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The Space of Jumping Emerging Patterns and Its
Incremental Maintenance Algorithms

Jinyan Li
Kotagiri Ramamohanarao
Department of Computer Science and Software Engineerimg University of Melbourne, Parkville, Vic. 3010, Austiali

Guozhu Dong
Department of Computer Science and Engineering, Wright3taiversity, Dayton OH 45435, USA

Abstract

The concept ofjumping emerging patterns
(JEPs) has been proposed to describe those dis-
criminating features which only occur in the pos-
itive training instances but do not occur in the
negative class at all; JEPs have been used to
construct classifiers which generally provide bet-
ter accuracy than the state-of-the-art classifiers
such as C4.5. The algorithms for maintaining the
space of jumping emerging patter@HEP space)
are presented in this paper. We prove that JEP
spaces satisfy the property of convexity. There-
fore JEP spaces can lmonciselyrepresented
by two bounds: consisting respectively of the
most generaklements and thenost specifiel-
ements. In response to insertion of new training
instances, a JEP space is modified by operating
on its boundary elements and the boundary ele-
ments of the JEP spaces associated with the new
instances. This strategy completely avoids the
need to go back to the most initial step to build
the new JEP space. In addition, our maintenance
algorithms can well handle such other cases as
deletion of instances, insertion of new attributes,
and deletion of attributes.

JYLI@CS.MU.OZ.AU
RAO@CS.MU.0OZ.AU

GDONG@CS.WRIGHT.EDU

the state-of-the-art classifiers such as C4.5 (Quinlan3)1L99

In this paper, we first propose the concept of dpace of
JEPs called JEP space, consisting of all JEPs with respect
to a given set of positive and negative data. We prove that
JEP spaces satisfy the property of convexity, which means
that JEP spaces can be bounded and then they can be con-
cisely represented by the boundary elements. Forming the
concept of JEP space, we shift the perspective of looking
at JEPs individually to the perspective of examining all
JEPs as a whole. Furthermore, we can utilize its convexity
to develop efficient maintenance algorithms to modify its
boundary elements in response to changes to the data. This
pointis extremely crucial for practical applications besa
modifications to the previously processed data will be fre-
guent and the new JEP space will be constantly needed.

In this paper, the algorithms for maintaining JEP spaces
in response tansertion of new instancesleletion of in-
stances insertion of new attributesand deletion of at-
tributes are proposed. As a proportion of the JEPs pre-
viously discovered before the change in the relations still
constitutes valid knowledge following the changes in the
data set, the maintenance algorithms take advantage of
nearly repeated computations on inputs that differ slightl
from one another, computing new JEP spaces incremen-
tally by making use of the previous JEP spaces rather than
recalculating from scratch. Therefore, the maintenance

procedure is a chain of operations on JEP spaces. The
high efficiency of these algorithms mainly stems from the
The problem of how to discover powerful distinguishable operations on the boundary elements of JEP spaces rather
features from classes of data is an important research topihan enumerating and examining all individual JEPs. Con-
in the field of machine learning and the field of data mining.sequently the maintenance algorithms will provide great
The concept ofumping emerging patternfEPS) (Dong computational savings and validate the scalability of the
& Li, 1999) has been proposed to describe those discrimJEP-based classifiers.

inating features which only occur in the positive training . . .
: : . ur JEP space is closely relatedversion spacégHirsh,
instances but do not occur in the negative class at all. Th§994; Mitchell, 1977, 1982). Given a set of positive and

most frequently appearing JEPs have been used to build ac- ) T . )
curate classifiers (Dong et al, 1999; Li, Dong, & Ramamo-& set of negatlv_e trglnmg |.nstances, a version space is the
hanarao, in press). Their accuracy is generally better thaﬁet of allgeneralizationgor item patternjthat each match

1. Introduction



(or be contained in) every positive instance and no negativéhe efficiency of our algorithms. Section 6 concludes this
instance in the training set. In contrast, a JEP space is theaper.

