
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2007

High-speed Low-voltage CMOS Flash Analog-to-Digital Converter High-speed Low-voltage CMOS Flash Analog-to-Digital Converter

for Wideband Communication System-on-a-Chip for Wideband Communication System-on-a-Chip

Mingzhen Wang
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Engineering Commons

Repository Citation Repository Citation
Wang, Mingzhen, "High-speed Low-voltage CMOS Flash Analog-to-Digital Converter for Wideband
Communication System-on-a-Chip" (2007). Browse all Theses and Dissertations. 179.
https://corescholar.libraries.wright.edu/etd_all/179

This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It
has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/36752815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/179?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

HIGH-SPEED LOW-POWER CMOS FLASH

ANALOG-TO-DIGITAL CONVERTER FOR WIDEBAND

COMMUNICATION SYSTEM-ON-A-CHIP

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

By

MINGZHEN WANG
B.S.in Computer Engineering, Huazhong University of Science and Technology, 1990

M.S.Egr. in Computer Science, Wright State University, 2002
M.S.Egr. in Electrical Engineering, Wright State University, 2005

__

2007
Wright State University

WRIGHT STATE UNIVERSITY
SCHOOL OF GRADUATE STUDIES

September 11, 2007

I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER
MY SUPERVISION BY Mingzhen Wang ENTITLED High-Speed Low-Power
CMOS Flash Analog-to-Digital Converter for Wideband Communication
Systems-on-a-Chip BE ACCEPTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy.

 Chien-In Henry Chen, Ph.D.

 Dissertation Director

 Ramana V. Grandhi, Ph.D.

Director, Ph.D. in Electrical Engineering

 Joseph F. Thomas, Jr., Ph.D.
 Dean, School of Graduate Studies

Committee on
Final Examination

Chien-In Henry Chen, Ph.D.

Raymond Siferd, Ph.D.

Marian Kazimierczuk, Ph.D.

Jack S.N. Jean, Ph.D.

Wen-Ben Jone, Ph.D.

iii

ABSTRACT

Wang, Mingzhen, Ph.D, Engineering Ph.D Program, Department of Electrical Engineering,
Wright State University, 2007. High-Speed Low-Voltage CMOS Flash Analog-to-Digital
Converter for Wideband Communication System-on-a-Chip

With higher-level integration driven by increasingly complex digital systems and

downscaling CMOS processes available, system-on-a-chip (SoC) is an emerging

technology of low power, high cost effectiveness and high reliability and is exceedingly

attractive for applications in high-speed data conversion wireless and wideband

communication systems.

This research presents a novel ADC comparator design methodology; the speed and

performance of which is not restricted by the supply voltage reduction and device linearity

deterioration in scaling-down CMOS processes. By developing a dynamic offset

suppression technique and a circuit optimization method, the comparator can achieve a 3

dB frequency of 2 GHz in 130 nanometer (nm) CMOS process.

Combining this new comparator design and a proposed pipelined thermometer-Gray-

binary encoder designed by the DCVSPG logic, a high-speed, low-voltage clocked-digital-

comparator (CDC) pipelined CMOS flash ADC architecture is proposed for wideband

communication SoC. This architecture has advantages of small silicon area, low power,

and low cost. Three CDC-based pipelined CMOS flash ADCs were implemented in 130

nm CMOS process and their experimental results are reported:

1. 4-b, 2.5-GSPS ADC: SFDR of 21.48-dB, SNDR of 15.99-dB, ENOB of 2.4-b, ERBW

of 1-GHz, power of 7.9-mW, and area of 0.022-mm2.

iv

2. 4-b, 4-GSPS ADC: SFDR of 25-dB, SNDR of 18.6-dB, ENOB of 2.8-b, ERBW of

2-GHz, power of 11-mW.

3. 6-b, 4-GSPS ADC: SFDR of 48-dB at a signal frequency of 11.72-MHz, SNDR of

34.43-dB, ENOB of 5.4-b, power of 28-mW.

An application of the proposed CDC-based pipelined CMOS flash ADC is 1-GHz

bandwidth, 2.5-GSPS digital receiver on a chip. To verify the performance of the receiver,

a mixed-signal block-level simulation and verification flow was built in Cadence AMS

integrated platform. The verification results of the digital receiver using a 4-b 2.5-GSPS

CDC-based pipelined CMOS ADC, a 256-point, 12-point kernel function FFT and a

frequency detection logic show that two tone signals up to 1125 MHz can be detected and

discriminated.

A notable contribution of this research is that the proposed ADC architecture and the

comparator design with dynamic offset suppression and optimization are extremely

suitable for future VDSM CMOS processes and make “all-digital” receiver SoC design

practical.

v

Contents

Chapter 1 Introduction...1

1.1 Background... 1
1.2 Initial Research Requirements .. 3
1.3 Dissertation Research Summary ... 4
1.4 Dissertation Layout... 5

Chapter 2 ADC Fundamentals ..7

2.1 Primary Characteristics... 8

2.2 Performance Characteristics ..11

2.2.1.1 Offset and Gain Error...11
2.2.1.2 Integral Non-Linearity and Differential Non-Linearity11

2.2.2.1 Signal-to-Noise Ratio.. 12
2.2.2.2 Signal-to-Noise-and-Distortion Ratio............................... 12
2.2.2.3 Effective Number of Bits .. 13
2.2.2.4 Spurious-Free Dynamic Range ... 13
2.2.2.5 Total Harmonic Distortion .. 14

Chapter 3 ADC Literature Review..15

3.1 Architecture Overview.. 15
3.2 High Speed ADC in Literature.. 17
3.3 Flash ADCs Using Inverter Comparator for SoC 19

Chapter 4 High-Speed ADCs in Wideband Receivers ...22

4.1 Spurs in Spectrum... 23
4.2 Signal Slew Rate Limitation ... 28
4.3 Sparkles and Meta-stability... 29

Chapter 5 Clocked Digital Comparator..32

5.1 Introduction... 32
5.2 Inverter Amplifier ... 34
5.3 Clocked Digital Comparator with Dynamic Offset Suppression............ 36
5.4 Optimization of Sizing Design.. 41

5.5 Summary ... 52

2.1.1 Sampling Frequency ..8
2.1.2 Resolution ..9

2.2.1 Static Performance ...11

2.2.2 Dynamic Performance ...12

5.4.1 Methodology..41
5.4.2 Optimum Ids ...49

vi

Chapter 6 CDC-Based Pipelined Flash ADC Architecture53

6.1 Architecture... 53
6.2 CDCs and Gain Boosters .. 57
6.3 Pipelined DCVSPG Encoders... 58

6.4 Clock Tree... 65

Chapter 7 Implementation and Performance of CDC-based Pipelined CMOS Flash
ADC Architecture...67

7.1 4-b 1.25-GHz Bandwidth 2.5-GSPS ADC.. 67

7.2 4-b 2-GHz Bandwidth 4GSPS ADC... 90

7.3 6-b 4GSPS ADC ... 98

7.4 Comparison of BDB and TGB Encoders...110

Chapter 8 Application of 4-b CDC-based Pipelined ADC in a Digital Wideband
Receiver-on-a-Chip ..112

8.1 AMS Verification Flow..112
8.2 DEMUX Design...113
8.3 Verification Results..116

Chapter 9 Conclusions..118

Appendix...122

A. Estimation of Source and Drain Areas and Peripheries 122
B. Signal / Clock Generators in Verilog_AMS.. 123
C. DEMUX in VHDL.. 125

Bibliography ...142

6.3.1 Encoder Architecture ...58
6.3.2 DCVSPG Logic Circuit Blocks ...62

7.1.1 Implementation and Performance ..68
7.1.2 Schematic vs. Post Layout Performance..80

7.2.1 Implementation and Performance ..90
7.2.2 Comparison with 4-b Flash ADCs in Literature97

7.3.1 Implementation and Performance ..98
7.3.2 Comparison with State-of-the-art 6-b flash ADC108

vii

List of Figures
Figure 1-1 Digital Receiver SoC [5].. 3

Figure 2-1 N = 3 Quantization Steps ... 9
Figure 2-2 Uniform Distribution of Quantization Error .. 10

Figure 3-1 Resolution N vs. Sampling Frequency fsampling.. 16
Figure 3-2 Flash ADC Architecture ... 17

Figure 4-1 Time and frequency domain data using an 8-point DFT.. 24
Figure 4-2 8-point DFT with Spurs ... 26
Figure 4-3 Correspondence among Thermometer, Gray and Binary Codes................................ 30
Figure 4-4 Pipelined Thermometer-to-Gray Encoder.. 30
Figure 4-5 Comparison of Gray and Direct Binary Encoding at Various Sparkles 31

Figure 5-1 Inverter Amplifier with Voltage-Transfer Characteristics .. 34
Figure 5-2 Small-Signal Characteristics of Inverter Amplifier.. 35
Figure 5-3 Clocked Digital Comparator .. 37
Figure 5-4 Static VTC.. 38
Figure 5-5 Transient Behavior of CDC Quantization Inverters... 39
Figure 5-6 Small-Signal Model of CDC Quantization Inverters ... 43
Figure 5-7 Diagram for Matlab Analysis... 45
Figure 5-8 Ids, Co1, Cin, Slew-Rate Vs. NMOS width at Vm = 0.484v .. 46
Figure 5-9 Comparison of Vo1 Rising Speeds with Vm=0.484v and Various Ids 47
Figure 5-10 Comparison of Vo1 Falling Speeds with Vm=0.484v and Various Ids 48
Figure 5-11 Comparison of ADC SFDR for Optimization of Ids ... 51

Figure 6-1 Architecture of CDC-based Pipelined ADC with Direct-Binary Encoding............... 54
Figure 6-2 Architecture of CDC-based Pipelined ADC with Gray Encoding 55
Figure 6-3 Timing Diagram of CDC-based Pipelined CMOS Flash ADC.................................. 56
Figure 6-4 4-b Direct-Binary Balanced Encoder ... 59
Figure 6-5 Pipelined Encoding of Thermometer-to-Gray Code .. 61
Figure 6-6 Pipelined Encoding of Gray-to-Binary Code... 62
Figure 6-7 Clocked DCVSPG AND/NAND Gate ... 63
Figure 6-8 Clocked DCVSPG OR/NOR Gate... 63
Figure 6-9 Clocked DCVSPG XOR/XNOR Gate ... 64
Figure 6-10 Clocked DCVSPG Buffer .. 64
Figure 6-11 Performance of Clock Tree .. 66

Figure 7-1 Schematic of 4-b 1.25-GHz Bandwidth 2.5-GSPS ADC... 69
Figure 7-2 Schematic of TGB 4-b Encoder ... 70
Figure 7-3 Schematic of Gray-to-Binary Encoding... 70
Figure 7-4 Schematic of Clock Tree for a 4-b ADC .. 71
Figure 7-5 Schematic of 15 CDC Comparators... 72
Figure 7-6 Outputs of 15 Quantization Inverters at DC .. 73
Figure 7-7 Outputs of CDC Comparators at 100MHz Sinusoidal Signal.................................... 74
Figure 7-8 Reconstructed Signal and Spectrum of 9.766MHz Signal... 74
Figure 7-9 Spectrum of 250MHz Signal.. 75

viii

Figure 7-10 Spectrum of 952 MHz signal ... 76
Figure 7-11 Spectrum of 1.248GHz Signal ... 76
Figure 7-12 SFDR and SNDR vs. Input Frequencies .. 77
Figure 7-13 ENOB vs. Input Frequencies ... 77
Figure 7-14 SFDR Comparison of three ADCs ... 78
Figure 7-15 SNDR Comparison of two ADCs .. 79
Figure 7-16 Layout of the ADC... 81
Figure 7-17 Outputs of 15 Quantization Inverters at DC Post Layout Simulation...................... 82
Figure 7-18 Reconstructed Signal and Spectrum of 9.8MHz signal.. 83
Figure 7-19 Spectrum of 125MHz Signal.. 84
Figure 7-20 Spectrum of 952MHz Signal.. 84
Figure 7-21 Spectrum of 1.248GHz Signal ... 85
Figure 7-22 SFDR and SNDF vs. Input Frequencies .. 86
Figure 7-23 SFDR and SNDR Comparison between Schematic and Layout.............................. 87
Figure 7-24 ENOB Comparison between Schematic and Layout ... 88
Figure 7-25 Schematic of 4-b 2-GHz Bandwidth 4-GSPS ADC... 91
Figure 7-26 Spectrum of 200MHz Signal.. 92
Figure 7-27 Spectrum of 1.374GHz Signal ... 93
Figure 7-28 Spectrum of 1.6GHz Signal ... 93
Figure 7-29 Spectrum of 1.807GHz Signal ... 94
Figure 7-30 Spectrum of 1.997GHz Signal ... 94
Figure 7-31 SFDR and SNDR vs. Input Frequencies .. 95
Figure 7-32 ENOB vs. Input Frequencies ... 96
Figure 7-33 Schematic of 6-b 2.5GSPS ADC.. 99
Figure 7-34 Schematic of 6-b TGB Encoder ... 100
Figure 7-35 Schematic of 6-b Gray-to-Binary Encoding .. 101
Figure 7-36 63 CDC Comparators... 102
Figure 7-37 Schematic of Clock Tree for 6-b ADC... 103
Figure 7-38 Outputs of 63 Quantization Inverters at DC .. 104
Figure 7-39 Outputs of 6 bits at DC .. 105
Figure 7-40 Spectrum of 12.2MHz Signal... 106
Figure 7-41 Reconstructed Signal and Spectrum of 11.7MHz signal.. 107
Figure 7-42 Performance Comparison of the ADC with 2.5-GSPS .. 110
Figure 7-43 Performance Comparison of the ADC with 4-GSPS ... 111

Figure 8-1 AMS Verification Flow of Digital Receiver .. 113
Figure 8-2 Diagram of DEMUX.. 114
Figure 8-3 Sixteen 6.4ns Pulse Signals.. 115
Figure 8-4 State Diagram of Pulse Signals .. 115
Figure 8-5 Bin and Peak Amplitude of 1125MHz Signal .. 116
Figure 8-6 1st and 2nd Peak Amplitude of 700MHz and 1GHz .. 117

Figure 9-1 Spectrum of 400MHz Signal with -40°C... 120
Figure 9-2 Spectrum of 400MHz Signal with 25°C .. 120
Figure 9-3 Spectrum of 400MHz Signal with 75°C .. 121
Figure 9-4 Spectrum of 400MHz Signal with 140°C .. 121

Figure A-1 Estimation of Source and Drain Areas and Peripheries... 122

ix

List of Tables
Table 1-1 Initial Requirements of ADC for Digital Receiver .. 4
Table 1-2 Achieved Performance of ADC for the Digital Receiver .. 5

Table 3-1 Comparison to State-of-the-art GHz Flash ADCs ... 19
Table 3-2 Comparison to Flash ADCs with Inverter Comparator ... 20

Table 5-1 Comparison of Switching Speeds of Vm = 0.484v and 6 different Ids 49
Table 5-2 Comparison of Switching Speeds for Various Vm .. 50

Table 6-1 Relation between Input Voltage Range and 3-dB Bandwidth of CDCs 57

Table 7-1 Dynamic Performance Improvement Rate of the ADC... 80
Table 7-2 Performance Comparison of Schematic and Layout ... 86
Table 7-3 Dynamic Performance Degradation Rate of the Layout.. 89
Table 7-4 Dynamic Performance Parameters of Various Frequency Signals 92
Table 7-5 Comparison with 4-b Flash ADCs in Literature .. 97
Table 7-6 Performance Comparison of 6-b Flash ADC... 108

Table 9-1 Temperature variation on SFDR analysis of 4-b 2.5-GSPS CDC-based ADCs with input

signal frequency of 400 MHz... 119

x

Acknowledgements

 I am grateful to many people who supported, encouraged and guided me during the

dissertation research work. My most sincere gratitude belongs to my dissertation advisor,

Prof. Chien-In Henry Chen, for his guidance and support throughout this endeavor. His

good insight on my dissertation research is invaluable, and he has been providing full

support on the research source. I also thank him for his constant encouragement and

patience throughout the entire research period. This doctoral research experience would

be a special journey in my professional life.

 I would like to sincerely thank Prof. Raymond Siferd for taking me as an IC design

research assistant at the first place of my doctoral study and teaching me the analog

circuit design. I also thank Prof. Marian Kazimierczuk and Prof. Jack Jean for their

encouragement and guidance during my graduate study. I am truly grateful to Prof.

Wen-Ben Jone, Prof. Marian Kazimierczuk, Prof. Raymond Siferd and Prof. Jack Jean for

willing to serve on my dissertation committee.

 I thank all the colleagues in the VLSI research lab for sharing and discussion. Mike

Myers deserves a special thank for helping me at the beginning of my research in the VLSI

lab, and also with design layout in the end. Without his help, my ADC layout would not be

completed successfully in that short time.

 I extend my acknowledgements to Sheila Hollenbaugh and the Department of

xi

Electrical Engineering for providing me all the necessary technical support required for the

successful completion of this dissertation. I would also like to thank the Engineering Ph. D.

Program for the financial support.

 I am most grateful to my family, my husband and daughter, my mom, my brothers and

sisters for their love and support during my doctoral study. The most special gratitude goes

to my husband, Li, for teaching me technical writing and organizing the research, and also

taking care of our daughter, Jiechen, when I was not there. Without him, I would never get

to this point.

xii

Dedicated to

My husband and our daughter, Li and Jiechen.

1

Chapter 1 INTRODUCTION

1.1 Background

Analog-to-digital converters (ADCs) are electronic circuits that convert continuous

electric signals into discrete digital numbers for signal analysis or signal transmission.

ADCs are characterized primarily by conversion speed, resolution, power and area

consumption, which vary with a variety of applications. In addition, selection of an ADC

for an individual application is essential for cost effectiveness.

With higher-level integration driven by increasingly complex digital systems and

downscaling processes available, system-on-a-chip (SoC) is an emerging technology for

low power-consumption, high cost effectiveness, and high reliability. SoC is in great

demand for wireless and wideband communication systems which require high-speed data

conversion, especially consumer electronic devices. SoC integrates all components of

electronic systems into a single integrated circuit containing digital, analog, and

mixed-signal functions on one chip. A high-speed A/D converter becomes an integral part

of SoC products.

