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ABSTRACT 

 

Wang, Mingzhen, Ph.D, Engineering Ph.D Program, Department of Electrical Engineering, 
Wright State University, 2007. High-Speed Low-Voltage CMOS Flash Analog-to-Digital 
Converter for Wideband Communication System-on-a-Chip 
 

With higher-level integration driven by increasingly complex digital systems and 

downscaling CMOS processes available, system-on-a-chip (SoC) is an emerging 

technology of low power, high cost effectiveness and high reliability and is exceedingly 

attractive for applications in high-speed data conversion wireless and wideband 

communication systems.   

This research presents a novel ADC comparator design methodology; the speed and 

performance of which is not restricted by the supply voltage reduction and device linearity 

deterioration in scaling-down CMOS processes. By developing a dynamic offset 

suppression technique and a circuit optimization method, the comparator can achieve a 3 

dB frequency of 2 GHz in 130 nanometer (nm) CMOS process. 

Combining this new comparator design and a proposed pipelined thermometer-Gray- 

binary encoder designed by the DCVSPG logic, a high-speed, low-voltage clocked-digital- 

comparator (CDC) pipelined CMOS flash ADC architecture is proposed for wideband 

communication SoC. This architecture has advantages of small silicon area, low power, 

and low cost.  Three CDC-based pipelined CMOS flash ADCs were implemented in 130 

nm CMOS process and their experimental results are reported: 

1. 4-b, 2.5-GSPS ADC: SFDR of 21.48-dB, SNDR of 15.99-dB, ENOB of 2.4-b, ERBW 

of 1-GHz, power of 7.9-mW, and area of 0.022-mm2.  
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2. 4-b, 4-GSPS ADC:  SFDR of 25-dB, SNDR of 18.6-dB, ENOB of 2.8-b, ERBW of 

2-GHz, power of 11-mW. 

3. 6-b, 4-GSPS ADC: SFDR of 48-dB at a signal frequency of 11.72-MHz, SNDR of 

34.43-dB, ENOB of 5.4-b, power of 28-mW. 

An application of the proposed CDC-based pipelined CMOS flash ADC is 1-GHz 

bandwidth, 2.5-GSPS digital receiver on a chip. To verify the performance of the receiver, 

a mixed-signal block-level simulation and verification flow was built in Cadence AMS 

integrated platform. The verification results of the digital receiver using a 4-b 2.5-GSPS 

CDC-based pipelined CMOS ADC, a 256-point, 12-point kernel function FFT and a 

frequency detection logic show that two tone signals up to 1125 MHz can be detected and 

discriminated.  

A notable contribution of this research is that the proposed ADC architecture and the 

comparator design with dynamic offset suppression and optimization are extremely 

suitable for future VDSM CMOS processes and make “all-digital” receiver SoC design 

practical. 
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Chapter 1 INTRODUCTION 

 
1.1 Background 

 

Analog-to-digital converters (ADCs) are electronic circuits that convert continuous 

electric signals into discrete digital numbers for signal analysis or signal transmission. 

ADCs are characterized primarily by conversion speed, resolution, power and area 

consumption, which vary with a variety of applications. In addition, selection of an ADC 

for an individual application is essential for cost effectiveness.  

With higher-level integration driven by increasingly complex digital systems and 

downscaling processes available, system-on-a-chip (SoC) is an emerging technology for 

low power-consumption, high cost effectiveness, and high reliability.  SoC is in great 

demand for wireless and wideband communication systems which require high-speed data 

conversion, especially consumer electronic devices.  SoC integrates all components of 

electronic systems into a single integrated circuit containing digital, analog, and 

mixed-signal functions on one chip. A high-speed A/D converter becomes an integral part 

of SoC products.  

Generally three types of solid state technologies are available for A/D converter 

implementation.  They are Gallium Arsenide (GaAs), Silicon Germanium (SiGe) and 
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Silicon (Si), and of the three GaAs is the most and Si is the least expense process.  As to 

the Si process the CMOS Si, unlike the BiCMOS Si using high power consumption bipolar 

devices, uses low-power NFET and PFET devices which makes CMOS mixed-signal/SoC 

become an emerging technology in the semiconductor industry. 

However, shrinking the feature size of the semiconductor technology makes 

high-speed high-performance ADC design quite challenge in a standard CMOS technology, 

due to the reduced effective voltage headroom and the deteriorated linearity of transistor 

device in the small feature size technology. The semiconductor technology is now 

approaching the 45 nanometer feature size, pushing development of SoC applications to a 

new milestone.  

Giga-sample-per-second (GSPS) flash-based ADCs in CMOS technology were 

reported [1]-[3]. Although they had improved the conversion speed by using 

time-interleaving, the conversion precision by averaging offset, or the effective resolution 

bandwidth (ERBW) by interpolating and folding, etc., the sample rate is still limited by 2 

GHz.  Besides, these ADCs are not suitable for SoC due to noise effect on the analog 

components, and high power consumption. We need a robust ADC architecture to 

minimize substrate noise in a SoC core and has as few analog nodes and components as 

possible [4]. 
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1.2 Initial Research Requirements 

 

The initial objective of this research is to investigate and design a high-speed, 

low-power, and low-voltage CMOS A/D converter for use in a 2.5 GSPS, 1 GHz wideband 

digital receiver on a chip, as shown in Figure 1-1. The receiver is to produce a low cost 

(fewer devices and less PCB area), small and lightweight (130 nanometers CMOS) and 

low power (less than 2 W) SoC for correctly processing two simultaneous signals (in a 

frequency range between 125 and 1125 MHz) by detecting their frequency, pulse width 

(PW), and time of arrival (TOA). The design of digital receiver is divided into two areas: 1) 

signal sampler and formatting and 2) super resolution and frequency measurement [5]. 

 

Figure 1-1  Digital Receiver SoC [5] 

 

Then the requirements of ADC for the digital receiver are shown in Table 1-1. To 

process two simultaneous signals with maximum instantaneous dynamic range (IDR), the 

digital receiver requires the embedded ADC with high spur-free-dynamic-range (SFDR). 
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Table 1-1 Initial Requirements of ADC for Digital Receiver 

 

 

1.3 Dissertation Research Summary 

 

The research goal is to investigate and design a high-speed, low-power, low-voltage 

flash CMOS ADC for 1 GHz bandwidth digital receiver on a chip with a high two-signal 

instantaneous dynamic range (IDR).  The research is accomplished by proposed 

CDC-based pipelined CMOS flash ADC architecture, dynamic offset suppression 

technique, and circuit optimization.  The performance of a 4-b CDC-based pipelined ADC 

is summarized in Table 1-2. 
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Table 1-2  Achieved Performance of ADC for the Digital Receiver 

 

 

Using a 2.5 GHz sampling rate, the ADC achieves a high spurious-free dynamic range 

(SFDR) of 26 dB at a Nyquist frequency signal of 1.248 GHz.  After the sampling rate 

increases to 4 GHz, the ADC achieves a SFDR of 24 dB at a Nyquist frequency signal of 

1.997 GHz.   The proposed ADC is suitable for applications in wideband communication 

SoC.     

 

1.4 Dissertation Layout 

 

After an overview of ADC fundamentals in chapter 2, where examples and the 

state-of-the-art implementations are cited, chapter 3 reviews ADCs in the literature and 

chapter 4 discusses high speed ADCs in wideband receivers. In chapter 5 a new digital 

clocked comparator (CDC) is proposed and coupled with dynamic offset suppression 

technique and circuit optimization to improve dynamic performance of ADC.  A 
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CDC-based pipelined flash ADC architecture is then proposed in chapter 6. Chapter 7 

presents implementations and experimental results of three CDC-based pipelined flash 

ADCs with different design requirements in 130 nanometer (nm) digital CMOS process.  

The CDC-based pipelined ADCs are compared with the ADCs in literature. Chapter 8 

presents an application of a 4-b CDC-based pipelined flash ADC in a wideband digital 

receiver with 2.5 GSPS and 1 GHz bandwidth. A block-level post-design verification flow 

for the receiver has been established in Cadence analog/mixed-signal (AMS) platform.  

Interface hardware and down-conversion between ADC and DSP is presented. 

Conclusions and the future work are discussed in chapter 9. 
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Chapter 2 ADC FUNDAMENTALS 

 
When an ADC converts analog signals into digital signals, it converts the continuous 

values into the discrete values both in time and amplitude. The process converting signals 

from continuous time to discrete time is called sampling with a sampling frequency fsampling.  

fsampling is one of the primary characteristics of ADC and represents the conversion speed of 

ADC. The other process converting signal amplitude from continuous voltages into 

discrete voltages is called quantization with a resolution N.  N is another primary 

characteristic and represents the conversion precision of ADC. The sampling usually 

precedes the quantization in the conversion process of the conventional low-speed ADC 

designs, while in some high speed ADC designs two actions can be mixed or are 

commutative [7].   

The performance characteristics of ADCs are classified into the static performance 

and the dynamic performance.  The static performance includes offset, gain mismatch, 

integral non-linearity (INL) and differential non-linearity (DNL) errors, etc.  The dynamic 

performance includes signal to noise ratio (SNR), signal to noise and distortion ratio 

(SINAD), effective number of bits (ENOB), spurious-free dynamic range (SFDR) and total 

harmonic distortion (THD), etc.  Definitions and principles of primary characteristics and 

calculation of performance parameters are discussed in the following sections. 
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2.1 Primary Characteristics  

2.1.1 Sampling Frequency 

An analog signal is sampled at regularly-spaced time intervals T. The discrete 

samples of xa(t) are denoted by )()( nTxnx a=  with ∞<<∞− n where x(n) is the 

discrete-time sample of the continuous-time analog signal xa(t) every T seconds. The 

sampling frequency fsamping is defined as the reciprocal of the time interval T, as 

Tfsampling
1=  and is so called the sampling rate as well with dimensions of samples per 

second. If a continuous-time sinusoidal signal is )2cos()( θπ += ftAtxa  with 

+∞<<∞− t and +∞<<∞− f , where A is the amplitude of the sinusoid, f is the signal 

frequency in hertz, and θ is the phase in radian,  its discrete-time sinusoidal signal can be 

expressed as )cos()2cos()( θωθπ +=+= nAfnTAnx  with 2
sampling

f fω π=  in radian 

per sample.  

How to select the sampling frequency fsamping? According to the characteristic of 

discrete-time sinusoids whose frequencies are separated by an integer multiple of 2π are 

identical, e.g., )cos(])2cos[( 00 θωθπω +=++ nn  .  The sequences of any two 

discrete-time sinusoids with frequencies only in the range πωπ ≤≤−  are distinct. Thus 

the analog signals have to be equal or smaller than half of the sampling frequency as 

samplingsampling fff 2
1

2
1 ≤≤−         (2-1) 

To reconstruct signals back unambiguously without aliasing, the sampling frequency 

has to be equal or greater than twice of the frequency bandwidth of analog signals. This is 

Nyquist-Shannon sampling Theorem [8]. 
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2.1.2 Resolution 

Quantization converts signal amplitude from continuous voltages into discrete 

values by dividing a full-scale signal voltage into 2N-1 sub-range where N is the resolution 

of ADC. The resolution N represents the expected conversion precision of ADC. The 

effective conversion precision is decreased due to various noises. A primary noise source in 

data conversion is quantization error.  

 

Figure 2-1 N = 3 Quantization Steps 

Quantization inherently adds noise into digitized signals. Figure 2-1 presents 

quantization steps for a resolution of N = 3.  The full-scale amplitude of analog signal is 

divided into 7 sub-ranges.  Any voltage in a sub-range between every two steps is rounded 

to the closed step. Thus, quantization unavoidably results in a loss of information and is 

presented as the quantization noise. 

Quantization error Q is one step size VLSB and generally considered as a random 
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variable with a uniform distribution. The error density function fQ(x) is 
LSBV
1  in the range 

[- 2
LSBV , 2

LSBV ] as shown in Figure 2-2.  

LSBV
1

2
LSBV

−
2
LSBV

 

Figure 2-2  Uniform Distribution of Quantization Error 

To approximate the quantization noise, the signal-to-noise ratio (SNR) is calculated 

by comparing the signal power over the quantization noise power. The root-mean-square 

(rms) value of the quantization noise is 
12

2

2

12 2
1

][ LSB
LSB

LSB LSB

V
V

V VQ dxxrmsV == ∫−
   where 

N
FSV

SBLV
2

= . 

For a sinusoidal signal )cos(2 θ+ΩtFSV with a full-scale voltage, the rms value 

is
22

22

0 22
1

2
1

)cos(( FSFS VV
in tdtrmsV =⎥⎦

⎤
⎢⎣
⎡ Ω+Ω⋅⋅= ∫ θ

π

π . The signal-to-noise ratio (SNR) of ADC 

is the ratio of the rms value of signal to the rms value of the quantization noise.  

)(76.102.6)(log20 10 dBN
rmsV
rmsV

SNR
Q

in +==      (2-2) 

Thus the ideal SNR of an N-b ADC is 6.02N + 1.76 dB as shown in Equ. (2-2). For 

example, a 4-b ADC has an ideal SNR of 25.84 dB.  
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2.2 Performance Characteristics 

 
Performance characteristics of ADCs [9, 10] presented in this section aims at giving 

an evaluation metric of ADCs. 

 
2.2.1 Static Performance 

2.2.1.1 Offset and Gain Error 

Offset is a constant difference between the actual finite resolution characteristic and the 

ideal finite resolution characteristic measured at any vertical jump. Gain Error is the 

difference between the actual finite resolution and an infinite resolution characteristic 

measured at the rightmost vertical jump. It is proportional to the magnitude of ADC input 

voltage. In conventional comparison of ADC performance, the sampling speed is assumed 

for all input voltage due to the linearity of circuits, however, a high input voltage results in 

a faster response than does a low input voltage which eventually results in an ADC gain 

error.  

 
2.2.1.2 Integral Non-Linearity and Differential Non-Linearity 

 

Integral nonlinearity (INL) is the maximum difference between the actual finite 

resolution characteristic and the ideal finite resolution characteristic measured vertically. It 

can be expressed as a percentage of the full scale range or in terms of the least significant 

bit (LSB).  

Differential Nonlinearity (DNL) is a measure of the separation between adjacent levels 

measured at each vertical jump. It measures bit-to-bit deviations from ideal output steps 
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and can be expressed in terms of the LSB as shown in Equ. (2-3).  

LSB
V

VVkDNL
LSB

kk 1)(
''

1 −
−

= +        (2-3) 

Equ. (2-3) is used to calculate the DNL for each quantization level and VLSB is one 

voltage step size and equal to )22( −N
FSV in flash ADCs. V’k+1 and V’k are adjacent 

actual voltage levels. The maximum DNL characterizes the differential nonlinearity of the 

ADCs. 