set of all item patterns that each match (or be contained in)

one or m_ore_(not nec_essarily every) positive instanc_es ang_ JEP Spaces and Borders

no negative instance in the set. Therefore, the consistency

restrictions with the training data are significantly diffe The concept oflEP spacesborders andhorizontal bor-

ent between JEP spaces and version spaces. The differedgrsare frequently used throughout this paper. JEPs are
consistency restrictions result in fundamentally differ@-  used to capture the frequency change of some patterns be-
gorithms for creating JEP spaces and version spaces. Qween two data sets. Borders (Dong & Li, 1999) and a
the other hand, the similar aspect of JEP space and vespecial type of them, horizontal borders, are efficient rep-
sion space is that both of them are convex spaces (Guntagsentation structures of large collections of sets. We firs
Ngair, & Subramanian, 1997) and both of them can be condefine some basic terminologies.

cisely represented an_d eff|c:|e_ntly mamtayne_d i, Iv'(?reoverRelational data is described lytributes Some attributes
often a JEP space still contains many discriminating fea-

i . are assigned with nominal values, e.g., the attribude @R
tures where a version space may contain no elements. . )
having nominal values akd, yellow, andblue The other

Another work related to JEP space is the JEP-based clasttributes are continuous attributes. For exampl&EA
sifiers, one of which called JEP classifier (Li, Dong, & can have continuous values ranging from 0 to 150. An
Ramamohanarao, in press). JEP classifier is a learningttribute-value pairs defined as artem So, GLOR-red
method, which consists of two phases. In the first phase, als an item and &€-[0, 10) is also an item after the dis-
JEPs are discovered. In the second phase, the frequencietization of the age values. Anstanceis defined as a

of JEPs are weighted to form classification scores when get of items. An instance is callgmbsitiveif it is labeled
testinstance is given. So, the efficiency for the mainteaancwith the positive class. Otherwise it is calledgative A

of JEP spaces is an important factor to make JEP classifiaret of instances is called@ata set An item setis also

up to date by including the new information as soon as poseefined as a set of items, emphasizing some subset of an
sible. instance. We say item sét is more generathan item set

. . . . I if I C I; itis also said thaf, is more specificthan
As mentioned before, the notion of emerging patterns is Given an item sefl. the percentaae of the instances in
previously proposed concept. For concise representationla'ta setD containin A i deined asgtheu ortof A in
emerging patterns (with some constraints) and a specia% denoteds (A? P
type of them, JEPs, are representechinyltiple borders in ' uppp(A).
Dong and Li (1999) and Li, Dong, and Ramamohanarao (in
press). However, we use ontheborder instead of multi- 2.1 JEP Spaces

ple borders to represent all JEPs in this paper. Such a ongwe are interested in a type of item sets, JEPs, whose sup-

border-representation greatly enhances the expressiseneports change abruptly from one data set to another. For-
and succinctness of border representation mechanism.  mally,

The idea of decision trees has produced numerous CIaSSISefinition 2.1 Given a setD, of positive instances and a
) . . -
fiers (e.g., C4.5). The problem of how to efficientsy- setD,, of negative instances,JP (with respect tdD,, and

structurea decision tree when changes occur to the data h . : . .
also been addressed previously by many people. Schli@") is defined as an item set which occursTl but does

mer and Fisher (1986) proposed ID4, an incremental aI-nOt oceur inD,,. A JEP spaces defined as the set of all
. . . - OIJEPs with respect t®, andD,,.

gorithm for efficient maintenance of decision trees, an

Fhreed|men3|0n51yh|ch Q|ﬁerent|ate incremental and non- Here, an item set is considereddocurin a data set if and

incremental tree induction syst(_ams. Utgoff, Berkman, andonly if one or more instances in this data set contain this