Generally three types of solid state technologies are available for A/D converter

implementation. They are Gallium Arsenide (GaAs), Silicon Germanium (SiGe) and

2

Silicon (Si), and of the three GaAs is the most and Si is the least expense process. As to

the Si process the CMOS Si, unlike the BiCMOS Si using high power consumption bipolar

devices, uses low-power NFET and PFET devices which makes CMOS mixed-signal/SoC

become an emerging technology in the semiconductor industry.

However, shrinking the feature size of the semiconductor technology makes

high-speed high-performance ADC design quite challenge in a standard CMOS technology,

due to the reduced effective voltage headroom and the deteriorated linearity of transistor

device in the small feature size technology. The semiconductor technology is now

approaching the 45 nanometer feature size, pushing development of SoC applications to a

new milestone.

Giga-sample-per-second (GSPS) flash-based ADCs in CMOS technology were

reported [1]-[3]. Although they had improved the conversion speed by using

time-interleaving, the conversion precision by averaging offset, or the effective resolution

bandwidth (ERBW) by interpolating and folding, etc., the sample rate is still limited by 2

GHz. Besides, these ADCs are not suitable for SoC due to noise effect on the analog

components, and high power consumption. We need a robust ADC architecture to

minimize substrate noise in a SoC core and has as few analog nodes and components as

possible [4].

3

1.2 Initial Research Requirements

The initial objective of this research is to investigate and design a high-speed,

low-power, and low-voltage CMOS A/D converter for use in a 2.5 GSPS, 1 GHz wideband

digital receiver on a chip, as shown in Figure 1-1. The receiver is to produce a low cost

(fewer devices and less PCB area), small and lightweight (130 nanometers CMOS) and

low power (less than 2 W) SoC for correctly processing two simultaneous signals (in a

frequency range between 125 and 1125 MHz) by detecting their frequency, pulse width

(PW), and time of arrival (TOA). The design of digital receiver is divided into two areas: 1)

signal sampler and formatting and 2) super resolution and frequency measurement [5].

Figure 1-1 Digital Receiver SoC [5]

Then the requirements of ADC for the digital receiver are shown in Table 1-1. To

process two simultaneous signals with maximum instantaneous dynamic range (IDR), the

digital receiver requires the embedded ADC with high spur-free-dynamic-range (SFDR).

4

Table 1-1 Initial Requirements of ADC for Digital Receiver

1.3 Dissertation Research Summary

The research goal is to investigate and design a high-speed, low-power, low-voltage

flash CMOS ADC for 1 GHz bandwidth digital receiver on a chip with a high two-signal

instantaneous dynamic range (IDR). The research is accomplished by proposed

CDC-based pipelined CMOS flash ADC architecture, dynamic offset suppression

technique, and circuit optimization. The performance of a 4-b CDC-based pipelined ADC

is summarized in Table 1-2.

5

Table 1-2 Achieved Performance of ADC for the Digital Receiver

Using a 2.5 GHz sampling rate, the ADC achieves a high spurious-free dynamic range

(SFDR) of 26 dB at a Nyquist frequency signal of 1.248 GHz. After the sampling rate

increases to 4 GHz, the ADC achieves a SFDR of 24 dB at a Nyquist frequency signal of

1.997 GHz. The proposed ADC is suitable for applications in wideband communication

SoC.

1.4 Dissertation Layout

After an overview of ADC fundamentals in chapter 2, where examples and the

state-of-the-art implementations are cited, chapter 3 reviews ADCs in the literature and

chapter 4 discusses high speed ADCs in wideband receivers. In chapter 5 a new digital

clocked comparator (CDC) is proposed and coupled with dynamic offset suppression

technique and circuit optimization to improve dynamic performance of ADC. A

6

CDC-based pipelined flash ADC architecture is then proposed in chapter 6. Chapter 7

presents implementations and experimental results of three CDC-based pipelined flash

ADCs with different design requirements in 130 nanometer (nm) digital CMOS process.

The CDC-based pipelined ADCs are compared with the ADCs in literature. Chapter 8

presents an application of a 4-b CDC-based pipelined flash ADC in a wideband digital

receiver with 2.5 GSPS and 1 GHz bandwidth. A block-level post-design verification flow

for the receiver has been established in Cadence analog/mixed-signal (AMS) platform.

Interface hardware and down-conversion between ADC and DSP is presented.

Conclusions and the future work are discussed in chapter 9.

7

Chapter 2 ADC FUNDAMENTALS

When an ADC converts analog signals into digital signals, it converts the continuous

values into the discrete values both in time and amplitude. The process converting signals

from continuous time to discrete time is called sampling with a sampling frequency fsampling.

fsampling is one of the primary characteristics of ADC and represents the conversion speed of

ADC. The other process converting signal amplitude from continuous voltages into

discrete voltages is called quantization with a resolution N. N is another primary

characteristic and represents the conversion precision of ADC. The sampling usually

precedes the quantization in the conversion process of the conventional low-speed ADC

designs, while in some high speed ADC designs two actions can be mixed or are

commutative [7].

The performance characteristics of ADCs are classified into the static performance

and the dynamic performance. The static performance includes offset, gain mismatch,

integral non-linearity (INL) and differential non-linearity (DNL) errors, etc. The dynamic

performance includes signal to noise ratio (SNR), signal to noise and distortion ratio

(SINAD), effective number of bits (ENOB), spurious-free dynamic range (SFDR) and total

harmonic distortion (THD), etc. Definitions and principles of primary characteristics and

calculation of performance parameters are discussed in the following sections.

8

2.1 Primary Characteristics

2.1.1 Sampling Frequency

An analog signal is sampled at regularly-spaced time intervals T. The discrete

samples of xa(t) are denoted by)()(nTxnx a= with ∞<<∞− n where x(n) is the

discrete-time sample of the continuous-time analog signal xa(t) every T seconds. The

sampling frequency fsamping is defined as the reciprocal of the time interval T, as

Tfsampling
1= and is so called the sampling rate as well with dimensions of samples per

second. If a continuous-time sinusoidal signal is)2cos()(θπ += ftAtxa with

+∞<<∞− t and +∞<<∞− f , where A is the amplitude of the sinusoid, f is the signal

frequency in hertz, and θ is the phase in radian, its discrete-time sinusoidal signal can be

expressed as)cos()2cos()(θωθπ +=+= nAfnTAnx with 2
sampling

f fω π= in radian

per sample.

How to select the sampling frequency fsamping? According to the characteristic of

discrete-time sinusoids whose frequencies are separated by an integer multiple of 2π are

identical, e.g.,)cos(])2cos[(00 θωθπω +=++ nn . The sequences of any two

discrete-time sinusoids with frequencies only in the range πωπ ≤≤− are distinct. Thus

the analog signals have to be equal or smaller than half of the sampling frequency as

samplingsampling fff 2
1

2
1 ≤≤− (2-1)

To reconstruct signals back unambiguously without aliasing, the sampling frequency

has to be equal or greater than twice of the frequency bandwidth of analog signals. This is

Nyquist-Shannon sampling Theorem [8].

9

2.1.2 Resolution

Quantization converts signal amplitude from continuous voltages into discrete

values by dividing a full-scale signal voltage into 2N-1 sub-range where N is the resolution

of ADC. The resolution N represents the expected conversion precision of ADC. The

effective conversion precision is decreased due to various noises. A primary noise source in

data conversion is quantization error.

Figure 2-1 N = 3 Quantization Steps

Quantization inherently adds noise into digitized signals. Figure 2-1 presents

quantization steps for a resolution of N = 3. The full-scale amplitude of analog signal is

divided into 7 sub-ranges. Any voltage in a sub-range between every two steps is rounded

to the closed step. Thus, quantization unavoidably results in a loss of information and is

presented as the quantization noise.

Quantization error Q is one step size VLSB and generally considered as a random

10

variable with a uniform distribution. The error density function fQ(x) is
LSBV
1 in the range

[- 2
LSBV , 2

LSBV] as shown in Figure 2-2.

LSBV
1

2
LSBV

−
2
LSBV

Figure 2-2 Uniform Distribution of Quantization Error

To approximate the quantization noise, the signal-to-noise ratio (SNR) is calculated

by comparing the signal power over the quantization noise power. The root-mean-square

(rms) value of the quantization noise is
12

2

2

12 2
1

][LSB
LSB

LSB LSB

V
V

V VQ dxxrmsV == ∫−
 where

N
FSV

SBLV
2

= .

For a sinusoidal signal)cos(2 θ+ΩtFSV with a full-scale voltage, the rms value

is
22

22

0 22
1

2
1

)cos((FSFS VV
in tdtrmsV =⎥⎦

⎤
⎢⎣
⎡ Ω+Ω⋅⋅= ∫ θ

π

π . The signal-to-noise ratio (SNR) of ADC

is the ratio of the rms value of signal to the rms value of the quantization noise.

)(76.102.6)(log20 10 dBN
rmsV
rmsV

SNR
Q

in +== (2-2)

Thus the ideal SNR of an N-b ADC is 6.02N + 1.76 dB as shown in Equ. (2-2). For

example, a 4-b ADC has an ideal SNR of 25.84 dB.

11

2.2 Performance Characteristics

Performance characteristics of ADCs [9, 10] presented in this section aims at giving

an evaluation metric of ADCs.

2.2.1 Static Performance

2.2.1.1 Offset and Gain Error

Offset is a constant difference between the actual finite resolution characteristic and the

ideal finite resolution characteristic measured at any vertical jump. Gain Error is the

difference between the actual finite resolution and an infinite resolution characteristic

measured at the rightmost vertical jump. It is proportional to the magnitude of ADC input

voltage. In conventional comparison of ADC performance, the sampling speed is assumed

for all input voltage due to the linearity of circuits, however, a high input voltage results in

a faster response than does a low input voltage which eventually results in an ADC gain

error.

2.2.1.2 Integral Non-Linearity and Differential Non-Linearity

Integral nonlinearity (INL) is the maximum difference between the actual finite

resolution characteristic and the ideal finite resolution characteristic measured vertically. It

can be expressed as a percentage of the full scale range or in terms of the least significant

bit (LSB).

Differential Nonlinearity (DNL) is a measure of the separation between adjacent levels

measured at each vertical jump. It measures bit-to-bit deviations from ideal output steps

12

and can be expressed in terms of the LSB as shown in Equ. (2-3).

LSB
V

VVkDNL
LSB

kk 1)(
''

1 −
−

= + (2-3)

Equ. (2-3) is used to calculate the DNL for each quantization level and VLSB is one

voltage step size and equal to)22(−N
FSV in flash ADCs. V’k+1 and V’k are adjacent

actual voltage levels. The maximum DNL characterizes the differential nonlinearity of the

ADCs.

2.2.2 Dynamic Performance

2.2.2.1 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is the ratio of the signal power to the total noise power

at the output usually measured for a sinusoidal input. It is expressed in decibel (dB) as the

following equation [11]:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

noiserms

signalrms

A
A

SNR
,

,
10log20 (2-4)

where Arms,signal and Arms, noise are the root mean square of the amplitude for the signal and

noise, respectively. The SNR can also be calculated as the signal fundamental spectrum in

dB minus the sum of all the noise spectra excluding the significant harmonics.

2.2.2.2 Signal-to-Noise-and-Distortion Ratio

The signal-to-noise-and-distortion ratio (SNDR) is the ratio of the signal power to the

13

total noise power and harmonics power at the output when inputting a sinusoid.

Mathematically the SNDR is formalized as the following [12]

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+harmonicsnoiserms

signalrms

A
A

SNDR
,

,
10log20 (2-5)

where Arms, signal and Arms, noise+harmonics are the rms of the signal amplitude and the

rms of all the noise amplitudes and all the harmonic amplitudes. According to the SNR in

Equ. (2-2), the performance parameters SNR and SNDR are both up-bounded at

6.02N+1.78 dB.

2.2.2.3 Effective Number of Bits

The effective number of bits (ENOB) is defined by the following equation [15]:

02.6
78.1 dBSNDRENOB −

= (2-6)

In the Nyquist ADC, the ENOB is smaller than the resolution N of ADC, while with

noise-shaping technique, the over-sampling ADC may achieve an ENOB higher than the

resolution N. The ADC architectures are reviewed and discussed in the next chapter.

2.2.2.4 Spurious-Free Dynamic Range

The spurious-free dynamic range (SFDR) is the ratio of the signal power to the largest

harmonic power, or the power of the highest spur if the power of the highest spur is greater

than the largest harmonic power. It can be expressed as

14

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

rhighestSpuharmonicrms

signalrms

ndA
A

SFDR
/2,

,
10log20 (2-7)

The SFDR performance shows the dynamic range of an ADC. In [13] and [14], an

empirical equation for the SFDR was derived as

cNSFDR −≈ 9 (2-8)

where N is the resolution of the ADC, c is the offset ranges from 0 for low resolution and 6

for high resolution [24].

2.2.2.5 Total Harmonic Distortion

The total harmonic distortion (THD) is the ratio of the total significant harmonic power

over the signal power. The THD can be expressed as

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

signalrms

harmonicsrms

A
A

THD
,

,
10log20 (2-9)

15

Chapter 3 ADC LITERATURE REVIEW

The literature review is intended to provide information to understand the context of

this research. Following a brief overview of ADC architectures, high speed flash ADCs are

surveyed and the performances of state-of-the-art flash ADCs are discussed. At the end of

this chapter, flash ADCs using inverter comparator configuration for SoC applications are

discussed.

3.1 Architecture Overview

As the primary characteristics, the precision and speed in data conversion determine

the selection of ADC architectures for a specific application. ADC precision and speed, in

terms of resolution and sampling frequency, is shown in Figure 3-1 [16]. Sigma-Delta

ADCs have the highest resolution but the lowest sampling frequency; flash ADCs have he

highest sampling frequency but the lowest resolution. The resolution and the sampling

frequency for successive approximation register (SAR) ADCs and pipelined ADCs are in

the between.

 16

Figure 3-1 Resolution N vs. Sampling Frequency fsampling

The primary characteristics of the ADC architectures determine their applications. The

Sigma-Delta ADCs adopt over-sampling and noise shaping techniques to increase the SNR

by pushing low-frequency noise to higher frequencies which is out of the interest

bandwidth. The Sigma-Delta ADCs have features of low-bandwidth, high-resolution and

are particularly suitable for applications of precision measurement. The SAR ADCs use

one comparator over many cycles to conduct its conversion. They are often used at lower

speed, high resolution applications like industrial control and battery-powered applications.

The pipelined ADCs divide the conversion task into several consecutive stages to achieve

high resolution than the flash ADCs. The pipelined ADCs are often applied to high speed,

low resolution applications such as Video, HDTV, and Medical & CCD Imaging. The

flash ADCs convert the signal in one cycle by parallelizing all comparators to achieve fast

 17

conversion speed. They are often used in high speed applications like high-density disk

drives, wireless communications, wideband satellite receivers, etc. In general, power

consumption and silicon area of the flash ADCs increases with the increase of signal

bandwidth.

3.2 High Speed ADC in Literature

Encoder
N-b outputs

Vref1 Comp .

Vref2 Comp .

Vrefn
Comp .

Vin

Figure 3-2 Flash ADC Architecture

A general architecture of flash ADC is presented in Figure 3-2. In an N-bit flash ADC,

2N-1 reference voltages and comparators are used to convert the analog input signal into a

thermometer digital output signal. Commonly, the reference voltages are provided by a

2N-1-resistor ladder and the thermometer-code output is converted into a binary code by a

thermometer-to-binary encoder.

A full flash architecture, in principle, does not need an explicit front-end

sample-and-hold circuit and its performance is determined primarily by its constituent

 18

comparators [9]. Since comparators do not require linear amplification and typically

achieve a higher speed than sample-and-hold amplifiers (SHA), flash ADCs can operate

faster than those that demand front-end SHA [9]. Since the number of comparators

grows exponentially with the resolution, these ADCs have excessively large input

capacitance, power and area consumption, and different comparator offset voltages. In

addition, lack of a front-end sample-and-hold amplifier makes the converter vulnerable to

sparkles and slew-dependent sampling points.

Full flash ADCs employ parallelism and “distributed” sampling to achieve a high

conversion speed with a simple architecture, but the resolution is limited when its sampling

frequency reaches several giga-hertz [35]. A few of circuit techniques have been

proposed to improve the resolution while maintaining a one-step conversion without using

sample-and-hold circuits. Folding and interpolation techniques were proposed to increase

the effective input bandwidth by reducing the number of comparators but the architecture

becomes complicated [17-23] [36]. Averaging technique was proposed to improve the

performance of the resolution and the DNL error by suppressing the output offsets of

comparators by scarifying the input signal dynamic range due to dummy comparators [1]

[3] [24-26] [29-31]. Time-interleaved technique was proposed to increase the sampling

frequency by parallelizing ADCs but the high nonlinearity mismatch noise requires an

elaborate digital calibration system [32-34].

 19

Table 3-1 Comparison to State-of-the-art GHz Flash ADCs

The performances of state-of-the-art GHz flash ADCs are compared in Table 3-1. The

effective resolution bandwidth (ERBW) is limited by 1000 MHz (1GHz), although the

sampling rate reaches 4 GHz. The input capacitance, power and area consumption increase

as the ERBW increases.

3.3 Flash ADCs Using Inverter Comparator for SoC

In recent years, with technology processes continuously scaling-down and SoC

technique becoming feasible, high-performance low-voltage ADCs are in demand. The

 20

low-voltage ADCs with comparators in a simple inverter configuration particularly

suitable for SoC are reported.

Segura et al. in 1998 [35] suggested that an inverter could be used as an analog

comparator. Tangel in 1999 [36] first proposed using threshold inverter quantization (TIQ)

technique for comparator design in CMOS flash ADCs. An 1-GSPS CMOS flash ADCs

for SoC application was reported in 2001 [16][37]. Thereafter, a number of inverter-based

ADCs with emphasis on optimization of comparators were reported [38]-[43]. Some of

their performances are shown in Table 3-2.

Table 3-2 Comparison to Flash ADCs with Inverter Comparator

In [37] and [39], the ADCs were reported with emphasis on static performance of INL

and DNL. Using random size variation (RSV) and systematic size variation (SSV)

techniques to optimize the comparators improves the static performance of ADCs. The

ADC in [40] was designed with random sizing method and achieved a SFDR of 9 dB with

 21

an input signal frequency of 1 GHz. The ADC in [41] was designed by consideration of

dynamic offset suppression and achieved a SFDR of 19.81 dB with an input signal

frequency of 1.25 GHz. Their ADC performances are summarized in Table 3-2.