 

2.2.2 Dynamic Performance 

2.2.2.1 Signal-to-Noise Ratio 

 

The signal-to-noise ratio (SNR) is the ratio of the signal power to the total noise power 

at the output usually measured for a sinusoidal input. It is expressed in decibel (dB) as the 

following equation [11]: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

noiserms

signalrms

A
A

SNR
,

,
10log20         (2-4) 

where Arms,signal  and Arms, noise are the root mean square of the amplitude for the signal and 

noise, respectively. The SNR can also be calculated as the signal fundamental spectrum in 

dB minus the sum of all the noise spectra excluding the significant harmonics.  

 

2.2.2.2 Signal-to-Noise-and-Distortion Ratio 

 

The signal-to-noise-and-distortion ratio (SNDR) is the ratio of the signal power to the 
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total noise power and harmonics power at the output when inputting a sinusoid. 

Mathematically the SNDR is formalized as the following [12] 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+harmonicsnoiserms

signalrms

A
A

SNDR
,

,
10log20        (2-5) 

where Arms, signal and Arms, noise+harmonics are the rms of the signal amplitude and the 

rms of all the noise amplitudes and all the harmonic amplitudes. According to the SNR in 

Equ. (2-2), the performance parameters SNR and SNDR are both up-bounded at 

6.02N+1.78 dB. 

 

2.2.2.3 Effective Number of Bits 

 

The effective number of bits (ENOB) is defined by the following equation [15]: 

02.6
78.1 dBSNDRENOB −

=         (2-6) 

In the Nyquist ADC, the ENOB is smaller than the resolution N of ADC, while with 

noise-shaping technique, the over-sampling ADC may achieve an ENOB higher than the 

resolution N.  The ADC architectures are reviewed and discussed in the next chapter. 

 

2.2.2.4 Spurious-Free Dynamic Range 

 

The spurious-free dynamic range (SFDR) is the ratio of the signal power to the largest 

harmonic power, or the power of the highest spur if the power of the highest spur is greater 

than the largest harmonic power. It can be expressed as  
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

rhighestSpuharmonicrms

signalrms

ndA
A

SFDR
/2,

,
10log20        (2-7) 

The SFDR performance shows the dynamic range of an ADC. In [13] and [14], an 

empirical equation for the SFDR was derived as 

cNSFDR −≈ 9            (2-8) 

where N is the resolution of the ADC, c is the offset ranges from 0 for low resolution and 6 

for high resolution [24]. 

 

2.2.2.5 Total Harmonic Distortion 

 

The total harmonic distortion (THD) is the ratio of the total significant harmonic power 

over the signal power. The THD can be expressed as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

signalrms

harmonicsrms

A
A

THD
,

,
10log20         (2-9) 
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Chapter 3 ADC LITERATURE REVIEW 

 
The literature review is intended to provide information to understand the context of 

this research. Following a brief overview of ADC architectures, high speed flash ADCs are 

surveyed and the performances of state-of-the-art flash ADCs are discussed. At the end of 

this chapter, flash ADCs using inverter comparator configuration for SoC applications are 

discussed. 

  
3.1 Architecture Overview 

 
As the primary characteristics, the precision and speed in data conversion determine 

the selection of ADC architectures for a specific application. ADC precision and speed, in 

terms of resolution and sampling frequency, is shown in Figure 3-1 [16]. Sigma-Delta 

ADCs have the highest resolution but the lowest sampling frequency; flash ADCs have he 

highest sampling frequency but the lowest resolution. The resolution and the sampling 

frequency for successive approximation register (SAR) ADCs and pipelined ADCs are in 

the between. 



 

 16

 

Figure 3-1 Resolution N vs. Sampling Frequency fsampling  

 

The primary characteristics of the ADC architectures determine their applications. The 

Sigma-Delta ADCs adopt over-sampling and noise shaping techniques to increase the SNR 

by pushing low-frequency noise to higher frequencies which is out of the interest 

bandwidth. The Sigma-Delta ADCs have features of low-bandwidth, high-resolution and 

are particularly suitable for applications of precision measurement. The SAR ADCs use 

one comparator over many cycles to conduct its conversion. They are often used at lower 

speed, high resolution applications like industrial control and battery-powered applications. 

The pipelined ADCs divide the conversion task into several consecutive stages to achieve 

high resolution than the flash ADCs. The pipelined ADCs are often applied to high speed, 

low resolution applications such as Video, HDTV, and Medical & CCD Imaging.   The 

flash ADCs convert the signal in one cycle by parallelizing all comparators to achieve fast 
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conversion speed. They are often used in high speed applications like high-density disk 

drives, wireless communications, wideband satellite receivers, etc.   In general, power 

consumption and silicon area of the flash ADCs increases with the increase of signal 

bandwidth.  

  

3.2 High Speed ADC in Literature  

 

Encoder
N-b outputs

Vref1 Comp .

Vref2 Comp .

Vrefn
Comp .

Vin

 

 
Figure 3-2   Flash ADC Architecture 

 

A general architecture of flash ADC is presented in Figure 3-2.  In an N-bit flash ADC, 

2N-1 reference voltages and comparators are used to convert the analog input signal into a 

thermometer digital output signal. Commonly, the reference voltages are provided by a 

2N-1-resistor ladder and the thermometer-code output is converted into a binary code by a 

thermometer-to-binary encoder. 

A full flash architecture, in principle, does not need an explicit front-end 

sample-and-hold circuit and its performance is determined primarily by its constituent 
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comparators [9].  Since comparators do not require linear amplification and typically 

achieve a higher speed than sample-and-hold amplifiers (SHA), flash ADCs can operate 

faster than those that demand front-end SHA [9].   Since the number of comparators 

grows exponentially with the resolution, these ADCs have excessively large input 

capacitance, power and area consumption, and different comparator offset voltages.  In 

addition, lack of a front-end sample-and-hold amplifier makes the converter vulnerable to 

sparkles and slew-dependent sampling points.  

Full flash ADCs employ parallelism and “distributed” sampling to achieve a high 

conversion speed with a simple architecture, but the resolution is limited when its sampling 

frequency reaches several giga-hertz [35].  A few of circuit techniques have been 

proposed to improve the resolution while maintaining a one-step conversion without using 

sample-and-hold circuits.  Folding and interpolation techniques were proposed to increase 

the effective input bandwidth by reducing the number of comparators but the architecture 

becomes complicated [17-23] [36].  Averaging technique was proposed to improve the 

performance of the resolution and the DNL error by suppressing the output offsets of 

comparators by scarifying the input signal dynamic range due to dummy comparators [1] 

[3] [24-26] [29-31].  Time-interleaved technique was proposed to increase the sampling 

frequency by parallelizing ADCs but the high nonlinearity mismatch noise requires an 

elaborate digital calibration system [32-34]. 
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Table 3-1 Comparison to State-of-the-art GHz Flash ADCs 

 

 

The performances of state-of-the-art GHz flash ADCs are compared in Table 3-1. The 

effective resolution bandwidth (ERBW) is limited by 1000 MHz (1GHz), although the 

sampling rate reaches 4 GHz. The input capacitance, power and area consumption increase 

as the ERBW increases.  

 

3.3 Flash ADCs Using Inverter Comparator for SoC 

 

In recent years, with technology processes continuously scaling-down and SoC 

technique becoming feasible, high-performance low-voltage ADCs are in demand. The 
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low-voltage ADCs with comparators in a simple inverter configuration particularly 

suitable for SoC are reported.  

Segura et al. in 1998 [35] suggested that an inverter could be used as an analog 

comparator. Tangel in 1999 [36] first proposed using threshold inverter quantization (TIQ) 

technique for comparator design in CMOS flash ADCs. An 1-GSPS CMOS flash ADCs 

for SoC application was reported in 2001 [16][37]. Thereafter, a number of inverter-based 

ADCs with emphasis on optimization of comparators were reported [38]-[43]. Some of 

their performances are shown in Table 3-2. 

 
Table 3-2 Comparison to Flash ADCs with Inverter Comparator 

 

 
In [37] and [39], the ADCs were reported with emphasis on static performance of INL 

and DNL. Using random size variation (RSV) and systematic size variation (SSV) 

techniques to optimize the comparators improves the static performance of ADCs.  The 

ADC in [40] was designed with random sizing method and achieved a SFDR of 9 dB with 
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an input signal frequency of 1 GHz. The ADC in [41] was designed by consideration of 

dynamic offset suppression and achieved a SFDR of 19.81 dB with an input signal 

frequency of 1.25 GHz. Their ADC performances are summarized in Table 3-2.   

Flash ADCs with inverter comparator in Table 3-2, compared with flash ADCs in 

Table 3-1, have comparatively higher sampling rate, low power and area consumption, and 

using smaller feature size technologies.   
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Chapter 4 HIGH-SPEED ADCS IN WIDEBAND RECEIVERS 

 
In wideband communication systems, an ADC in receivers digitizes several channels 

of strong and weak signals simultaneously. A digital signal processor (DSP) subsequently 

detects each channel.  First, the input dynamic range is an important performance 

parameter for communication receivers.  The ADC is desired to have high-speed data 

conversion and high input dynamic range [45].    Usually, the SFDR of ADCs limit 

wideband receiver sensitivity, not the SNR [44][46].  Therefore a design objective of 

ADC for wideband communications is to increase the SFDR by lowering the spur and 

noise floor therefore the weak legitimate signals can be detected.  Secondly, the wide 

bandwidth requires a high conversion rate in the ADC design by Nyquist theorem.  The 

flash ADC architecture is commonly used without external sample-and-hold (S/H) and has 

distributed sampling on high-speed comparators for giga-hertz input signals. The sparkles 

in thermometer code, meta-stability, and signal slew rate limitation will generate spurious 

code and odd harmonics in the digital output [9][51].   Engineers have to consider all 

these issues for a good ADC design in wideband communication systems. 
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4.1 Spurs in Spectrum 

 

The spurious-free dynamic range (SFDR) must be sufficiently high so that weak 

signals are not covered in the spurious-floor.  The SFDR of the ADC is defined as the 

difference in decibels (dB) between the full-scale fundamental and the maximum spurious 

tone including harmonics in the output spectrum. The signal-to-noise ratio (SNR) is 

relatively less important here [46]. 

To understand the spurs in the output spectrum, we look at the discrete Fourier 

transform (DFT) as the following: 

Nnkj
N

n
enxkX /2

1

0
)()( π−

−

=
∑=            (4.1) 

where x(n) is the sampled output of ADC, N is the total number of samples, and X(k) is the 

output spectrum power in real-imaginary domain with k ranging from 1 to N. Ideally, X(k) 

is zero at the non-signal points and non-zero at the signal point.  This is illustrated by an 

example of 1-GSPS ADC at an input signal frequency of 125 MHz signal using an 8-point 

DFT.  Both time and frequency domain data are depicted in Figure 4-1.   
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Figure 4-1 Time and frequency domain data using an 8-point DFT 

 

For a periodic signal, ideal samples are [0, a, b, a, 0, -a, -b, -a] as shown Figure 4-1 

(a). We take those samples into Equ.(4.1) and get Equ.(4.2) with Nnkjnk eW /2π−=  for 

simple expression.  
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Because of symmetry and periodicity property of DFT, which are 2/Nnk
N

nk
N WW +−=  

and Nnk
N

nk
N WW += , Equ.(4.2) is simplified to Equ.(4.3).  
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The values of X(k) are calculated in Equ.(4.4). X(1) and X(7) are signal-point and 

symmetry, while the rest are non-signal points and equal to zero, shown in Equ.(4.4) and 

in Figure 4-1 (b). 
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For non-ideal case of sampling as shown in Figure 4-2 (a), the samples can be [∆0, 

a+∆1, b+∆2, a+∆3, ∆4, -a+∆5, -b+∆6, -a+∆7], where ∆i is an offset from its ideal value 

resulting from error sources, sparkles or meta-stability, for instances.  
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Figure 4-2  8-point DFT with Spurs 

 

Putting the offset samples into Eqn.(4.3) as shown in Equ.(4.5), we can see that X(k) 

at non-signal points are not zero and completely determined by the offsets, while X(k) at 

signal points are modified by the offset in the samples, shown in Equ.(4.6). 
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Those non-zeros X(k) at non-signal points appear as the spurs in spectrum domain as 

shown in Figure 4-2 (b).  

To lower the spurious-floor in ADC design, the offsets (∆i) need to be suppressed. 

The offsets ∆i can be static offsets, dynamic offsets or the sum of them. They may be 

characterized as random or mutual correlated. The random offset of ∆i is difficult to 

control and only can be suppressed, while the correlated offset of ∆i may even be 

eliminated in certain cases. 

In high-speed data conversion, a major source of errors is dynamic offsets caused by 

mismatches in sampling switches and sampling capacitance values [52]. The dynamic 

offsets can be suppressed or even eliminated in ADC design.     
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4.2 Signal Slew Rate Limitation 

 

In the flash conversion without an external S/H circuit, the signal slew rate limits the 

ADC speed and resolution in a given technology. When the maximum slew rate of the 

analog input is close to the clock transition rate, the logic output can be different from the 

expected value because the input signal still influences the output of comparators during 

the time between the clock latch turned on and the input signal locked off. This 

phenomenon introduces odd harmonics because it occurs for both negative and positive 

slopes [54]. 

This error can be lowered when the clock transition rates are sufficiently higher than 

the maximum slew rate of the analog input. On a large chip, this requires careful clocking 

distribution with particular attention to their loading [9]. 

Another concept related to signal slew rate is the clock jitter, or called aperture jitter. 

The maximum tolerable jitter determines the ADC’s resolution and speed [47]-[50]. For a 

full-scale analog input ftV fsV
in π2sin2= , whose maximum rate of change is  πּ f ּVfs. 

The maximum tolerable jitter for 1-LSB is  

NMAX f
dt

2
1

⋅⋅
=

π
          (4.7) 

where dtMAX represents the maximum clock jitter and N is the converter’s resolution. 
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4.3 Sparkles and Meta-stability 

 

Sparkles and meta-stability are general phenomena in high-speed ADCs, which result, 

in grossly incorrect digital output codes. The sparkle phenomenon is a ONE above ZERO 

caused by timing mismatch among comparators. An important effect resulting from the 

lack of a S/H in flash ADC is the sparkles (or bubbles) in the thermometer code [51][53].    

Meta-stability is a phenomenon associated with binary digital logic system. A meta-stable 

state occurs when an indeterminate state between logic ‘1’ and logic ‘0’ is latched at the 

clock edge. It can happen by a comparator with slow regenerative time or using flip-flops 

for synchronization of signals [51].  

There are digital encoding schemes developed to suppress the sparkles and 

meta-stability errors. But in high speed flash converters Gray encoding is used as an 

intermediate step between thermometer and binary codes to suppress two potential errors 

[9]. The error of meta-stable state can be suppressed because one meta-stable state of a 

comparator is fed into no more than one input in Gray coding. The error of sparkles is 

reduced because the accuracy of the Gray code degrades gradually as more sparkles appear 

in the thermometer code.  