Clouse (1997) proposed ITI (incremental tree mducer),item set

which makes extensive use of a tree transformation mech- o _ _

anism, for incrementally handle new data even some oNote that JEP space is significantly different from version

which contain noise and missing values. space (Mitchell, 1982) because of different consisteney re

i i i i strictions of their elements with the training data. As men-
The remainder of this paper is organized as follows. SeCfioned in the introduction, each element in a version space

tion 2 in_troducesthe concept ofJEI_D spaces and presentsthe <t match (or be contained in) every positive instance
convexity of JEP spaces. A concise representation struGsng o negative instance (under the partial order of set-

ture, calledborders is also described in this section. Sec- .,ntainment.) This condition is much stricter than that of
tion 3 and 4 propose our efficient incremental maintenanc8eps  1n practice, for example, the data set in UCI repos-

algorithms. Section 5 uses experimental results to evaluaqtory (Blake & Murphy, 1998) always produce empty ver-



sion spaces rather than those discussed in Hirsh (1994) artd2 Using Borders to Represent JEP Spaces
Mitchell (1982) which contain large, even sometimes infi-
nite, number of elements. With a weaker consistency re
striction, JEP space becomes more useful in practice.

A border is a structure, consisting of two bounds. A sim-
ple example might be<{{a}, {b}},{{a,b,c}, {b,d}}>,
which represent all those sets which are supersefa pf
The size of JEP spaces can be large; for example, the JE§? {b} and subsets dfa, b, c} or {b, d}. Formally,
space of the mushroom data (Blake & Murphy, 1998) con-
tains up to108. To enumerate all the elements is time Definition 2.5 (Dong & Li, 1999) An ordered pair
consuming. Interestingly, JEP spaces hold a nice prop<£,R> is called aborder, £ the left boundof this bor-
erty, calledconvexity or interval closure By exploiting  der andR theright bound if (i) each one ofC andR is
this property, JEP spaces can be succinctly represented & antichain — a collection of sets in which any two el-
the most general and the most specific elements in them. ementsX andY satisfy X ¢ Y andY ¢ X, (ii) each
element ofL is a subset of some element# and each
Definition 2.2 (Gunter, Ngair, & Subramanian, 1997; element ofR is a superset of some elementdn The col-
Dong & Li, 1999) A collectionC of sets is said to be a lection of setsrepresentedby a border<£, R> consists
convex spac# the conditionsX C Y C ZandX,Z € C  of those item sets which are supersets of some element in
imply thatY € C. L but subsets of some element® This collection is

o . _denoted,R] = {Y | 3X € £,3Z € R such that
If a collection is a convex space, we say it holds convexityy c y C 71,

or it is interval closed.

Note the difference and similarity between the two nota-
Example 2.3 All of the sets{1}, {1,2}, {1,3}, {1,4},  tions of <£,R> and[£,R]. A border<£, R> is a syn-
{1,2,3}, and{1,2,4} form a convex space. The st tactic object consisting of the two boundsandR, and its
of all the most general elements in this spacg{3}};  semantics i$£, R] consisting of the interval sets bounded

the setR of all the most specific elements in this spacepy the sets inC from below and by the sets iR from
is {{1,2,3},{1,2,4}}. All the other elements can be con- gpgve.

sidered “betweenZ andR. )
There is a one-to-one correspondence between borders and

Theorem 2.4 Given a setD,, of positive instances and a CONveXx spaces.

setD,, of negative instances, the JEP space with respect to . .
D, andD, is a convex space. Proposition 2.6 Each convex spadghas a unique border

<L,R>,whereL is the collection of the most general sets

Proof: Suppose item set§ andZ satisfy (i) X C Z; (i) N C andR is the collection of the most specific setgin
X andZ are two JEPs. Then, for any item $étsatisfying

X CY C Z,Y isalso a JEP. This is because In summary, it can be seen that

e Given a bordexk £, R>, then its corresponding col-

e X doesnotoccurif,,. So, all of its supersets, which - ;
lection[£, R] is a convex space.

are more specific thaX’, cannot occur irD,,. There-

fore, Y cannot occur irD,,. « Given a convex space, then it can be represented by a

« the support inD,, of item setZ is not zero. So, all unique border.
subsets ofZ, which are more general thaf, have a
non-zero support irD,. Therefore,Y occurs inD,,
indeed.