Flash ADCs with inverter comparator in Table 3-2, compared with flash ADCs in

Table 3-1, have comparatively higher sampling rate, low power and area consumption, and

using smaller feature size technologies.

 22

Chapter 4 HIGH-SPEED ADCS IN WIDEBAND RECEIVERS

In wideband communication systems, an ADC in receivers digitizes several channels

of strong and weak signals simultaneously. A digital signal processor (DSP) subsequently

detects each channel. First, the input dynamic range is an important performance

parameter for communication receivers. The ADC is desired to have high-speed data

conversion and high input dynamic range [45]. Usually, the SFDR of ADCs limit

wideband receiver sensitivity, not the SNR [44][46]. Therefore a design objective of

ADC for wideband communications is to increase the SFDR by lowering the spur and

noise floor therefore the weak legitimate signals can be detected. Secondly, the wide

bandwidth requires a high conversion rate in the ADC design by Nyquist theorem. The

flash ADC architecture is commonly used without external sample-and-hold (S/H) and has

distributed sampling on high-speed comparators for giga-hertz input signals. The sparkles

in thermometer code, meta-stability, and signal slew rate limitation will generate spurious

code and odd harmonics in the digital output [9][51]. Engineers have to consider all

these issues for a good ADC design in wideband communication systems.

 23

4.1 Spurs in Spectrum

The spurious-free dynamic range (SFDR) must be sufficiently high so that weak

signals are not covered in the spurious-floor. The SFDR of the ADC is defined as the

difference in decibels (dB) between the full-scale fundamental and the maximum spurious

tone including harmonics in the output spectrum. The signal-to-noise ratio (SNR) is

relatively less important here [46].

To understand the spurs in the output spectrum, we look at the discrete Fourier

transform (DFT) as the following:

Nnkj
N

n
enxkX /2

1

0
)()(π−

−

=
∑= (4.1)

where x(n) is the sampled output of ADC, N is the total number of samples, and X(k) is the

output spectrum power in real-imaginary domain with k ranging from 1 to N. Ideally, X(k)

is zero at the non-signal points and non-zero at the signal point. This is illustrated by an

example of 1-GSPS ADC at an input signal frequency of 125 MHz signal using an 8-point

DFT. Both time and frequency domain data are depicted in Figure 4-1.

 24

Figure 4-1 Time and frequency domain data using an 8-point DFT

For a periodic signal, ideal samples are [0, a, b, a, 0, -a, -b, -a] as shown Figure 4-1

(a). We take those samples into Equ.(4.1) and get Equ.(4.2) with Nnkjnk eW /2π−= for

simple expression.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=
−=
−=

=
=
=
=
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ax
bx
ax

x
ax
bx
ax

x

WWWWWWW
WWWWWWW
WWWWWWW
WWWWWWW
WWWWWWW
WWWWWWW
WWWWWWW

X
X
X
X
X
X
X
X

)7(
)6(
)5(

0)4(
)3(
)2(
)1(

0)0(

1
1
1
1
1
1
1

11111111

)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

4942352821147

4236302418126

3530252015105

282420161284

21181512963

1412108642

7654321

 (4.2)

 25

Because of symmetry and periodicity property of DFT, which are 2/Nnk
N

nk
N WW +−=

and Nnk
N

nk
N WW += , Equ.(4.2) is simplified to Equ.(4.3).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−
−−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

a
b
a

a
b
a

WWWWWW
WWWW
WWWWWW

WWWWWW
WWWW
WWWWWW

X
X
X
X
X
X
X
X

0

0

11
1111

11
11111111

11
1111

11
11111111

)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

123123

2222

321321

123123

2222

321321

 (4.3)

The values of X(k) are calculated in Equ.(4.4). X(1) and X(7) are signal-point and

symmetry, while the rest are non-signal points and equal to zero, shown in Equ.(4.4) and

in Figure 4-1 (b).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−

++

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

231

231

2)(2
0
0
0
0
0

2)(2
0

)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

bWWWa

bWWWa

X
X
X
X
X
X
X
X

 (4.4)

For non-ideal case of sampling as shown in Figure 4-2 (a), the samples can be [∆0,

a+∆1, b+∆2, a+∆3, ∆4, -a+∆5, -b+∆6, -a+∆7], where ∆i is an offset from its ideal value

resulting from error sources, sparkles or meta-stability, for instances.

 26

Figure 4-2 8-point DFT with Spurs

Putting the offset samples into Eqn.(4.3) as shown in Equ.(4.5), we can see that X(k)

at non-signal points are not zero and completely determined by the offsets, while X(k) at

signal points are modified by the offset in the samples, shown in Equ.(4.6).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆+−
∆+−
∆+−

∆
∆+
∆+
∆+

∆

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−
−−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7

6

5

4

3

2

1

0

123123

2222

321321

123123

2222

321321

11
1111

11
11111111

11
1111

11
11111111

)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

a
b
a

a
b
a

WWWWWW
WWWW
WWWWWW

WWWWWW
WWWW
WWWWWW

X
X
X
X
X
X
X
X

 (4.5)

 27

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆−∆+∆−∆+∆−∆+∆−∆+−+−
∆−∆+∆−∆−∆−∆+∆−∆

∆−∆+∆−∆+∆−∆+∆−∆
∆−∆+∆−∆+∆−∆+∆−∆

∆−∆+∆−∆+∆−∆+∆−∆
∆−∆+∆−∆+∆−∆+∆−∆

∆−∆+∆−∆+∆−∆+∆−∆+++
∆+∆+∆+∆+∆+∆+∆+∆

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

3
15

2
26

1
3740

231

2
75316420

3
37

2
62

1
1540

76543210

3
51

2
26

1
7340

2
75316420

3
73

2
62

1
5140

231
76543210

)()()()(2)(2
)()(

)()()()(

)()()()(
)()(

)()()()(2)(2

)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

WWWbWWWa
W

WWW

WWW
W

WWWbWWWa

X
X
X
X
X
X
X
X

 (4.6)

Those non-zeros X(k) at non-signal points appear as the spurs in spectrum domain as

shown in Figure 4-2 (b).

To lower the spurious-floor in ADC design, the offsets (∆i) need to be suppressed.

The offsets ∆i can be static offsets, dynamic offsets or the sum of them. They may be

characterized as random or mutual correlated. The random offset of ∆i is difficult to

control and only can be suppressed, while the correlated offset of ∆i may even be

eliminated in certain cases.

In high-speed data conversion, a major source of errors is dynamic offsets caused by

mismatches in sampling switches and sampling capacitance values [52]. The dynamic

offsets can be suppressed or even eliminated in ADC design.

 28

4.2 Signal Slew Rate Limitation

In the flash conversion without an external S/H circuit, the signal slew rate limits the

ADC speed and resolution in a given technology. When the maximum slew rate of the

analog input is close to the clock transition rate, the logic output can be different from the

expected value because the input signal still influences the output of comparators during

the time between the clock latch turned on and the input signal locked off. This

phenomenon introduces odd harmonics because it occurs for both negative and positive

slopes [54].

This error can be lowered when the clock transition rates are sufficiently higher than

the maximum slew rate of the analog input. On a large chip, this requires careful clocking

distribution with particular attention to their loading [9].

Another concept related to signal slew rate is the clock jitter, or called aperture jitter.

The maximum tolerable jitter determines the ADC’s resolution and speed [47]-[50]. For a

full-scale analog input ftV fsV
in π2sin2= , whose maximum rate of change is πּ f ּVfs.

The maximum tolerable jitter for 1-LSB is

NMAX f
dt

2
1

⋅⋅
=

π
 (4.7)

where dtMAX represents the maximum clock jitter and N is the converter’s resolution.

 29

4.3 Sparkles and Meta-stability

Sparkles and meta-stability are general phenomena in high-speed ADCs, which result,

in grossly incorrect digital output codes. The sparkle phenomenon is a ONE above ZERO

caused by timing mismatch among comparators. An important effect resulting from the

lack of a S/H in flash ADC is the sparkles (or bubbles) in the thermometer code [51][53].

Meta-stability is a phenomenon associated with binary digital logic system. A meta-stable

state occurs when an indeterminate state between logic ‘1’ and logic ‘0’ is latched at the

clock edge. It can happen by a comparator with slow regenerative time or using flip-flops

for synchronization of signals [51].

There are digital encoding schemes developed to suppress the sparkles and

meta-stability errors. But in high speed flash converters Gray encoding is used as an

intermediate step between thermometer and binary codes to suppress two potential errors

[9]. The error of meta-stable state can be suppressed because one meta-stable state of a

comparator is fed into no more than one input in Gray coding. The error of sparkles is

reduced because the accuracy of the Gray code degrades gradually as more sparkles appear

in the thermometer code.

A 3-bit Gray code example is used to illustrate the above points as shown in Figure 4-3

[9]. From the correspondence, the output G3G2G1 can be expressed in terms of the

thermometer code as follows:

75

311 TTTTG += (4.8)

622 TTG = (4.9)

 30

43 TG = (4.10)

The thermometer code Ti appears in only one expression and hence no signal is split

and the effect of meta-stable states can be reduced as shown in Figure 4-4. With pipelining,

the time for regeneration is increased to reduce logic meta-stabilities.

Figure 4-3 Correspondence among Thermometer, Gray and Binary Codes

Figure 4-4 Pipelined Thermometer-to-Gray Encoder

 31

Figure 4-5 illustrates the Gray encoding suppressing the effect of various sparkles,

compared with direct binary encoding. The Gray output remains a reasonable

approximation of the sampled value with the number of sparkles increasing.

Figure 4-5 Comparison of Gray and Direct Binary Encoding at Various Sparkles

Although the Gray encoding can be used to suppress the errors by meta-stability and

sparkles, the performance of flash conversion is determined primarily by the speed and

accuracy of the comparators.

 32

Chapter 5 CLOCKED DIGITAL COMPARATOR

5.1 Introduction

Comparator is the constituent part of ADCs with full-flash architecture. The overall

performance of flash ADCs is limited by the performance of their comparators for the

multi-bit flash ADCs are comparators parallelized, which are one-bit converters. However,

CMOS flash ADCs suffer greatly from offsets in the comparators because of device

mismatches and clock timing mismatches.

Generally, high-speed flash ADCs use the differential amplifier structure in

pre-amplifier and comparator design. There are two types of offsets in a differential

comparator. One is a static and random offset from device mismatches, which is amplified

into a larger offset in the output. The other is a dynamic offset at the output of comparator

arising from clock switching in the regenerative latch. The dynamic performance of ADC

is degraded greatly by the offsets of differential comparators.

In the state-of-the-art flash ADCs with the speed less than 2-GHz sampling frequency

reported in Table 3-1, averaging technique is used to smooth out the random mismatch

across the differential comparator and improve the SNR in flash ADCs [1][3][19][34]. For

 33

strongest averaging [44], one third dummy amplifiers are added and extra reference

voltage increases the difficulty of the high-speed differential comparator design due to the

stringent effective input voltage range in scaling-down CMOS processes. Besides,

averaging method reduces amplifier bandwidth and consumes extra power due to dummy

amplifiers [44].

In design of monolithic flash ADCs using feature size less than 130-nm CMOS

processes with the sampling speed over 2-GHz and the effective signal bandwidth over

1000-MHz, the differential comparator design is challenged. More importantly, the

dynamic offsets from clock timing mismatches between parallelizing comparators become

more significant and apparently effect to the ADC performance at over 1-GHz frequency

signal.

As reviewed in Chapter 3, the comparator with inverter configuration was suggested

for scaling-down CMOS processes. However, the relative researches reported were

focusing on the static performance, did not consider the dynamic performance of the ADCs

for high frequency signals.

In this research, we propose a high-speed clocked digital comparator (CDC) with

inverter configuration, coupled with a dynamic offset suppression and an optimum

implementation method for high-speed wideband CMOS flash ADCs. With a simple

inverter configuration, the CDC has less device mismatch issues and lower device linearity

requirements. The dynamic offset arising from clock timing mismatches is more apparent

in the CDC design, than the random static offset from device mismatches, which is dealt

with in this research by dynamic offset suppression technique and optimization design for

wideband communications without additional hardware.

 34

A brief review of inverter amplifier is presented in Section 5.2. CDC and dynamic

offset suppression is presented in Section 5.3. Section 5.4 presents procedures to

implement the optimal CDC design, and discuss optimization theory and experimental

results. The performance of CDC is summarized in Section 5.5.

5.2 Inverter Amplifier

Figure 5-1(a) illustrates an inverter amplifier where M1 and M2 are PMOS and NMOS

transistors. The operating regions of the inverter amplifier for different input voltages are

shown on the voltage transfer function characteristics of Figure 5-1(b). Both the

transistors are in saturation region between points A and B on the output curve with a bias

voltage Vbias. Since both transistors are being driven by vin and in saturation, the inverter

amplifier has the highest gain.

(a) Inverter Amplifier

Vbias

Vin

Vout

B

A

Vdd

∆V
ou

t

 ∆Vin

NMOS sat
urate

d

NMOS ac
tive

PMOS ac
tive

PMOS sat
urate

d

(b) Voltage-Transfer Characteristics

Vin Vout

M1

M2

Vdd

Vss

C

D

Figure 5-1 Inverter Amplifier with Voltage-Transfer Characteristics

 35

The PMOS M1 is in the saturation region when TpSGDS Vvv −≥ 11 , then we have

TpINOUT Vvv +≤ (5.1)

The NMOS M2 is in the saturation region when TnSGDS Vvv −≥ 22 , then we have

TnINOUT Vvv −≥ (5.2)

For both transistors in saturation, the output range ∆Vout can be derivate by subtracting

Equ.(5.2) from Equ.(5.1) as

TnTpout VVV +=∆ (5.3)

Figure 5-2 illustrates the small-signal characteristics of inverter amplifier. The parasitic

capacitances are presented in Figure 5-2(a) and Figure 5-2(b) presents the small-signal

model of (a).

(g
m

1 +g
m

2)V
in

1/(g
ds1 +g

ds2)

C
db1 +C

db2

Figure 5-2 Small-Signal Characteristics of Inverter Amplifier

 36

The largest small-signal voltage gain occurs when both transistors are saturated which

can be expressed by

()
()pn

TpbiasddTnbias

dsds

mm
VVVVV

gg
gg

A
λλ +

−−
+

−
=

+
+−

=

22

21

21
0 (5.4)

From Equ.(5.4), the value of A0 is process-dependent and varies in a certain range with

Vbais. For IBM 130 nm CMOS process, A0 is around 16 and slight changes with Vbais from

0.4v to 0.75v.

 The input range for both transistors in saturation is ∆vin for Vbias which can be

expressed by

()()

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−
+

−

++
=∆

TpbiasddTnbias

TnTppn
in

VVVVV

VV
v

22

λλ
 (5.5)

For IBM 130 nm CMOS process, if TnTp VV + approximate to 0.4V, ∆vin is around 25 mV.

The -3dB frequency response can be expressed as

()
out

ds
pn

out

dsds

C
I

C
gg

λλω +=
+

= 21
0 (5.6)

with Lbdbdgdsgdsout CCCCCC ++++= 2121 , illustrated in Figure 5-2(b).

5.3 Clocked Digital Comparator with Dynamic Offset Suppression

Figure 5-3 shows the structure of clocked digital comparators (CDCs) designed in

the n-bit flash ADC, in which the 2n-1 comparators have the same structure, but are sized

 37

differently. A comparator consists of two cascaded CMOS inverters and a digital CMOS

switch. The first inverter is a quantization component. The second inverter is a component

which sharpens and balances the quantized output. The digital switch is a digitization

component which makes the comparator perform a sampling operation.

Figure 5-3 Clocked Digital Comparator

The analog quantization level of clocked digital comparator is the switching

threshold voltage of the quantization inverter. It is a reference voltage and is

self-determined by the size ratio of NMOS and PMOS. As shown in Figure 2(a), this

internal reference voltage, Vm, is defined as the input voltage Vin of the quantization

inverter when the output voltage Vo1 equals to Vin, where both PMOS and NMOS

transistors are in saturation. Figure 2(a) is the static voltage transfer characteristic (VTC) of

the inverter. The voltage Vdd is the supply voltage of the process. The value of Vm is

expressed as

 38

nn

pp

Tnnn

pp

W
W

TpddW
W

m

VVV
V

µ
µ

µ
µ

+

+−
=

1

)(
 (5.7)

where VTp and VTn are threshold voltages of PMOS and NMOS devices; Wp and Wn are

widths of PMOS and NMOS; µp and µn are hole mobility and electron mobility,

respectively.

Figure 5-4 Static VTC

Figure 5-4(b) shows the static VTC for the 2n-1 comparators. The 2n-1 analog

quantization levels Vm(i), i = 1,….2n-1, are equally-spaced. However, due to the hysteresis

of the inverter switching, there will be a time delay (a time offset) ∆toffset for Vo1 rise to or

fall to Vm after Vin = Vm. If the ∆toffset of 2n-1 comparators are all different, the outputs Vo1 of

all comparators won’t equally-spaced. Then the analog quantization levels will have

irregular offsets when compared with their corresponding values in static VTC. The offsets

 39

of the comparators and the offset differences among the comparators introduce dynamic

noises and degrade ADC dynamic performance.

(a) switching time

Vm

V

t

t1 t1
+ t2 t2

+

vin(t)

vo1(t)Vdd

rV∆

fV∆

Vdd

Vin

Vm

Vo1Vdd

 Vm
+

(b) falling volt. offset

Vm

Vin

Vo1

 Vm
-

(c) rising volt. offset

Figure 5-5 Transient Behavior of CDC Quantization Inverters

To model the dynamic offsets, we analyze the transient behavior of a clocked digital

comparator for an input sinusoidal signal, vin(t)=Acos(ωt) where A is signal amplitude and

ω is signal frequency. Figure 5-5 shows the transient behaviors of the quantization inverter

 40

in the digital comparator. The switching time offset is defined as the offset time ∆toffset for

the inverter output Vo1 to rise to or fall to Vm after Vin = Vm. Both fall offset time ∆tf-offset =

(t1
+ - t1) and rise offset time ∆tr-offset = (t2

+ - t2) are shown in Figure 5-5(a). When Vin is

approaching to Vm, , assuming the load capacitance is small and both NMOS and PMOS are

in saturation, ∆tf-offset ≈ ∆tr-offset (=∆toffset) and is expressed as

)1()()(1
2

2
1

onTninnL
W

nds VVVKI λ+−= (5.8)

)](1[|)|()(1
2

2
1

oddpTpinddpL
W

pds VVVVVKI −+−−= λ (5.9)

dsn
o

dsn I
v
i λ=

∆
∆

1

 (5.10)

dsp
o

dsp I
v
i

λ−=
∆
∆

1

 (5.11)

1)(odspndspdsnds vIiii ∆∗+=∆−∆=∆ λλ (5.12)

dspn

o

ds

o
ooffset I

C
i
vCt

)(
11

1 λλ +
≈

∆
∆

=∆ (5.13)

where Co1 is the capacitive load at the output Vo1; Ids is the drain-source current of NMOS

and PMOS; λn and λp are active-region slope parameters for NMOS and PMOS,

respectively.