A 3-bit Gray code example is used to illustrate the above points as shown in Figure 4-3 

[9]. From the correspondence, the output G3G2G1 can be expressed in terms of the 

thermometer code as follows: 

___

75

___

311 TTTTG +=       (4.8) 
___

622 TTG =       (4.9) 
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43 TG =       (4.10) 
 

The thermometer code Ti appears in only one expression and hence no signal is split 

and the effect of meta-stable states can be reduced as shown in Figure 4-4. With pipelining, 

the time for regeneration is increased to reduce logic meta-stabilities. 

 

 

Figure 4-3  Correspondence among Thermometer, Gray and Binary Codes 

 

 

 

Figure 4-4  Pipelined Thermometer-to-Gray Encoder 
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Figure 4-5 illustrates the Gray encoding suppressing the effect of various sparkles, 

compared with direct binary encoding. The Gray output remains a reasonable 

approximation of the sampled value with the number of sparkles increasing. 

 

 

Figure 4-5 Comparison of Gray and Direct Binary Encoding at Various Sparkles 

 

Although the Gray encoding can be used to suppress the errors by meta-stability and 

sparkles, the performance of flash conversion is determined primarily by the speed and 

accuracy of the comparators. 
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Chapter 5 CLOCKED DIGITAL COMPARATOR 

 
5.1 Introduction 

 

Comparator is the constituent part of ADCs with full-flash architecture. The overall 

performance of flash ADCs is limited by the performance of their comparators for the 

multi-bit flash ADCs are comparators parallelized, which are one-bit converters. However, 

CMOS flash ADCs suffer greatly from offsets in the comparators because of device 

mismatches and clock timing mismatches.  

Generally, high-speed flash ADCs use the differential amplifier structure in 

pre-amplifier and comparator design. There are two types of offsets in a differential 

comparator. One is a static and random offset from device mismatches, which is amplified 

into a larger offset in the output. The other is a dynamic offset at the output of comparator 

arising from clock switching in the regenerative latch. The dynamic performance of ADC 

is degraded greatly by the offsets of differential comparators.  

In the state-of-the-art flash ADCs with the speed less than 2-GHz sampling frequency 

reported in Table 3-1, averaging technique is used to smooth out the random mismatch 

across the differential comparator and improve the SNR in flash ADCs [1][3][19][34]. For  
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strongest averaging [44], one third dummy amplifiers are added and extra reference 

voltage increases the difficulty of the high-speed differential comparator design due to the 

stringent effective input voltage range in scaling-down CMOS processes. Besides, 

averaging method reduces amplifier bandwidth and consumes extra power due to dummy 

amplifiers [44].  

In design of monolithic flash ADCs using feature size less than 130-nm CMOS 

processes with the sampling speed over 2-GHz and the effective signal bandwidth over 

1000-MHz, the differential comparator design is challenged. More importantly, the 

dynamic offsets from clock timing mismatches between parallelizing comparators become 

more significant and apparently effect to the ADC performance at over 1-GHz frequency 

signal. 

As reviewed in Chapter 3, the comparator with inverter configuration was suggested 

for scaling-down CMOS processes. However, the relative researches reported were 

focusing on the static performance, did not consider the dynamic performance of the ADCs 

for high frequency signals. 

In this research, we propose a high-speed clocked digital comparator (CDC) with 

inverter configuration, coupled with a dynamic offset suppression and an optimum 

implementation method for high-speed wideband CMOS flash ADCs. With a simple 

inverter configuration, the CDC has less device mismatch issues and lower device linearity 

requirements. The dynamic offset arising from clock timing mismatches is more apparent 

in the CDC design, than the random static offset from device mismatches, which is dealt 

with in this research by dynamic offset suppression technique and optimization design for 

wideband communications without additional hardware.  
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A brief review of inverter amplifier is presented in Section 5.2.  CDC and dynamic 

offset suppression is presented in Section 5.3.  Section 5.4 presents procedures to 

implement the optimal CDC design, and discuss optimization theory and experimental 

results. The performance of CDC is summarized in Section 5.5.  

 

5.2 Inverter Amplifier 

 

Figure 5-1(a) illustrates an inverter amplifier where M1 and M2 are PMOS and NMOS 

transistors.  The operating regions of the inverter amplifier for different input voltages are 

shown on the voltage transfer function characteristics of Figure 5-1(b).  Both the 

transistors are in saturation region between points A and B on the output curve with a bias 

voltage Vbias. Since both transistors are being driven by vin and in saturation, the inverter 

amplifier has the highest gain.  

(a) Inverter Amplifier
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Figure 5-1  Inverter Amplifier with Voltage-Transfer Characteristics 
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The PMOS M1 is in the saturation region when TpSGDS Vvv −≥ 11 , then we have 

TpINOUT Vvv +≤          (5.1) 

The NMOS M2 is in the saturation region when TnSGDS Vvv −≥ 22 , then we have 

TnINOUT Vvv −≥           (5.2) 

For both transistors in saturation, the output range ∆Vout can be derivate by subtracting 

Equ.(5.2) from Equ.(5.1) as 

TnTpout VVV +=∆          (5.3) 

Figure 5-2 illustrates the small-signal characteristics of inverter amplifier. The parasitic 

capacitances are presented in Figure 5-2(a) and Figure 5-2(b) presents the small-signal 

model of (a). 
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Figure 5-2  Small-Signal Characteristics of Inverter Amplifier  
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The largest small-signal voltage gain occurs when both transistors are saturated which 

can be expressed by 
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From Equ.(5.4), the value of A0 is process-dependent and varies in a certain range with 

Vbais. For IBM 130 nm CMOS process, A0 is around 16 and slight changes with Vbais from 

0.4v to 0.75v. 

     The input range for both transistors in saturation is ∆vin for Vbias which can be 

expressed by 
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For IBM 130 nm CMOS process, if TnTp VV +  approximate to 0.4V, ∆vin is around 25 mV.   

The -3dB frequency response can be expressed as  
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C
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= 21
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with Lbdbdgdsgdsout CCCCCC ++++= 2121 , illustrated in Figure 5-2(b). 

 

5.3 Clocked Digital Comparator with Dynamic Offset Suppression 

 

Figure 5-3 shows the structure of clocked digital comparators (CDCs) designed in 

the n-bit flash ADC, in which the 2n-1 comparators have the same structure, but are sized 
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differently. A comparator consists of two cascaded CMOS inverters and a digital CMOS 

switch. The first inverter is a quantization component. The second inverter is a component 

which sharpens and balances the quantized output. The digital switch is a digitization 

component which makes the comparator perform a sampling operation.   

 

Figure 5-3  Clocked Digital Comparator 

 
The analog quantization level of clocked digital comparator is the switching 

threshold voltage of the quantization inverter. It is a reference voltage and is 

self-determined by the size ratio of NMOS and PMOS. As shown in Figure 2(a), this 

internal reference voltage, Vm, is defined as the input voltage Vin of the quantization 

inverter when the output voltage Vo1 equals to Vin, where both PMOS and NMOS 

transistors are in saturation. Figure 2(a) is the static voltage transfer characteristic (VTC) of 

the inverter. The voltage Vdd is the supply voltage of the process. The value of Vm is 

expressed as 
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where VTp and VTn are threshold voltages of PMOS and NMOS devices; Wp and Wn are 

widths of PMOS and NMOS; µp and µn are hole mobility and electron mobility, 

respectively.   

 

 

Figure 5-4  Static VTC 

 

Figure 5-4(b) shows the static VTC for the 2n-1 comparators. The 2n-1 analog 

quantization levels Vm(i), i = 1,….2n-1, are equally-spaced. However, due to the hysteresis 

of the inverter switching, there will be a time delay (a time offset) ∆toffset for Vo1 rise to or 

fall to Vm after Vin = Vm. If the ∆toffset of 2n-1 comparators are all different, the outputs Vo1 of 

all comparators won’t equally-spaced. Then the analog quantization levels will have 

irregular offsets when compared with their corresponding values in static VTC. The offsets 
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of the comparators and the offset differences among the comparators introduce dynamic 

noises and degrade ADC dynamic performance.  

(a)  switching time 
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Figure 5-5  Transient Behavior of CDC Quantization Inverters 

 

To model the dynamic offsets, we analyze the transient behavior of a clocked digital 

comparator for an input sinusoidal signal, vin(t)=Acos(ωt) where A is signal amplitude and 

ω is signal frequency. Figure 5-5 shows the transient behaviors of the quantization inverter 
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in the digital comparator. The switching time offset is defined as the offset time ∆toffset for 

the inverter output Vo1 to rise to or fall to Vm after Vin = Vm. Both fall offset time ∆tf-offset = 

(t1
+ - t1) and rise offset time ∆tr-offset = (t2

+ - t2) are shown in Figure 5-5(a). When Vin is 

approaching to Vm, , assuming the load capacitance is small and both NMOS and PMOS are 

in saturation, ∆tf-offset ≈ ∆tr-offset (=∆toffset) and is expressed as 
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where Co1 is the capacitive load at the output Vo1; Ids is the drain-source current of NMOS 

and PMOS; λn and λp are active-region slope parameters for NMOS and PMOS, 

respectively. 

On the other hand, during time ∆toffset, vin(t) will either rise or fall to Vm
+ or Vm

- 

depending on if it is in the rising or falling cycle. The difference between Vm and Vm
+ or Vm

- 

is the dynamic voltage offset. Both falling voltage offset ∆Vf-offset = (Vm
+ - Vm) and rising 

voltage offset ∆Vr-offset = (Vm - Vm
-) are shown in Figures 5-5(b) and (c). Since rising offset 

and falling offset happen when both transistors are in saturation, ∆Vf-offset ≈ ∆Vr-offset and 

output offset ∆Voffset is expressed by 
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( ) offsetoffset ttAAV ∆∗∗=∆ ωω sin0      (5.14) 

It is clear that ∆Voffset is frequency-dependent, so called dynamic offset. Substituting 

Equ. (5.13) to Equ. (5.14), we obtain 
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where λn and λp are process-dependent, and A and ω are signal-dependent.  

To suppress the dynamic offset ∆Voffset of comparators and to eliminate the offset 

differences among comparators, as shown in Equ. (5.15) the Co1 is designed as small as 

possible and has the same value for 15 comparators, and similarly the Ids is designed as 

large as possible and has the same value for 15 comparators. 

 

5.4 Optimization of Sizing Design 

 
5.4.1 Methodology 

 
Suppressing the CDC dynamic offset demands a large value of Ids as well as a small 

value of Co1. However, with a fixed gate-source voltage, increasing Ids is only by increasing 

sizes of the transistors, which results in large parasitic capacitance of Co1 in the CDC 

comparator. Thus optimization of Ids is required for dynamic offset suppression in CDC 

design.  

A circuit-level optimal process of CDC design is developed for the optimization of Ids 

and the optimization of the dynamic offset suppression. In the optimal process, the CDC 
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feature values, including Co1, Ids, and the ratio of them, are firstly analyzed by calculated in 

Matlab with a simple model to gain an insight into the relationship between CDC dynamic 

offsets and Ids. The simple model used here is the level-1 transistor model, a model that 

generally is used by most of analog circuit design analysis. Then the Ids of the CDC is 

determined optimally by simulating 6 different sizing CDCs in Cadence Spectre with a 

more complex transistor model. The model used in the simulation is the level-49 transistor 

model, a model that is used for IBM 130 nm process. This two-step optimal process results 

in an optimization of dynamic offset suppression in the CDC design. 

Before optimizing the CDC design for dynamic offset suppression, we analyze the 

relationship between CDC dynamic offsets and the switching speed of its quantization 

inverter.  Switching speed of an amplifier is generally expressed by its output slew rate 

[55]. The slew rate of CDC is then expressed by 

L
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∆
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The slew rate of the quantization inverter represents the switching speed as in Equ. 

(5.17): 
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In Equ. (5.13) and (5.15) both the time and voltage offsets are proportional to the ratio 

of Co1 and Ids and inversely proportional to the slew rate of the CDC’s quantization 

inverter as shown in Equ.(5.18) and (5.19). 
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SlewRateI
CV

ds

o
offset

11 =∝∆     (5.19) 

Therefore, Higher slew rate will generate smaller dynamic offset in CDCs.  In our 

dynamic offset suppression slew rates of 15 CDC’s quantization inverters are analyzed to 

determine the optimum value of Ids. 

 To determine the slew rate of the quantization inverter, two parameters Co1 and Ids are 

calculated and analyzed.  In the CDC comparator, the Co1 is the sum of gate-to-drain 

capacitance, bulk-to-drain capacitance of the quantization inverter and capacitive load 

from the CDC second inverter. Figure 5-6 shows the small-signal model of a CDC 

quantization inverter for calculating the capacitance load Co1 in Equ.(5.20), where Cgd1 and 

Cgd2 are the gate-to-drain capacitances of NMOS and PMOS, respectively. Cbd1 and Cbd1 

are the bulk-to-drain capacitances of NMOS and PMOS, respectively. CL is the capacitive 

load from the CDC second inverter.  
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Figure 5-6  Small-Signal Model of CDC Quantization Inverters 
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Lbdbdgdgdo CCCCCC ++++= 21211     (5.20) 

For predicting the input capacitance of CDC-based ADCs, the input capacitance of 

CDC is approximated in Equ. (5.21), referring to Figure 5-2(a), which is under Miller 

effect, where gm1 and gm2 are the trans-conductance of M1 and M2, respectively. gds1 and 

gds2 are the conductance of M1 and M2, respectively. 
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Equ. (5.22), (5.23) and (5.24) are used for calculating the gate-to-drain, gate-to-source and 

bulk-to-drain parasitic capacitances, Cgd, Cgs and Cbd.  Cox is the oxide capacitance. LD is 

the lateral diffusion. Weff is the effective channel width. AD is the area of the drain.  PD is 

the perimeter of the drain.  CJ is the zero-bias junction capacitance, CJSW is the zero-bias, 

bulk-drain sidewall capacitance.  PB is the bulk junction potential. MJ is the bulk junction 

grading coefficient. MJSW is the bulk-drain sidewall grading coefficient. The calculation 

of AD and PD is shown in Appendix A. 
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The drain-source current in saturation is calculated in Equ.(5.25), where W and L are the 

width and length of transistor. VGS and VDS are the gate-source and drain-source voltages. 
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VT is the transistor threshold voltage. K’ is the trans-conductance parameter in saturation 

and λ is the channel length modulation parameter. As analyzed in the previous section, 

the offsets happen when both transistors are in saturation. The critical segment in the 

switching time of CDC quantization inverter is the time segment that both transistors are 

in saturation, which is used to approximate the slew-rate of the quantization inverter. 

Parameter values in Equ. (5.22) to (5.24) are taken from IBM 130 nm CMOS process 

A diagram of Matlab analysis in Figure 5-7 is designed to illustrate the calculation of Ids, 

Cin, Co1, and the slew rate (SR) for optimization of Ids, CDC transistor sizing, and 

dynamic offset suppression. 

 

 

Figure 5-7  Diagram for Matlab Analysis 
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Figure 5-8 shows the results of the diagram of Matlab analysis using IBM 130 nm 

CMOS process parameters where the desirable threshold voltage Vm equal to 0.484 V.  