Example 2.7 (Horizontal spacé. Given a data seP, all
non-zero supporitem setsX's, namely,suppp(X) # 0,
construct a convex space. This is mainly due to the fact that
any subset of a non-zero support item set has a non-zero
support. This convex space is specially callemtizontal
space Horizontal spaces can be usedt@ludehose item
saetsYs which do not occur irD, namelysuppp(Y) = 0.

'KS horizontal space is a convex space, then it can be rep-
resented by a border. This border is specially calied
izontal border The left bound of this border i§0} and
With the £-andR representation, all JEPs in a JEP spacethe right bound is the seR of all most specific non-zero
can be generated and recognized by examining its boundsupport item sets. The right boufitl can be imagined as
We next formalize the two boundary sets as the concept o& horizontal line which separates all non-zero support item
borders sets from those zero support item sets. The most specific

Consequently, the JEP space with respecDjoand D,,
holds convexity. |

Using this property, JEP spaces can be represented a
bounded by two sets like the sefsandR in Example 2.3,
which play the boundary role.



non-zero support item sets can be simply identifiedin  JEP space can be derived by manipulating the borders of
viewing each instance as an item set. B thetwo provided JEP spaces rather than selecting the most
general and the most specific elements from the intersec-

Differences between JEP space and horizontal space af@n or union of the two provided JEP spaces. Next, we
obvious. A JEP space is associated with two dataBgts discuss the maintenance a|gorithms in |ength_

and D,,, while a horizontal space is associated with one
data set. The sharp difference between two data sets can Be| |nsertion of New Positive Instances

described by JEP space, but the support trend of item sets

within a data set can be described by horizontal space.  SUPPOSED, andD,, are the old data sets of positive and
negative instances respectively, and suppbdsés the set

Next, horizontal spaces are very useful for rewriting andof newly inserted positive instances. Let their horizon-
computing JEP spaces. tal borders be respectivelg{0}, R,>, <{0},R,>, and

<{0}, RS >. Thenthe JEP space with respect),+A,,)
Proposition 2.8 Given a setD, of positive instances and andD;, is precisely the following set
a setD,, of negative instances, then the JEP space with

J P ({0}, R,] U {0}, RpY]) — [{0}, Ra]

respect tdD, andD,, is N
= ([{0}, Rp] — [{0}, Rn]) U ({0}, Ry'] — [{0}, Ra])

{0}, Rp] — [{0}, Ra] , , .

Here, the first term is exactly the JEP space with respect
where, [{0},R,] is the horizontal space oD, and to D, andD,,, whose border is known explicitly. The sec-
[{0},R,] is the horizontal space @,,. ond term is exactly the JEP space with respechjpand

D,., which is brought by the insertion of a set of new pos-
Proof: By definition, all elements of a JEP space must oc-tive instances. As the union of the two JEP spaces is a
cur in the positive data set but not in the negative data SeyEpP space as well, the border of the resu]ting JEP space
So, subtracting all non-zero support item setdin from  can be efficiently computed by manipulating the borders of
all non-zero support item sets 1, produces all the JEPs. the operand JEP spaces. Therefore, the maintenance in re-
B sponse to the insertion of new positive instances condlists o
two steps:
Therefore, it can be seen that a JEP space can be repre-
sented by two horizontal borders. Based on this idea, the 1. Discovering the border of the JEP space with respect
border representation of a JEP space can be efficiently de- g A, andD,,;
rived by border-based algorithms proposed in (Dong & Li,
1999), which will be reviewed later. This idea also lays 2. Taking a union operation on two borders. (The union
down a foundation for maintaining JEP spaces efficiently. ~ Operation is introduced shortly.)
Throughout this paper, when we say there igien JEP

space, then it means that the bordef, R> of the JEP  As Will be seen in Section 5, our experiments show that
space is known. this maintenance algorithm is much more efficient than the

naive approach of recomputing from scratch.