On the other hand, during time ∆toffset, vin(t) will either rise or fall to Vm
+ or Vm

-

depending on if it is in the rising or falling cycle. The difference between Vm and Vm
+ or Vm

-

is the dynamic voltage offset. Both falling voltage offset ∆Vf-offset = (Vm
+ - Vm) and rising

voltage offset ∆Vr-offset = (Vm - Vm
-) are shown in Figures 5-5(b) and (c). Since rising offset

and falling offset happen when both transistors are in saturation, ∆Vf-offset ≈ ∆Vr-offset and

output offset ∆Voffset is expressed by

 41

() offsetoffset ttAAV ∆∗∗=∆ ωω sin0 (5.14)

It is clear that ∆Voffset is frequency-dependent, so called dynamic offset. Substituting

Equ. (5.13) to Equ. (5.14), we obtain

() () dspn

o
offset I

C
tAAV

λλ
ωω

+
∗=∆ 1

0 sin (5.15)

where λn and λp are process-dependent, and A and ω are signal-dependent.

To suppress the dynamic offset ∆Voffset of comparators and to eliminate the offset

differences among comparators, as shown in Equ. (5.15) the Co1 is designed as small as

possible and has the same value for 15 comparators, and similarly the Ids is designed as

large as possible and has the same value for 15 comparators.

5.4 Optimization of Sizing Design

5.4.1 Methodology

Suppressing the CDC dynamic offset demands a large value of Ids as well as a small

value of Co1. However, with a fixed gate-source voltage, increasing Ids is only by increasing

sizes of the transistors, which results in large parasitic capacitance of Co1 in the CDC

comparator. Thus optimization of Ids is required for dynamic offset suppression in CDC

design.

A circuit-level optimal process of CDC design is developed for the optimization of Ids

and the optimization of the dynamic offset suppression. In the optimal process, the CDC

 42

feature values, including Co1, Ids, and the ratio of them, are firstly analyzed by calculated in

Matlab with a simple model to gain an insight into the relationship between CDC dynamic

offsets and Ids. The simple model used here is the level-1 transistor model, a model that

generally is used by most of analog circuit design analysis. Then the Ids of the CDC is

determined optimally by simulating 6 different sizing CDCs in Cadence Spectre with a

more complex transistor model. The model used in the simulation is the level-49 transistor

model, a model that is used for IBM 130 nm process. This two-step optimal process results

in an optimization of dynamic offset suppression in the CDC design.

Before optimizing the CDC design for dynamic offset suppression, we analyze the

relationship between CDC dynamic offsets and the switching speed of its quantization

inverter. Switching speed of an amplifier is generally expressed by its output slew rate

[55]. The slew rate of CDC is then expressed by

L

satout

C
I

t
vSlewRate =
∆

∆
=)max((5.16)

The slew rate of the quantization inverter represents the switching speed as in Equ.

(5.17):

1

1)max(
o

dso

C
I

t
vSlewRate =

∆
∆

= (5.17)

In Equ. (5.13) and (5.15) both the time and voltage offsets are proportional to the ratio

of Co1 and Ids and inversely proportional to the slew rate of the CDC’s quantization

inverter as shown in Equ.(5.18) and (5.19).

SlewRateI
Ct

ds

o
offset

11 =∝∆ (5.18)

 43

SlewRateI
CV

ds

o
offset

11 =∝∆ (5.19)

Therefore, Higher slew rate will generate smaller dynamic offset in CDCs. In our

dynamic offset suppression slew rates of 15 CDC’s quantization inverters are analyzed to

determine the optimum value of Ids.

 To determine the slew rate of the quantization inverter, two parameters Co1 and Ids are

calculated and analyzed. In the CDC comparator, the Co1 is the sum of gate-to-drain

capacitance, bulk-to-drain capacitance of the quantization inverter and capacitive load

from the CDC second inverter. Figure 5-6 shows the small-signal model of a CDC

quantization inverter for calculating the capacitance load Co1 in Equ.(5.20), where Cgd1 and

Cgd2 are the gate-to-drain capacitances of NMOS and PMOS, respectively. Cbd1 and Cbd1

are the bulk-to-drain capacitances of NMOS and PMOS, respectively. CL is the capacitive

load from the CDC second inverter.

(g
m

1 +g
m

2)V
in

1/(g
ds1 +g

ds2)

C
db1 +C

db2

Figure 5-6 Small-Signal Model of CDC Quantization Inverters

 44

Lbdbdgdgdo CCCCCC ++++= 21211 (5.20)

For predicting the input capacitance of CDC-based ADCs, the input capacitance of

CDC is approximated in Equ. (5.21), referring to Figure 5-2(a), which is under Miller

effect, where gm1 and gm2 are the trans-conductance of M1 and M2, respectively. gds1 and

gds2 are the conductance of M1 and M2, respectively.

() ()2121
21

211 gsgsgdgd
dsds

mm
in CCCC

gg
gg

C +++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+= (5.21)

Equ. (5.22), (5.23) and (5.24) are used for calculating the gate-to-drain, gate-to-source and

bulk-to-drain parasitic capacitances, Cgd, Cgs and Cbd. Cox is the oxide capacitance. LD is

the lateral diffusion. Weff is the effective channel width. AD is the area of the drain. PD is

the perimeter of the drain. CJ is the zero-bias junction capacitance, CJSW is the zero-bias,

bulk-drain sidewall capacitance. PB is the bulk junction potential. MJ is the bulk junction

grading coefficient. MJSW is the bulk-drain sidewall grading coefficient. The calculation

of AD and PD is shown in Appendix A.

()()effoxgd WLDCC = (5.22)

()()effeffoxgs WLLDCC 67.0+= (5.23)

()() () ()() () ⎥⎦
⎤

⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ +=

PB
V

MJSWPDCJSW
PB
V

MJADCJC bdbd
bd 11 (5.24)

() ()DSTGSds VVV
L

WKI λ+−= 1
2

2' (5.25)

The drain-source current in saturation is calculated in Equ.(5.25), where W and L are the

width and length of transistor. VGS and VDS are the gate-source and drain-source voltages.

 45

VT is the transistor threshold voltage. K’ is the trans-conductance parameter in saturation

and λ is the channel length modulation parameter. As analyzed in the previous section,

the offsets happen when both transistors are in saturation. The critical segment in the

switching time of CDC quantization inverter is the time segment that both transistors are

in saturation, which is used to approximate the slew-rate of the quantization inverter.

Parameter values in Equ. (5.22) to (5.24) are taken from IBM 130 nm CMOS process

A diagram of Matlab analysis in Figure 5-7 is designed to illustrate the calculation of Ids,

Cin, Co1, and the slew rate (SR) for optimization of Ids, CDC transistor sizing, and

dynamic offset suppression.

Figure 5-7 Diagram for Matlab Analysis

 46

Figure 5-8 shows the results of the diagram of Matlab analysis using IBM 130 nm

CMOS process parameters where the desirable threshold voltage Vm equal to 0.484 V.

Figures 5-8 (a), (b) and (c) show that Co1 (fF), Ids (µA) and Cin (fF) all monotonously

increase as the NMOS width increases. It is shown from Figures 5-8(a) and (c) the

bulk-to-drain capacitance is much larger than its gate-to-drain capacitance, especially in

scaling-down CMOS processes. Figure 5-8 (d) illustrates that the slew-rate is saturated

when the Ids increases to 150 µA.

Figure 5-8 Ids, Co1, Cin, Slew-Rate Vs. NMOS width at Vm = 0.484v

 47

A large slew-rate is desired for efficient dynamic offset suppression and high speed

conversion. If the slew-rate is saturated, then there is no need to increase the Ids by

increasing the size of transistors which in turn will increase the input capacitance Cin of

CDC, as shown in Figure 5-8 (c). The total input capacitance of CDCs determines the

input signal frequency bandwidth of flash ADC. Therefore, a threshold current Ids-threshold of

CDC is defined as the value of Ids when the slew-rate become saturated.

 When the slew rate becomes saturated, it does not decrease as Ids is increasing.

However, in Cadence simulation, the slew rate decreases when the values of Ids are either

too small or too large which are shown in Figures 5-9 and 5-10.

Figure 5-9 Comparison of Vo1 Rising Speeds with Vm=0.484v and Various Ids

 48

Figure 5-10 Comparison of Vo1 Falling Speeds with Vm=0.484v and Various Ids

Following the diagram for Matlab analysis in Figure 5-7, we enumerate 6 different

values of Ids and design 6 different CDC comparators for a same threshold voltage Vm of

0.484 V. Figures 5- 9 and 5-10 show switching speed comparison of the 6 quantization

inverters with 6 different Ids (20 µA, 50 µA, 75 µA, 100 µA, 150 µA, and 200. The

input sinusoidal signal frequency is 1 GHz. Figures 5-9 and 5-10 compare the rising and

the falling speed at the output Vo1 of the 6 quantization inverters. It is observed that

50µA is close to the saturated current Ids-threshold and the comparator with Ids = 50µA is

only 3ps slower than the fastest one. As shown in Table 5-1, the comparator with Ids =

100µA has the fastest rising speed and the comparator with Ids = 75µA has the fastest

falling speed. The optimum value of Ids to achieve the fastest switching speed is in the

range of [75µA, 100µA]. This enumeration method can be repeated with Ids in the small

range of [75µA, 100µA] for optimum value of Ids.

 49

Table 5-1 Comparison of Switching Speeds of Vm = 0.484v and 6 different Ids

The Ids-threshold obtained from Cadence simulation is slightly smaller than the value

calculated from the diagram of Matlab analysis. The above optimization process is for

one CDC comparator and the threshold voltage Vm equals to 0.484v. The same

optimization process can be repeated for all CDC comparators with different threshold

voltages Vm. Ideally, a same value of Ids for all CDC quantization inverters is desired to

suppress dynamic offsets. In reality, the Ids-threshold values of all CDCs are likely different

because their threshold voltages Vm are different. Therefore, we need to find an optimal

value of Ids for each CDC.

5.4.2 Optimum Ids

 The design optimization developed for dynamic offset suppression is applied and

validated on a 4-b 2.5-GSPS CMOS flash ADC. Table 5-2 shows switching speed

comparison of three CDCs with Vm in the range of [0.45v, 0.668v]. Vm(i) with i = 1…15

represents the threshold voltages of 15 CDCs in the 4-b flash ADC. Vm(1) is the threshold

voltage of the first CDC; Vm(15) is the threshold voltage of the last CDC. The transistor

 50

widths of NMOS and PMOS, Ids, and the switching speed order (rising and falling) for each

CDC are indicated in Table 5-2. The optimum Ids of Vm(1) and Vm(15) is determined in the

range [75µA, 100µA].

Table 5-2 Comparison of Switching Speeds for Various Vm

Assume Ids-threshold(i) with i =1…15 represents the threshold currents of 15 CDC

quantization inverters. We’ll have

)8().......2()1(thresholddsthresholddsthresholdds III −−− << (5.26)

)15()14(.......)8(thresholddsthresholddsthresholdds III −−− >> (5.27)

Thus, the CDCs with Vm(1) and Vm(15) become critical designs in the CDC design since

their switching speeds determine the speed of the ADC.

 From Table 5-2 it is shown that both Ids- threshold(1) and Ids- threshold(15) are smaller than

150µA because the switching speed decreases when Ids is 150µA. Ids- threshold(8) is larger

than 200µA because the switching speed increases when Ids is 200µA. Then the optimum

 51

Ids for this 4-b flash ADC with the threshold voltage range [0.45v, 0.688v] is determined in

the range of [75µA, 100µA]. In this 4-b flash ADC, Ids = 80µA as its optimum value is

being used for the CDC design. Optimization of Ids also optimizes the dynamic offset

suppression in the CDC design.

Three 4-bit flash ADCs with Ids of 50µA, 80µA and 150µA and input dynamic range of

[0.45v, 0.688v] was designed. Comparison of SFDR of these three ADCs is presented in

Figure 5-11.

Figure 5-11 Comparison of ADC SFDR for Optimization of Ids

The results testify the optimization of dynamic offset suppression in CDC design. As

discussed above the Ids of 80µA is an optimum value for designing the quantization

inverter for efficient dynamic offset suppression. Its ADC achieves the highest SFDR.

The quantization inverters with Ids of 50µA and 150µA have smaller slew rates and

 52

results in 3 to 5 dB down of SFDR compared with the quantization inverter with Ids of

80µA as shown in Figure 5-10.

5.5 Summary

The CDC implemented by inverter configuration, with dynamic offset suppression and

optimization, is characterized in the following:

• No external resistor or capacitance array needed for generating reference voltages,

which results in small area and avoids resistive thermal noise which usually

generates a reference voltage offset.

• Fewer analog components, which is robust for DSP interference in SoC

applications and no requirement of device linearity in scaling-down CMOS

technologies.

• Small static power consumption, which makes it suitable for SoC and

battery-powered applications.

• No additional hardware needed for dynamic offset suppression

• Less possibility for the metastable output due to high switching speed of CDCs.

 53

Chapter 6 CDC-BASED PIPELINED FLASH ADC ARCHITECTURE

The speed of monolithic flash ADCs is limited by the comparator switching speed and

the propagation delay of the logic in the encoder [51]. This CDC-based pipelined flash

ADC architecture adopts high-speed comparators and pipelined clocked DCVSPG

encoders to achieve a maximum sampling frequency. Using the dynamic offset

suppression technique and circuit optimization method presented in Chapter 5, the

CDC-based pipelined flash ADC can achieve 2-GHz signal bandwidth. The architecture

is well suited for integrated SoC applications due to its full compatibility with digital

CMOS technology, low power and small area.

6.1 Architecture

Two block diagrams of the CDC-based pipelined CMOS flash ADC architecture are

shown in Figures 6-1 and 6-2. Both block diagrams have the same architecture except

different encoding schemes. The direct-binary encoder takes an 1-of-n code after the 1/0

boundary detector and outputs a binary code (Figure 6-1). The Gray encoder takes the

thermometer code, decodes it into Gray code, and then outputs a binary code (Figure 6-2).

 54

D
irect B

inary C
locked_Encoder

Figure 6-1 Architecture of CDC-based Pipelined ADC with Direct-Binary Encoding

Figure 6-1 presents an ADC architecture with direct-binary encoding which includes an

array of CDC comparators, an array of gain booster, an array of 1/0 boundary detectors, a

direct-binary clocked encoder, and a clocked tree. For a 4-b, 1-GHz signal bandwidth

ADC in 130-nm CMOS process, the maximum tolerant aperture error is about 20 ps. The

clock signal from the clock tree has transient time about 15 ps. Therefore the ADC output

should have less possibility of sparkles.

 55

Vin

CLK CLK

Comparator Gain Booster

CLK
CLK

Clock-Tree

MSB

LSB

CLK

Encoder

Figure 6-2 Architecture of CDC-based Pipelined ADC with Gray Encoding

The ADCs with Gray encoding in Figure 6-2 have better dynamic performances than

the ADCs with direct-binary encoding because of better sparkles and meta-stability

suppression. The timing diagram of CDC-based pipelined CMOS flash ADC is shown in

Figure 6-3. The clock signals CLK and CLKB are the inputs to the CDCs and the pipelined

encoder, no matter either direct-binary encoding or Gray encoding is employed.

 56

The associated timing diagram of CDC-based pipelined CMOS flash ADC is shown in

Figure 6-3. The clock signals CLK and CLKB are the inputs for the CDCs with

complementary digital CMOS clock and the pipelined encoder regardless of direct-binary

encoding or Gray encoding.

Figure 6-3 Timing Diagram of CDC-based Pipelined CMOS Flash ADC

The sampling rate in the proposed CDC-based pipelined CMOS flash ADC is

determined by the propagation delay in the pipelined encoder plus the clock transition time,

not the switching speed of the CDCs. The pipelined encoder is implemented in DCVSPG

clocked logic. One clocked DCVSPG logic has about 57 ps transition time (propagation

delay) in IBM 130 nm digital CMOS process. The total transition time including the clock

transition time is about 87 ps. The gain booster is two cascaded inverters and the

propagation delay is much less than 87 ps. The regenerative speed of the CDCs with

inverter configuration, optimized with high slew rate, should be in the speed range of an

inverter, which is about 10 to 20 ps. The signal transition time in the ADC would be less

than 100 ps. Thus the maximum sampling frequency of the CDC-based pipelined CMOS

flash ADC could be up to 5-GSPS.

 57

6.2 CDCs and Gain Boosters

The CDC design is presented in the previous chapter. The first quantization inverter of

CDC is optimized with dynamic offset suppression. The second inverter of CDC is

designed to sharpen the quantized output and also a small load to the quantization inverter

in order to have a small dynamic offset.

The signal bandwidth of a CDC-based pipelined CMOS flash ADC varies when the

input voltage range changes. Experiments of observing the 3-dB bandwidth and the input

voltage ranges of CDCs in 130 nm CMOS process are conducted and the results are shown

in Table 6-1.

Table 6-1 Relation between Input Voltage Range and 3-dB Bandwidth of CDCs

in IBM 130-nm Digital CMOS Process

 58

6.3 Pipelined DCVSPG Encoders

To achieve high sampling frequency in flash ADCs, pipelined encoder divides the total

propagation time into small time segments. In this research, two pipelined encoding

schemes, both implemented in clocked logic gates using differential cascade voltage

switch with pass-gate (DCVSPG) logic [56], are presented. This section first introduces

the pipelined encoder architecture and then presents the DCVSPG logic implementation.

6.3.1 Encoder Architecture

Two pipelined DCVSPG encoders are proposed. The first encoder is direct-binary

balanced encoder which takes an 1-of-n code after 1/0 boundary detector. The 1/0

boundary detector is a two-input XOR gate converting a thermometer code to a 1-of-n code.

A 4-bit direct-binary balanced encoder is shown in Figure 6-4.