Figures 5-8 (a), (b) and (c) show that Co1 (fF), Ids (µA) and Cin (fF) all monotonously 

increase as the NMOS width increases.  It is shown from Figures 5-8(a) and (c) the 

bulk-to-drain capacitance is much larger than its gate-to-drain capacitance, especially in 

scaling-down CMOS processes. Figure 5-8 (d) illustrates that the slew-rate is saturated 

when the Ids increases to 150 µA.  

 

Figure 5-8  Ids, Co1, Cin, Slew-Rate Vs. NMOS width at Vm = 0.484v 
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A large slew-rate is desired for efficient dynamic offset suppression and high speed 

conversion.  If the slew-rate is saturated, then there is no need to increase the Ids by 

increasing the size of transistors which in turn will increase the input capacitance Cin of 

CDC, as shown in Figure 5-8 (c).  The total input capacitance of CDCs determines the 

input signal frequency bandwidth of flash ADC. Therefore, a threshold current Ids-threshold of 

CDC is defined as the value of Ids when the slew-rate become saturated.   

 When the slew rate becomes saturated, it does not decrease as Ids is increasing. 

However, in Cadence simulation, the slew rate decreases when the values of Ids are either 

too small or too large which are shown in Figures 5-9 and 5-10. 

 

 

Figure 5-9  Comparison of Vo1 Rising Speeds with Vm=0.484v and Various Ids 
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Figure 5-10  Comparison of Vo1 Falling Speeds with Vm=0.484v and Various Ids 

 

Following the diagram for Matlab analysis in Figure 5-7, we enumerate 6 different 

values of Ids and design 6 different CDC comparators for a same threshold voltage Vm of 

0.484 V. Figures 5- 9 and 5-10 show switching speed comparison of the 6 quantization 

inverters with 6 different Ids (20 µA, 50 µA, 75 µA, 100 µA, 150 µA, and 200.  The 

input sinusoidal signal frequency is 1 GHz.  Figures 5-9 and 5-10 compare the rising and 

the falling speed at the output Vo1 of the 6 quantization inverters.  It is observed that 

50µA is close to the saturated current Ids-threshold and the comparator with Ids = 50µA is 

only 3ps slower than the fastest one.  As shown in Table 5-1, the comparator with Ids = 

100µA has the fastest rising speed and the comparator with Ids = 75µA has the fastest 

falling speed. The optimum value of Ids to achieve the fastest switching speed is in the 

range of [75µA, 100µA].  This enumeration method can be repeated with Ids in the small 

range of [75µA, 100µA] for optimum value of Ids.  
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Table 5-1 Comparison of Switching Speeds of Vm = 0.484v and 6 different Ids 

 

 

The Ids-threshold obtained from Cadence simulation is slightly smaller than the value 

calculated from the diagram of Matlab analysis.  The above optimization process is for 

one CDC comparator and the threshold voltage Vm equals to 0.484v.  The same 

optimization process can be repeated for all CDC comparators with different threshold 

voltages Vm.  Ideally, a same value of Ids for all CDC quantization inverters is desired to 

suppress dynamic offsets.   In reality, the Ids-threshold values of all CDCs are likely different 

because their threshold voltages Vm are different. Therefore, we need to find an optimal 

value of Ids for each CDC. 

 

5.4.2 Optimum Ids 

 

 The design optimization developed for dynamic offset suppression is applied and 

validated on a 4-b 2.5-GSPS CMOS flash ADC. Table 5-2 shows switching speed 

comparison of three CDCs with Vm in the range of [0.45v, 0.668v]. Vm(i) with i = 1…15 

represents the threshold voltages of 15 CDCs in the 4-b flash ADC. Vm(1) is the threshold 

voltage of the first CDC; Vm(15) is the threshold voltage of the last CDC. The transistor 
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widths of NMOS and PMOS, Ids, and the switching speed order (rising and falling) for each 

CDC are indicated in Table 5-2. The optimum Ids of Vm(1) and Vm(15) is determined in the 

range [75µA, 100µA]. 

   
Table 5-2  Comparison of Switching Speeds for Various Vm 

 

 
Assume Ids-threshold(i) with i =1…15 represents the threshold currents of 15 CDC 

quantization inverters.  We’ll have  

)8().......2()1( thresholddsthresholddsthresholdds III −−− <<      (5.26) 

)15()14(.......)8( thresholddsthresholddsthresholdds III −−− >>      (5.27) 

Thus, the CDCs with Vm(1) and Vm(15) become critical designs in the CDC design since 

their switching speeds determine the speed of the ADC. 

 From Table 5-2 it is shown that both Ids- threshold(1) and Ids- threshold(15) are smaller than 

150µA because the switching speed decreases when Ids is 150µA.  Ids- threshold(8) is larger 

than 200µA because the switching speed increases when Ids is 200µA. Then the optimum 
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Ids for this 4-b flash ADC with the threshold voltage range [0.45v, 0.688v] is determined in 

the range of [75µA, 100µA].  In this 4-b flash ADC, Ids = 80µA as its optimum value is 

being used for the CDC design.  Optimization of Ids also optimizes the dynamic offset 

suppression in the CDC design.    

Three 4-bit flash ADCs with Ids of 50µA, 80µA and 150µA and input dynamic range of 

[0.45v, 0.688v] was designed.  Comparison of SFDR of these three ADCs is presented in 

Figure 5-11. 

 

Figure 5-11  Comparison of ADC SFDR for Optimization of Ids  

 
The results testify the optimization of dynamic offset suppression in CDC design. As 

discussed above the Ids of 80µA is an optimum value for designing the quantization 

inverter for efficient dynamic offset suppression.  Its ADC achieves the highest SFDR. 

The quantization inverters with Ids of 50µA and 150µA have smaller slew rates and 
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results in 3 to 5 dB down of SFDR compared with the quantization inverter with Ids of 

80µA as shown in Figure 5-10.  

 

5.5 Summary 

 
The CDC implemented by inverter configuration, with dynamic offset suppression and 

optimization, is characterized in the following: 

• No external resistor or capacitance array needed for generating reference voltages, 

which results in small area and avoids resistive thermal noise which usually 

generates a reference voltage offset.  

• Fewer analog components, which is robust for DSP interference in SoC 

applications and no requirement of device linearity in scaling-down CMOS 

technologies. 

• Small static power consumption, which makes it suitable for SoC and 

battery-powered applications. 

• No additional hardware needed for dynamic offset suppression  

• Less possibility for the metastable output due to high switching speed of CDCs.  
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Chapter 6 CDC-BASED PIPELINED FLASH ADC ARCHITECTURE 

 
The speed of monolithic flash ADCs is limited by the comparator switching speed and 

the propagation delay of the logic in the encoder [51]. This CDC-based pipelined flash 

ADC architecture adopts high-speed comparators and pipelined clocked DCVSPG 

encoders to achieve a maximum sampling frequency.  Using the dynamic offset 

suppression technique and circuit optimization method presented in Chapter 5, the 

CDC-based pipelined flash ADC can achieve 2-GHz signal bandwidth.  The architecture 

is well suited for integrated SoC applications due to its full compatibility with digital 

CMOS technology, low power and small area.  

 
6.1  Architecture  

 

Two block diagrams of the CDC-based pipelined CMOS flash ADC architecture are 

shown in Figures 6-1 and 6-2. Both block diagrams have the same architecture except 

different encoding schemes. The direct-binary encoder takes an 1-of-n code after the 1/0 

boundary detector and outputs a binary code (Figure 6-1).  The Gray encoder takes the 

thermometer code, decodes it into Gray code, and then outputs a binary code (Figure 6-2). 
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Figure 6-1 Architecture of CDC-based Pipelined ADC with Direct-Binary Encoding 

 

Figure 6-1 presents an ADC architecture with direct-binary encoding which includes an 

array of CDC comparators, an array of gain booster, an array of 1/0 boundary detectors, a 

direct-binary clocked encoder, and a clocked tree.  For a 4-b, 1-GHz signal bandwidth 

ADC in 130-nm CMOS process, the maximum tolerant aperture error is about 20 ps. The 

clock signal from the clock tree has transient time about 15 ps. Therefore the ADC output 

should have less possibility of sparkles.   
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Figure 6-2  Architecture of CDC-based Pipelined ADC with Gray Encoding 

 

The ADCs with Gray encoding in Figure 6-2 have better dynamic performances than 

the ADCs with direct-binary encoding because of better sparkles and meta-stability 

suppression.  The timing diagram of CDC-based pipelined CMOS flash ADC is shown in 

Figure 6-3. The clock signals CLK and CLKB are the inputs to the CDCs and the pipelined 

encoder, no matter either direct-binary encoding or Gray encoding is employed. 



 

 56

The associated timing diagram of CDC-based pipelined CMOS flash ADC is shown in 

Figure 6-3. The clock signals CLK and CLKB are the inputs for the CDCs with 

complementary digital CMOS clock and the pipelined encoder regardless of direct-binary 

encoding or Gray encoding.  

 

 

Figure 6-3  Timing Diagram of CDC-based Pipelined CMOS Flash ADC 

 

The sampling rate in the proposed CDC-based pipelined CMOS flash ADC is 

determined by the propagation delay in the pipelined encoder plus the clock transition time, 

not the switching speed of the CDCs. The pipelined encoder is implemented in DCVSPG 

clocked logic.  One clocked DCVSPG logic has about 57 ps transition time (propagation 

delay) in IBM 130 nm digital CMOS process. The total transition time including the clock 

transition time is about 87 ps. The gain booster is two cascaded inverters and the 

propagation delay is much less than 87 ps. The regenerative speed of the CDCs with 

inverter configuration, optimized with high slew rate, should be in the speed range of an 

inverter, which is about 10 to 20 ps. The signal transition time in the ADC would be less 

than 100 ps. Thus the maximum sampling frequency of the CDC-based pipelined CMOS 

flash ADC could be up to 5-GSPS. 
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6.2 CDCs and Gain Boosters 

 
The CDC design is presented in the previous chapter. The first quantization inverter of 

CDC is optimized with dynamic offset suppression.  The second inverter of CDC is 

designed to sharpen the quantized output and also a small load to the quantization inverter 

in order to have a small dynamic offset.  

The signal bandwidth of a CDC-based pipelined CMOS flash ADC varies when the 

input voltage range changes. Experiments of observing the 3-dB bandwidth and the input 

voltage ranges of CDCs in 130 nm CMOS process are conducted and the results are shown 

in Table 6-1.  

 
Table 6-1  Relation between Input Voltage Range and 3-dB Bandwidth of CDCs 

in IBM 130-nm Digital CMOS Process 
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6.3 Pipelined DCVSPG Encoders 

 

To achieve high sampling frequency in flash ADCs, pipelined encoder divides the total 

propagation time into small time segments. In this research, two pipelined encoding 

schemes, both implemented in clocked logic gates using differential cascade voltage 

switch with pass-gate (DCVSPG) logic [56], are presented.  This section first introduces 

the pipelined encoder architecture and then presents the DCVSPG logic implementation.  

 

6.3.1 Encoder Architecture 

 

Two pipelined DCVSPG encoders are proposed.  The first encoder is direct-binary 

balanced encoder which takes an 1-of-n code after 1/0 boundary detector.  The 1/0 

boundary detector is a two-input XOR gate converting a thermometer code to a 1-of-n code.  

A 4-bit direct-binary balanced encoder is shown in Figure 6-4.  
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Figure 6-4  4-b Direct-Binary Balanced Encoder 
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The binary output code b3b2b1b0 can be expressed in a balanced distribution in terms of 

1-of-n code as follows: 

 

These balanced logic functions are suitable for pipeline implementation. 

The second encoder is thermometer-Gray-binary (TGB) encoder which include 

two-step encoding processes: 1) thermometer-to-Gray code, and 2) Gray-to-binary code. A 

4-bit pipelined thermometer-Gray-binary encoder to illustrate the two-step encoding 

processes is shown in Figures 6-5 and 6-6.  The Gray code outputs G3G2G1G0 of the 

thermometer-to-Gray code in Figure 6-5 can be expressed by thermometer codes as 

follows. 

83 TG =    (6.1) 
___

1242 TTG =    (6.2) 
___

1410

___

621 TTTTG +=    (6.3) 
___

1513

___

119

___

75

___

310 TTTTTTTTG +++=    (6.4) 
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Figure 6-5  Pipelined Encoding of Thermometer-to-Gray Code 

The binary code outputs b3b2b1b0 of the pipelined encoding in Figure 6-6 are expressed 

in terms of Gray code as follows 

33 Gb =    (6.5) 

[ ]232 GGb ⊕=    (6.6) 

[ ] 1231 GGGb ⊕⊕=    (6.7) 

[ ] [ ]01230 GGGGb ⊕⊕⊕=    (6.8) 

   



 

 62

 

Figure 6-6  Pipelined Encoding of Gray-to-Binary Code 

      

As discussed in chapter 4, the encoding scheme with Gray code has advantage of 

suppressing the sparkles and meta-stability, especially for high slew rate signals in 

wideband applications. In the next chapter, the majorities of implementation of the 

proposed CDC-based pipelined CMOS flash ADC are realized with Gray encoding scheme, 

while one 4-b implementation has both encoders and its performances are compared. 

 
6.3.2 DCVSPG Logic Circuit Blocks 

 

   In the above two pipelined encoders, logic functions involved include AND, OR, 

XOR, and Buffer and all are implemented by the DCVSPG logic shown in Figures 6-7, 6-8, 

6-9 and 6-10.  

There are several advantages of the DCVSPG logic. Due to the cross-coupled pMOS 

device load, the DCVSPG logic is designed to have a built-in latch structure. The output is 

latched at the previous output value when the clock is “0.”  Both Q and QN are produced 

nearly at the same instance, which avoids an extra inverter delay to generate the QN from 
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the Q. The DCVSPG encoder is a ratioless logic, and the output obtained has no glitches. It 

has superior performance with power and area, especially suitable for pipelined by 

eliminating extra latches.   
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Figure 6-7  Clocked DCVSPG AND/NAND Gate 
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Figure 6-8  Clocked DCVSPG OR/NOR Gate 



 

 64

 

Figure 6-9  Clocked DCVSPG XOR/XNOR Gate 

 

 

Figure 6-10  Clocked DCVSPG Buffer 
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6.4 Clock Tree 

 

Since flash ADCs provide an intrinsic sampling function for dynamic input signals, the 

clock timing uncertainty needs to be considered. The timing uncertainty ∆tMAX for a 6-b, 

1-GHz bandwidth ADC is less than 5-ps and for a 4-b, 2-GHz bandwidth ADC is less than 

10-ps from Equ.(4.7).  

An inverter clock tree is designed.  Simulations reveal rise/fall times of the clock 

signal are about 20 ps (slew rate 50G v/s) shown in Figure 6-11. The output load for each 

clock leaf is two DCVSPG gates. The average slew rate before the output load is 55G v/s. 

With the load, the average slew rate is 50G v/s. The maximum threshold voltage variation 

of the switch must be less than 300 mV according to Equ.(6.9).  

