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ABSTRACT 
 
 
Felix-Balderrama, Sandra. M.S., Department of Chemistry, Wright State University, 
2009. Comparison of the Electrochemical Properties of Ethanol in Perchloric Acid and 
Ionic Liquids. 
 

 1-Ethyl-3-Methylimidazolium Tetrafluroborate (EMImBF4) and 1-Ethyl-3-

Methylimidazlium Bis(trifluoromethanesulfonyl)imide (EMImTFSI) ionic liquids were 

synthesized and characterized in order to study the electrochemical oxidation of ethanol 

in these ionic liquids on a platinum surface electrode.  

 It was found that pure EMImBF4 exhibits an electrochemical window of 4.4 V, 

while EMImTFSI exhibits an electrochemical window of 5.0 V.   

 Electrochemical study of ethanol in perchloric acid showed that the oxidation of 

ethanol strongly depends on the concentration of ethanol and on the temperature of the 

solution. The poisoning of the platinum electrode only depends on the concentration of 

ethanol. At a low concentration of ethanol (0.1 M), electro-oxidation of ethanol on a 

platinum electrode showed one oxidation peak (peak 2) at a temperature of 22.6 °C and 

two oxidation peaks (peak 2 and 3) at 70.1 °C. It was found that, with increasing 

temperature from 22.6 to 70.1 °C, the cyclic voltammograms showed an increase in 

oxidation.  Electrochemical studies of ethanol at higher concentration of ethanol (> 0.2 

M), showed three oxidation peaks. The poisoning of the electrode occurred at 1 M 

ethanol solution via formation of PtO.
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The electrochemical studies of ethanol in EMImTFSI and EMImBF4 ionic liquids 

showed that poisoning of the electrode does not occur even at higher concentration of 

ethanol. It was proved that oxidation of ethanol in ionic liquids produces acetaldehyde 

and acetic acid. 
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I. INTRODUCTION 

 

In recent years, development of renewable and clean energy technology has been 

of great interest due to environmental concerns and to the depletion of fossil fuels around 

the world.1  

Among the technology to produce clean and renewable energy, electrochemical 

power sources such as super capacitors, batteries (both electrochemical energy storage 

devices), and fuel cells (electrochemical energy conversion devices) have become 

extremely attractive in the technological community in the last decade. 1, 2, 3  

Among these electrochemical power sources, development and improvement of 

fuel cells has grown tremendously, not only because they are considered as the most 

efficient and clean alternative energy technology, but because of their wide range of  

applications which include stationary power generation (MW), portable power generation 

(KW), and electric vehicles (KW).4  

Though fuel cells represent a novel alternative as a clean and efficient energy 

technology, challenges such as cost reduction, and improving durability have to be 

overcome to guarantee their commercialization.5 
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Fuel Cells 

A fuel cell is an electrochemical device that converts chemical energy directly to 

electrical energy. A fuel cell consists of an electrolyte, an ion containing solution, liquid 

or solid in contact with two electrodes (an anode where the oxidation of the fuel takes 

place and a cathode where the reduction of oxygen occurs). In the production of 

electricity in fuel cells, the only byproducts are: some heat, carbon dioxide and water, 

thus fuels cells can be considered to be an environmentally clean energy production 

device.4 

Classification of Fuel Cells  

Usually, fuel cells are classified by the kind of electrolyte they use. The 

electrolyte determines the kind of chemical reactions that takes place in the fuel cell, the 

operating temperature rate, and other factors that affect the applications, for which the 

fuel cell is most suitable, as well as its advantages and limitations.2   

A basic, but most commonly nomenclature used to describe fuel cells based on 

the electrolyte they use, is the following: 

1. Proton Exchange Membrane (polymer electrolyte) Fuel Cells (PEFC) 

2. Alkaline Fuel Cells (AFC) 

3. Phosphoric Acids Fuel Cells (PAFC) 

4. Molten Carbonate Fuel Cells (MCFC) 

5. Solid Oxide Fuel Cells (SOFC) 
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Additional sub-classification of fuel cells can be made, based on parameters such 

as nature and type of fuel used, whether the fuel is processed outside, external reforming, 

or inside, internal reforming, (e.g. hydrogen PEFC or direct ethanol DEFC), and the 

temperature range of operation.4, 6 

In Table 1, operating temperatures, electrolyte material, and possible applications 

for the most common type of fuel cells are given. Each fuel cell has its own advantages, 

and can be used for certain applications. Low-temperature fuel cells include proton 

exchange membrane (PEFCs) and alkaline fuel cells (AFCs). The primary advantages of 

operating these fuel cells at low temperatures are high efficiency and quick start-up. 

However, because of the low temperatures at which they work, expensive catalysts (e.g., 

platinum) are required and much larger heat exchangers to eliminate waste. High-

temperature fuel cells (e.g., SOFC, MCFC) have an advantage in raw material (catalysts) 

cost and easy rejection of waste heat. Medium-temperature fuel cells (e.g., PAFC) have 

some of the advantages of both high- and low-temperatures fuel cells.6



 
 
 
 
      Table 1. Characteristics and other Features of Different Types of Fuel Cells.2, 4, 6 
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Fuel cell Type PEFC AFC PAFC MCFC SOFC 

Electrolyte 

Material 

Flexible solid per-

fluorosulfonic acid 

polymer 

Solution of potassium 

hydroxide in water 

Solution of 

phosphoric acid in 

porous silicon 

carbide matrix 

Molten alkali metal 

(Li/K or Li/Na) 

carbonates in porous 

matrix 

Yttria (Y2O2) stabilized 

zirconia (ZrO2) 

Operating 

Temperature  

30 - 100°C 60 - 100°C 150 - 220°C 600 - 800°C 600 - 1000°C 

Electrodes Pt Ni/Ag metal oxides, noble 

metals 

Pt Ni anode, NiO cathode Co-ZrO2, Ni-ZrO2 anode, Sr-

LaMnO3 cathode, Y2O3-

stabilized ZrO2 electrolyte 

Major Poison CO, Sulfur, metal ions, 

peroxide 

CO2 Sulfur, high levels 

of CO 

Sulfur Sulfur 

Charge 

Carrier 

H+ OH- H+ −2
3CO  O2-

Cell 

Reactions ( )

( )cOHH

eO

aeH

H

2

2

2

2

2
2
1

22

→

++

+

→

+

−

−+

 

( )

( )cOHe

OHO

aeOH

OHH

2

22

2

2

2
2
1

22

2

→

++

+

→+

−

−

 