 59

Figure 6-4 4-b Direct-Binary Balanced Encoder

 60

The binary output code b3b2b1b0 can be expressed in a balanced distribution in terms of

1-of-n code as follows:

These balanced logic functions are suitable for pipeline implementation.

The second encoder is thermometer-Gray-binary (TGB) encoder which include

two-step encoding processes: 1) thermometer-to-Gray code, and 2) Gray-to-binary code. A

4-bit pipelined thermometer-Gray-binary encoder to illustrate the two-step encoding

processes is shown in Figures 6-5 and 6-6. The Gray code outputs G3G2G1G0 of the

thermometer-to-Gray code in Figure 6-5 can be expressed by thermometer codes as

follows.

83 TG = (6.1)

1242 TTG = (6.2)

1410

621 TTTTG += (6.3)

1513

119

75

310 TTTTTTTTG +++= (6.4)

 61

buffer
T8

T12

T4

G2

G3

G1

CLK

CLK

T14

T10

CLK

T6

T2

CLK

T15

T13

CLK

T11

T9

CLK

T7

T5

CLK

T3

T1

CLK
AND

AND

AND

AND

AND

AND

AND

OR

OR

OR

bufferCLK

bufferCLK

CLK

CLK

CLK

OR
CLK

bufferCLK

bufferCLK

bufferCLK

G0

Figure 6-5 Pipelined Encoding of Thermometer-to-Gray Code

The binary code outputs b3b2b1b0 of the pipelined encoding in Figure 6-6 are expressed

in terms of Gray code as follows

33 Gb = (6.5)

[]232 GGb ⊕= (6.6)

[] 1231 GGGb ⊕⊕= (6.7)

[] []01230 GGGGb ⊕⊕⊕= (6.8)

 62

Figure 6-6 Pipelined Encoding of Gray-to-Binary Code

As discussed in chapter 4, the encoding scheme with Gray code has advantage of

suppressing the sparkles and meta-stability, especially for high slew rate signals in

wideband applications. In the next chapter, the majorities of implementation of the

proposed CDC-based pipelined CMOS flash ADC are realized with Gray encoding scheme,

while one 4-b implementation has both encoders and its performances are compared.

6.3.2 DCVSPG Logic Circuit Blocks

 In the above two pipelined encoders, logic functions involved include AND, OR,

XOR, and Buffer and all are implemented by the DCVSPG logic shown in Figures 6-7, 6-8,

6-9 and 6-10.

There are several advantages of the DCVSPG logic. Due to the cross-coupled pMOS

device load, the DCVSPG logic is designed to have a built-in latch structure. The output is

latched at the previous output value when the clock is “0.” Both Q and QN are produced

nearly at the same instance, which avoids an extra inverter delay to generate the QN from

 63

the Q. The DCVSPG encoder is a ratioless logic, and the output obtained has no glitches. It

has superior performance with power and area, especially suitable for pipelined by

eliminating extra latches.

QQN

A

B

AN

GNDVdd

CLK

AN

BN

A

Figure 6-7 Clocked DCVSPG AND/NAND Gate

QQN

A

B

AN

GND Vdd

CLK

AN

BN

A

Figure 6-8 Clocked DCVSPG OR/NOR Gate

 64

Figure 6-9 Clocked DCVSPG XOR/XNOR Gate

Figure 6-10 Clocked DCVSPG Buffer

 65

6.4 Clock Tree

Since flash ADCs provide an intrinsic sampling function for dynamic input signals, the

clock timing uncertainty needs to be considered. The timing uncertainty ∆tMAX for a 6-b,

1-GHz bandwidth ADC is less than 5-ps and for a 4-b, 2-GHz bandwidth ADC is less than

10-ps from Equ.(4.7).

An inverter clock tree is designed. Simulations reveal rise/fall times of the clock

signal are about 20 ps (slew rate 50G v/s) shown in Figure 6-11. The output load for each

clock leaf is two DCVSPG gates. The average slew rate before the output load is 55G v/s.

With the load, the average slew rate is 50G v/s. The maximum threshold voltage variation

of the switch must be less than 300 mV according to Equ.(6.9).

()ssdd
fallrise

T VV
t

t
V −

∆
≤∆

/

max (6.9)

 66

Figure 6-11 Performance of Clock Tree

 67

Chapter 7 IMPLEMENTATION AND PERFORMANCE OF CDC-BASED

PIPELINED CMOS FLASH ADC ARCHITECTURE

This chapter presents three implementations of CDC-based pipelined CMOS flash

ADCs is 130 nm CMOS process. First, a 4-b, 1-GHz bandwidth 2.5-GSPS ADC is the

initial research objective used in a digital receiver-on-a-chip. Both schematic and

post-layout performances are compared. Secondly, a 4-b, 2-GHz bandwidth 4-GSPS

ADC is implemented and compared with the state-of-the-art 4-b ADCs in literature. Lastly,

a 6-b CDC-based pipelined ADC is implemented and its performance is evaluated. This

15mv-input-range CDC-based pipelined ADC also shows the performance difference of

using balanced direct binary (BDB) encoder and thermometer-Gray-binary (TGB)

encoder.

7.1 4-b 1.25-GHz Bandwidth 2.5-GSPS ADC

This 4-b 1-GHz bandwidth 2.5-GSPS flash ADC is proposed and implemented in three

versions. In the first version, the ADC is pipelined to achieve a 2.5 GHz sampling rate and

the inverter comparators are sized manually [40]. Using the dynamic offset suppression

technique in the design of inverter comparators, the second version ADC improves a SFDR

of 10 dB in the Nyquist bandwidth [41]. By optimization of dynamic offset suppression

 68

and using a thermometer-Gray- binary encoding scheme, the third version ADC achieves

an ENOB of 3 bits and a SFDR of 25 dB.

7.1.1 Implementation and Performance

This ADC is designed and simulated in 130 nm CMOS process using Cadence Spectre

and VSDE 4.1 (Aptivia). Figure 7-1 is the schematic diagram of 4-b CDC-based pipelined

ADC, which includes 15 CDC comparators, a TGB encoder and a clock tree. Figure 7-2 is

the schematic of the TGB encoder, which include a Gray-to-binary encoding diagram

(Figure 7-3). Figure 7-4 is the schematic of the clock tree. Figure 7-5 is the schematic of

15 CDC comparators, with an input voltage range of Vm from 0.45v to 0.688v and an

optimum Ids of 80µA.

 69

Figure 7-1 Schematic of 4-b 1.25-GHz Bandwidth 2.5-GSPS ADC

 70

Figure 7-2 Schematic of TGB 4-b Encoder

Figure 7-3 Schematic of Gray-to-Binary Encoding

 71

Figure 7-4 Schematic of Clock Tree for a 4-b ADC

 72

Figure 7-5 Schematic of 15 CDC Comparators

 73

Figure 7-6 shows the simulated voltage transfer characteristics of 15 quantization

inverters in 15 CDCs. The 15 quantization levels are equally-spaced. Figures 7-7 (a) and (b)

show the simulated outputs Vo1 and Vo2 of the 15 CDCs (Figure 5-3) at an input signal

frequency of 100 MHz. The outputs Vo1 and Vo2 of 15 comparators are nearly

equally-spaced after the dynamic offsets suppressed, which warrant a small differential

nonlinearity (DNL) error.

Figure 7-6 Outputs of 15 Quantization Inverters at DC

(a) output Vo1

 74

(b) output Vo2

Figure 7-7 Outputs of CDC Comparators at 100MHz Sinusoidal Signal

Figure 7-8 Reconstructed Signal and Spectrum of 9.766MHz Signal

 75

Figure 7-8 is the reconstructed signal and the spectrum of 9.77MHz signal. The

reconstructed signal figure shows the 15 comparators function correctly. The 4-b ADC

achieves an ENOB of 3.8 bits and a SFDR of 33.34dB as shown in the spectrum figure.

Figures 7-9, 7-10 and 7-11 show the reconstructed spectra for three input signal

frequencies of 250 MHz, 952 MHz and 1.248 GHz. The 4-b ADC achieves (SFDR,

ENOB) of (29.57 dB, 3.4 bits), (24.09 dB, 2.9 bits) and (22.25 dB, 2.8 bits), respectively.

Figure 7-9 Spectrum of 250MHz Signal

 76

Figure 7-10 Spectrum of 952 MHz signal

Figure 7-11 Spectrum of 1.248GHz Signal

 77

Figure 7-12 SFDR and SNDR vs. Input Frequencies

Figure 7-13 ENOB vs. Input Frequencies

 78

Both SFDR and SNDR for input signal frequency up to 1.25 GHz at a 2.5GHz

conversion rate are plotted in Figure 7-12. ENOB vs. input signal frequency is plotted in

Figure 7-13. The SFDR of the 4-b ADC is above 22 dB and the ENOB is above 2.8 bits for

the Nyquist bandwidth.

Figure 7-14 SFDR Comparison of three ADCs

Figures 7-14 and 7-15 compare SFDR and SNDR of the 4-b 1.25 GHz bandwidth 2.5

GSPS CDC-based pipelined ADC with its previous versions [40, 41]. Compared with the

previous version ADC of dynamic offset suppression and BDB encoder [41], the SFDR is

improved by 2 to 3 dB at input frequencies above 800 MHz as shown in Figure 7-14. The

SNDR is also improved by 5 dB at input frequencies below 800 MHz, and 12 dB at input

 79

frequencies above 800 MHz, as shown in Figure 7-15. The ENOB is improved almost by

1 bit at input frequencies below 800 MHz and 2 bits at frequencies above 800 MHz.

Compared with the other version ADC with comparators sized manually [40], the SFDR is

improved by 8 dB at low input frequencies and 13 dB at high input frequencies, as shown

in Figure 7-14. The performance improvements are summarized in Table 7-2.

Figure 7-15 SNDR Comparison of two ADCs

 80

Table 7-1 Dynamic Performance Improvement Rate of the ADC

with Dynamic Offset Suppression and Design Optimization

7.1.2 Schematic vs. Post Layout Performance

The layout of the 4-b 1.25 GHz bandwidth 2.5 GSPS CDC-based pipelined ADC in

Figure 7-16 includes a clock tree on the top, 15 comparators in the middle, and a TGB

encoder on the bottom. The transistor sizes of the ADC in this layout are same as their sizes

in the schematic design. The area of layout is 220 µm x106 µm and the power is 7.9 mW for

a 2.5 GHz clock.

The dynamic performance of the layout is reported in the following figures and

compared with its schematic counterpart in the end of the section.

 81

Figure 7-16 Layout of the ADC

 82

Figure 7-17 Outputs of 15 Quantization Inverters at DC Post Layout Simulation

The 15 quantization levels of the layout are shown in Figure 7-17 from the post layout

DC simulation. The quantization levels of the first 14 comparators are almost equally

spaced. The quantization level of the15th comparator is slightly close to the one of the 14th

comparator.

 83

Figure 7-18 Reconstructed Signal and Spectrum of 9.8MHz signal

The 15 quantization levels of the layout are also presented in Figure 7-18 from the post

layout transient simulation with a 9.8 MHz input signal. The 15 comparators function

correctly and the ADC achieves a SFDR of 34.03 dB, a SNDR of 24.58 dB, and an ENOB

of 3.8 bits. Comparing the layout performance (SFDR / SNDR / ENOB = 34.03 dB /

24.58 dB / 3.8 bits) (Figure 7-18) with the schematic performance (SFDR / SNDR / ENOB

= 33.34 dB / 24.79 dB / 3.825 bits) (Figure 7-8), it is shown the dynamic performances of

ADC of schematic and layout are close at an input signal of 9.8 MHz.

 84

Figure 7-19 Spectrum of 125MHz Signal

Figure 7-20 Spectrum of 952MHz Signal

 85

Figure 7-21 Spectrum of 1.248GHz Signal

Figures 7-19, 7-20 and 7-21 show the reconstructed spectra for input signal frequencies

of 150 MHz, 952 MHz and 1.248 GHz. The ADC achieves (SFDR, ENOB) of (26.57 dB,

3.215 bits), (21.48 dB, 2.358 bits) and (19.34 dB, 1.7 bits), respectively.

Comparing the performance of SFDR and ENOB of the layout at input signal

frequencies 952 MHz and 1.248 GHz shown in Figures 7-20 and 7-21 with the ones of the

schematic shown in Figures 7-10 and 7-11, it is shown that the SFDR is decreased by 3.5

dB and 2.9 dB and the ENOB is decreased by 0.5 bit and 1 bit at input signal of 952 MHz

and 1.248 GHz respectively. The results are summarized in Table 7-2.

 86

Table 7- 2 Performance Comparison of Schematic and Layout

 at 952 MHz and 1.248 GHz

Schematic Layout Degradation Signal Freq.
(MHz) SFDR

(dB)
ENOB
(bits)

SFDR
(dB)

ENOB
(bits)

SFDR
(dB)

ENOB
(bits)

952 24.09 2.907 21.48 2.358 3.5
(14%)

0.55
(17%)

1248 22.25 2.828 19.34 1.7 2.9
(13%)

1.13
(35%)

Figure 7-22 SFDR and SNDF vs. Input Frequencies

 87

Both SFDR and SNDR of the layout for input signal frequency up to 1.25 GHz at 2.5

GHz conversion rate are plotted in Figure 7-22. The plot shows that SFDR is above 18 dB

and SNDR above 12 dB up to the Nyquist frequency.

Figure 7-23 SFDR and SNDR Comparison between Schematic and Layout

 88

Figure 7-24 ENOB Comparison between Schematic and Layout

Figures 7-23 and 7-24 compare the layout performance of the 4-b 1.25 GHz bandwidth

2.5 GSPS CDC-based pipelined ADC with its schematic counterpart. The SFDR and

SNDR of the layout both degrade about an average 5 dB compared to the schematic. That

means the ENOB degrades about 0.8 bit. That’s about 22% SFDR degradation and 28%

SNDR and ENOB degradation. From Figures 7-23 and 7-24, the degradation increases

with the input frequency exceeds 1 GHz. The maximum degradation of SNDR and ENOB

is 35% at 1.248 GHz, calculated in Table 7-1. The performance degradation is summarized

in Table 7-3.

 89

Table 7-3 Dynamic Performance Degradation Rate of the Layout
Compared to the Schematic of the ADC

 90

7.2 4-b 2-GHz Bandwidth 4GSPS ADC

The maximum 3-dB frequency of the comparators in 130nm IBM digital process is

approximated to 2-GHz in Chapter 5 during the optimal analysis. In Chapter 6, the

maximum speed of the digital circuit is 5-GHz. By the Nyquist theory, a 4-GSPS is

required for the bandwidth as 2-GHz. Thus this ADC is a special case of 4-b ADCs using

IBM 130nm digital process due to its bandwidth at the highest limitation. The

implementation and performance of the ADC are presented in this section, which is

followed by performance comparison of the ADC with 4-b ADCs in literature.

7.2.1 Implementation and Performance

This ADC is designed and simulated using Cadence Spectre and VSDE 4.1 (Aptivia).

Figure 7-25 is the schematic diagram of 4-b 2-GHz 4-GSPS CDC-based pipelined ADC,

which includes a set of CDC comparators, a TGB encoder and a clock tree. The schematic

of the TGB 4-b encoder is the same as the previous ADC shown in Figure 7-2. The

schematic of the clock tree in the ADC is the same as the one shown in Figure 7-4. The

schematic of 15 CDC comparators is the same as the one in Figure 7-5, with a different

input voltage range of Vm from 0.501v to 0.62v and an optimum Ids 150µA.

 91

Figure 7-25 Schematic of 4-b 2-GHz Bandwidth 4-GSPS ADC

 92

Figure 7-26 to Figure 7-30 show the reconstructed spectra for various frequency input

signals and the ADC achieves SFDR, SNDR and ENOB at those frequencies presented in

Table 7-4.

Table 7-4 Dynamic Performance Parameters of Various Frequency Signals

Sig. freq.
(MHz) 200.2 1374 1600 1807 1997

SFDR
(dB) 33.01 28.42 26.9 29.28 24.99

SNDR
(dB) 23.8 21.08 20.05 19 18.6

ENOB
(dB) 3.66 3.209 3.03 2.864 2.798

Figure 7-26 Spectrum of 200MHz Signal

 93

Figure 7-27 Spectrum of 1.374GHz Signal

Figure 7-28 Spectrum of 1.6GHz Signal

 94

Figure 7-29 Spectrum of 1.807GHz Signal

Figure 7-30 Spectrum of 1.997GHz Signal

 95

Figure 7-31 SFDR and SNDR vs. Input Frequencies

 96

Figure 7-32 ENOB vs. Input Frequencies

Both SFDR and SNDR for input signal frequency up to 2 GHz at 4 GHz conversion

rate are plotted in Figure 7-31. ENOB for input signal frequency is plotted in Figure 7-32.

The plots show that, with 4 GHz sampling frequency, SFDR of the ADC is stable at 28 dB

and ENOB above 3.2 bits with frequency up to 1.4 GHz. The ENOB is above 3.0 bits with

frequency up to 1.6 GHz, and above 2.8 bits for the Nyquist bandwidth.

 97

7.2.2 Comparison with 4-b Flash ADCs in Literature

Table 7-5 Comparison with 4-b Flash ADCs in Literature

 The proposed 4-b ADC implemented in the process with smaller feature size, compared

with three referenced ADCs in Table 7-5, with wider bandwidth, lower power and area

consumption in a monolithic architecture with no need of digital calibration. The overall

performance is superior over the other 4-b ADCs in the table.

 98

7.3 6-b 4GSPS ADC

After the validity of the comparator dynamic offset suppression and design

optimization is proved in the section 7.1 with a 4-b 2.5-GSPS ADC, a 4-b 4-GSPS ADC

with a higher speed is implemented and presented in the section 7.2. In this section, a 6-b

2.5-GSPS ADC with a higher resolution is implemented in 130nm IBM digital process.

Theoretically, this 6-b ADC can be sampled in a clock signal up to 4-GHz.

7.3.1 Implementation and Performance

This ADC is designed and simulated using Cadence Spectre and VSDE 4.1 (Aptivia).

Figure 7-33 is the schematic diagram of 6-b 2.5-GSPS CDC-based pipelined ADC, which

includes a set of CDC comparators, a TGB encoder and a clock tree. The schematic of the

TGB 6-b encoder is shown in Figure 7-34, which includes a 6-b Gray-to-binary encoding

as in Figure 7-35. The schematic of the clock tree in the ADC is shown in Figure 7-37,

which is much larger than the clock tree for 4-b ADCs. The schematic of 63 CDC

comparators is the same as the one in Figure 7-36, with an input voltage range of Vm from

0.445v to 0.693v with a quantization step size (LSB) equal to 4mv. The CDCs are sized

with Ids as 80µA.