( )ssdd
fallrise

T VV
t

t
V −

∆
≤∆

/

max       (6.9) 
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Figure 6-11  Performance of Clock Tree  
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Chapter 7 IMPLEMENTATION AND PERFORMANCE OF CDC-BASED 

PIPELINED CMOS FLASH ADC ARCHITECTURE 

 

This chapter presents three implementations of CDC-based pipelined CMOS flash 

ADCs is 130 nm CMOS process.  First, a 4-b, 1-GHz bandwidth 2.5-GSPS ADC is the 

initial research objective used in a digital receiver-on-a-chip.  Both schematic and 

post-layout performances are compared.  Secondly, a 4-b, 2-GHz bandwidth 4-GSPS 

ADC is implemented and compared with the state-of-the-art 4-b ADCs in literature. Lastly, 

a 6-b CDC-based pipelined ADC is implemented and its performance is evaluated. This 

15mv-input-range CDC-based pipelined ADC also shows the performance difference of 

using balanced direct binary (BDB) encoder and thermometer-Gray-binary (TGB) 

encoder.  

 
7.1  4-b 1.25-GHz Bandwidth 2.5-GSPS ADC 

 

This 4-b 1-GHz bandwidth 2.5-GSPS flash ADC is proposed and implemented in three 

versions. In the first version, the ADC is pipelined to achieve a 2.5 GHz sampling rate and 

the inverter comparators are sized manually [40].  Using the dynamic offset suppression 

technique in the design of inverter comparators, the second version ADC improves a SFDR 

of 10 dB in the Nyquist bandwidth [41]. By optimization of dynamic offset suppression 
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and using a thermometer-Gray- binary encoding scheme, the third version ADC achieves 

an ENOB of 3 bits and a SFDR of 25 dB. 

 
7.1.1 Implementation and Performance 

 

This ADC is designed and simulated in 130 nm CMOS process using Cadence Spectre 

and VSDE 4.1 (Aptivia). Figure 7-1 is the schematic diagram of 4-b CDC-based pipelined 

ADC, which includes 15 CDC comparators, a TGB encoder and a clock tree. Figure 7-2 is 

the schematic of the TGB encoder, which include a Gray-to-binary encoding diagram 

(Figure 7-3).  Figure 7-4 is the schematic of the clock tree. Figure 7-5 is the schematic of 

15 CDC comparators, with an input voltage range of Vm from 0.45v to 0.688v and an 

optimum Ids of 80µA.  
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Figure 7-1  Schematic of 4-b 1.25-GHz Bandwidth 2.5-GSPS ADC 
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Figure 7-2  Schematic of TGB 4-b Encoder 

 

 

Figure 7-3  Schematic of Gray-to-Binary Encoding 
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Figure 7-4  Schematic of Clock Tree for a 4-b ADC 
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Figure 7-5  Schematic of 15 CDC Comparators 
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Figure 7-6 shows the simulated voltage transfer characteristics of 15 quantization 

inverters in 15 CDCs. The 15 quantization levels are equally-spaced. Figures 7-7 (a) and (b) 

show the simulated outputs Vo1 and Vo2 of the 15 CDCs (Figure 5-3) at an input signal 

frequency of 100 MHz.  The outputs Vo1 and Vo2 of 15 comparators are nearly 

equally-spaced after the dynamic offsets suppressed, which warrant a small differential 

nonlinearity (DNL) error.  

 

 

Figure 7-6  Outputs of 15 Quantization Inverters at DC 

 

(a) output Vo1 
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( b) output Vo2 

Figure 7-7  Outputs of CDC Comparators at 100MHz Sinusoidal Signal 

 

 

 

Figure 7-8  Reconstructed Signal and Spectrum of 9.766MHz Signal 
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Figure 7-8 is the reconstructed signal and the spectrum of 9.77MHz signal. The 

reconstructed signal figure shows the 15 comparators function correctly.  The 4-b ADC 

achieves an ENOB of 3.8 bits and a SFDR of 33.34dB as shown in the spectrum figure. 

Figures 7-9, 7-10 and 7-11 show the reconstructed spectra for three input signal 

frequencies of 250 MHz, 952 MHz and 1.248 GHz.  The 4-b ADC achieves (SFDR, 

ENOB) of (29.57 dB, 3.4 bits), (24.09 dB, 2.9 bits) and (22.25 dB, 2.8 bits), respectively. 

 

Figure 7-9  Spectrum of 250MHz Signal 
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Figure 7-10  Spectrum of 952 MHz signal 

 

Figure 7-11  Spectrum of 1.248GHz Signal 
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Figure 7-12  SFDR and SNDR vs. Input Frequencies 

 

Figure 7-13  ENOB vs. Input Frequencies 
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Both SFDR and SNDR for input signal frequency up to 1.25 GHz at a 2.5GHz 

conversion rate are plotted in Figure 7-12.  ENOB vs. input signal frequency is plotted in 

Figure 7-13. The SFDR of the 4-b ADC is above 22 dB and the ENOB is above 2.8 bits for 

the Nyquist bandwidth.  

 

 

Figure 7-14  SFDR Comparison of three ADCs 

Figures 7-14 and 7-15 compare SFDR and SNDR of the 4-b 1.25 GHz bandwidth 2.5 

GSPS CDC-based pipelined ADC with its previous versions [40, 41]. Compared with the 

previous version ADC of dynamic offset suppression and BDB encoder [41], the SFDR is 

improved by 2 to 3 dB at input frequencies above 800 MHz as shown in Figure 7-14. The 

SNDR is also improved by 5 dB at input frequencies below 800 MHz, and 12 dB at input 
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frequencies above 800 MHz, as shown in Figure 7-15.  The ENOB is improved almost by 

1 bit at input frequencies below 800 MHz and 2 bits at frequencies above 800 MHz. 

Compared with the other version ADC with comparators sized manually [40], the SFDR is 

improved by 8 dB at low input frequencies and 13 dB at high input frequencies, as shown 

in Figure 7-14. The performance improvements are summarized in Table 7-2.   

 

 

Figure 7-15  SNDR Comparison of two ADCs 
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Table 7-1  Dynamic Performance Improvement Rate of the ADC 

with Dynamic Offset Suppression and Design Optimization 

 

 

7.1.2 Schematic vs. Post Layout Performance 

 
The layout of the 4-b 1.25 GHz bandwidth 2.5 GSPS CDC-based pipelined ADC in 

Figure 7-16 includes a clock tree on the top, 15 comparators in the middle, and a TGB 

encoder on the bottom. The transistor sizes of the ADC in this layout are same as their sizes 

in the schematic design. The area of layout is 220 µm x106 µm and the power is 7.9 mW for 

a 2.5 GHz clock.  

The dynamic performance of the layout is reported in the following figures and 

compared with its schematic counterpart in the end of the section.  
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Figure 7-16  Layout of the ADC  
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Figure 7-17  Outputs of 15 Quantization Inverters at DC Post Layout Simulation    

 

The 15 quantization levels of the layout are shown in Figure 7-17 from the post layout 

DC simulation. The quantization levels of the first 14 comparators are almost equally 

spaced.  The quantization level of the15th comparator is slightly close to the one of the 14th 

comparator.  
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Figure 7-18  Reconstructed Signal and Spectrum of 9.8MHz signal 

 

The 15 quantization levels of the layout are also presented in Figure 7-18 from the post 

layout transient simulation with a 9.8 MHz input signal. The 15 comparators function 

correctly and the ADC achieves a SFDR of 34.03 dB, a SNDR of 24.58 dB, and an ENOB 

of 3.8 bits.  Comparing the layout performance (SFDR / SNDR / ENOB = 34.03 dB / 

24.58 dB / 3.8 bits) (Figure 7-18) with the schematic performance (SFDR / SNDR / ENOB 

= 33.34 dB / 24.79 dB / 3.825 bits) (Figure 7-8), it is shown the dynamic performances of 

ADC of schematic and layout are close at an input signal of 9.8 MHz. 
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Figure 7-19   Spectrum of 125MHz Signal 

 

 

Figure 7-20  Spectrum of 952MHz Signal 
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Figure 7-21  Spectrum of 1.248GHz Signal 

 

Figures 7-19, 7-20 and 7-21 show the reconstructed spectra for input signal frequencies 

of 150 MHz, 952 MHz and 1.248 GHz.  The ADC achieves (SFDR, ENOB) of (26.57 dB, 

3.215 bits), (21.48 dB, 2.358 bits) and (19.34 dB, 1.7 bits), respectively.  

Comparing the performance of SFDR and ENOB of the layout at input signal 

frequencies 952 MHz and 1.248 GHz shown in Figures 7-20 and 7-21 with the ones of the 

schematic shown in Figures 7-10 and 7-11, it is shown that the SFDR is decreased by 3.5 

dB and 2.9 dB and the ENOB is decreased by 0.5 bit and 1 bit at input signal of 952 MHz 

and 1.248 GHz respectively. The results are summarized in Table 7-2. 
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Table 7- 2 Performance Comparison of Schematic and Layout 

 at 952 MHz and 1.248 GHz 
 

Schematic Layout Degradation Signal Freq. 
(MHz) SFDR

(dB) 
ENOB
(bits)

SFDR
(dB) 

ENOB
(bits)

SFDR 
(dB) 

ENOB 
(bits) 

952 24.09 2.907 21.48 2.358 3.5  
(14%) 

0.55 
(17%) 

1248 22.25 2.828 19.34 1.7 2.9 
(13%) 

1.13 
(35%) 

 

 

 

 

Figure 7-22  SFDR and SNDF vs. Input Frequencies 
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Both SFDR and SNDR of the layout for input signal frequency up to 1.25 GHz at 2.5 

GHz conversion rate are plotted in Figure 7-22. The plot shows that SFDR is above 18 dB 

and SNDR above 12 dB up to the Nyquist frequency.  

 

 

 

Figure 7-23  SFDR and SNDR Comparison between Schematic and Layout  
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Figure 7-24  ENOB Comparison between Schematic and Layout 

 

Figures 7-23 and 7-24 compare the layout performance of the 4-b 1.25 GHz bandwidth 

2.5 GSPS CDC-based pipelined ADC with its schematic counterpart. The SFDR and 

SNDR of the layout both degrade about an average 5 dB compared to the schematic. That 

means the ENOB degrades about 0.8 bit. That’s about 22% SFDR degradation and 28% 

SNDR and ENOB degradation. From Figures 7-23 and 7-24, the degradation increases 

with the input frequency exceeds 1 GHz. The maximum degradation of SNDR and ENOB 

is 35% at 1.248 GHz, calculated in Table 7-1. The performance degradation is summarized 

in Table 7-3.  
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Table 7-3  Dynamic Performance Degradation Rate of the Layout 
Compared to the Schematic of the ADC 
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7.2   4-b 2-GHz Bandwidth 4GSPS ADC 

 

The maximum 3-dB frequency of the comparators in 130nm IBM digital process is 

approximated to 2-GHz in Chapter 5 during the optimal analysis. In Chapter 6, the 

maximum speed of the digital circuit is 5-GHz. By the Nyquist theory, a 4-GSPS is 

required for the bandwidth as 2-GHz. Thus this ADC is a special case of 4-b ADCs using 

IBM 130nm digital process due to its bandwidth at the highest limitation. The 

implementation and performance of the ADC are presented in this section, which is 

followed by performance comparison of the ADC with 4-b ADCs in literature.  

 
7.2.1 Implementation and Performance 

 

This ADC is designed and simulated using Cadence Spectre and VSDE 4.1 (Aptivia). 

Figure 7-25 is the schematic diagram of 4-b 2-GHz 4-GSPS CDC-based pipelined ADC, 

which includes a set of CDC comparators, a TGB encoder and a clock tree. The schematic 

of the TGB 4-b encoder is the same as the previous ADC shown in Figure 7-2. The 

schematic of the clock tree in the ADC is the same as the one shown in Figure 7-4.  The 

schematic of 15 CDC comparators is the same as the one in Figure 7-5, with a different 

input voltage range of Vm from 0.501v to 0.62v and an optimum Ids 150µA.  
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Figure 7-25  Schematic of 4-b 2-GHz Bandwidth 4-GSPS ADC 
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Figure 7-26 to Figure 7-30 show the reconstructed spectra for various frequency input 

signals and the ADC achieves SFDR, SNDR and ENOB at those frequencies presented in 

Table 7-4.  

 
Table 7-4 Dynamic Performance Parameters of Various Frequency Signals 

Sig. freq.
(MHz) 200.2 1374 1600 1807 1997 

SFDR 
(dB) 33.01 28.42 26.9 29.28 24.99 

SNDR 
(dB) 23.8 21.08 20.05 19 18.6 

ENOB 
(dB) 3.66 3.209 3.03 2.864 2.798 

 

 

Figure 7-26  Spectrum of 200MHz Signal 
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Figure 7-27  Spectrum of 1.374GHz Signal 

 

 

Figure 7-28  Spectrum of 1.6GHz Signal 
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Figure 7-29  Spectrum of 1.807GHz Signal  

 

 

Figure 7-30  Spectrum of 1.997GHz Signal 
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Figure 7-31  SFDR and SNDR vs. Input Frequencies 
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Figure 7-32  ENOB vs. Input Frequencies 

 

Both SFDR and SNDR for input signal frequency up to 2 GHz at 4 GHz conversion 

rate are plotted in Figure 7-31. ENOB for input signal frequency is plotted in Figure 7-32. 

The plots show that, with 4 GHz sampling frequency, SFDR of the ADC is stable at 28 dB 

and ENOB above 3.2 bits with frequency up to 1.4 GHz. The ENOB is above 3.0 bits with 

frequency up to 1.6 GHz, and above 2.8 bits for the Nyquist bandwidth.  
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7.2.2 Comparison with 4-b Flash ADCs in Literature 

 
Table 7-5  Comparison with 4-b Flash ADCs in Literature 

 

   The proposed 4-b ADC implemented in the process with smaller feature size, compared 

with three referenced ADCs in Table 7-5, with wider bandwidth, lower power and area 

consumption in a monolithic architecture with no need of digital calibration. The overall 

performance is superior over the other 4-b ADCs in the table. 
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7.3   6-b 4GSPS ADC 

 

After the validity of the comparator dynamic offset suppression and design 

optimization is proved in the section 7.1 with a 4-b 2.5-GSPS ADC, a 4-b 4-GSPS ADC 

with a higher speed is implemented and presented in the section 7.2. In this section, a 6-b 

2.5-GSPS ADC with a higher resolution is implemented in 130nm IBM digital process. 

Theoretically, this 6-b ADC can be sampled in a clock signal up to 4-GHz.    

 
7.3.1 Implementation and Performance 

 

This ADC is designed and simulated using Cadence Spectre and VSDE 4.1 (Aptivia). 