3. Maintenance Algorithms for JEP Spaces 3.2 Insertion of New Negative Instances

Efficient algorithms for maintaining JEP spaces should atSuppose the horizontal border of the gt of new nega-
least avoid totally going back to the most initial stage t0jye instances is<{0}, R2>, following the notations dis-
construct a new space when some change occurs to thgissed in the above subsection, then the JEP space with
original training data set®, andD,,. Given a JEP space respecttdD, andD,, + A, is precisely the following set
based on one set of training data and assuming @ set A

of new positive instances are inserted, our maintenance al- [{0}, Rel — ({0}, Rn] U[{0}, R T) A

gorithms show that the new JEP space, in which all JEPs = ([{0}, Rp] — [{0}, Ra]) N ({0}, Rp] — [{0}, R.T)
consistent with all the previously processed instances and . , o
olus the new instances, is theion of the previous JEP Once again the first term signifies a JEP space already

space and a JEP space associated avjghSimilarly, when known. The second term generates the JEP space with re-
o ) spect toD,, andA,,.

a setA,, of new negative instances are inserted, the new

JEP space is thimtersectionof the previous JEP space With a new specification of how the intersection of two JEP

and some JEP space associated with Therefore, the spaces is taken, the maintenance algorithm in response to

maintenance procedure is a “chain” of intersection or uniorthe insertion of new negative instances is similar to the cas

of old JEP spaces and some JEP spaces created by nehere in response to the insertion of new positive instances

data. More importantly, the border of the resulting new The two steps are as follows.



1. Discovering the border of the JEP space with respecho elementy in £, such thatX ¢ Y or X D Y. This

to D, andA,,; point is proved as follows. Suppose there exXste L;
) . . . andY € L, satisfyingX C Y. Then all proper subsets
2. Taking an intersection operation on two borders. of Y, definitely includingX, must occur inD,, (because

Y is a most general JEP with respectRg, andD,,); this
It can be seen again that significant computational savingig contradictorywith the fact thatX does not occur irD,,
will be achieved in our maintenance algorithm. (becauseX is a JEP with respect tB,,, andD,),).

We note that the algorithm above for the border union of
two JEP spaces is correct, due to the constraint that the
set of negative instances of the two input borders are the
There are three border operations involved in the maintesame. However, this algorithm does not work for the union
nance algorithm as discussed above. These operations iof arbitrary general borders.

cludeborder unionof two JEP space$order intersection

of two JEP spaces, ariibrder differenceof two horizon-  3.3.2 BORDERINTERSECTION OFTWO JEP $ACES

tal spaces. Note that border difference of two horizontal ..
spaces is used to derive the border of a JEP space, e.g., {
border of[{0}, R,] — [{0}, R,], of [{0}, R,] — [{0}, R4,

and of[{0}, R2] — [{0}, Ry]. The most important charac-
teristics of border operations is that the outcome of bound-
ary element operations can still be used to represent convex 1. One setD, of positive instances and two sets

3.3 Border Operations: Difference, Union, and
Intersection

milarly as discussed above, the problem of how to take
order intersection operation is described as follows:

e Given:

spaces. Border union of two JEP spaces and border inter- D,,; andD,,, of negative instances.
section of two JEP spaces are new in this paper, while the 2. The bordex L1, R, > of the JEP space with re-
operation of border difference is fundamentally similar to spect toD, andD,,;.

MBD-LL BORDER(Dong & Li, 1999) with a slight differ-

. 3. The bordek L., R2> of the JEP space with re-
ence in output.

spect taD,, andD,,.
3.3.1 BoRDERUNION OF Two JEP $ACES e Determine: The border of £1, R1] N [£L2, R2].

