 of the JEP space with respect toDp andDwholen ,
whereDp consists of anyk� 1 parts inDwholep . View
the derived borderB1 as theold border from the pre-
viously processed data;

4. Take the remaining part inDwholep as�p, a set of new
positive instances, and then discover the borderB2 of
the JEP space with respect to�p andDwholen ;

5. Take border union operation onB1 andB2 to discover
the borderB3 of the JEP space with respect toDwholep
andDwholen .

Table 2.Time comparison in mushroom data set.

CASES IN MAINTAINING TIME NAIVE TIME

MUSHROOM k = 20 k = 10 k = 5 (SEC.)
INSERTING �p 141.8 281.4 596.1 3360.2
INSERTING �n 243.1 280.7 300.2 3360.2

Table 3.Time comparison in pima data set.

CASES IN MAINTAINING TIME (SEC.) NAIVE TIME

PIMA k = 20 k = 10 k = 5 (SEC.)
INSERTING �p 0.05 0.11 0.31 1.24
INSERTING �n 0.20 0.23 0.25 1.24

For a fixedk, the time required by the maintenance algo-
rithms is summed over the time spent on steps 4 and 5. The
time is averaged overk cases of insertions where each case
of insertion adds one partDip as new instances to the old
instances,Dwholep �Dip. For comparison to a naive recom-
putation method, the time to discover directly, using border
difference operation, the borderB3 of the JEP space with
respect toDwholep andDwholen is also required.

Secondly, we examine the efficiency of the maintenance al-
gorithm in response to insertion of newnegativeinstances.
The experimental procedure is actually a dual 5-step proce-
dure to the one as discussed above, by substitutingp withn, n with p, positivewith negative, negativewith positive,
andborder unionwith border intersection.

The CPU time of the experiments are shown in Table 2, Ta-
ble 3, and Table 4 when varyingk and data sets. These ex-
periments were carried out on a 500Mhz PentiumIII (run-
ning Linux) with 512M bytes of RAM.

In Table 2, Table 3, and Table 4, the first column shows
the cases for handling insertion of new positive instances
or insertion of new negative instances. The middle three
columns show the time spent by our incremental mainte-
nance algorithms. The fifth column is the time spent by the
naive recomputation method. Two important observations
are: (i) For handling insertion of�p, the time spent by
incremental maintenance algorithms is approximately1k�
naive time. So, our algorithms are highly efficient, es-
pecially when a small number of new positive instances are
inserted (e.g.,k = 20). (ii) For handling insertion of�n,
the efficiency of the incremental algorithms varies among
the three data sets. The efficiency is very high in the mush-
room and pima data sets. However, it is not obvious in
tic-tac-toe data set. The efficiency mainly depends on how
large portion of the elements in the previously discovered
left bound (L1) contain the elements of the left bound (L2)

Table 4.Time comparison in tic-tac-toe data set.

CASES IN MAINTAINING TIME (SEC.) NAIVE TIME

TIC-TAC-TOE k = 20 k = 10 k = 5 (SEC.)
INSERTING �p 0.85 1.74 3.58 18.28
INSERTING �n 13.99 17.20 17.50 18.28



Table 5.Bound size change in mushroom.

NEW INSTANCES SIZE OFB1 SIZE OFB2 SIZE OFB3jL1j = 1606 jL2j = 704 jL3j = 1606
POSITIVE jR1j = 3787 jR2j = 421 jR3j = 4208jL1j = 1602 jL2j = 462 jL3j = 1606
NEGATIVE jR1j = 4208 jR2j = 4208 jR3j = 4208
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Figure 1.Dependency of maintenance time on the data set size.

associated with the incremental data.

We also carried experiments to see the trend of the bound
sizes from the old borderB1 to the current borderB3 via
the incremental borderB2. Table 5 shows the sizes of the
bounds when handling insertion of new positive instances
and handling insertion of new negative instances in the
mushroom data, wherek = 10 and�p (or�n) is the first
part ofDwholep (orDwholen ).

Finally, we run our programs to see the trend of mainte-
nance time when the size of the training data varies. We
varied the size of the nursery data set from 6480 to 8640,
12960, 25920, 38880, and 51840 and fixedj�pj as 216,
andj�nj as 216. (Note that the data set size was increased
from 12960 to 25920, 38880, and 51840 by adding some
instances constructed by modifying values of the original
12960 instances.) For fixed size of new positive instances,
Figure 1 shows the linear scalability of the maintenance al-
gorithms when the training data size increases. Also, the
naive method, as expected, is approximatelyDataSetSize216
times slower than the incremental method. The incremen-
tal maintenance time for new negative data, although not
linearly scalable, is on average only115 of the time needed
by the naive scheme.

6. Conclusion
This paper has introduced the concept of JEP space and
presented efficient algorithms for incrementally maintain-
ing JEP spaces in response to a wide range of change to
the previously processed data. The experimental results
have confirmed the efficiency and the correctness of the
algorithms. As JEPs can be used to build accurate clas-
sifiers, the presented algorithms and results are important

to the problem of classification because modification to the
old data happens frequently in practice. Experimental re-
sults of the algorithms proposed in Section 4 in relation to
adding/deleting attributes will be reported elsewhere.
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