Figure 7-33 is the schematic diagram of 6-b 2.5-GSPS CDC-based pipelined ADC, which 

includes a set of CDC comparators, a TGB encoder and a clock tree. The schematic of the 

TGB 6-b encoder is shown in Figure 7-34, which includes a 6-b Gray-to-binary encoding 

as in Figure 7-35. The schematic of the clock tree in the ADC is shown in Figure 7-37, 

which is much larger than the clock tree for 4-b ADCs.  The schematic of 63 CDC 

comparators is the same as the one in Figure 7-36, with an input voltage range of Vm from 

0.445v to 0.693v with a quantization step size (LSB) equal to 4mv. The CDCs are sized 

with Ids as 80µA. 
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Figure 7-33  Schematic of 6-b 2.5GSPS ADC 
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Figure 7-34  Schematic of 6-b TGB Encoder 
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Figure 7-35  Schematic of 6-b Gray-to-Binary Encoding 
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Figure 7-36  63 CDC Comparators 
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Figure 7-37  Schematic of Clock Tree for 6-b ADC 
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Figure 7-38  Outputs of 63 Quantization Inverters at DC 

 

    Figure 7-38 presents the voltage transfer characteristics of 63 quantization inverters in 

the 6-b ADC. The threshold voltages are regularly spaced.   
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Figure 7-39  Outputs of 6 bits at DC  

 

Figure 7-39 presents 6-bit outputs of the 6-b ADC at DC simulation. It proves that the 

6-b ADC functions correctly. 
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Figure 7-40  Spectrum of 12.2MHz Signal 

Figure 7-40 presents a reconstructed spectrum of 12.2MHz input signal with 2.5-GSPS 

of the 6-b ADC. The ADC achieves 48.03-dB SFDR, 33.46-dB SNDR and 5.3-bits ENOB. 

The noise floor is at about -60-dB lower than the signal power. 
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Figure 7-41  Reconstructed Signal and Spectrum of 11.7MHz signal 

 

Figure 7-41 presents a reconstructed signal and spectrum of 11.7MHz input signal with 

4-GSPS of the 6-b ADC. The ADC achieves 47.02-dB SFDR, 34.43-dB SNDR and 

5.4-bits ENOB. The noise floor is at about -60-dB lower than the signal power. 
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7.3.2 Comparison with State-of-the-art 6-b Flash ADC 

 

   There is one 6-b flash ADC designed in 0.13µm digital CMOS process at 1.2-GS/s 

reported in IEEE Journal of Solid-State Circuit in 2005 by Sandner and his colleagues from 

the Microelectronics Development Center of Siemens AG, now Infineon Technologies, in 

Villach, Austria [23]. The flash ADC employs differential comparators and capacitive 

interpolation architecture for low power and wide bandwidth. This 6-b flash ADC is used 

as a reference to evaluate the proposed 6-b CDC-based pipelined ADC as depicted in Table 

7-6.  

Table 7-6  Performance Comparison of 6-b Flash ADC  

in 130nm Digital CMOS Process 
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The figure of merit (FoM) in the table of the performance comparison is calculated as  

]/[
22 , convsteppJ

ERBW
PowerFoM DCENOB ⋅⋅

=        (7.1) 

The proposed CDC-based pipelined flash ADC achieves a FoM of 0.23pJ/conv. at 

2.5-GSPS and 0.17pJ/conv. at 4-GSPS, with smaller area size and similar ENOB 

performance at 1.2v supply voltage. The overall performance of our 6-b flash ADC is 

better than the ADC in [23]. The achieved performance, large ERBW, high sampling rate, 

low power and area consumption, of the 6-b ADC implementation once again prove that 

the proposed CDC-based pipelined CMOS flash ADC architecture has superior features 

for wideband communication systems-on-a-chip.  
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7.4   Comparison of BDB and TGB Encoders 

 
In this section, comparison of dynamic performance of a 15mv-input-range 4-b 

CDC-based pipelined CMOS flash ADC using the BDB encoder and using the TGB 

encoder is depicted in Figure 7-42 with 2.5 GSPS and in Figure 7-43 with 4 GSPS.  

Sampled at 4 GSPS, the SNDR of ADC using the TGB encoder is constantly 4 to 5 dB 

above the SNDR of ADC using the BDB encoder, which accounts for an increased ENOB 

by about 0.7 bit. 

 

 

Figure 7-42  Performance Comparison of the ADC with 2.5-GSPS 
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Figure 7-43  Performance Comparison of the ADC with 4-GSPS 

 

 



 

 112

Chapter 8 APPLICATION OF 4-B CDC-BASED PIPELINED ADC IN A 

DIGITAL WIDEBAND RECEIVER-ON-A-CHIP 

 
This chapter presents a mixed-signal block-level simulation and verification flow in 

Cadence AMS integration platform for an 1 GHz bandwidth digital receiver which include 

the proposed 4-b 2.5 GSPS CDC-based pipelined CMOS flash ADC.  This flow is 

different from Simulink-based system-level simulation, by considering the effects 

originating from analog and mixed signal subsystem. It involves low-level models of the 

devices in critical analog blocks. After the individual blocks have been designed, an AMS 

verification flow was built to integrate all the blocks in different level descriptions into one 

simulation platform for design verification. With Verilog-AMS, one can create and use 

modules that describe the high-level behavior and structure of analog, digital, and 

mixed-signal components and systems. 

 
8.1  AMS Verification Flow 

 

The AMS verification flow of the digital receiver is presented in Figure 8-1. It is 

composed of signal generation, data collection, and digital signal processing. An analog 

input signal and a clock signal need to be generated as the inputs to the receiver. In this 

verification, mono-tone or multi-tone sinusoidal input signals and a 2.5 GHz clock signal 

are created in Verilog-AMS code with real-time function. The data collection includes a 2.5 
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-GSPS ADC schematic design and a DEMUX in VHDL. The digital signal processor (DSP) 

includes a 256-point, 12-point kernel function FFT in VHDL, and a frequency detector in 

VHDL. The verification process stimulates the Spectre simulator, Verilog_AMS compiler, 

and VHDL compiler for analog and digital mixed signals in the flow.  Both the analog 

signal and clock signal generator in Verilog_AMS are in Appendix B. 

 

 

Figure 8-1  AMS Verification Flow of Digital Receiver 

 

8.2  DEMUX Design 

 
Figure 8-2 presents the diagram of DEMUX design. The DEMUX collects 256 sets of 

4-b output data of ADC clocked at 2.5 GHz and feed them to the 256-point FFT clocked at 

9.76 MHz.  Four 16-b shift registers clocked at 2.5 GHz collect the data from the outputs 

of 4-b ADC, and transfer the data into sixteen 16x4 pipelined registers at every 6.4 ns. The 

sixteen 16x4 pipelined registers transfer the data to a 256x4 pipelined registers at every 

102.4 ns.  A total of 256x4 bits of data is then sent to the 256-point FFT. 

. 
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Figure 8-2  Diagram of DEMUX 

 

The clock divider in the DEMUX functions as a timing controller.  Four 16-b shift 

registers are clocked at 2.5GHz, and 256x4 pipelined registers are clocked at 9.76MHz. 

Sixteen 16x4 pipelined registers are clocked by sixteen 6.4 ns pulse signals C[0:15] as 

shown in Figure 8-3. The 16 states Si of C[0:15] are presented in the state diagram shown in 

Figure 8-4. The DEMUX is programmed in VHDL. The code is attached in Appendix C. 
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Figure 8-3  Sixteen 6.4ns Pulse Signals 

 

 

 

Figure 8-4  State Diagram of Pulse Signals 

 

 

 



 

 116

8.3  Verification Results  

 

Figure 8-5 presents verification results of an input signal frequency of 1125 MHz. The 

signal is detected at the frequency bin of 115 of the FFT outputs. The frequency bin of 

1125MHz is calculated as  

hdMHz
GHz

731151125
256

5.2
1

==× . 

 The address y[6:0] of the signal with maximum amplitude is 73h, and the output 

x_out[115] has an amplitude of 2Fh which is the highest peak amplitude as shown in Figure 

8-5. 

 

Figure 8-5  Bin and Peak Amplitude of 1125MHz Signal 
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Figure 8-6 presents verification results of two simultaneous signals of 700 MHz and 1 

GHz. The two frequencies are detected by the receiver. The 700 MHz signal has the highest 

peak amplitude of 09h at the frequency bin of 72d and 1GHz signal has 2nd highest peak 

amplitude of 05h at the frequency bin of 102d. 

 

 

Figure 8-6  1st and 2nd Peak Amplitude of 700MHz and 1GHz 
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Chapter 9 CONCLUSIONS 

 

Generally, high-speed flash ADCs use the differential amplifier structure in 

pre-amplifier and comparator design. There are two types of offsets in differential 

comparators. They are: 1) static and random offsets due to device mismatches, which in 

turn would be amplified to larger offsets in output, and 2) dynamic offsets at output of 

comparators, which occur due to clock switching in the regenerative latch.  

In this dissertation a high-speed clocked digital comparator (CDC) with inverter 

configuration for high-speed high-performance CMOS flash ADCs was first proposed. 

Both the dynamic offset and the random static offset were reduced by a proposed dynamic 

offset suppression technique and a circuit optimization method. Employing a multi-stage 

pipelined architecture, a CDC-based pipelined CMOS flash ADC architecture was 

presented for high-speed conversion in low-voltage CMOS processes. Three CDC-based 

pipelined CMOS flash ADCs were implemented in 130 nm CMOS process.  The 

experimental results reported the ADCs achieve high sampling rate, high SFDR, low 

power, a wide bandwidth up to the Nyquist frequency. These features make “all-digital” 

wideband communication SoC become practical. 
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     The CDC comparator is a single-ended circuit design.  Experiments of temperature 

variation on SFDR analysis of 4-b CDC-based ADCs were conducted.  FFT Spectra of 

400 MHz input signal with -40°C, 25°C, 75°C, 140°C were shown in Figures 9-1, 9-2, 9-3 

and 9-4, respectively.  Table 9-1 tables the SFDR results.   It is shown that the SFDR is 

increased with the increase of temperature. Future work of CDC-based pipelined CMOS 

flash ADCs includes that, first, since the CDC comparator is the single-ended circuit 

design, the impact of the process, voltage and temperature variation on the performance of 

CDC-based ADCs will be investigated in detail. Secondly, the CDC comparator design 

automation is desired for two reasons; one for easily migrating the design into the different 

CMOS processes, and two for enhancing the optimization for the best dynamic 

performance. 

 

Table 9-1  Temperature variation on SFDR analysis of 4-b 2.5-GSPS CDC-based ADCs with 

input signal frequency of 400 MHz 

Temperature -40°C 25°C 75°C 140°C 

SFDR(dB) 24.22 29.8 32.32 31.32 
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Figure 9-1 Spectrum of 400MHz Signal with -40°C 

 

Figure 9-2  Spectrum of 400MHz Signal with 25°C 
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Figure 9-3  Spectrum of 400MHz Signal with 75°C 

 

Figure 9-4  Spectrum of 400MHz Signal with 140°C 
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APPENDIX 

 
A. Estimation of Source and Drain Areas and Peripheries 

 
A simple rectangular MOSFET layout in an inverter is shown in Figure A-1 [10].  

Diffusion Diffusion 

Poly W

L

L1 L2 L3L1L2L3

 

Figure A-1  Estimation of Source and Drain Areas and Peripheries 

The minimum possible source or drain area would be that indicated by the sum of the 

lengths, L1, L2, and L3 times W. The lengths L1, L2 and L3 are related to the design rules 

for a given process and are as follows: 

L1 = Minimum allowable distance between the contact in S/D and the poly 

L2 = Width of a minimum size contact to diffusion 

L3 = Minimum allowable distance from the contact in S/D to the edge of the S/D 
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The minimum area of the drain and source is (L1+L2+L3) × W and the corresponding 

periphery is 2(L1+L2+L3) + 2W.    

 
B. Signal / Clock Generators in Verilog_AMS 

 
1. Two-signal Generator  

 
//Verilog-AMS HDL for "usrlib", "analogGen" "verilogams" 
`include "constants.vams" 
`include "disciplines.vams" 
`timescale 1ns/100ps 
 
module analogGen (analsig, Vdd, Vss ); 
  
 output analsig, Vdd, Vss; 
 electrical analsig, Vdd, Vss; 
 parameter real vdd = 1.2, vss = 0; 
 parameter real frequency1 = 1e9, ampl1 = 0.1; 
 parameter real frequency2 = 9e8, ampl2 = 0.14; 
  real tempvar; 
  
analog begin 
 V(Vdd) <+ transition( vdd ); 
 V(Vss) <+ transition( vss ); 
 V(analsig) <+ (ampl1 * sin(2.0*`M_PI * frequency1 * $abstime)) + (ampl2 * 
sin(2.0*`M_PI * frequency2 * $abstime))  + 0.6; 
 $bound_step(0.02 / frequency1); 
end 
 
endmodule 
 
 

2. Clock Generator 

 
//Verilog-AMS HDL for "adc_ideal", "clk_digital" "verilogams" 
 
`include "constants.vams" 
`include "disciplines.vams" 
`timescale 1ns/100ps 
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module clk_digital ( clk ); 
 
 output clk; 
 logic clk; 
 reg clock; 
  
 parameter period = 0.4; 
  
 assign clk = clock; 
 initial  
 begin 
 clock = 1'b0; 
 forever #(period/2) clock = ~clock; 
 end 
  
endmodule 
 
 

3. Converting Electrical Signal to Logic Signal  
 
 
//Verilog-AMS HDL for "usrlib", "electrical_2_logic" "verilogams" 
 
`include "constants.vams" 
`include "disciplines.vams" 
 
module electrical_2_logic (bit3,bit2,bit1,bit0,clk_in, out3,out2,out1,out0,clk_out); 
 
 input bit3, bit2, bit1, bit0, clk_in; 
 output out3, out2, out1, out0; 
 output clk_out; 
 logic out3, out2, out1, out0; 
 logic clk_out; 
 
 electrical bit3, bit2, bit1, bit0, clk_in; 
  
 integer temp3,temp2,temp1,temp0; 
 integer tmp_clk; 
  
 assign out3 = temp3; 
 assign out2 = temp2; 
 assign out1 = temp1; 
 assign out0 = temp0; 
 assign clk_out = tmp_clk; 
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 always @ ( above( V(bit3) - 0.6)) 
     temp3 = 1'b1; 
 always @ ( above( 0.6 - V(bit3))) 
     temp3 = 1'b0;  
  
 always @ ( above( V(bit2) - 0.6)) 
     temp2 = 1'b1; 
 always @ ( above( 0.6 - V(bit2))) 
     temp2 = 1'b0; 
  
 always @ ( above( V(bit1) - 0.6)) 
     temp1 = 1'b1; 
 always @ ( above( 0.6 - V(bit1))) 
     temp1 = 1'b0; 
   
 always @ ( above( V(bit0) - 0.6)) 
     temp0 = 1'b1; 
 always @ ( above( 0.6 - V(bit0))) 
     temp0 = 1'b0; 
  
 always @ ( above( V(clk_in) - 0.6)) 
     tmp_clk = 1'b1; 
 always @ ( above( 0.6 - V(clk_in))) 
     tmp_clk = 1'b0; 
endmodule 
 