( )

( )cOHH

eO

aeH

H

2

2

2

2

2
2
1

22

→

++

+

→

+

−

−+

 

( )

( )cCOe

COO

aeCO

OH
COH

3

22

2

2

2
32

2
2
1

2

→

++

+

+
→+

+

−

−

 

( )

( )cO

eO

aeOH

OH

−

−

−

−

→+

+

→+

2

2

2

2
2

2
2
1

2
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Fuel cell Type PEFC AFC PAFC MCFC SOFC 

System output <1kW–250kW 10kW–100kW 50kW–1MW (250kW 

module typical) 

<1kW–1MW (250kW 

module typical) 

5kW–3MW 

Electrical 

Efficiency 

53–58% (transportation) 

25–35% (stationary) 

60% 32–38% 45–47% 35–43% 

Water 

management 

Evaporate  Evaporate Gaseous products Gaseous products 

Applications Electrical utility, portable 

power, transportation 

Military and space, 

residential plants 

Electric utility and 

transportation 

Electric utility Electric utility 

Advantages Low temperature, rapid 

start, solid electrolyte 

reduces corrosion and 

electrolyte management 

problems 

High performance, the 

cathode reaction is faster in 

alkaline electrolyte, simple 

design 

High efficiency, can 

tolerate impure 

hydrogen fuel, 

demonstrated 

durability 

High efficiency, flexibility 

of fuel cell types, can use 

a variety of catalysts 

High efficiency, low 

temperature, flexible 

of fuel, solid 

electrolyte reduces 

corrosion and 

management 

problems, possible 

internal reforming  

Disadvantages Sensitive to fuel impurities, 

expensive catalyst, water 

management 

Expensive removal of CO2 

from fuel and air supplies 

Low power density, 

expensive, platinum 

catalyst used, slow 

start up 

Electrolyte dissolves 

cathode catalyst, 

extremely long start-up 

time 

High temperatures 

enhances corrosion 

and breakdown of 

cell components  
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Basic Design of Fuel Cells and their Mode of Operation  

A design of a hydrogen-oxygen (or air) proton exchange membrane fuel cell is 

shown in Figure 1. A single cell consists of a solid polymer electrolyte ion exchange 

membrane, and two electrodes – a negative anode and a positive cathode – sandwiched 

around the electrolyte.2 

  In simple terms, the mode they operate is by feeding hydrogen on one side of the 

cell which flows through channels to the electrically negative electrode, or anode. The 

anode which is porous so that the hydrogen can pass through it, is composed of platinum 

(catalyst) uniformly supported on carbon particles and surrounded by a thin layer of 

proton-conducting ionomer. Hydrogen fuel on the anode side moves through the 

electrode and encounter the platinum catalyst, here an oxidation reaction takes place and 

the hydrogen molecules separate into protons and electrons. While the protons are 

conducted through the ionomer and the ion exchange membrane to the other side of the 

cell, the stream of the negatively-charged electrons follows an external circuit to the 

cathode. This flow of electrons through the external circuit is electricity that can be use to 

do work. 

On the other side of the cell, oxygen gas, typically from the air, flows to the 

electrically positive electrode, or cathode. Like the anode, the cathode is made of 

platinum particles uniformly supported on porous carbon particles so that oxygen can 

move through it. Reduction reactions, involving the gaining of electrons take place at the 

cathode. When the electrons (which have traveled through the external circuit) return
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from doing work, they react with oxygen and the hydrogen protons (which have moved  

through the ion exchange membrane) at the cathode to form water. Most of the water is 

collected and reused within the system, but a small amount is released in the exhaust as 

water vapor.  Heat is generated from this reaction and from the frictional resistance of ion 

transfer through the membrane. This thermal energy can be used outside the fuel cell.2 
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Figure 1: Basic Design of a Proton Exchange Membrane Fuel Cell.2  
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Direct Alcohol-Based Fuel Cells  

Although proton exchange membrane (polymer electrolyte) fuel cells(PEFC), 

technology regarded as the most promising fuel cells among the various types, are 

suitable both mobile and stationary applications, and show high performances when fed 

with hydrogen, hydrogen as a fuel represents a key limitation due to its relatively low 

volumetric density energy (0.53 kWh/l, H2 gas at 20MPa), and to its permeability into 

material which make transportation, storage and delivery to be big challenges.7, 8, 9 

An alternative to overcome these challenges is the use of direct alcohol-base fuel 

cells (DAFCs). Compared to hydrogen, alcohols have higher theoretical energy 

densities/specific energy, and they are more ease to store, transport, and refuel.10 In Table 

2, specific energies as well as other thermodynamic features at 25°C and 1 atm are given 

for some DAFCs. 
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Table 2: Thermodynamic Features of DAFCs at 25°C and 1 atm.8 (Mw: fuel molecular weight; n: number of electrons involved; E°: cell 
voltage;  Esp: theoretical specific energy; C: current capacity of the pure compound; η: theoretical energy conversion efficiency) 

DAFC Alcohol Fuel/Oxidant Mw 
(g mol-1) 

n n/Mw 
(e-/g mol-1) 

E° 
(v) 

Esp 
(Wh kg-1) 

C 
(Ah kg-1) 

η 
(%) 

DEFC Ethanol C2H5OH/O2 46.07 12 0.260 1.1

5 

8028 6981 97 

DMFC Methanol CH3OH/O2 32.04 6 0.187 1.2

1 

6073 5019 97 

DMPFC 1-Methoxy-

2-Propanol 

CH3OCH(OH)CH3/O2 76.10 16 0.210 α α.5635 5635 - 

DP1FC 1-Propanol CH3CH2CH2OH/O2 60.10 18 0.300 1.1

3 

9070 8027 97 

DP2FC 2-Propanol CH3CH(OH)CH3/O2 60.10 18 0.300 1.1

2 

8990 8027 97 
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In general, a DAFC is a PEFC in which the alcohol is directly fed into the anode 

without the requirement of a fuel reformer.  The simplicity of DAFCs has been shown 

with methanol and ethanol as well with other small alcohols. Although DAFCs offer 

great advantages, they also show several drawbacks. Several limitations of these fuel 

cells are the slow dynamics of alcohols oxidation, the alcohol crossover across the 

membrane and the stability and poisoning of the anode.  