 99

Figure 7-33 Schematic of 6-b 2.5GSPS ADC

 100

Figure 7-34 Schematic of 6-b TGB Encoder

 101

Figure 7-35 Schematic of 6-b Gray-to-Binary Encoding

 102

Figure 7-36 63 CDC Comparators

 103

Figure 7-37 Schematic of Clock Tree for 6-b ADC

 104

Figure 7-38 Outputs of 63 Quantization Inverters at DC

 Figure 7-38 presents the voltage transfer characteristics of 63 quantization inverters in

the 6-b ADC. The threshold voltages are regularly spaced.

 105

Figure 7-39 Outputs of 6 bits at DC

Figure 7-39 presents 6-bit outputs of the 6-b ADC at DC simulation. It proves that the

6-b ADC functions correctly.

 106

Figure 7-40 Spectrum of 12.2MHz Signal

Figure 7-40 presents a reconstructed spectrum of 12.2MHz input signal with 2.5-GSPS

of the 6-b ADC. The ADC achieves 48.03-dB SFDR, 33.46-dB SNDR and 5.3-bits ENOB.

The noise floor is at about -60-dB lower than the signal power.

 107

Figure 7-41 Reconstructed Signal and Spectrum of 11.7MHz signal

Figure 7-41 presents a reconstructed signal and spectrum of 11.7MHz input signal with

4-GSPS of the 6-b ADC. The ADC achieves 47.02-dB SFDR, 34.43-dB SNDR and

5.4-bits ENOB. The noise floor is at about -60-dB lower than the signal power.

 108

7.3.2 Comparison with State-of-the-art 6-b Flash ADC

 There is one 6-b flash ADC designed in 0.13µm digital CMOS process at 1.2-GS/s

reported in IEEE Journal of Solid-State Circuit in 2005 by Sandner and his colleagues from

the Microelectronics Development Center of Siemens AG, now Infineon Technologies, in

Villach, Austria [23]. The flash ADC employs differential comparators and capacitive

interpolation architecture for low power and wide bandwidth. This 6-b flash ADC is used

as a reference to evaluate the proposed 6-b CDC-based pipelined ADC as depicted in Table

7-6.

Table 7-6 Performance Comparison of 6-b Flash ADC

in 130nm Digital CMOS Process

 109

The figure of merit (FoM) in the table of the performance comparison is calculated as

]/[
22 , convsteppJ

ERBW
PowerFoM DCENOB ⋅⋅

= (7.1)

The proposed CDC-based pipelined flash ADC achieves a FoM of 0.23pJ/conv. at

2.5-GSPS and 0.17pJ/conv. at 4-GSPS, with smaller area size and similar ENOB

performance at 1.2v supply voltage. The overall performance of our 6-b flash ADC is

better than the ADC in [23]. The achieved performance, large ERBW, high sampling rate,

low power and area consumption, of the 6-b ADC implementation once again prove that

the proposed CDC-based pipelined CMOS flash ADC architecture has superior features

for wideband communication systems-on-a-chip.

 110

7.4 Comparison of BDB and TGB Encoders

In this section, comparison of dynamic performance of a 15mv-input-range 4-b

CDC-based pipelined CMOS flash ADC using the BDB encoder and using the TGB

encoder is depicted in Figure 7-42 with 2.5 GSPS and in Figure 7-43 with 4 GSPS.

Sampled at 4 GSPS, the SNDR of ADC using the TGB encoder is constantly 4 to 5 dB

above the SNDR of ADC using the BDB encoder, which accounts for an increased ENOB

by about 0.7 bit.

Figure 7-42 Performance Comparison of the ADC with 2.5-GSPS

 111

Figure 7-43 Performance Comparison of the ADC with 4-GSPS

 112

Chapter 8 APPLICATION OF 4-B CDC-BASED PIPELINED ADC IN A

DIGITAL WIDEBAND RECEIVER-ON-A-CHIP

This chapter presents a mixed-signal block-level simulation and verification flow in

Cadence AMS integration platform for an 1 GHz bandwidth digital receiver which include

the proposed 4-b 2.5 GSPS CDC-based pipelined CMOS flash ADC. This flow is

different from Simulink-based system-level simulation, by considering the effects

originating from analog and mixed signal subsystem. It involves low-level models of the

devices in critical analog blocks. After the individual blocks have been designed, an AMS

verification flow was built to integrate all the blocks in different level descriptions into one

simulation platform for design verification. With Verilog-AMS, one can create and use

modules that describe the high-level behavior and structure of analog, digital, and

mixed-signal components and systems.

8.1 AMS Verification Flow

The AMS verification flow of the digital receiver is presented in Figure 8-1. It is

composed of signal generation, data collection, and digital signal processing. An analog

input signal and a clock signal need to be generated as the inputs to the receiver. In this

verification, mono-tone or multi-tone sinusoidal input signals and a 2.5 GHz clock signal

are created in Verilog-AMS code with real-time function. The data collection includes a 2.5

 113

-GSPS ADC schematic design and a DEMUX in VHDL. The digital signal processor (DSP)

includes a 256-point, 12-point kernel function FFT in VHDL, and a frequency detector in

VHDL. The verification process stimulates the Spectre simulator, Verilog_AMS compiler,

and VHDL compiler for analog and digital mixed signals in the flow. Both the analog

signal and clock signal generator in Verilog_AMS are in Appendix B.

Figure 8-1 AMS Verification Flow of Digital Receiver

8.2 DEMUX Design

Figure 8-2 presents the diagram of DEMUX design. The DEMUX collects 256 sets of

4-b output data of ADC clocked at 2.5 GHz and feed them to the 256-point FFT clocked at

9.76 MHz. Four 16-b shift registers clocked at 2.5 GHz collect the data from the outputs

of 4-b ADC, and transfer the data into sixteen 16x4 pipelined registers at every 6.4 ns. The

sixteen 16x4 pipelined registers transfer the data to a 256x4 pipelined registers at every

102.4 ns. A total of 256x4 bits of data is then sent to the 256-point FFT.

.

 114

Figure 8-2 Diagram of DEMUX

The clock divider in the DEMUX functions as a timing controller. Four 16-b shift

registers are clocked at 2.5GHz, and 256x4 pipelined registers are clocked at 9.76MHz.

Sixteen 16x4 pipelined registers are clocked by sixteen 6.4 ns pulse signals C[0:15] as

shown in Figure 8-3. The 16 states Si of C[0:15] are presented in the state diagram shown in

Figure 8-4. The DEMUX is programmed in VHDL. The code is attached in Appendix C.

 115

Figure 8-3 Sixteen 6.4ns Pulse Signals

Figure 8-4 State Diagram of Pulse Signals

 116

8.3 Verification Results

Figure 8-5 presents verification results of an input signal frequency of 1125 MHz. The

signal is detected at the frequency bin of 115 of the FFT outputs. The frequency bin of

1125MHz is calculated as

hdMHz
GHz

731151125
256

5.2
1

==× .

 The address y[6:0] of the signal with maximum amplitude is 73h, and the output

x_out[115] has an amplitude of 2Fh which is the highest peak amplitude as shown in Figure

8-5.

Figure 8-5 Bin and Peak Amplitude of 1125MHz Signal

 117

Figure 8-6 presents verification results of two simultaneous signals of 700 MHz and 1

GHz. The two frequencies are detected by the receiver. The 700 MHz signal has the highest

peak amplitude of 09h at the frequency bin of 72d and 1GHz signal has 2nd highest peak

amplitude of 05h at the frequency bin of 102d.

Figure 8-6 1st and 2nd Peak Amplitude of 700MHz and 1GHz

 118

Chapter 9 CONCLUSIONS

Generally, high-speed flash ADCs use the differential amplifier structure in

pre-amplifier and comparator design. There are two types of offsets in differential

comparators. They are: 1) static and random offsets due to device mismatches, which in

turn would be amplified to larger offsets in output, and 2) dynamic offsets at output of

comparators, which occur due to clock switching in the regenerative latch.

In this dissertation a high-speed clocked digital comparator (CDC) with inverter

configuration for high-speed high-performance CMOS flash ADCs was first proposed.

Both the dynamic offset and the random static offset were reduced by a proposed dynamic

offset suppression technique and a circuit optimization method. Employing a multi-stage

pipelined architecture, a CDC-based pipelined CMOS flash ADC architecture was

presented for high-speed conversion in low-voltage CMOS processes. Three CDC-based

pipelined CMOS flash ADCs were implemented in 130 nm CMOS process. The

experimental results reported the ADCs achieve high sampling rate, high SFDR, low

power, a wide bandwidth up to the Nyquist frequency. These features make “all-digital”

wideband communication SoC become practical.

 119

 The CDC comparator is a single-ended circuit design. Experiments of temperature

variation on SFDR analysis of 4-b CDC-based ADCs were conducted. FFT Spectra of

400 MHz input signal with -40°C, 25°C, 75°C, 140°C were shown in Figures 9-1, 9-2, 9-3

and 9-4, respectively. Table 9-1 tables the SFDR results. It is shown that the SFDR is

increased with the increase of temperature. Future work of CDC-based pipelined CMOS

flash ADCs includes that, first, since the CDC comparator is the single-ended circuit

design, the impact of the process, voltage and temperature variation on the performance of

CDC-based ADCs will be investigated in detail. Secondly, the CDC comparator design

automation is desired for two reasons; one for easily migrating the design into the different

CMOS processes, and two for enhancing the optimization for the best dynamic

performance.

Table 9-1 Temperature variation on SFDR analysis of 4-b 2.5-GSPS CDC-based ADCs with

input signal frequency of 400 MHz

Temperature -40°C 25°C 75°C 140°C

SFDR(dB) 24.22 29.8 32.32 31.32

 120

Figure 9-1 Spectrum of 400MHz Signal with -40°C

Figure 9-2 Spectrum of 400MHz Signal with 25°C

 121

Figure 9-3 Spectrum of 400MHz Signal with 75°C

Figure 9-4 Spectrum of 400MHz Signal with 140°C

 122

APPENDIX

A. Estimation of Source and Drain Areas and Peripheries

A simple rectangular MOSFET layout in an inverter is shown in Figure A-1 [10].

Diffusion Diffusion

Poly W

L

L1 L2 L3L1L2L3

Figure A-1 Estimation of Source and Drain Areas and Peripheries

The minimum possible source or drain area would be that indicated by the sum of the

lengths, L1, L2, and L3 times W. The lengths L1, L2 and L3 are related to the design rules

for a given process and are as follows:

L1 = Minimum allowable distance between the contact in S/D and the poly

L2 = Width of a minimum size contact to diffusion

L3 = Minimum allowable distance from the contact in S/D to the edge of the S/D

 123

The minimum area of the drain and source is (L1+L2+L3) × W and the corresponding

periphery is 2(L1+L2+L3) + 2W.

B. Signal / Clock Generators in Verilog_AMS

1. Two-signal Generator

//Verilog-AMS HDL for "usrlib", "analogGen" "verilogams"
`include "constants.vams"
`include "disciplines.vams"
`timescale 1ns/100ps

module analogGen (analsig, Vdd, Vss);

 output analsig, Vdd, Vss;
 electrical analsig, Vdd, Vss;
 parameter real vdd = 1.2, vss = 0;
 parameter real frequency1 = 1e9, ampl1 = 0.1;
 parameter real frequency2 = 9e8, ampl2 = 0.14;
 real tempvar;

analog begin
 V(Vdd) <+ transition(vdd);
 V(Vss) <+ transition(vss);
 V(analsig) <+ (ampl1 * sin(2.0*`M_PI * frequency1 * $abstime)) + (ampl2 *
sin(2.0*`M_PI * frequency2 * $abstime)) + 0.6;
 $bound_step(0.02 / frequency1);
end

endmodule

2. Clock Generator

//Verilog-AMS HDL for "adc_ideal", "clk_digital" "verilogams"

`include "constants.vams"
`include "disciplines.vams"
`timescale 1ns/100ps

 124

module clk_digital (clk);

 output clk;
 logic clk;
 reg clock;

 parameter period = 0.4;

 assign clk = clock;
 initial
 begin
 clock = 1'b0;
 forever #(period/2) clock = ~clock;
 end

endmodule

3. Converting Electrical Signal to Logic Signal

//Verilog-AMS HDL for "usrlib", "electrical_2_logic" "verilogams"

`include "constants.vams"
`include "disciplines.vams"

module electrical_2_logic (bit3,bit2,bit1,bit0,clk_in, out3,out2,out1,out0,clk_out);

 input bit3, bit2, bit1, bit0, clk_in;
 output out3, out2, out1, out0;
 output clk_out;
 logic out3, out2, out1, out0;
 logic clk_out;

 electrical bit3, bit2, bit1, bit0, clk_in;

 integer temp3,temp2,temp1,temp0;
 integer tmp_clk;

 assign out3 = temp3;
 assign out2 = temp2;
 assign out1 = temp1;
 assign out0 = temp0;
 assign clk_out = tmp_clk;

 125

 always @ (above(V(bit3) - 0.6))
 temp3 = 1'b1;
 always @ (above(0.6 - V(bit3)))
 temp3 = 1'b0;

 always @ (above(V(bit2) - 0.6))
 temp2 = 1'b1;
 always @ (above(0.6 - V(bit2)))
 temp2 = 1'b0;

 always @ (above(V(bit1) - 0.6))
 temp1 = 1'b1;
 always @ (above(0.6 - V(bit1)))
 temp1 = 1'b0;

 always @ (above(V(bit0) - 0.6))
 temp0 = 1'b1;
 always @ (above(0.6 - V(bit0)))
 temp0 = 1'b0;

 always @ (above(V(clk_in) - 0.6))
 tmp_clk = 1'b1;
 always @ (above(0.6 - V(clk_in)))
 tmp_clk = 1'b0;
endmodule

C. DEMUX in VHDL

library ieee,work;
 use ieee.std_logic_1164.all;
 use IEEE.STD_LOGIC_TEXTIO.ALL;
 use STD.TEXTIO.ALL;
 use WORK.CONV.ALL;

package demux_type is

 type state_type is (s0, s1, s2, s3, s4, s5, s6, s7,
 s8, s9, s10, s11, s12, s13, s14, s15, s_initial);
 type TYPE_DEMUX_ARRAY_16x4 is array(0 to 15) of std_logic_vector(3 downto
0);
 type TYPE_DEMUX_ARRAY_256x4 is array(0 to 255) of std_logic_vector(3
downto 0);
 type TYPE_DEMUX_ARRAY_16x64 is array(0 to 15) of
TYPE_DEMUX_ARRAY_16x4;

 126

end demux_type;

library ieee,work;
 use ieee.std_logic_1164.all;
 use IEEE.STD_LOGIC_TEXTIO.ALL;
 use STD.TEXTIO.ALL;
 use work.demux_type.all;
 use WORK.CONV.ALL;

entity clock_generator is
 Port (
 clk : IN std_logic;
 reset : IN std_logic;
 output : OUT std_logic_vector(15 downto 0);
 clk_fft : OUT std_logic;
 out_clk : OUT std_logic;
 out_clk1 : OUT std_logic;
 out_clk2 : OUT std_logic;
 out_clk3 : OUT std_logic;
 out_clk4 : OUT std_logic;
 out_clk5 : OUT std_logic;
 temp_clk : OUT std_logic
);
end clock_generator;

architecture behavior of clock_generator is

----- signal declaration -----
signal current_state, next_state : state_type;
signal clk_16 : std_logic;

----- start -----

begin

 clk16: process(reset, clk)

 variable count : integer := 0;

 begin
 if (clk'event and clk='1') then
 if (reset = '1') then

 current_state <= s_initial;

 127

 else
 count := count + 1;
 if (count = 16 and reset /= '1') then
 count := 0;
 current_state <= next_state;
 end if;

 end if;
 end if;
 end process clk16;

 -- sync: process(clk_16)
 -- begin
 -- if (clk_16'event and clk_16='1') then
 -- current_state <= next_state;
 -- end if;
 -- end if;
 -- end process sync;

 FSM: process(current_state) -- mod => input is inserted
 begin
-- next_state <= s0; -- default assignment;

 case current_state is
 when s_initial =>
 next_state <= s0;
 output <= "0000000000000000";
 when s0 =>
 next_state <= s1;
 output <= "0000000000000001";
 when s1 =>
 next_state <= s2;
 output <= "0000000000000010";
 when s2 =>
 next_state <= s3;
 output <= "0000000000000100";
 when s3 =>
 next_state <= s4;
 output <= "0000000000001000";
 when s4 =>
 next_state <= s5;
 output <= "0000000000010000";
 when s5 =>
 next_state <= s6;
 output <= "0000000000100000";

 128

 when s6 =>
 next_state <= s7;
 output <= "0000000001000000";
 when s7 =>
 next_state <= s8;
 output <= "0000000010000000";
 when s8 =>
 next_state <= s9;
 output <= "0000000100000000";
 when s9 =>
 next_state <= s10;
 output <= "0000001000000000";
 when s10 =>
 next_state <= s11;
 output <= "0000010000000000";
 when s11 =>
 next_state <= s12;
 output <= "0000100000000000";
 when s12 =>
 next_state <= s13;
 output <= "0001000000000000";
 when s13 =>
 next_state <= s14;
 output <= "0010000000000000";
 when s14 =>
 next_state <= s15;
 output <= "0100000000000000";
 when s15 =>
 next_state <= s0;
 output <= "1000000000000000";
 end case;
 end process FSM;

 gen_out_clk: process(current_state)
 begin

 if (current_state = S0 or current_state = S1 or current_state = S2 or current_state =
S3 or current_state = S4 or current_state = S5 or current_state = S6 or current_state = S7)
then
 clk_fft <= '1';
 else
 clk_fft <= '0';
 end if;

 --- This clk will synchronize all the pipelines flip-flops ---

 129

 if (current_state = S0 or current_state = S1) then
 out_clk <= '1'; -- high from 0 to 12.8ns
 else
 out_clk <= '0';
 end if;