C. DEMUX in VHDL 

library ieee,work; 
    use ieee.std_logic_1164.all; 
    use IEEE.STD_LOGIC_TEXTIO.ALL; 
    use STD.TEXTIO.ALL; 
    use WORK.CONV.ALL; 
   
package demux_type is 
 
    type state_type is (s0,  s1,  s2,  s3,  s4,  s5,  s6,  s7, 
                        s8,  s9,  s10, s11, s12, s13, s14, s15, s_initial);    
    type TYPE_DEMUX_ARRAY_16x4 is array(0 to 15) of std_logic_vector(3 downto 
0); 
    type TYPE_DEMUX_ARRAY_256x4 is array(0 to 255) of std_logic_vector(3 
downto 0); 
    type TYPE_DEMUX_ARRAY_16x64 is array(0 to 15) of 
TYPE_DEMUX_ARRAY_16x4; 
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end demux_type; 
 
library ieee,work; 
    use ieee.std_logic_1164.all; 
    use IEEE.STD_LOGIC_TEXTIO.ALL; 
    use STD.TEXTIO.ALL; 
    use work.demux_type.all; 
    use WORK.CONV.ALL; 
 
entity clock_generator is 
    Port (  
           clk : IN std_logic; 
           reset : IN std_logic; 
           output : OUT std_logic_vector(15 downto 0); 
    clk_fft : OUT std_logic; 
           out_clk : OUT std_logic; 
           out_clk1 : OUT std_logic; 
           out_clk2 : OUT std_logic; 
           out_clk3 : OUT std_logic; 
           out_clk4 : OUT std_logic; 
           out_clk5 : OUT std_logic; 
           temp_clk : OUT std_logic 
         ); 
end clock_generator; 
  
architecture behavior of clock_generator is 
 
----- signal declaration ----- 
signal current_state, next_state : state_type; 
signal clk_16 : std_logic; 
 
----- start ----- 
 
begin 
 
  clk16: process(reset, clk) 
  
   variable count : integer := 0;  
     
  begin  
      if (clk'event and clk='1') then 
         if (reset = '1') then 
   
          current_state <= s_initial;       
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  else 
  count := count + 1; 
  if (count = 16 and reset /= '1') then 
  count := 0; 
  current_state <= next_state;   
  end if;  
   
 end if;    
      end if;     
  end process clk16; 
   
 -- sync: process( clk_16 ) 
 -- begin 
 --    if (clk_16'event and clk_16='1') then  
 --         current_state <= next_state; 
 --       end if; 
 --    end if; 
 -- end process sync; 
 
  FSM: process(current_state)   -- mod => input is inserted 
  begin 
--     next_state <= s0;   -- default assignment; 
 
     case current_state is 
        when s_initial => 
        next_state <= s0; 
        output <= "0000000000000000"; 
          when s0 => 
               next_state <= s1; 
               output <= "0000000000000001"; 
          when s1 => 
               next_state <= s2; 
               output <= "0000000000000010";  
          when s2 => 
               next_state <= s3; 
               output <= "0000000000000100"; 
          when s3 => 
               next_state <= s4; 
               output <= "0000000000001000";  
          when s4 => 
               next_state <= s5; 
               output <= "0000000000010000";  
          when s5 => 
               next_state <= s6; 
               output <= "0000000000100000";  
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          when s6 => 
               next_state <= s7; 
               output <= "0000000001000000";  
          when s7 => 
               next_state <= s8; 
               output <= "0000000010000000";  
          when s8 => 
               next_state <= s9; 
               output <= "0000000100000000";  
          when s9 => 
               next_state <= s10; 
               output <= "0000001000000000";  
          when s10 => 
               next_state <= s11; 
               output <= "0000010000000000";  
          when s11 => 
               next_state <= s12; 
               output <= "0000100000000000";  
          when s12 => 
               next_state <= s13; 
               output <= "0001000000000000";  
          when s13 => 
               next_state <= s14; 
               output <= "0010000000000000";  
          when s14 => 
               next_state <= s15; 
               output <= "0100000000000000";  
          when s15 => 
               next_state <= s0; 
               output <= "1000000000000000";  
     end case; 
  end process FSM; 
 
  gen_out_clk: process(current_state) 
  begin 
  
     if ( current_state = S0 or current_state = S1 or current_state = S2 or current_state = 
S3 or current_state = S4 or current_state = S5 or current_state = S6 or current_state = S7) 
then 
      clk_fft <= '1'; 
     else 
      clk_fft <= '0'; 
     end if; 
      
     --- This clk will synchronize all the pipelines flip-flops --- 
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     if (current_state = S0 or current_state = S1) then 
        out_clk <= '1';      -- high from 0 to 12.8ns 
     else 
        out_clk <= '0'; 
     end if; 
 
     --- This clk will go to initial_sort subsystem --- 
     --- and latch the sel_high_low into their flip-flops --- 
     if (current_state = S3 or current_state = S4) then 
        out_clk1 <= '1';     -- high from 19.2 to 32ns 
     else 
        out_clk1 <= '0'; 
     end if; 
 
     if (current_state = S7 or current_state = S8) then 
        out_clk2 <= '1';     -- high from 44.8 to 57.6ns 
     else 
        out_clk2 <= '0'; 
     end if; 
 
     if (current_state = S8 or current_state = S9) then 
        out_clk3 <= '1';    -- high from 51.2 to 64ns 
     else 
        out_clk3 <= '0'; 
     end if; 
 
     if (current_state = S12 or current_state = S13) then 
        out_clk4 <= '1';    -- high from 76.8 to 89.6ns 
     else 
        out_clk4 <= '0'; 
     end if; 
  
     if (current_state = S14 or current_state = S15) then 
        out_clk5 <= '1';    -- high from 89.6 to 102.4ns 
     else 
        out_clk5 <= '0'; 
     end if; 
   
 
     if (current_state = S13 or current_state = S14) then 
        temp_clk <= '1';   -- high from 83.2 to 96ns  
     else 
        temp_clk <= '0'; 
     end if; 
  end process gen_out_clk; 
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end behavior; 
------------------------------------------------------- 
------------------------------------------------------- 
library ieee,work; 
    use ieee.std_logic_1164.all; 
    use IEEE.STD_LOGIC_TEXTIO.ALL; 
    use STD.TEXTIO.ALL; 
    use work.demux_type.all; 
    use WORK.CONV.ALL; 
     
entity latch_v1 is 
 port ( clk : IN std_logic; 
        input : IN std_logic; 
        output : OUT std_logic 
       ); 
end latch_v1; 
 
architecture behavior of latch_v1 is 
 
begin  
 
 test : process(clk) 
  
 begin 
    if ( clk'event and clk='1') then 
     output <= input; 
    end if; 
 end process test; 
end behavior; 
------------------------------------------------------- 
------------------------------------------------------- 
library ieee,work; 
    use ieee.std_logic_1164.all; 
    use IEEE.STD_LOGIC_TEXTIO.ALL; 
    use STD.TEXTIO.ALL; 
    use work.demux_type.all; 
    use WORK.CONV.ALL; 
 
entity latch_v1_4_p is 
 port ( clk : IN std_logic; 
        input : IN std_logic_vector(3 downto 0); 
        output : OUT std_logic_vector(3 downto 0) 
      ); 
end latch_v1_4_p; 
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architecture structure of latch_v1_4_p is 
 
component latch_v1 
 port ( clk : IN std_logic; 
        input : IN std_logic; 
        output : OUT std_logic 
      );       
end component; 
 
begin 
  
 latch0: latch_v1 port map (clk,input(0),output(0)); 
 latch1: latch_v1 port map (clk,input(1),output(1)); 
 latch2: latch_v1 port map (clk,input(2),output(2)); 
 latch3: latch_v1 port map (clk,input(3),output(3)); 
end structure; 
------------------------------------------------------- 
------------------------------------------------------- 
library ieee,work; 
    use ieee.std_logic_1164.all; 
    use IEEE.STD_LOGIC_TEXTIO.ALL; 
    use STD.TEXTIO.ALL; 
    use work.demux_type.all; 
    use WORK.CONV.ALL; 
 
entity latch_v1_4_p_16 is 
 port ( clk : IN std_logic; 
        input : IN std_logic_vector(3 downto 0); 
        output : OUT TYPE_DEMUX_ARRAY_16x4 
      ); 
end latch_v1_4_p_16; 
  
architecture structure of latch_v1_4_p_16 is 
 
component latch_v1_4_p 
 port ( clk : IN std_logic; 
        input : IN std_logic_vector(3 downto 0); 
        output : OUT std_logic_vector(3 downto 0) 
      ); 
       
end component; 
 
 signal temp_output : TYPE_DEMUX_ARRAY_16x4; 
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begin 
  
 latch0: latch_v1_4_p port map (clk,input,temp_output(15)); 
 latch1: latch_v1_4_p port map (clk,temp_output(15),temp_output(14)); 
 latch2: latch_v1_4_p port map (clk,temp_output(14),temp_output(13)); 
 latch3: latch_v1_4_p port map (clk,temp_output(13),temp_output(12)); 
 latch4: latch_v1_4_p port map (clk,temp_output(12),temp_output(11)); 
 latch5: latch_v1_4_p port map (clk,temp_output(11),temp_output(10)); 
 latch6: latch_v1_4_p port map (clk,temp_output(10),temp_output(9)); 
 latch7: latch_v1_4_p port map (clk,temp_output(9),temp_output(8)); 
 latch8: latch_v1_4_p port map (clk,temp_output(8),temp_output(7)); 
 latch9: latch_v1_4_p port map (clk,temp_output(7),temp_output(6)); 
 latch10: latch_v1_4_p port map (clk,temp_output(6),temp_output(5)); 
 latch11: latch_v1_4_p port map (clk,temp_output(5),temp_output(4)); 
 latch12: latch_v1_4_p port map (clk,temp_output(4),temp_output(3)); 
 latch13: latch_v1_4_p port map (clk,temp_output(3),temp_output(2)); 
 latch14: latch_v1_4_p port map (clk,temp_output(2),temp_output(1)); 
 latch15: latch_v1_4_p port map (clk,temp_output(1),temp_output(0)); 
 output <= temp_output;  
end structure; 
------------------------------------------------------- 
------------------------------------------------------- 
library ieee,work; 
    use ieee.std_logic_1164.all; 
    use IEEE.STD_LOGIC_TEXTIO.ALL; 
    use STD.TEXTIO.ALL; 
    use work.demux_type.all; 
    use WORK.CONV.ALL; 
 
entity latch_v1_4_p_16_p is 
 port ( clk : IN std_logic; 
        input : IN TYPE_DEMUX_ARRAY_16x4; 
        output : OUT TYPE_DEMUX_ARRAY_16x4  
      );      
end latch_v1_4_p_16_p; 
 
architecture structure of latch_v1_4_p_16_p is 
 
component latch_v1_4_p 
 port ( clk : IN std_logic; 
        input : IN std_logic_vector(3 downto 0); 
        output : OUT std_logic_vector(3 downto 0) 
      ); 
end component; 
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begin  
 
 block_16_latch0: latch_v1_4_p port map (clk, input(15), output(15)); 
 block_16_latch1: latch_v1_4_p port map (clk, input(14), output(14)); 
 block_16_latch2: latch_v1_4_p port map (clk, input(13), output(13)); 
 block_16_latch3: latch_v1_4_p port map (clk, input(12), output(12)); 
 block_16_latch4: latch_v1_4_p port map (clk, input(11), output(11)); 
 block_16_latch5: latch_v1_4_p port map (clk, input(10), output(10)); 
 block_16_latch6: latch_v1_4_p port map (clk, input(9), output(9)); 
 block_16_latch7: latch_v1_4_p port map (clk, input(8), output(8)); 
 block_16_latch8: latch_v1_4_p port map (clk, input(7), output(7)); 
 block_16_latch9: latch_v1_4_p port map (clk, input(6), output(6)); 
 block_16_latch10: latch_v1_4_p port map (clk, input(5), output(5)); 
 block_16_latch11: latch_v1_4_p port map (clk, input(4), output(4)); 
 block_16_latch12: latch_v1_4_p port map (clk, input(3), output(3)); 
 block_16_latch13: latch_v1_4_p port map (clk, input(2), output(2)); 
 block_16_latch14: latch_v1_4_p port map (clk, input(1), output(1)); 
 block_16_latch15: latch_v1_4_p port map (clk, input(0), output(0)); 
end structure; 
------------------------------------------------------- 
------------------------------------------------------- 
library ieee,work; 
    use ieee.std_logic_1164.all; 
    use IEEE.STD_LOGIC_TEXTIO.ALL; 
    use STD.TEXTIO.ALL; 
    use work.demux_type.all; 
    use WORK.CONV.ALL; 
 
entity latch_v1_4_p_16_p_16 is 
 port ( clk : IN std_logic_vector(15 downto 0); 
               input : IN TYPE_DEMUX_ARRAY_16x4; 
        output : OUT TYPE_INPUT_FFT 
       );     
end latch_v1_4_p_16_p_16; 
 
architecture structure of latch_v1_4_p_16_p_16 is 
 
component latch_v1_4_p_16_p 
 port ( clk : IN std_logic; 
        input : IN TYPE_DEMUX_ARRAY_16x4; 
        output : OUT TYPE_DEMUX_ARRAY_16x4  
      ); 
end component; 
  
signal tmp_output : TYPE_DEMUX_ARRAY_16x64;  
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begin 
 
 block_64_latch0: latch_v1_4_p_16_p port map (clk(0),input,tmp_output(0 )); 
 output(0) <= tmp_output(0)(0); 
 output(1) <= tmp_output(0)(1); 
 output(2) <= tmp_output(0)(2); 
 output(3) <= tmp_output(0)(3); 
 output(4) <= tmp_output(0)(4); 
 output(5) <= tmp_output(0)(5); 
 output(6) <= tmp_output(0)(6); 
 output(7) <= tmp_output(0)(7); 
 output(8) <= tmp_output(0)(8); 
 output(9) <= tmp_output(0)(9); 
 output(10) <= tmp_output(0)(10); 
 output(11) <= tmp_output(0)(11); 
 output(12) <= tmp_output(0)(12); 
 output(13) <= tmp_output(0)(13); 
 output(14) <= tmp_output(0)(14); 
 output(15) <= tmp_output(0)(15); 
  
 block_64_latch1: latch_v1_4_p_16_p port map (clk(1),input,tmp_output(1)); 
 output(16) <= tmp_output(1)(0); 
 output(17) <= tmp_output(1)(1); 
 output(18) <= tmp_output(1)(2); 
 output(19) <= tmp_output(1)(3); 
 output(20) <= tmp_output(1)(4); 
 output(21) <= tmp_output(1)(5); 
 output(22) <= tmp_output(1)(6); 
 output(23) <= tmp_output(1)(7); 
 output(24) <= tmp_output(1)(8); 
 output(25) <= tmp_output(1)(9); 
 output(26) <= tmp_output(1)(10); 
 output(27) <= tmp_output(1)(11); 
 output(28) <= tmp_output(1)(12); 
 output(29) <= tmp_output(1)(13); 
 output(30) <= tmp_output(1)(14); 
 output(31) <= tmp_output(1)(15); 
  