 The most common type of alcohol used for DAFCs is methanol (Direct Methanol 

Fuel Cells DMFCs). Methanol as a fuel offers a relatively high electrochemical activity 

compared to other liquid fuels. However, methanol is toxic, and is neither a primary not a 

renewable fuel.10 Hence ethanol has been recently gaining considerable attention as a 

substitute of methanol due to ethanol is a facile and abundant renewable fuel which can 

be easily produced from agricultural products and through the fermentation of biomass.10, 

11 

Direct Ethanol Fuel Cells (DEFCs) 

As stated before, ethanol has been recently gaining considerable attention as a 

fuel, not only because it is a renewable fuel which can be easily produced from 

agricultural products and through fermentation of biomass, but because ethanol possesses 

distinct characteristics if compared to other alcohols specially with methanol such as 

lower toxicity, low permeability across proton exchange membranes, and higher energy 

density (8.01 kWh/kg for ethanol versus 6.09kWh/kg for methanol). 11     
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Direct ethanol fuel cells (DEFCs) is based in the oxidation of ethanol, involving 

12 electrons (E° = 1.15 V). The complete ethanol anodic oxidation, oxygen cathodic 

reduction, and overall reaction of DEFC could be described as follows:12 

Anode                    CH3CH2OH + 3H2O → 2CO2 + 12H+ + 12e-               (Equation 1) 

Cathode                 3O2 + 12H+ + 12e- → 3H2O                                          (Equation 2) 

Overall                  CH3CH2OH + 3O2 → 2CO2 + 3H2O                            (Equation 3)   

 Electro-oxidation of ethanol involves a complex mechanism not only because the 

reaction involves a greater number of electrons exchange, but because the cleavage of the 

C-C bond   at the anode for a total oxidation to CO2 is required to eliminate the partial 

oxidation products such as acetaldehyde (CH3CHO) and acetic acid (CH3COOH).  It is 

believed that cleavage of the C-C bond has a determining effect on the fuel cell efficiency 

and the electrical energy yield.13 

Because the electro-oxidation of ethanol is extremely complicated, a significant 

objective in the development of DEFCs is the creation of enhanced catalytic materials for 

the anodic reaction.14 

Platinum based catalysts are by far the most studied catalytic surfaces for ethanol 

anodic oxidation. Moreover platinum alloys have proven to be the best catalysts for the 

anodic reaction. However, because of the high cost of Pt, and because poisoning of the 

electrode occurs due to adsorbed intermediate oxidation products like, e.g. CO, 

investigations are centered on the development of a second or third additive material that 
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will reduce the amount of Pt-loading needed, and will maintain high electro-catalytic 

efficiency.12, 15, 16        

Anode Catalysts  

The most common catalytic materials for the anodic reaction in DEFCs are Pt-Ru 

and Pt-Sn catalysts, as well as the correlated ternary Pt-Ru-based and Pt-Sn-based 

catalysts.13 

   According to several studies made on this materials, the superior performance of 

these binary and ternary electro-catalysts for the ethanol oxidation with respect to Pt 

alone is attributed to the bifunctional effect (promoted mechanism), and to the electronic 

interaction between Pt and alloyed metals (intrinsic mechanism). According to the 

promoted mechanisms, the oxidation of the strongly adsorbed oxygen-containing species 

is facilitated in the presence of Ru(Sn) oxides by supplying oxygen atoms to adjacent site 

at a lower potential than the accomplished by pure Pt. The intrinsic mechanism postulates 

that the presence of Ru(Sn) modifies the electronic structure of Pt, and, as a consequence, 

the adsorption of oxygen containing species.  

Binary Catalysts  

Pt-Ru/C 

 Regarding the oxidation mechanism of ethanol using Pt-Ru/C catalyst researchers 

have made different observations. Schmidt et al. observed that the formation of 

chemisorbed species coming from dissolved ethanol is partially inhibited by the presence 

of Ru.13, 17 Similarly; Camara et al. found that dissociation of adsorbed ethanol seems to 
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be inhibited by Ru. Probably this effect is due to the diminution of neighboring Pt sites, 

which are necessary for the cleavage of the C-C bond.13, 18 In the other hand, according to 

Fujiwara et al. the promoter action of Ru seems to enhance the oxidation of strongly-

bound adsorbed intermediates to give a higher relatively yield of CO2 than on pure Pt.13, 

19  Lee et al. investigated the effect of the temperature on the electro-oxidation of ethanol 

by cyclic voltammetry (CV); their results showed that with increasing temperature from 

25 to 80°C,  Pt-Ru/C catalyst increased currents by a factor of 8 times compared to that 

of Pt/C based catalyst. According to the authors, the ruthenium addition remarkably 

enhanced ethanol oxidation performance probably due to the strong adsorption of OH.13, 

20 According to several authors, the amount of Ruthenium in a Pt-Ru catalyst is also an 

important parameter in the oxidation of ethanol. According to Lamy et al. a catalyst with 

an atomic ratio of 4:1 (Pt:Ru) shows a poor activity at room temperature for the oxidation 

of ethanol.13, 21 According to Camara et al., there is a relatively narrow range of Pt-Ru 

composition having a high rate of ethanol oxidation: for a Ru content lower than 20 

wt.%, there are not enough Ru sites to effectively assist the oxidation of adsorbed 

residues and the oxidation current remains almost at the same levels obtained for pure Pt. 

Based on Camara’s founds, the low Ru content could explain the poor activity of the Pt-

Ru (4:1) catalyst observed by Lamy et al.13,18  Spinace et al. studied the activity of a Pt-

Ru/C catalyst (range investigated Pt:Ru 1:3) by cyclic voltammetry measurements. He 

also found that the activity of Pt-Ru for the oxidation of ethanol increases with the 

increase of the content of ruthenium in the catalyst.13, 22 Finally, Olivera Neto et al. 

investigated the activity of Pt-Ru/C catalyst (range investigated Pt:Ru 3:2) for the 
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oxidation of ethanol. He found that the activity of Pt-Ru increases with the content of the 

second metal.13, 23 

Pt-Sn/C 

According to different group of researches, the electro-oxidation of ethanol in Pt-

Sn/C based catalyst performance depends on its preparation procedure. Lamy et al. 

prepared and studied Pt-Sn/C electrocatalysts with Pt:Sn atomic ratios varying from 

90:10 to 50:50 using different methods. Based on these studies, this group of researchers 

found that an optimum composition for this type of catalyst was in the range of 10-20 

wt%.13,21 Conversely, Zhou et al. found that Pt-Sn/C electrocatalysts with Pt:Sn molar 

ratios of 66:33, 60:40, and 50:50 are more active than electrocatalysts with 75:25 and 