 --- This clk will go to initial_sort subsystem ---
 --- and latch the sel_high_low into their flip-flops ---
 if (current_state = S3 or current_state = S4) then
 out_clk1 <= '1'; -- high from 19.2 to 32ns
 else
 out_clk1 <= '0';
 end if;

 if (current_state = S7 or current_state = S8) then
 out_clk2 <= '1'; -- high from 44.8 to 57.6ns
 else
 out_clk2 <= '0';
 end if;

 if (current_state = S8 or current_state = S9) then
 out_clk3 <= '1'; -- high from 51.2 to 64ns
 else
 out_clk3 <= '0';
 end if;

 if (current_state = S12 or current_state = S13) then
 out_clk4 <= '1'; -- high from 76.8 to 89.6ns
 else
 out_clk4 <= '0';
 end if;

 if (current_state = S14 or current_state = S15) then
 out_clk5 <= '1'; -- high from 89.6 to 102.4ns
 else
 out_clk5 <= '0';
 end if;

 if (current_state = S13 or current_state = S14) then
 temp_clk <= '1'; -- high from 83.2 to 96ns
 else
 temp_clk <= '0';
 end if;
 end process gen_out_clk;

 130

end behavior;

library ieee,work;
 use ieee.std_logic_1164.all;
 use IEEE.STD_LOGIC_TEXTIO.ALL;
 use STD.TEXTIO.ALL;
 use work.demux_type.all;
 use WORK.CONV.ALL;

entity latch_v1 is
 port (clk : IN std_logic;
 input : IN std_logic;
 output : OUT std_logic
);
end latch_v1;

architecture behavior of latch_v1 is

begin

 test : process(clk)

 begin
 if (clk'event and clk='1') then
 output <= input;
 end if;
 end process test;
end behavior;

library ieee,work;
 use ieee.std_logic_1164.all;
 use IEEE.STD_LOGIC_TEXTIO.ALL;
 use STD.TEXTIO.ALL;
 use work.demux_type.all;
 use WORK.CONV.ALL;

entity latch_v1_4_p is
 port (clk : IN std_logic;
 input : IN std_logic_vector(3 downto 0);
 output : OUT std_logic_vector(3 downto 0)
);
end latch_v1_4_p;

 131

architecture structure of latch_v1_4_p is

component latch_v1
 port (clk : IN std_logic;
 input : IN std_logic;
 output : OUT std_logic
);
end component;

begin

 latch0: latch_v1 port map (clk,input(0),output(0));
 latch1: latch_v1 port map (clk,input(1),output(1));
 latch2: latch_v1 port map (clk,input(2),output(2));
 latch3: latch_v1 port map (clk,input(3),output(3));
end structure;

library ieee,work;
 use ieee.std_logic_1164.all;
 use IEEE.STD_LOGIC_TEXTIO.ALL;
 use STD.TEXTIO.ALL;
 use work.demux_type.all;
 use WORK.CONV.ALL;

entity latch_v1_4_p_16 is
 port (clk : IN std_logic;
 input : IN std_logic_vector(3 downto 0);
 output : OUT TYPE_DEMUX_ARRAY_16x4
);
end latch_v1_4_p_16;

architecture structure of latch_v1_4_p_16 is

component latch_v1_4_p
 port (clk : IN std_logic;
 input : IN std_logic_vector(3 downto 0);
 output : OUT std_logic_vector(3 downto 0)
);

end component;

 signal temp_output : TYPE_DEMUX_ARRAY_16x4;

 132

begin

 latch0: latch_v1_4_p port map (clk,input,temp_output(15));
 latch1: latch_v1_4_p port map (clk,temp_output(15),temp_output(14));
 latch2: latch_v1_4_p port map (clk,temp_output(14),temp_output(13));
 latch3: latch_v1_4_p port map (clk,temp_output(13),temp_output(12));
 latch4: latch_v1_4_p port map (clk,temp_output(12),temp_output(11));
 latch5: latch_v1_4_p port map (clk,temp_output(11),temp_output(10));
 latch6: latch_v1_4_p port map (clk,temp_output(10),temp_output(9));
 latch7: latch_v1_4_p port map (clk,temp_output(9),temp_output(8));
 latch8: latch_v1_4_p port map (clk,temp_output(8),temp_output(7));
 latch9: latch_v1_4_p port map (clk,temp_output(7),temp_output(6));
 latch10: latch_v1_4_p port map (clk,temp_output(6),temp_output(5));
 latch11: latch_v1_4_p port map (clk,temp_output(5),temp_output(4));
 latch12: latch_v1_4_p port map (clk,temp_output(4),temp_output(3));
 latch13: latch_v1_4_p port map (clk,temp_output(3),temp_output(2));
 latch14: latch_v1_4_p port map (clk,temp_output(2),temp_output(1));
 latch15: latch_v1_4_p port map (clk,temp_output(1),temp_output(0));
 output <= temp_output;
end structure;

library ieee,work;
 use ieee.std_logic_1164.all;
 use IEEE.STD_LOGIC_TEXTIO.ALL;
 use STD.TEXTIO.ALL;
 use work.demux_type.all;
 use WORK.CONV.ALL;

entity latch_v1_4_p_16_p is
 port (clk : IN std_logic;
 input : IN TYPE_DEMUX_ARRAY_16x4;
 output : OUT TYPE_DEMUX_ARRAY_16x4
);
end latch_v1_4_p_16_p;

architecture structure of latch_v1_4_p_16_p is

component latch_v1_4_p
 port (clk : IN std_logic;
 input : IN std_logic_vector(3 downto 0);
 output : OUT std_logic_vector(3 downto 0)
);
end component;

 133

begin

 block_16_latch0: latch_v1_4_p port map (clk, input(15), output(15));
 block_16_latch1: latch_v1_4_p port map (clk, input(14), output(14));
 block_16_latch2: latch_v1_4_p port map (clk, input(13), output(13));
 block_16_latch3: latch_v1_4_p port map (clk, input(12), output(12));
 block_16_latch4: latch_v1_4_p port map (clk, input(11), output(11));
 block_16_latch5: latch_v1_4_p port map (clk, input(10), output(10));
 block_16_latch6: latch_v1_4_p port map (clk, input(9), output(9));
 block_16_latch7: latch_v1_4_p port map (clk, input(8), output(8));
 block_16_latch8: latch_v1_4_p port map (clk, input(7), output(7));
 block_16_latch9: latch_v1_4_p port map (clk, input(6), output(6));
 block_16_latch10: latch_v1_4_p port map (clk, input(5), output(5));
 block_16_latch11: latch_v1_4_p port map (clk, input(4), output(4));
 block_16_latch12: latch_v1_4_p port map (clk, input(3), output(3));
 block_16_latch13: latch_v1_4_p port map (clk, input(2), output(2));
 block_16_latch14: latch_v1_4_p port map (clk, input(1), output(1));
 block_16_latch15: latch_v1_4_p port map (clk, input(0), output(0));
end structure;

library ieee,work;
 use ieee.std_logic_1164.all;
 use IEEE.STD_LOGIC_TEXTIO.ALL;
 use STD.TEXTIO.ALL;
 use work.demux_type.all;
 use WORK.CONV.ALL;

entity latch_v1_4_p_16_p_16 is
 port (clk : IN std_logic_vector(15 downto 0);
 input : IN TYPE_DEMUX_ARRAY_16x4;
 output : OUT TYPE_INPUT_FFT
);
end latch_v1_4_p_16_p_16;

architecture structure of latch_v1_4_p_16_p_16 is

component latch_v1_4_p_16_p
 port (clk : IN std_logic;
 input : IN TYPE_DEMUX_ARRAY_16x4;
 output : OUT TYPE_DEMUX_ARRAY_16x4
);
end component;

signal tmp_output : TYPE_DEMUX_ARRAY_16x64;

 134

begin

 block_64_latch0: latch_v1_4_p_16_p port map (clk(0),input,tmp_output(0));
 output(0) <= tmp_output(0)(0);
 output(1) <= tmp_output(0)(1);
 output(2) <= tmp_output(0)(2);
 output(3) <= tmp_output(0)(3);
 output(4) <= tmp_output(0)(4);
 output(5) <= tmp_output(0)(5);
 output(6) <= tmp_output(0)(6);
 output(7) <= tmp_output(0)(7);
 output(8) <= tmp_output(0)(8);
 output(9) <= tmp_output(0)(9);
 output(10) <= tmp_output(0)(10);
 output(11) <= tmp_output(0)(11);
 output(12) <= tmp_output(0)(12);
 output(13) <= tmp_output(0)(13);
 output(14) <= tmp_output(0)(14);
 output(15) <= tmp_output(0)(15);

 block_64_latch1: latch_v1_4_p_16_p port map (clk(1),input,tmp_output(1));
 output(16) <= tmp_output(1)(0);
 output(17) <= tmp_output(1)(1);
 output(18) <= tmp_output(1)(2);
 output(19) <= tmp_output(1)(3);
 output(20) <= tmp_output(1)(4);
 output(21) <= tmp_output(1)(5);
 output(22) <= tmp_output(1)(6);
 output(23) <= tmp_output(1)(7);
 output(24) <= tmp_output(1)(8);
 output(25) <= tmp_output(1)(9);
 output(26) <= tmp_output(1)(10);
 output(27) <= tmp_output(1)(11);
 output(28) <= tmp_output(1)(12);
 output(29) <= tmp_output(1)(13);
 output(30) <= tmp_output(1)(14);
 output(31) <= tmp_output(1)(15);

 block_64_latch2: latch_v1_4_p_16_p port map (clk(2),input,tmp_output(2));
 output(32) <= tmp_output(2)(0);
 output(33) <= tmp_output(2)(1);
 output(34) <= tmp_output(2)(2);
 output(35) <= tmp_output(2)(3);
 output(36) <= tmp_output(2)(4);

 135

 output(37) <= tmp_output(2)(5);
 output(38) <= tmp_output(2)(6);
 output(39) <= tmp_output(2)(7);
 output(40) <= tmp_output(2)(8);
 output(41) <= tmp_output(2)(9);
 output(42) <= tmp_output(2)(10);
 output(43) <= tmp_output(2)(11);
 output(44) <= tmp_output(2)(12);
 output(45) <= tmp_output(2)(13);
 output(46) <= tmp_output(2)(14);
 output(47) <= tmp_output(2)(15);

 block_64_latch3: latch_v1_4_p_16_p port map (clk(3),input,tmp_output(3));
 output(48) <= tmp_output(3)(0);
 output(49) <= tmp_output(3)(1);
 output(50) <= tmp_output(3)(2);
 output(51) <= tmp_output(3)(3);
 output(52) <= tmp_output(3)(4);
 output(53) <= tmp_output(3)(5);
 output(54) <= tmp_output(3)(6);
 output(55) <= tmp_output(3)(7);
 output(56) <= tmp_output(3)(8);
 output(57) <= tmp_output(3)(9);
 output(58) <= tmp_output(3)(10);
 output(59) <= tmp_output(3)(11);
 output(60) <= tmp_output(3)(12);
 output(61) <= tmp_output(3)(13);
 output(62) <= tmp_output(3)(14);
 output(63) <= tmp_output(3)(15);

 block_64_latch4: latch_v1_4_p_16_p port map (clk(4),input,tmp_output(4));
 output(64) <= tmp_output(4)(0);
 output(65) <= tmp_output(4)(1);
 output(66) <= tmp_output(4)(2);
 output(67) <= tmp_output(4)(3);
 output(68) <= tmp_output(4)(4);
 output(69) <= tmp_output(4)(5);
 output(70) <= tmp_output(4)(6);
 output(71) <= tmp_output(4)(7);
 output(72) <= tmp_output(4)(8);
 output(73) <= tmp_output(4)(9);
 output(74) <= tmp_output(4)(10);
 output(75) <= tmp_output(4)(11);
 output(76) <= tmp_output(4)(12);
 output(77) <= tmp_output(4)(13);

 136

 output(78) <= tmp_output(4)(14);
 output(79) <= tmp_output(4)(15);

 block_64_latch5: latch_v1_4_p_16_p port map (clk(5),input,tmp_output(5));
 output(80) <= tmp_output(5)(0);
 output(81) <= tmp_output(5)(1);
 output(82) <= tmp_output(5)(2);
 output(83) <= tmp_output(5)(3);
 output(84) <= tmp_output(5)(4);
 output(85) <= tmp_output(5)(5);
 output(86) <= tmp_output(5)(6);
 output(87) <= tmp_output(5)(7);
 output(88) <= tmp_output(5)(8);
 output(89) <= tmp_output(5)(9);
 output(90) <= tmp_output(5)(10);
 output(91) <= tmp_output(5)(11);
 output(92) <= tmp_output(5)(12);
 output(93) <= tmp_output(5)(13);
 output(94) <= tmp_output(5)(14);
 output(95) <= tmp_output(5)(15);

 block_64_latch6: latch_v1_4_p_16_p port map (clk(6),input,tmp_output(6));
 output(96) <= tmp_output(6)(0);
 output(97) <= tmp_output(6)(1);
 output(98) <= tmp_output(6)(2);
 output(99) <= tmp_output(6)(3);
 output(100) <= tmp_output(6)(4);
 output(101) <= tmp_output(6)(5);
 output(102) <= tmp_output(6)(6);
 output(103) <= tmp_output(6)(7);
 output(104) <= tmp_output(6)(8);
 output(105) <= tmp_output(6)(9);
 output(106) <= tmp_output(6)(10);
 output(107) <= tmp_output(6)(11);
 output(108) <= tmp_output(6)(12);
 output(109) <= tmp_output(6)(13);
 output(110) <= tmp_output(6)(14);
 output(111) <= tmp_output(6)(15);

 block_64_latch7: latch_v1_4_p_16_p port map (clk(7),input,tmp_output(7));
 output(112) <= tmp_output(7)(0);
 output(113) <= tmp_output(7)(1);
 output(114) <= tmp_output(7)(2);
 output(115) <= tmp_output(7)(3);
 output(116) <= tmp_output(7)(4);

 137

 output(117) <= tmp_output(7)(5);
 output(118) <= tmp_output(7)(6);
 output(119) <= tmp_output(7)(7);
 output(120) <= tmp_output(7)(8);
 output(121) <= tmp_output(7)(9);
 output(122) <= tmp_output(7)(10);
 output(123) <= tmp_output(7)(11);
 output(124) <= tmp_output(7)(12);
 output(125) <= tmp_output(7)(13);
 output(126) <= tmp_output(7)(14);
 output(127) <= tmp_output(7)(15);

 block_64_latch8: latch_v1_4_p_16_p port map (clk(8),input,tmp_output(8));
 output(128) <= tmp_output(8)(0);
 output(129) <= tmp_output(8)(1);
 output(130) <= tmp_output(8)(2);
 output(131) <= tmp_output(8)(3);
 output(132) <= tmp_output(8)(4);
 output(133) <= tmp_output(8)(5);
 output(134) <= tmp_output(8)(6);
 output(135) <= tmp_output(8)(7);
 output(136) <= tmp_output(8)(8);
 output(137) <= tmp_output(8)(9);
 output(138) <= tmp_output(8)(10);
 output(139) <= tmp_output(8)(11);
 output(140) <= tmp_output(8)(12);
 output(141) <= tmp_output(8)(13);
 output(142) <= tmp_output(8)(14);
 output(143) <= tmp_output(8)(15);

 block_64_latch9: latch_v1_4_p_16_p port map (clk(9),input,tmp_output(9));
 output(144) <= tmp_output(9)(0);
 output(145) <= tmp_output(9)(1);
 output(146) <= tmp_output(9)(2);
 output(147) <= tmp_output(9)(3);
 output(148) <= tmp_output(9)(4);
 output(149) <= tmp_output(9)(5);
 output(150) <= tmp_output(9)(6);
 output(151) <= tmp_output(9)(7);
 output(152) <= tmp_output(9)(8);
 output(153) <= tmp_output(9)(9);
 output(154) <= tmp_output(9)(10);
 output(155) <= tmp_output(9)(11);
 output(156) <= tmp_output(9)(12);
 output(157) <= tmp_output(9)(13);

 138

 output(158) <= tmp_output(9)(14);
 output(159) <= tmp_output(9)(15);

 block_64_latch10: latch_v1_4_p_16_p port map (clk(10),input,tmp_output(10));
 output(160) <= tmp_output(10)(0);
 output(161) <= tmp_output(10)(1);
 output(162) <= tmp_output(10)(2);
 output(163) <= tmp_output(10)(3);
 output(164) <= tmp_output(10)(4);
 output(165) <= tmp_output(10)(5);
 output(166) <= tmp_output(10)(6);
 output(167) <= tmp_output(10)(7);
 output(168) <= tmp_output(10)(8);
 output(169) <= tmp_output(10)(9);
 output(170) <= tmp_output(10)(10);
 output(171) <= tmp_output(10)(11);
 output(172) <= tmp_output(10)(12);
 output(173) <= tmp_output(10)(13);
 output(174) <= tmp_output(10)(14);
 output(175) <= tmp_output(10)(15);

 block_64_latch11: latch_v1_4_p_16_p port map (clk(11),input,tmp_output(11));
 output(176) <= tmp_output(11)(0);
 output(177) <= tmp_output(11)(1);
 output(178) <= tmp_output(11)(2);
 output(179) <= tmp_output(11)(3);
 output(180) <= tmp_output(11)(4);
 output(181) <= tmp_output(11)(5);
 output(182) <= tmp_output(11)(6);
 output(183) <= tmp_output(11)(7);
 output(184) <= tmp_output(11)(8);
 output(185) <= tmp_output(11)(9);
 output(186) <= tmp_output(11)(10);
 output(187) <= tmp_output(11)(11);
 output(188) <= tmp_output(11)(12);
 output(189) <= tmp_output(11)(13);
 output(190) <= tmp_output(11)(14);
 output(191) <= tmp_output(11)(15);

 block_64_latch12: latch_v1_4_p_16_p port map (clk(12),input,tmp_output(12));
 output(192) <= tmp_output(12)(0);
 output(193) <= tmp_output(12)(1);
 output(194) <= tmp_output(12)(2);
 output(195) <= tmp_output(12)(3);
 output(196) <= tmp_output(12)(4);