The problem of how to take border union operation is de- o Algorithm:

scribed as follows:
1. R3 + R1NRa;

2. £/3 — {AUB‘ A Eﬁl,B EEQ};
3. L3 <+ the set of the most general element£in
4

L. Two Seﬂt)SDplf andD?’? Qf positive instances and . remove those elementisin £3 such that no ele-
one setD,, of negative instances. ments iR, containC:

2. The bordek L, R, > of the JEP space with re- 5. <Ly, Ry> is the border of£1, R1] N [La, Ra).
spect taD,; andD,,. ’ ’ ’

3. The bordex L, R,> of the JEP space with re- g gigorithm is correct because: (i) the most specific JEPs
spect taD,» andD,,. with respect taD, andD,,; U D,., are exactly the elements
o Determine: The border of £1, R1] U [£2, Rs). N Ry NRy; (i) the set{AUB | A€ L1,B € La}
is a candidate set of the most general JEPs with respect to
e Algorithm: D, andD,,; U D,2. According to the definition of border,
the non-most general elements and those elements which
are not contained in any elements@ must be removed

e Given:

1. R3 « the set of the most specific elements in

Ra URs; from this candidate set.
2. L3+ L1 ULs; . .
3. <Ly, Rs> is the border of£1, R1] U [La, Ra). Note that a more general case of border intersection opera-

tion was proposed in (Hirsh, 1994; Gunter, Ngair, & Sub-

The algorithm is correct because: (i) the most specific ele_ramaman, 1997).

ments inR; U R, are exactly the most specific JEPs with
respect ta Dy, U D,2) andD,,; (i) the most general JEPs
with respect toD,, andD,, (i = 1,2) remain the most The operation of border difference is mainly used to dis-
general JEPs with respect {(®,; U D,,) andD,,. The cover the border of a JEP space when aBgtof posi-
second point means that there is no elem®nnh £, and tive instances and a s&%, of negative instances are given,

3.3.3 BORDERDIFFERENCE



namely to discover the border of the difference of two hor- 2. Take border union operation to discover the border of
izontal spaces. Suppose the horizontal bordeDgfis ({0}, Rp]—[{0}, RA))U([{{e} }, Ry —[{{e} }, RLD)-
<{0},{A1, Aa,---, A, }> and the horizontal border of

Dy, is <{0},{B1, B, -, By, }>, apseudo code of the al- 4.2 Deletion of an Iteme

gorithm to discover the border of the JEP space associated

with D, andD,, is as follows. Following the rem_oyal of an iteme from the database,
the state of the original data sel, andD,, are denoted
DIFF(<{0}, {A1, -, Ag, }>, <{0},{B1, -, Bi, }>) asnewD, andnewD,,. Two borders<{{e}}, R,> and
;; return <C,R> such that [£,R] = <{{e}}, R} > are used respectively to represent those item
({0}, {As, -+, A }] = [{0},{B1, -+, By }] sets that are lost i, and inD,, due to the removal. There-
3 ér? f{%'le;g’do fore, the JEP space with respectrtewD,, andnewD,, is
3) if someBy, is a superset ofl; thencontinue; the following set
4) bor ig{rmf{BORDEF%DIF}FS_{@}, {4;}>, ({0}, Rp] — H{e}}, RyD) — ({0}, Ru] — [{{e}}, Ru))
5) R =R Uright bound ofbor der ; = ({0}, Ryl - [{e}}, Ry] — {0}, Ru)) U
6) L = L U leftbound ofbor der; ({0}, Rp] — [{{e}}, Ry N [{{e}}, Ru))

7 t L, R>; '

) rewm <£,R> = [{0),Ry) - [{0}, Rl — [{{e}}, R}
The correctness of this algorithm is obvious according toThis highlights the fact that any previously discovered
the proof for border union of two JEP spaces. The subrouJEPs must be removed if they contain the itemProce-
tine BORDER-DIFF is detailed in (Dong & Li, 1999). Its durely, this can be done efficiently, assuming the border of
code is optimized in this paper. {0}, R,] — [{0},R,] is <L1,R1>, by

4. Handling Other Maintenance Problems * Removing those item sets iy which contaire;

e Removing iteme from those item sets ifR; which

In addition to the insertion of new instances, many other .
containe;

changes such @nsertion of new itemdeletion of items

anddeletion of instancemay happen to a given setof in- 4 R, . the set of the most specific elementsi.
stances. The algorithms for maintaining JEP spaces in re-

sponse to these cases are presented here. Therefore, the current £;, R, > is the border of the JEP