80:20 molar ratios, with an optimum composition in the range 33-40 wt.% depending on 

the direct ethanol fuel cell (DEFC) temperature.13, 24 Spinace et al. studied the activity for 

the electro-oxidation of ethanol in Pt-Sn/C electrocatalyst with different Sn content using 

cyclic voltammetry. The results of CV measurements show that electro-oxidation of 

ethanol starts at low potentials (~0.25V) for Pt-Sn/C electrocatalysts with Pt:Sn molar 

ratio of 50:50 and 25:75, showing similar current values in the range of 0.25-0.40.13,22 

Other binary Pt-M catalysts (M=W, Pd, Rh, Re, Mo, Ti, Ce) different than Pt-Ru 

and Pt-Sn have been also investigated for the ethanol oxidation reaction. In general, these 

catalysts showed an ethanol oxidation reaction activity higher than that of Pt alone but 

lower than that of Pt-Ru and Pt-Sn.13 
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Ternary Catalysts 

Even though investigations show that binary catalysts exhibit higher electro-

catalytic activity for ethanol oxidation than Pt alone, oxidation products are species 

containing C-C bond, which have a negative effect on the fuel cell performance. For this 

reason, it was proposed the addition of a third element to modify the Pt-Sn/C and Pt-Ru/C 

catalysts to present higher specific activity of dehydrogenation, C-O and C-C bond 

cleavage during the ethanol oxidation. 

Pt-Ru Based Catalysts 

Investigations on Pt-Ru-based catalysts include the addition of different materials 

to this catalyst (e.g., W, Mo, Sn, Au, Ni, and Pb). It has been found that performance of 

direct ethanol fuel cells with Pt-Ru-W, Pt-Ru-Mo and Pt-Ru-Sn catalysts is higher than 

that with Pt-Ru but inferior to that employing Pt-Zn.  Conversely to the last results; it has 

been found that the performance of Pt-Ru-W electro-catalysts deposited onto a Au 

substrate is higher compared to that of binary alloys such as Pt-W, Pt-Sn, and Pt-Ru. 

Studies made on Pt-Ru-Ni based catalyst have been found that Pt-Ru-Ni catalyst presents 

a higher catalytic activity compared to that of Pt-Ru alloys. For this particular catalyst, 

electro-oxidation of ethanol is particularly significant at low potentials. Finally, studies 

made on Pt-Ru-Pb based catalyst have showed that the addition of Pb to Pt and Pt-Ru 

increases the ethanol oxidation reaction, especially at high potentials.13 
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Pt-Sn Based Catalysts 

Electro-oxidation of ethanol on Pt-Sn based catalysts includes the addition of Ni, 

Rh, and Ru as the third element to modify the performance of this catalyst. Regarding Pt-

Sn-Ni based catalyst, it has been found that the substitution of a small amount of tin by 

nickel increases the current values in comparison to those obtained on Pt-Sn 

electrocatalyst. Studies made on Pt-Sn-Ru catalyst have showed that the addition of Ru to 

Pt-Sn greatly enhanced the electrical performance of the direct ethanol fuel cell, e.g. the 

activity of the catalyst but did not modify the product distribution. Finally, studies made 

on Pt-Sn-Rh catalyst by linear sweep voltammetry indicated that for potentials higher 

than 0.45 V versus RHE, the ternary alloy catalyst posses the highest activity for ethanol 

electro-oxidation, while for potential lower than 0.45 V versus RHE the electrochemical 

activity of the ternary catalyst was lower than that of the binary Pt-Sn catalyst.13 

Besides investigators working in the creation of an enhanced catalytic material 

that can be used in DEFC’s for the anodic reaction, several studies have been made on 

the ethanol oxidation in ionic liquids due to ionic liquids have unique chemical and 

physical properties30. 

Ionic Liquids 

Room temperature ionic liquids (RTILs) can be defined as salts with a melting 

temperature below the boiling point of water. Most salts identified in the literature as 

ionic liquids are liquid at room temperature, and often to substantially lower 

temperatures. A general feature of ionic liquids is that most consist of organic cations 

such as 1-alkyl-3-methylimidazolium, 1-alkylpyridinium, N-methyl-N-
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alkylpyrrolidinium and ammonium ions, and inorganic anions such as simple halides, 

which generally inflect high melting points, to inorganic anions such as tetrafluoroborate 

and hexafluorophosphate and to large organic anions like bistriflimide, triflate or 

tosylate.25, 26 

 

                                         

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Commonly Used Anions for Ionic Liquids  
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Figure 2: Commonly Used Cations for Ionic Liquids  
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Physical and Chemical Properties of Ionic Liquids 

The physical and chemical properties of RTILs depend on the nature and size of 

both the cation and the anion constituents. Knowledge of the physical properties of 

RTILs and the phase behavior with gases, liquids and solids (including inorganic salts) is 

important for evaluating and selecting RTILs for each application as well as process 

design.  

RTILs have become very popular as potential solvents for industrial applications 

in many different disciplines of science and environment due to their unique properties 

such as a negligible vapor pressure, good thermal stability, tunable viscosity and 

miscibility with water, inorganic and organic substances, a wide electrochemical window, 

high conductivity, high heat capacity and solvents available to control reactions. Despite 

their wide range of polarity and hydrogen-bonding ability, these new solvents are liquid 

form 180 K (glass transition) to 600 K.  

Densities and Viscosities    

RTILs tend to be denser than water with values ranging from 1 g cm-3 for a 

typical RTIL to 2.3 g cm-3 for fluorinated RTILs. For example, the densities of the 

following two salts are: [C8C1Im][BF4] 1.08 g cm-3 or [C10C1Im][BF4] 1.04 g cm-3 at T = 

298.15 K. Density depends strongly on the size of the ring in the cation, on the length of 

the alkyl chain in the cation, on the symmetry of the ions and on the interaction forces 

between the cation and the anion. RTILs with aromatic head ring, in general, present 

greater densities then pyridinium head ring RTILs and than do imidazolium ring RTILs. 

Density increases with increasing symmetry of their cations. The increases of an alkyl 
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chain diminish the densities in a systematic manner (sometimes only slightly, as was 

shown above). RTILs with functional groups reveal higher densities than those of alkyl 

chains. The densities of RTILs based on 1,3-dialkylimidazolium cations (the most 

popular RTIL in experimental laboratory work worldwide)  increase for typical anions in 

the following order: [BF4]- < [C2SO4]- < [PF6]- < [TF2N]-.  