 139

 output(197) <= tmp_output(12)(5);
 output(198) <= tmp_output(12)(6);
 output(199) <= tmp_output(12)(7);
 output(200) <= tmp_output(12)(8);
 output(201) <= tmp_output(12)(9);
 output(202) <= tmp_output(12)(10);
 output(203) <= tmp_output(12)(11);
 output(204) <= tmp_output(12)(12);
 output(205) <= tmp_output(12)(13);
 output(206) <= tmp_output(12)(14);
 output(207) <= tmp_output(12)(15);

 block_64_latch13: latch_v1_4_p_16_p port map (clk(13),input,tmp_output(13));
 output(208) <= tmp_output(13)(0);
 output(209) <= tmp_output(13)(1);
 output(210) <= tmp_output(13)(2);
 output(211) <= tmp_output(13)(3);
 output(212) <= tmp_output(13)(4);
 output(213) <= tmp_output(13)(5);
 output(214) <= tmp_output(13)(6);
 output(215) <= tmp_output(13)(7);
 output(216) <= tmp_output(13)(8);
 output(217) <= tmp_output(13)(9);
 output(218) <= tmp_output(13)(10);
 output(219) <= tmp_output(13)(11);
 output(220) <= tmp_output(13)(12);
 output(221) <= tmp_output(13)(13);
 output(222) <= tmp_output(13)(14);
 output(223) <= tmp_output(13)(15);

 block_64_latch14: latch_v1_4_p_16_p port map (clk(14),input,tmp_output(14));
 output(224) <= tmp_output(14)(0);
 output(225) <= tmp_output(14)(1);
 output(226) <= tmp_output(14)(2);
 output(227) <= tmp_output(14)(3);
 output(228) <= tmp_output(14)(4);
 output(229) <= tmp_output(14)(5);
 output(230) <= tmp_output(14)(6);
 output(231) <= tmp_output(14)(7);
 output(232) <= tmp_output(14)(8);
 output(233) <= tmp_output(14)(9);
 output(234) <= tmp_output(14)(10);
 output(235) <= tmp_output(14)(11);
 output(236) <= tmp_output(14)(12);
 output(237) <= tmp_output(14)(13);

 140

 output(238) <= tmp_output(14)(14);
 output(239) <= tmp_output(14)(15);

 block_64_latch15: latch_v1_4_p_16_p port map (clk(15),input,tmp_output(15));
 output(240) <= tmp_output(15)(0);
 output(241) <= tmp_output(15)(1);
 output(242) <= tmp_output(15)(2);
 output(243) <= tmp_output(15)(3);
 output(244) <= tmp_output(15)(4);
 output(245) <= tmp_output(15)(5);
 output(246) <= tmp_output(15)(6);
 output(247) <= tmp_output(15)(7);
 output(248) <= tmp_output(15)(8);
 output(249) <= tmp_output(15)(9);
 output(250) <= tmp_output(15)(10);
 output(251) <= tmp_output(15)(11);
 output(252) <= tmp_output(15)(12);
 output(253) <= tmp_output(15)(13);
 output(254) <= tmp_output(15)(14);
 output(255) <= tmp_output(15)(15);
end structure;

library ieee,work;
 use ieee.std_logic_1164.all;
 use IEEE.STD_LOGIC_TEXTIO.ALL;
 use STD.TEXTIO.ALL;
 use work.demux_type.all;
 use WORK.CONV.ALL;

entity demux is
 port (clk,reset : IN std_logic;
 input : IN std_logic_vector(3 downto 0);
 clk_fft : OUT std_logic;
 output: OUT TYPE_INPUT_FFT
);
end demux;

architecture structure of demux is

component latch_v1_4_p_16
 port (clk : IN std_logic;
 input : IN std_logic_vector(3 downto 0);
 output : OUT TYPE_DEMUX_ARRAY_16x4
);
end component;

 141

component latch_V1_4_p_16_p_16
 port (clk : IN std_logic_vector(15 downto 0);
 input : IN TYPE_DEMUX_ARRAY_16x4;
 output : OUT TYPE_INPUT_FFT
);
end component;

component clock_generator
 port (clk : IN std_logic;
 reset : IN std_logic;
 output : OUT std_logic_vector(15 downto 0);
 clk_fft : OUT std_logic;
 out_clk : OUT std_logic;
 out_clk1 : OUT std_logic;
 out_clk2 : OUT std_logic;
 out_clk3 : OUT std_logic;
 out_clk4 : OUT std_logic;
 out_clk5 : OUT std_logic;
 temp_clk : OUT std_logic
);
end component;

 signal bus_64 : TYPE_DEMUX_ARRAY_16x4;
 signal clk_state : std_logic_vector(15 downto 0);
 --signal clk_fft : std_logic;
 signal out_clk, out_clk1, out_clk2 : std_logic;
 signal out_clk3, out_clk4, out_clk5, temp_clk : std_logic;
begin

 u0: clock_generator port map
(clk,reset,clk_state,clk_fft,out_clk,out_clk1,out_clk2,out_clk3,out_clk4,out_clk5,temp_cl
k);
-- clk_fft <= clk_fft;
 u1: latch_v1_4_p_16 port map (clk,input,bus_64);
 u2: latch_v1_4_p_16_p_16 port map (clk_state, bus_64, output);
end structure;

 142

Bibliography

[1] M. Choi and Asad A. Abidi, “ A 6-b 1.3 Gsample /s A/D Converter in 0.35µm

CMOS “, IEEE Journal of Solid-State Circuits, Vol. 36, pp.1847-1858, Dec.
2001.

[2] X. Jiang, Z. Wang and M. F. Chang, “A 2GS/s 6-bit ADC in 0.18µm CMOS “, ISSCC’03

Digest of Technical Papers, 2003.

[3] P.C.S. Scholtens and M. Bertregt, “A 6-b 1.6-Gsamples/s Flash ADC in 0.18-µm

CMOS Using Averaging Termination”, IEEE J. of Solid-State Circuits, Vol. 37 No.
12, Dec. 2002.

[4] J.-E. Eklund, “Robust ADC concept for integrated CMOS systems”, IEE Third

International Conference on Advanced A/D and D/A Conversion Techniques and
their Applications, pp. 126-129, Glasgow, UK, July 27-28, 1999.

[5] Chen, C.-I. H., George K., Wang M., McCormick W. and Tsui, J., “2.5 GSPS/1

GHz Wide Band Digital Receiver,” Proceedings of 29 Annual International
Conference of the IEEE Industrial Electronics, pp. 1888-1893, Virginia, November,
2003.

[6] K. George, C.-I. H. Chen, and J. B. Y. Tsui “Extension of Two Signal Dynamic

Range of Wideband Digital Receivers using Kaiser Window and Compensation
Method,” IEEE Trans. Microwave Theory and Techniques, vol. 55, no. 4, pp. 788–
794, April, 2007.

[7] R. Martin and D. J. Secor, “High speed analog-to-digital converters in

communication systems: Terminology, architecture, theory and performance,”
TRW Notes, Nov. 1981.

[8] H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Of the AIEE,

pp. 617-644, February 1928, 7.

[9] Behzad Razavi, Principles of Data Conversion System Design, IEEE Press,

Piscataway, New Jersey, 1995.

[10] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Oxford University

Press, Second Edition, Oxford, New York, 2002.

 143

[11] B. C. Baker, Fast Fourier Transforms: A Good Tool for Mixed-Signal System
Analysis, Technical Report, Microchip Technology, Inc., 1998,
http://www.chipcenter.com/analog/tn014.htm.

[12] A. Moscovici, High Speed A/D Converter: Understanding Data Converter through

SPICE, Kluwer Academic Publishers, 2001.

[13] W. T. Colleran, “A 10-bit 100-MS/s A/D converter using folding, interpolating, and

analog encoding,” Ph.D. Dissertation, Univ. California, Los, Angeles, CA, Dec.
1993.

[14] H. Pan, “A 3.3-V 12-b 50-MS/s A/D converter in 0.6-µm CMOS with over 80-dB

SFDR,” Ph.D. Dissertation, UCLA, Dec. 1999.

[15] Maxim Integrated Products, ADC and DAC Glossary, 2000,

http://www.maximic.com/apponotes.cfm/appnote_number/641.

[16] J. Yoo, “A TIQ Based CMOS Flash A/D Converter for System-on-Chip

Applications,” Ph.D. Dissertation, The Pennsylvania State University, May, 2003.

[17] A. Pierazzi and A. Boni, “Design Issues for a High Frequency, 0.35µm, 3.3V

CMOS Folding A/D Converter,” Advanced A/D and D/A Conversion Techniques
and their Applications, 27-28 July 1999, pp. 115-117.

[18] K. Sushihara, H. Klmura, Y. Okamoto, K. Nishimura, and A. Matsuzawa, “A 6-b

800MSample/s CMOS A/D Converter,” IEEE International Solid-Sate Circuits
Conference, pp. 428-429, 2000.

[19] G. Geelen, “A 6b 1.1 GSample/s CMOS A/D Converter,” IEEE International

Solid-Sate Circuits Conference, 2001, pp. 436-438.

[20] J. Vandenbussche, K. Uyttenhove, E. Lauwers, M. Steyaert and G. Gielen, “A 8-bit

200 MS/s Interpolation/Averaging CMOS A/D Converter,” IEEE Custom
Integrated Circuits Conference, 2002, pp. 445-448.

[21] K. Nagaraj, D. A. Martin, M. Wolfe, R. Chattopadhyay, S. Pavan, J. Cancio, T. R.

Viswanathan, “A 700MSamples/s 6b Read Channel A/D Converter with 7b Servo
Mode,” IEEE International Solid-State Circuits Conference, 2000, pp. 426-428.

[22] Y. Li, and E. S. Sinencio, “A Wide Input Bandwidth 7-bit 300-MSample/s Folding

and Current-Mode Interpolating ADC,” IEEE Journal of Solid-State Circuit,
Vol.38, No. 8, August 2003, pp. 1405-1410.

[23] C. Sander, M. Clara, A. Santner, T. Hartig and F. Kuttner, “ A 6-bit 1.2-GS/s

Low-Power Flash-ADC in 0.13-µm Digital CMOS,” IEEE Journal of Solid-Sate

 144

Circuits, Vol. 40, No. 7, July 2005, pp. 1499-1505.

[24] H. Pan and A. A. Abidi, “Spectral Spurs due to Quantization in Nyquist ADCs,”

IEEE Transactions on Circuits and Systems, Vol. 51, No. 8, August 2004, pp.
1422-1439.

[25] K. Kattmann and J. Barrow, “A Technique for Reducing Differential Non-linearity

errors in Flash A/D Converters,” in Proc. IEEE Int. Solid-State Circuits Conf. Feb.
1991, pp. 170-171.

[26] G. Feygin, K. Nagaraj, and S. Pavan, “A 165 MS/s 8-bit CMOS A/D Converter

with Background Offset Cancellation,” IEEE Custom Integrated Circuits
Conference, 2001, pp. 153-157.

[27] H. Okada, Y. Hashimoto, and K. Ishibashi, “Offset Calibrating Comparator Array

for 1.2-V, 6-bit, 4-Gsample/s Flash ADCs using 0.13-µm Generic CMOS
Technology,” 33rd European Solid-State Device Research Conference, Estoril,
Portugal, 16-18 Sept. 2003.

[28] P. M. Figueiredo and J. C. Vital, “Averaging Technique in Flash Analog-to-Digital

Converters,” IEEE Transactions on Circuits and Systems, Vol. 51, No. 2. Feb. 2004,
pp. 233-253.

[29] S. Sheikhaei, S. Mirabbasi, and A. Ivanov, “A 4-Bit 5GS/s Flash A/D Converter in

0.18µm CMOS,” IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 6138–6141, May 2005.

[30] K. Poulton, R. Neff, and M. Heshami, “A 4 GSample/s 8b ADC in 0.35-µm

CMOS,” reported by Agilent Technologies, Palo, Alto, CA, 2003.

[31] C. Azzolini, A. Boni and D. Vecchi, “Design of a 2-GS/s 8b Self-Calibrateing ADC

in 0.18µm CMOS technology,” 2005 IEEE International Symposium on Circuits
and Systems, Kobe, Japan, May 2005.

[32] X. Jiang, M. F. Chang, “A 1-GHz Signal Bandwidth 6-bit CMOS ADC with

Power-Efficient Averaging,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 2,
Feb. 2005, pp. 532-535.

[33] K. Uyttenhove and M. S. J. steyaert, “ A 1.2-V 6-bit 1.2-GHz Flash ADC in

0.25-µm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 38, No.7, July 2003,
pp. 1115-1122.

[34] R. Taft et al., “A 1.8V 1.6GS/s 8b Self-Calibrating Folding ADC with 7.26 ENOB

at Nyquist Frequency,” Proc. of ISSCC, 2004.

 145

[35] J. Segura, J. L. Rossello, J.Morra, and H. Sigg. A Variable Threshold Voltage
Inverter for CMOS Programmable Logic Circuits. IEEE Journal of Solid-State
Circuits, 33(8):1262-1265, August 1998.

[36] A, Tangel, “VLSI Implementation of the Threshold Inverter Quantization (TIQ)

Technique for CMOS Flash A/D Converter Applications” PhD Dissertation, The
Pennsylvania State University, Aug. 1999.

[37] J. Yoo, K. Choi, and A. Tangel, “ A 1-GSPS CMOS Flash A/D Converter for

System-on-Chip Applications”, IEEE CS Annual Workshop on VLSI, pp.135-139,
2001.

[38] J. Yoo, K. Choi, and D. Lee, “Comparator Generation and Selection for Highly

Linear CMOS Flash Analog-to-Digital Converter,” 2002 Kluwer Academic
Publishier, Printed in the Netherlands.

[39] J. Yoo, K. Choi, and J. Ghaznavi, “Quantum Voltage Comparator for 0.07 µm

CMOS Flash A/D Converters,” IEEE Computer Society Annual Symposium on
VLSI, pp. 135-139, April 2003.

[40] M. Wang, C. H. Chen, and S. Radhakrishnan, “Low-power 4-b 2.5 GSPS Pipelined

Flash Analog-to-Digital Converter in 130 nanometer CMOS”, IEEE Transactions
on Instrumentation and Measurement, vol. 56, no. 3. pp 1064-1073, June 2007.

[41] M. Wang and C. H. Chen, “A High Spurious-Free Dynamic Range 4-bit ADC with

Nyquist Signal Bandwidth for Wideband Communication”, Proceedings of IEEE
Instrumentation and Measurement Technology Conference, Warsaw, Porland, May
1-3, 2007.

[42] M. Wang and C. H. Chen, “Architecture and Design Synthesis of 2.5 Gsamples/s

4-b Pipelined Flash ADC in SoC Application”, Proceedings of the 31st Annual
Conference of IEEE Industrial Electronics Society, pp. 2224-2230, Raleigh, North
Carolina, USA, Nov. 6-10, 2005.

[43] M. Wang and C. H. Chen, “Design Synthesis and Performance Measurement of

Pipeline Flash ADC for SoC Applications”, Proceedings of the 2005 IEEE
Instrumentation and Measurement Technology Conference, pp. 19-24, Ottawa,
Ontario, Canada, USA, May 17-19, 2005.

[44] H. Pan and A. A. Abidi, “Spatial Filtering in Flash A/D Converters,” IEEE Trans.
Circuit Syst. II, vol. 50, pp. 424-436, Aug. 2003.

[45] Y. Gendai, Y. Komatsu, S. Hirase, and M. Kawata, “An 8b 500MHz ADC,”

Proceedings of. IEEE International Solid-State Circuits Conference, pp. 172-173,
Feb. 1991.

 146

[46] H. Pan, M. Segmai, M. Choi, J. Cao, and A. A. Abidi, “A 3.3-V 12-b 50-MS/s

A/D Converter in 0.6-µm CMOS with over 80-dB SFDR,” IEEE Journal of
Solid-State Circuits, Vol. 35, No. 12, Dec. 2000, pp.1769-1780.

[47] M. Shinagawa, Y. Akazawa, and T. Wakimoto, “Jitter analysis of high-speed

sampling systems,” IEEE Journal of Solid State Circuits, vol. SC-25, pp. 220-224,
Feb. 1990.

[48] T. Wakimoto, Y. Akazawa, and Y. S. Konaka, “Si bipolar 2-GHz 6-bit flash A/D

conversion LSI,” IEEE Journal of Solid-State Circuits, vol. 23, pp. 1345-1350,
Dec. 1988.

[49] R. J. Plassche, and P. Baltus, “An 8-b 100MHz full Nyquist A/D converter,” IEEE

Journal of Solid-State Circuits, Vol. 23, pp. 1334-1344, Dec. 1988.

[50] L. E. Larson, “High-speed analog-to-digital conversion with GaAs technology:

prospects, trends and obstacles,” in IEEE International Symposium on Circuits
and Systems, pp. 2871-2878, 1988.

[51] M. J. Demler, High-Speed Analog-to-Digital Conversion, Academic Press, Inc.

San, Diego, California, 1991.

[52] A. Dixit, Design of a High Speed Analog-to-Digital Converter for Data Storage

Channels, Master Thesis, Carnegie Mellon University, 1998.

[53] C. W. Mangelsdorf et al., “A 400-MHz Input Flash Converter with Error

Correction,” IEEE Journal Solid-State Circuits, Vol. SC-25, pp. 184-191, Feb.
1990.

[54] B. Peetz. B. D. Hamilton, and J. Kang, “An 8-Bit 250 Megasamples/sec A/D

Converter,” IEEE Journal Solid-State Circuits, Vol. SC-21, pp. 997-1002, Dec.
1986.

[55] Jerrold Henry Krenz, Electronic Concept: An Introduction, Cambridge Unviersity

Press, Technology & Inductrial Arts, ISBN 05216682, 2000.

[56] F. Lai and W. Hwang, “Design and implementation of differential cascode voltage

switch with pass-gate (DCVSPG) logic for high-performance digital systems,”
IEEE Journal of Solid-State Circuits, vol. 32, no. 4, pp. 563-573, April 1997.

[57] S. Sheikhaei, S. Mirabbasi and A. Ivanov, “A 4-Bit 5GS/s Flash A/D Converter in

0.18µm CMOS, “Proc. of the 2005 IEEE Instrumentation and Measurement
Technology Conference, Ottawa, Ontario, Canada, May 17-19, 2005.

[58] W. Ellersick, C. K. Yang, M. Horowitz, and W. Dally, “GAD: A 12GS/s CMOS

 147

4-bit A/D converter for an equalized multilevel link,” IEEE Symp. VLSI Circuits,
Dig. Tech. Papers, June 1999, pp. 49-52.

[59] S. Naraghi and D. Johns, “A 4-bit analog-to-digital converter for high-speed serial

inks,” Micronet Annual Workshop, April 26-27, 2004, Aylmer, Quebec, Canada, pp.
33-34.

	High-speed Low-voltage CMOS Flash Analog-to-Digital Converter for Wideband Communication System-on-a-Chip
	Repository Citation

	Microsoft Word - dissFormated_6.doc