) space with respect toewD,, andnewD,,.
4.1 Insertion of a New lteme

Following the insertion of a new itera into the database 4-3 Deletion of Instances
we denote the new states of the original data $&tsand
D,, asnewD,, andnewD,,. Because of the insertion of the
item e, the non-zero support item setsriawD,, can be de-
noted[{0}, R,] U [{{e}}, R;], where[{0}, R,] is the hor-
izontal space oD,, <{{e}}, R,> is the border of the col-
lection of the item sets inewD,, containinge. Similarly,
the non-zero support item setsq#wewD,, can be denoted
{0}, Rn]U[{{e}}, R.], where[{0}, R,] is the horizontal
space ofD,,, <{{e}}, R!,> is the border of the collection
of the item sets imewD,, containinge. Therefore, the JEP
space with respect teewD,, andnewD,, is the following

Suppose a seh,, of positive instances are removed from
the original positive data sé®, and the original negative
data setD,, remains unchanged, then the JEP space with
respect to the origindb,, andD,, will be reduced by taking
away all elements occurring iA,,. Procedurely, this can
be done efficiently, assuming the border of the original JEP
space is<Li,R1>, by

¢ Discovering the horizontal border ¢D, — A,) and
denote this border as{0}, R;>;

set e Removing those elements in £; such that no ele-
({0}, Rp] U [{{e}}, Ry]) — ({0}, Ra] U [{{e}}, Ru]) ments inR;, containC'.
= ({0}, Rp] — [{{e}}, Rn] — {0}, Ra]) U
([{{e}}, R,] — [{0}, Ra] — [{{e}}, R2)) Therefore,< £, R,,> is the border of the JEP space with

= ({0} Ry] — {0}, Ra)) U ([{{e}}, Ryl — [{{e}}, R])  respectidDy, — Ay) andDy,.
Obviously, the maintenance algorithm in response to théhe problem of how to efficiently maintain a JEP space
insertion of a new item consists of the following two steps:when a sefA,, of negative instances are removed is as yet
unsolved. A naive maintenance method is to take a border
1. Take border difference operation to discover the bor-difference operation to discover the border of the JEP space
derof[{{e}}, R}] — [{{e}}, R..l; with respect tdD,, and(D,, — A,,).



Table 1.Details about four data sets. Table 2.Time comparison in mushroom data set.

DATA SETS #INSTANCES #ATTRI | #ITEMS CASES IN MAINTAINING TIME NAIVE TIME
MUSHROOM | 4208(+), 3916 (-) 22 125 MUSHROOM E=20 | k=10 | k=5 (sec)
PIMA 268(+), 500 (-) 8 17 INSERTING A, 1418 281.4 | 596.1 3360.2
TIC-TAC-TOE 626(+), 332 (-) 9 27 INSERTING A, 243.1 280.7 | 300.2 3360.2
NURSERY 4320(+), 8640(-) 8 27

Table 3.Time comparison in pima data set.

. CASES IN MAINTAINING TIME (SEC NAIVE TIME
5. Experimental Results PIMA e e (sec)
INSERTING A, 0.05 0.11 | 031 1.24
We choose four data sets in UCI repository (Blake & Mur- INSERTING A, 0.20 0.23 0.25 1.24

phy, 1998) to experimentally examine the maintenance al-

gorithms, especially their efficiency. These data sets are

mushroom, pima, tic-tac-toe, and nursery. More details carfror a fixedk, the time required by the maintenance algo-
be seen in Table 1. rithms is summed over the time spent on steps 4 and 5. The
Note that the continuous attributes in the pima data set argme is averaged over cases of insertions where each case
discretized by MLC++ techniques (Kohavi et al, 1994). of insertion adds one paf?;, as new instances to the old
An interesting th|ng iS that thIS diSCI‘etization methOd com instances’péﬂhoze _ D; For Comparison to a naive recom-
pressed some different instance points into one point in thgytation method, the time to discover directly, using borde

pima data set. _The original nursery data sgt_has five classegifference operation, the bord8; of the JEP space with
Here, we consider clageot _r ecomas positive class and respect toD;)”hOle and'Dg/hole is also required.