Viscosity of RTILs, typically at the level of 10-500 cP (centipoise) at room 

temperature, is much higher than that characteristic of water (ŋ(H2O) = 0.89 cP at 298.15 

K) and aqueous solutions. Such as high dynamic viscosity (viscosity coefficient) of 

RTILs causes difficulties in practice since it affects the diffusion of solutes due to 

problems such as stirring and pumping. The viscosity of RTILs is determined by van der 

Waals forces and hydrogen-bonded structures. Electrostatic forces as well as the shift of 

charge at the anion may also play an important role. 

Melting Point, Glass Transition, and Thermal Stability 

Melting points of RTILs depend both on the cation and on the anion. Usually, the 

increase in anion size and its asymmetric substitution as well as the increase in cation size 

and its symmetry leads to a decrease in the melting point. Another important factor 

affecting melting points of RTILs is the flexibility of the cation and the anion. An 

increase of alkyl chain length enhances the molar volume and chain flexibility of the 

cation. For example, increasing the alkyl chain length from 0 to 8 the melting point 

temperature decreases whereas increasing from 8 to 20 it causes a monotonous increasing 

of the melting point.  
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The glass transition temperatures for the most popular RTILs are between 213 and 

783K.  In general, changes of glass transition temperatures with changing length of the 

alkyl chain are much smaller than the melting temperatures. 

Common RTILs are thermally stable up to 700 °C. Thermal stability is limited by 

the same factors that contribute to the melting temperature.27  

Electrochemical Properties 

The early history of RTILs research was dominated by their applications as 

electrochemical solvents. One of the first recognized uses of ionic liquids was as a 

solvent system for the room-temperature electrodeposition of aluminum. In addition, 

much of the initial development of RTILs was focused on their use as electrolytes for 

battery and capacitor applications. Until recently, electrochemical studies in the room 

temperature ionic liquids were primary done in haloaluminate-based systems and this 

work has been extensively reviewed. Development of non-haloaluminate ionic liquids 

over the past fifteen years, however, has led to an explosion of research on these systems. 

Much of the initial interest in these new room temperature ionic liquids has been in areas 

other than electrochemistry. However, this initial slight has been largely corrected, as 

evidenced by the dramatic growth over the past five years in electrochemically related 

publications involving non-haloaluminate room temperature ionic liquids and the 

appearance of several good reviews on the subject. 

Room temperature ionic liquids possess a variety of properties that make them 

desirable as solvents for investigating electrochemical processes. They often have wide 
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electrochemical potential windows; they have reasonably good electrical conductivity 

and solvent transport properties as mention before. 

Electrochemical Potential Window 

A key criterion for the selection of a solvent for electrochemical studies is the 

electrochemical stability of the solvent. This is most clearly manifested by the range of 

potential over which the solvent is electrochemically inert. This useful electrochemical 

potential “window” depends on the oxidative and the reductive stability of the solvent. In 

the case of RTILs, the potential window depends primarily on the resistance of the cation 

to reduction and the resistance of the anion to oxidation. In addition, the presence of 

impurities can play an important role in limiting the potential window of RTILs. 

The most common method used to determine the potential window of RTILs is 

cyclic voltammetry. In a three-electrode system, the potential of an inert working 

electrode is scanned out to successively greater positive (anodic) and negative (cathodic) 

potentials until background currents rise dramatically due to oxidation and reduction of 

the room temperature ionic liquid, respectively. The electrochemical potential window is 

the difference between these anodic and cathodic potential limits.  

It must be noted that impurities in the ionic liquids can have a profound impact on 

the potential limits and the corresponding electrochemical window. During the synthesis 

of many non-haloaluminate RTILs residual halides and water may remain in the final 

product. Halide ions (Cl-, Br-, I-) are more easily oxidized than the fluorine-containing 

anions used in most non-haloaluminate RTILs. Consequently, the observed anodic 
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potential limit could be appreciably reduced if significant concentrations of halide ions 

are present.  

During the initial development of the non-haloaluminate air and water stable 

room temperature ionic liquids, researches often ignored potential contamination by 

water and the corresponding effects on the physical and chemical properties of the ionic 

liquid. However, as work on these new room temperature ionic liquids has progressed it 

has become apparent that water is an important contaminate to control. Water can be 

reduced and oxidized within the electrochemical potential window of many ionic liquids. 

Consequently, contamination of an ionic liquid with significant amounts of water can 

decrease the overall effective electrochemical window. 

Glassy carbon (GC), platinum (Pt), and tungsten (W) are the most common 

working electrodes used to evaluate electrochemical windows in room temperature ionic 

liquids. The choice of the working electrode has some impact on the overall 

electrochemical window measured. This is due to the effect of the electrode material on 

the irreversible electrode reactions that take place at the oxidative and reductive limits.  

Ionic Conductivity 

The ionic conductivity of a solvent is of critical importance in its selection for an 

electrochemical application. There are a variety of DC and AC methods available for the 

measurement of ionic conductivity. However, in the case or room temperature ionic 

liquids the vast majority of data in the literature has been collected using one of two AC 

techniques, the impedance bridge method or the complex impedance method. Both of 



23 
 

these methods employ simple two electrodes cells to measure the impedance of the ionic 

liquid (Z). 

The conductivity of an electrolyte is a measure of the available charge carriers 

and their mobility. On the surface one would expect room temperature ionic liquids to 

possess a very high conductivity because they are composed entirely of ions. 

Unfortunately, this is not the case. As a class, ionic liquids possess reasonably good ionic 

conductivities, comparable to the best non-aqueous solvent/electrolyte systems. However, 

they are, in general, significantly less conductive than concentrated aqueous electrolytes. 

The smaller than expected conductivity of ionic liquids can be attributed to the reduction 

of available charge carriers due to ion pairing and /or ion aggregation, and to the reduced 

ion mobility resulting from the large ion size found in many ionic liquids. 

Transport Properties 

The behavior of ionic liquids as electrolytes is strongly influenced by the transport 

properties of their ionic constituents. These transport properties relate to the rate of ion 

movement, and to the manner in which the ions move (as individual ions, ion-pairs, or 

ion aggregates). The two quantities often used to evaluate the transport properties of 

electrolytes are ion diffusion coefficients and ion transport numbers. The diffusion 

coefficient is a measure of the rate of movement of an ion in a solution, and the transport 

number is a measure of the fraction of charge carried by that ion in the presence of an 

electric field.  
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Applications of Ionic Liquids 

Until now RTILs have received most attention for electrochemical and chemical 

research. However, it is important to mention that there are some applications of the ionic 

liquids outside the classic chemical use as solvents or process chemicals. In these cases 

ionic liquids are used as performance chemicals and engineering fluids.  