 block_64_latch2: latch_v1_4_p_16_p port map (clk(2),input,tmp_output(2)); 
 output(32) <= tmp_output(2)(0); 
 output(33) <= tmp_output(2)(1); 
 output(34) <= tmp_output(2)(2); 
 output(35) <= tmp_output(2)(3); 
 output(36) <= tmp_output(2)(4); 
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 output(37) <= tmp_output(2)(5); 
 output(38) <= tmp_output(2)(6); 
 output(39) <= tmp_output(2)(7); 
 output(40) <= tmp_output(2)(8); 
 output(41) <= tmp_output(2)(9); 
 output(42) <= tmp_output(2)(10); 
 output(43) <= tmp_output(2)(11); 
 output(44) <= tmp_output(2)(12); 
 output(45) <= tmp_output(2)(13); 
 output(46) <= tmp_output(2)(14); 
 output(47) <= tmp_output(2)(15); 
  
 block_64_latch3: latch_v1_4_p_16_p port map (clk(3),input,tmp_output(3)); 
 output(48) <= tmp_output(3)(0); 
 output(49) <= tmp_output(3)(1); 
 output(50) <= tmp_output(3)(2); 
 output(51) <= tmp_output(3)(3); 
 output(52) <= tmp_output(3)(4); 
 output(53) <= tmp_output(3)(5); 
 output(54) <= tmp_output(3)(6); 
 output(55) <= tmp_output(3)(7); 
 output(56) <= tmp_output(3)(8); 
 output(57) <= tmp_output(3)(9); 
 output(58) <= tmp_output(3)(10); 
 output(59) <= tmp_output(3)(11); 
 output(60) <= tmp_output(3)(12); 
 output(61) <= tmp_output(3)(13); 
 output(62) <= tmp_output(3)(14); 
 output(63) <= tmp_output(3)(15); 
  
 block_64_latch4: latch_v1_4_p_16_p port map (clk(4),input,tmp_output(4)); 
 output(64) <= tmp_output(4)(0); 
 output(65) <= tmp_output(4)(1); 
 output(66) <= tmp_output(4)(2); 
 output(67) <= tmp_output(4)(3); 
 output(68) <= tmp_output(4)(4); 
 output(69) <= tmp_output(4)(5); 
 output(70) <= tmp_output(4)(6); 
 output(71) <= tmp_output(4)(7); 
 output(72) <= tmp_output(4)(8); 
 output(73) <= tmp_output(4)(9); 
 output(74) <= tmp_output(4)(10); 
 output(75) <= tmp_output(4)(11); 
 output(76) <= tmp_output(4)(12); 
 output(77) <= tmp_output(4)(13); 
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 output(78) <= tmp_output(4)(14); 
 output(79) <= tmp_output(4)(15); 
  
 block_64_latch5: latch_v1_4_p_16_p port map (clk(5),input,tmp_output(5)); 
 output(80) <= tmp_output(5)(0); 
 output(81) <= tmp_output(5)(1); 
 output(82) <= tmp_output(5)(2); 
 output(83) <= tmp_output(5)(3); 
 output(84) <= tmp_output(5)(4); 
 output(85) <= tmp_output(5)(5); 
 output(86) <= tmp_output(5)(6); 
 output(87) <= tmp_output(5)(7); 
 output(88) <= tmp_output(5)(8); 
 output(89) <= tmp_output(5)(9); 
 output(90) <= tmp_output(5)(10); 
 output(91) <= tmp_output(5)(11); 
 output(92) <= tmp_output(5)(12); 
 output(93) <= tmp_output(5)(13); 
 output(94) <= tmp_output(5)(14); 
 output(95) <= tmp_output(5)(15); 
  
 block_64_latch6: latch_v1_4_p_16_p port map (clk(6),input,tmp_output(6)); 
 output(96) <= tmp_output(6)(0); 
 output(97) <= tmp_output(6)(1); 
 output(98) <= tmp_output(6)(2); 
 output(99) <= tmp_output(6)(3); 
 output(100) <= tmp_output(6)(4); 
 output(101) <= tmp_output(6)(5); 
 output(102) <= tmp_output(6)(6); 
 output(103) <= tmp_output(6)(7); 
 output(104) <= tmp_output(6)(8); 
 output(105) <= tmp_output(6)(9); 
 output(106) <= tmp_output(6)(10); 
 output(107) <= tmp_output(6)(11); 
 output(108) <= tmp_output(6)(12); 
 output(109) <= tmp_output(6)(13); 
 output(110) <= tmp_output(6)(14); 
 output(111) <= tmp_output(6)(15); 
  
 block_64_latch7: latch_v1_4_p_16_p port map (clk(7),input,tmp_output(7)); 
 output(112) <= tmp_output(7)(0); 
 output(113) <= tmp_output(7)(1); 
 output(114) <= tmp_output(7)(2); 
 output(115) <= tmp_output(7)(3); 
 output(116) <= tmp_output(7)(4); 
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 output(117) <= tmp_output(7)(5); 
 output(118) <= tmp_output(7)(6); 
 output(119) <= tmp_output(7)(7); 
 output(120) <= tmp_output(7)(8); 
 output(121) <= tmp_output(7)(9); 
 output(122) <= tmp_output(7)(10); 
 output(123) <= tmp_output(7)(11); 
 output(124) <= tmp_output(7)(12); 
 output(125) <= tmp_output(7)(13); 
 output(126) <= tmp_output(7)(14); 
 output(127) <= tmp_output(7)(15); 
  
 block_64_latch8: latch_v1_4_p_16_p port map (clk(8),input,tmp_output(8)); 
 output(128) <= tmp_output(8)(0); 
 output(129) <= tmp_output(8)(1); 
 output(130) <= tmp_output(8)(2); 
 output(131) <= tmp_output(8)(3); 
 output(132) <= tmp_output(8)(4); 
 output(133) <= tmp_output(8)(5); 
 output(134) <= tmp_output(8)(6); 
 output(135) <= tmp_output(8)(7); 
 output(136) <= tmp_output(8)(8); 
 output(137) <= tmp_output(8)(9); 
 output(138) <= tmp_output(8)(10); 
 output(139) <= tmp_output(8)(11); 
 output(140) <= tmp_output(8)(12); 
 output(141) <= tmp_output(8)(13); 
 output(142) <= tmp_output(8)(14); 
 output(143) <= tmp_output(8)(15); 
  
 block_64_latch9: latch_v1_4_p_16_p port map (clk(9),input,tmp_output(9)); 
 output(144) <= tmp_output(9)(0); 
 output(145) <= tmp_output(9)(1); 
 output(146) <= tmp_output(9)(2); 
 output(147) <= tmp_output(9)(3); 
 output(148) <= tmp_output(9)(4); 
 output(149) <= tmp_output(9)(5); 
 output(150) <= tmp_output(9)(6); 
 output(151) <= tmp_output(9)(7); 
 output(152) <= tmp_output(9)(8); 
 output(153) <= tmp_output(9)(9); 
 output(154) <= tmp_output(9)(10); 
 output(155) <= tmp_output(9)(11); 
 output(156) <= tmp_output(9)(12); 
 output(157) <= tmp_output(9)(13); 
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 output(158) <= tmp_output(9)(14); 
 output(159) <= tmp_output(9)(15); 
  
 block_64_latch10: latch_v1_4_p_16_p port map (clk(10),input,tmp_output(10)); 
 output(160) <= tmp_output(10)(0); 
 output(161) <= tmp_output(10)(1); 
 output(162) <= tmp_output(10)(2); 
 output(163) <= tmp_output(10)(3); 
 output(164) <= tmp_output(10)(4); 
 output(165) <= tmp_output(10)(5); 
 output(166) <= tmp_output(10)(6); 
 output(167) <= tmp_output(10)(7); 
 output(168) <= tmp_output(10)(8); 
 output(169) <= tmp_output(10)(9); 
 output(170) <= tmp_output(10)(10); 
 output(171) <= tmp_output(10)(11); 
 output(172) <= tmp_output(10)(12); 
 output(173) <= tmp_output(10)(13); 
 output(174) <= tmp_output(10)(14); 
 output(175) <= tmp_output(10)(15); 
  
 block_64_latch11: latch_v1_4_p_16_p port map (clk(11),input,tmp_output(11)); 
 output(176) <= tmp_output(11)(0); 
 output(177) <= tmp_output(11)(1); 
 output(178) <= tmp_output(11)(2); 
 output(179) <= tmp_output(11)(3); 
 output(180) <= tmp_output(11)(4); 
 output(181) <= tmp_output(11)(5); 
 output(182) <= tmp_output(11)(6); 
 output(183) <= tmp_output(11)(7); 
 output(184) <= tmp_output(11)(8); 
 output(185) <= tmp_output(11)(9); 
 output(186) <= tmp_output(11)(10); 
 output(187) <= tmp_output(11)(11); 
 output(188) <= tmp_output(11)(12); 
 output(189) <= tmp_output(11)(13); 
 output(190) <= tmp_output(11)(14); 
 output(191) <= tmp_output(11)(15); 
  
 block_64_latch12: latch_v1_4_p_16_p port map (clk(12),input,tmp_output(12)); 
 output(192) <= tmp_output(12)(0); 
 output(193) <= tmp_output(12)(1); 
 output(194) <= tmp_output(12)(2); 
 output(195) <= tmp_output(12)(3); 
 output(196) <= tmp_output(12)(4); 
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 output(197) <= tmp_output(12)(5); 
 output(198) <= tmp_output(12)(6); 
 output(199) <= tmp_output(12)(7); 
 output(200) <= tmp_output(12)(8); 
 output(201) <= tmp_output(12)(9); 
 output(202) <= tmp_output(12)(10); 
 output(203) <= tmp_output(12)(11); 
 output(204) <= tmp_output(12)(12); 
 output(205) <= tmp_output(12)(13); 
 output(206) <= tmp_output(12)(14); 
 output(207) <= tmp_output(12)(15); 
  
 block_64_latch13: latch_v1_4_p_16_p port map (clk(13),input,tmp_output(13)); 
 output(208) <= tmp_output(13)(0); 
 output(209) <= tmp_output(13)(1); 
 output(210) <= tmp_output(13)(2); 
 output(211) <= tmp_output(13)(3); 
 output(212) <= tmp_output(13)(4); 
 output(213) <= tmp_output(13)(5); 
 output(214) <= tmp_output(13)(6); 
 output(215) <= tmp_output(13)(7); 
 output(216) <= tmp_output(13)(8); 
 output(217) <= tmp_output(13)(9); 
 output(218) <= tmp_output(13)(10); 
 output(219) <= tmp_output(13)(11); 
 output(220) <= tmp_output(13)(12); 
 output(221) <= tmp_output(13)(13); 
 output(222) <= tmp_output(13)(14); 
 output(223) <= tmp_output(13)(15); 
  
 block_64_latch14: latch_v1_4_p_16_p port map (clk(14),input,tmp_output(14)); 
 output(224) <= tmp_output(14)(0); 
 output(225) <= tmp_output(14)(1); 
 output(226) <= tmp_output(14)(2); 
 output(227) <= tmp_output(14)(3); 
 output(228) <= tmp_output(14)(4); 
 output(229) <= tmp_output(14)(5); 
 output(230) <= tmp_output(14)(6); 
 output(231) <= tmp_output(14)(7); 
 output(232) <= tmp_output(14)(8); 
 output(233) <= tmp_output(14)(9); 
 output(234) <= tmp_output(14)(10); 
 output(235) <= tmp_output(14)(11); 
 output(236) <= tmp_output(14)(12); 
 output(237) <= tmp_output(14)(13); 
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 output(238) <= tmp_output(14)(14); 
 output(239) <= tmp_output(14)(15); 
  
 block_64_latch15: latch_v1_4_p_16_p port map (clk(15),input,tmp_output(15)); 
 output(240) <= tmp_output(15)(0); 
 output(241) <= tmp_output(15)(1); 
 output(242) <= tmp_output(15)(2); 
 output(243) <= tmp_output(15)(3); 
 output(244) <= tmp_output(15)(4); 
 output(245) <= tmp_output(15)(5); 
 output(246) <= tmp_output(15)(6); 
 output(247) <= tmp_output(15)(7); 
 output(248) <= tmp_output(15)(8); 
 output(249) <= tmp_output(15)(9); 
 output(250) <= tmp_output(15)(10); 
 output(251) <= tmp_output(15)(11); 
 output(252) <= tmp_output(15)(12); 
 output(253) <= tmp_output(15)(13); 
 output(254) <= tmp_output(15)(14); 
 output(255) <= tmp_output(15)(15); 
end structure; 
 
library ieee,work; 
    use ieee.std_logic_1164.all; 
    use IEEE.STD_LOGIC_TEXTIO.ALL; 
    use STD.TEXTIO.ALL; 
    use work.demux_type.all; 
    use WORK.CONV.ALL; 
 
entity demux is  
 port ( clk,reset : IN std_logic; 
        input : IN std_logic_vector(3 downto 0); 
        clk_fft : OUT std_logic; 
        output: OUT TYPE_INPUT_FFT 
      ); 
end demux; 
 
architecture structure of demux is  
 
component latch_v1_4_p_16 
 port ( clk : IN std_logic; 
        input : IN std_logic_vector(3 downto 0); 
        output : OUT TYPE_DEMUX_ARRAY_16x4  
      ); 
end component; 
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component latch_V1_4_p_16_p_16  
 port ( clk : IN std_logic_vector(15 downto 0); 
        input : IN TYPE_DEMUX_ARRAY_16x4; 
        output : OUT TYPE_INPUT_FFT 
      ); 
end component; 
 
component clock_generator 
  port ( clk : IN std_logic; 
               reset : IN std_logic; 
               output : OUT std_logic_vector(15 downto 0); 
        clk_fft : OUT std_logic; 
               out_clk : OUT std_logic; 
               out_clk1 : OUT std_logic; 
               out_clk2 : OUT std_logic; 
               out_clk3 : OUT std_logic; 
               out_clk4 : OUT std_logic; 
               out_clk5 : OUT std_logic; 
               temp_clk : OUT std_logic 
              ); 
end component; 
 
 signal bus_64 : TYPE_DEMUX_ARRAY_16x4; 
 signal clk_state : std_logic_vector(15 downto 0); 
 --signal clk_fft : std_logic; 
 signal out_clk, out_clk1, out_clk2 : std_logic; 
 signal out_clk3, out_clk4, out_clk5, temp_clk : std_logic; 
begin 
  
 u0: clock_generator port map 
(clk,reset,clk_state,clk_fft,out_clk,out_clk1,out_clk2,out_clk3,out_clk4,out_clk5,temp_cl
k); 
-- clk_fft <= clk_fft; 
 u1: latch_v1_4_p_16 port map (clk,input,bus_64); 
 u2: latch_v1_4_p_16_p_16 port map (clk_state, bus_64, output); 
end structure; 
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