the remaining four classes all as negative. ] o )
Secondly, we examine the efficiency of the maintenance al-

We would like to point out that the 10-fold average test-gorithm in response to insertion of nevegativeinstances.

ing accuracies achieved by JEP classifier for the mushThe experimental procedure is actually a dual 5-step proce-
room, pima, tic-tac-toe, and nursery data sets are very, highjyre to the one as discussed above, by substitytinih
which are100%, 79.6%, 99.06%, and98.96% respectively, y p, with p, positivewith negative negativewith positive

with comparison respectively ®9.8%, 75.5%, and98.6%  andborder unionwith border intersection

achieved by C4. 5. The accuracy of nursery by C4.5 was ) _ )

not available. If version spaces were used for classifinatio 1h€ CPU time of the experiments are shown in Table 2, Ta-

the version spaces for the four data sets would contain ngl€ 3, and Table 4 when varyirigand data sets. These ex-
elements. Then, the classification problem would fall intoP€riments were carried out on a 500Mhz Pentiumlli (run-

We first examine the efficiency of the maintenance algo/" Table 2, Table 3, and Table 4, the first column shows
rithms in response to insertion of nepositiveinstances. the cases for handling insertion of new positive instances
The experimental steps are as follows. or insertion of new negative instances. The middle three

columns show the time spent by our incremental mainte-
1. Divide data se® (mushroom, pima, or tic-tac-toe) Nance algorithms.. The fifth column i_s the time spent by_the
into Dkele and DEele containing all positive and naive recomputation method. Two important observations
negative instances respectively: are: (i) For har_ldlmg insertion Qﬁp, the time s_pent by
incremental maintenance algorithms is approximatety
2. PartitionDy"?'* into k(k = 20,10, 0r 5) number of naj ve tine. So, our algorithms are highly efficient, es-
parts denotedD}), Df,, . D’;; pecially when a small number of new positive instances are
inserted (e.g.k = 20). (i) For handling insertion ofA ,,
the efficiency of the incremental algorithms varies among
the three data sets. The efficiency is very high in the mush-
room and pima data sets. However, it is not obvious in
tic-tac-toe data set. The efficiency mainly depends on how
large portion of the elements in the previously discovered
4. Take the remaining part "' asA,,, asetof new  leftbound €1) contain the elements of the left boungh}
positive instances, and then discover the boigieof

3. Using border difference operation, discover the borde
B: of the JEP space with respect®, and D"l
whereD, consists of any: — 1 parts inDy"!. View
the derived bordeB; as theold border from the pre-
viously processed data;

the JEP space with respectAg, andp;fholE; Table 4.Time comparison in tic-tac-toe data set.

. . . CASES IN MAINTAINING TIME (SEC) NAIVE TIME
5. Take border union operation @ andB- to discover TIC-TAC-TOE E=20 | k=10 | k=5 (sec)
the bordei3; of the JEP space with respecmjhole INSERTING A, 0.85 1.74 3.58 18.28
INSERTING A, 13.99 | 17.20 | 17.50 18.28

whole
andD} o,



to the problem of classification because modification to the

Table 5.Bound size change in mushroom. old data happens frequently in practice. Experimental re-

NEW INSTANCES || SZEOFB1 | SZEOFB, | SZEOFBs | gyts of the algorithms proposed in Section 4 in relation to
[L1][=1606 | |L2] = 704 [L3] = 1606 . . - .
POSITIVE (Ra| — 3787 | |Ro| — 421 | |Rs| — 4208 adding/deleting attributes will be reported elsewhere.
[C1][=1602 | [L2] = 462 [L3] = 1606
NEGATIVE |R1| = 4208 | |R2| = 4208 | |R3| = 4208
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