Applications of Ionic Liquids in Chemical Processes 

Acid Scavenging: The BASIL™ Process 

The so-called BASIL™ process (BASIL = Biphasic Acid Scavenging utilizing 

Ionic Liquids) is used for the synthesis of alkoxyphenylphosphines, which are important 

raw materials in the productions of BASF’s Lucirines substances that are used as photo-

initiators to cure coating and printing inks by exposure to UV light. In this process, the 

ionic liquid acts as an auxiliary   and the benefits of using the ionic liquid are: non 

handling of solids, better heat transfer, higher chemical yield, lower investment cost, and 

higher sustainability of the process. 

Extractive Distillation 

In many cases, the formation of azeotropes does not allow the separation of two 

or more compounds by simply distillation. Very well known azeotropes with and 

industrial relevance are, for example, water/ethanol. Sometimes the azeotrope can be 

broken by the addition of another compound. These compounds are called entrainers. It 

was found that ionic liquids work as entrainers for a whole range of azeotropic systems. 

Very high separation factors can be achieved, especially if water is part of the azeotropic 
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mixture. Some benefits of using ionic liquids as extrainers are: breaking of azeotropes, 

less energy consumption, less equipment (distillation columns), and lower investment. 

Chlorination with “Nucleophilic HCl” 

Industrial chlorinating agents for alcohols are CCl2O, SOCl2, PCl3, and PCl5. 

Phosgene is a cheap raw material and usually gives excellent yield. However, the 

handling of phosgene requires enormous safety efforts. In principle, the chlorination of 

alcohols can also be achieved by reaction with HCl gas. Unfortunately, in the case of 

diols, conversion is usually less than 100% and the reaction stops after formation of 

cyclic or open-chain ethers. 

Surprisingly the reactivity profile completely changes when the reaction is 

performed in ionic liquid. Obviously either the nucleophilicity of HCl or nucleofugicity 

of the leaving group (water) is drastically increased. Apparently, the either side products 

are cleaved, allowing further reaction to the desired bischlorinated product. In this 

process, the ionic liquid acts as a solvent, and the benefits of using ionic liquids as a 

solvent are: HCl substitutes for phosgene and high selectivity at high conversion. 

Cleavage of Ethers 

Eli Lilly (pharmaceutical company) has published de-methylation of an aromatic 

methoxy group in ionic liquids. Usually the cleavage of aromatic methoxy ethers requires 

very harsh conditions and inconvenient reagents, such BBr3
 or HBr in boiling acetic acid. 

It has been found by Eli Lilly that de-methylation of an aromatic methoxy (4-

Hydroxyphenylbutyric acid) can be made using the ionic liquid pyridinium hydrochloride 
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([PyH]Cl). In this process, the ionic liquid acts as a catalyst/reagent and the specific 

benefits offer by the ionic liquid are: HCl can be used as a cheap cleaving agent of 

aromatic methoxy groups and lower cost. 

Dimerization of Olefins 

The Institut Francaise du Petrol (IFP) was the first to develop an ionic liquid 

based process to a pilot scale (DIFASOL Technology) for the dimerization of olefins. In 

dimerization of olefins, the ionic liquid acts as a solvent, and the benefits of the ionic 

liquid are: higher catalyst activity, higher catalyst stability, and higher selectivity. 

Oligomerization of Olefins 

Chevron Phillips has invented a process utilizing acidic ionic liquid for olefin 

oligomerization. The process produces synthetic lubricant base oil which is used in a 

variety of lubricants including gear oils, greases and automotive engine lubricants. 

Synthetic lubricants are of considerable interest due to tightening lubricant specifications. 

In oligomerization of olefins the ionic liquid acts as a catalyst, and the benefits of the 

ionic liquid are: provides product with a unique viscosity profile useful for application as 

a lubricant.  

Hydrosilylation 

The hydrosilylation reaction is a widely used method for the synthesis of organo-

modified silanes and siloxanes. The addition of Si-H to C-C double bonds is usually 

catalyzed by homogenous or colloidal Pt catalysts. The major drawback of this reaction is 

that the catalyst cannot easily be removed from the product after completion of the 
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reaction. To lower losses of precious metal catalysts, the amount of catalyst is usually 

decreased, but this decreases reaction speed. Degussa has managed to develop an elegant 

biphasic approach to run the hydrosilylation reaction. 

The catalyst is now dispersed in the ionic liquid phase, from which the pure 

product separates as a new liquid phase that can be easily decanted after the reaction. The 

ionic liquid catalyst phase is still active and can be reused. Degussa has been running this 

process on a pilot scale achieving conversions of >99%. In this process, the ionic liquid 

acts as a catalyst, and the benefits of the ionic liquid are: recovery and reusability of the 

catalyst phase, shorter reaction times due to higher catalyst loadings, and improvement in 

product quality. 

Fluorination 

Fluorinated hydrocarbons are used as refrigerants in the air-conditioning and 

refrigeration industry. Chlorofluorocarbons are being phased out according to the 

Montreal protocol due to their ozone depletion potential. This is mainly attributed to the 

chlorine content. Hence chlorofluorocarbons will be replaced by chlorine free 

hydrofluorocarbons (HFCs). HFCs can be manufactured from chlorinated hydrocarbons 

by reacting them with HF in order to achieve a chlorine/fluorine substitution. The state-

of-the-art catalyst for this reaction is SbCl5. However, this catalyst suffers from a 

reductive deactivation with the formation of Sb(III) species. To overcome the loss of 

catalyst, chlorine is co-fed for re-oxidation of Sb(III) to Sb(V). This is technically 

feasible, but consumes chlorine as a raw material and leads to back-chlorination of the 

fluorinated products, and hence to significantly lower yields. Arkema has demonstrated at 
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a pilot scale that imidazolium-based ionic liquids with a [SbF6]- ion can eliminate the 

deactivation problem. In this process, the ionic liquid acts a catalyst, and the benefits 

offer by the ionic liquid are: higher catalyst activity, higher stability of the catalyst to 

reductive deactivation, avoidance of chlorine co-feed, and a higher selectivities towards 

perfluorinated products. 

Applications of Ionic Liquids in Electrochemistry 

Electroplating of Chromium 

The deposition and dissolution of metals is a multi-million industry that is almost 

totally based on aqueous acids and alkalis. The use of water limits the metals that can be 

deposited and produces large volumes of aqueous waste. The processes are often 

hindered by low current efficiencies. 

One of the largest sectors of electroplating market is that of chromium deposition. 

The major disadvantage of the current process of chromium plating is that it requires the 

use of chromic acid-based electrolytes comprising hexavalent chromium. The toxicity 

and the carcinogenicity associated with Cr(VI)  have resulted in wide-ranging 

environmental legislation in the USA and Europe to reduce its use. Other disadvantages 

of the existing technology are economic, such as the low current efficiency for the 

reduction of Cr(VI) in acid media. Furthermore, the difference in overpotential between 

chromium and hydrogen reduction results in the evolution of hydrogen gas, which can 

lead to embrittlement in the substrate, thus reducing quality and yield. 
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Scionix, a joint venture company between the University of Leicester and Whyte 

Chemicals Ltd, has developed ionic liquid containing Cr (III) salts, which are 

significantly less toxic than the carcinogenic Cr(VI) species. The process also operates 

with >90% current efficiency, resulting in significantly reduced power consumption and 

making the ionic liquid technology a more environmentally benign form of plating. 

Moreover, since these are not aqueous solutions, there is negligible hydrogen evolution. 

In this process, the ionic liquid act as an electrolyte, and the specific benefits offer by the 

ionic liquid are: usage of less toxic Cr(III) salts rather than highly toxic Cr(VI) as raw 

material for chromium plating, and reduced power consumption. 

Electropolishing 

Electropolishing of stainless steel is an effective way of increasing corrosion 

resistance and decreasing wear, in addition to the obvious esthetic benefits. Current 

electropolishing technology primarily uses sulfuric and phosphoric acids mixtures. These 

are naturally corrosive, harmful to work with and must be neutralized before disposal. 

Acid-based electropolishing is an inherently inefficient process: only 10-20% of the 

energy supplied is utilized for metal dissolution. The scale of this activity worldwide 

represents a significant environmental concern. 

Scionix has developed an alternative concept to forming eutectic-based ionic 

liquids which is to complex the chloride anion with a hydrogen-bonding compound rather 

than a metal halide. The ionic liquid allow electropolishing with high current efficiency 

(>80%), improved surface finish and improved corrosion resistance. 
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Scionix is currently developing a commercially viable medium-to-large-scale 

electropolishing plant using these novel electrolytes in collaboration with UK-based 

Anopol Ltd. The new process significantly reduces the total volume of effluent and its 

toxicity. In this process, the ionic liquid acts as an electrolyte, and the specific benefits of 

the ionic liquid are: high current efficiency, improved surface finish, and improved 

corrosion resistance. 

Applications of Ionic Liquids as Performance Chemicals and Engineering Fluids 

Ionic Liquids as Antistatic Additives for Cleaning Fluids 

The cleaning of high value surfaces, e.g. in the automotive, furniture or electronic 

industry, is a challenging problem, in particular if small charged particles have to be 

removed. Wandres Micro-Cleaning GmbH has developed a cleaning system that uses 

moistened instead of dry filaments. 

The liquid film (water) is brought onto the filament with the help of very small, 

micrometer-sized water droplets. The droplets are generated in a Venturi nozzle. To 

avoid electrostatic charging of the surface, a supporting salt is usually added that 

facilitates electrical conductivity. If sodium chloride is used as a supporting salt; a solid is 

precipitated in the nozzle leading to encrusting and blocking of the system. 

Ionic liquids can offer a unique solution to this problem, since as liquid salts they 

can provide electrical conductivity without precipitation of a solid, hence without 

formation of deposits. The ionic liquid solution to this problem was developed and 

established by Iolitec in cooperation with Wandres Micro-Cleaning GmbH. In this 
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process, the ionic liquid acts as cleaning agent, and antistatic, and the benefits of the ionic 

liquid are: enables electric conductivity without formation of solid residues. 

Ionic Liquids as Compatibilizers for Pigment Pastes 

Up to now only a very little attention has been paid to ionic liquids as 

performance chemicals. Degussa has managed to develop an application of ionic liquids 

as so-called compatibilizers for pigment pastes.   

Paints and coatings can be tinted by adding a small amount of a color concentrate 

–the pigments paste- to a white based paint.  The advantage is clear. One can derive more 

or less any color from the same base paint formulation, just by adding the right mix of 

pigments. To achieve a homogenous and stable coloring, the paste needs some additives 

which for example, prevent the pigments from sedimentation or flocculation. For 

environmental reasons, it is preferable to use water-based pigment pastes. However, the 

water-based system cannot be used universally for both water and solvent-based paints. 

This problem has been solved by addition of ionic liquids to the pigment paste. Now the 

pigments are stable in both water-based paints and in solvent-based ones. In this process, 

the ionic liquid acts as a compatibilizers, and the benefits of using the ionic liquid are: 

stabilize pigments in pigment pastes, provide truly universal water-based pigment pastes 

suitable for water- and solvent-based paints and coatings. 
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Use of Ionic liquids for Storage of Gases 

The semiconductor manufacturing industry uses a number of hazardous specialty 

gases as phosphine (PH3), arsine (AsH3) and boron trifluoride (BF3) for doping, etching, 

and thin-film deposition. These gases are highly toxic and pyrophoric. Therefore storage 

and handling is challenging and requires enormous safety efforts. For example, storage of 

toxic gases under high pressure in metal cylinders is often unacceptable due to the 

possibility of leakage or rupture of the cylinder. To overcome the risks of high-pressure 

storage, these gases are often stored under low pressure by adsorption o solid support 

such as zeolites. 

Disadvantage of this technology include: low capacities, delivery limitation and lo 

thermal conductivity. Air Products has developed an entirely new technology to solve 

this problem. Ionic liquids are used as a liquid support for the storage of gases. To 

increase the affinity of the gas to the ionic liquid a Lewis acid-Lewis base interaction is 

utilized. This allows high gas storage capacities without the need for high pressure. In 

this process the ionic liquid acts as a liquid support, and the benefits of the ionic liquid 

are: storage of hazardous gases possible without pressure, and higher safety.28 

Review of Electrochemical Techniques 

Cyclic Voltammetry 

Among all electrochemical methods, cyclic voltammetry (CV) is the most widely 

used method to obtain information related to analyte concentration, electrode reaction 

kinetics, diffusional distributions, redox properties of compounds and mechanisms of 
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redox reactions. In a typical cyclic voltammetry experiment, an analyte is electrolyzed 

(oxidized or reduced) by placing the solution in contact with an electrode surface, and 

then making the surface sufficiently positive or negative in voltage to force electron 

transfer. In simple cases, the potential of a working electrode is started at a particular 

voltage with respect to a reference electrode such as calomel or Ag/AgCl.  Then the 

electrode voltage is changed to more positive or negative voltage at a linear rate, and 

finally, the voltage is changed back to the original value at the same linear rate. When the 

electrode becomes sufficiently negative or positive, a solution species may gain electrons 

from the electrode or transfer electrons to the electrode. This results in a measurable 

current in the electrode circuitry. However, if the solution is not mixed, the concentration 

of electro-active species nears the surface of the electrode decreases, and the electrolysis 

current then decreases. When the voltage cycle is reversed, it is often the case that 

electron transfer between electrode and chemical species will also be reversed, leading to 

an “inverse” current peak. These features are illustrated in Figure 2. 
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 A typical cyclic voltammogram for an electro-active species is defined by four 

parameters:  cathodic peak current, Ipc, anodic peak current, Iac, cathodic peak potential, 

Epc, and the anodic peak potential, Eac. Other parameters as the formal reduction 

potential, E°, the number of electrons involved in the redox process, n, and the half-cell 

potential, E1/2, can be calculated from the four measurable quantities, Ipc, Iac, Epc, and Eac. 

In a cyclic voltammogram the signal of primary interest is the height of the 

reduction/ oxidation peak. In this method, the peak height (Ip) is described by Randles-

Sevcik equation, and is directly proportional to the analyte concentration as follows: 

( ) CADvnI p
2/12/12/3510687.2 Χ=        (Equation 4) 

Figure 4: Typical Cyclic Voltammogram for an Electro-Active Species   
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where n is the number of electrons involved in the process, A is the area of the 

working electrode (cm2), D is the diffusion coefficient (cm2 s-1), C is the bulk 

concentration of the analyte (mol cm-3), and v is the rate at which the potential is sweep 

(V s-1). The formal reduction potential, E°, for an electrochemically reversible couple can 

be calculated knowing Epc and Epa by: 

2
pcpa EE

E
+

=°                  (Equation 5) 

For a reversible redox couple, the number of electrons transferred in the electrode 

reaction can be determined by the separation between the peak potentials, ∆Ep: 

2
0592.0

=−=Δ pcpap EEE       (Equation 6) 

where a reversible one-electron process has an expected potential peak separation 

of 0.0592 V at 25°C.  

Finally the half-cell potential, E1/2 is calculated by the following equation: 

nF
RTEE pc 11.1

2
1 +=        (Equation 7) 

where R is the gas constant, T is the temperature of the system (K), F is Faraday’s 

constant and n is the number of electrons involved in the reaction.  

Electrochemically reversible systems are characterized by a rapid electron transfer 

and a peak current ration, Ipc/Ipa equal to one, which is independent of the scan rate. 

Deviation of the ratio Ipa/Ipc from unity is indicative of homogeneous kinetic or other 

complication in the electrode process.29, 30, 31 
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II. EXPERIMENTAL 

Materials 

 1-Methylimidazole (99+%) was purchased from Aldrich Chemical Company, 

Inc., and redistilled prior to use at a temperature of 90 to 100 °C under vacuum (15 mm 

Hg). 1-Chloroethane gas (99.7+%) was obtained from Aldrich Chemical Company, Inc., 

and used as received. Sodium Tetrafluoroborate (95+%) and Silver Tetrafluoroborate 

were obtained from Alfa Aesar Co., and used as received.  Lithium-bis-

(trifluoromethanesulfonyl)imide (HQ-115) was obtained from 3M Corporation and used 

as received. Acetonitrile with a gradient grade of +99.9% was purchased from Sigma-

Aldrich and used as received. Diethyl Ether was obtained from Fisher Co. and used as 

received. Perchloric acid, 70%, 99.9985% (metal basis) was purchased from Alfa Aesar 

Co., and used as received. Ethyl alcohol was purchased from AAPER Alcohol and 

Chemical Co., and used as received. Sulfuric Acid was purchased from Pharmaco-

AAPER Alcohol and Chemical Co. 

Instrumentation 

Determination of Water in Ionic Liquids  

 The water concentration in ionic liquids was determined using a Denver 

Instruments Coulometric Karl Fisher Titrator – Model 260. The size of each sample used 

was 50.00 µL.  All samples were injected into the tritator using a glass syringe with a 
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stainless steel needle. Prior to use, the syringe was washed with acetonitrile and dried in 

an oven at a temperature of 60–80 °C.  

Electrochemical Measurements 

The electrochemical measurements were performed in two types of electrochemical 

cells; one for small volumes of the sample, and the other for large volumes of the sample 

using a conventional three-electrode assembly. The working electrodes in the small cell 

were 1mm Pt in glass or 1.5 mm Pt in plastic obtained from Cypress Systems Inc. The 

working electrode in the large cell was a 1 cm Pt disk in plastic obtained from Pine 

Industries Co. The counter (auxiliary) electrode was a Pt wire, and the reference electrode 

a Ag wire.    
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Figure 5: Small Volume Electrochemical Cell                       
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              Figure 6: Large Volume Electrochemical Cell                           
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Electrochemical measurements were made using a computer-aided 

Potentiostat/Galvanostat (EG&G Princenton Applied Research model 273) interface with 

e-corder model 201.  

Method Used for Cleaning Platinum Electrode 

Poisoned platinum electrode was cleaned by soaking the electrode in concentrated 

sulfuric acid (H2SO4) overnight to dissolve PtO or Pt(OH)2 deposited on the electrode. 

After soaking in sulfuric acid, the electrode was soaked in distilled water and placed in a 

sonicator for a few hours to remove any debris. After a few hours, the electrode was 

removed from the water, and was polished on a clean piece of paper.  After polishing the 

electrode, it was rinsed off several times with several small portions of distilled water, 

and stored in distilled water until use. The electrode was reactivated by running several 

cyclic voltammograms at potentials corresponding to the oxidation and reduction limits 

of the platinum surface electrode in the solution at which the electrochemical 

measurements would be made.  

Synthesis of 1-Ethyl-3-Methylimidazolium Chloride  

1-Methylimidazole with a purity grade of 99% was distilled at a 

temperature of 90-100°C under vacuum (15 mm Hg). In an I2R glove bag filled with 

nitrogen gas, an equimolar amount (44 g) of gaseous Chloroethane was condensed into an 

ACE glassware reinforced pressure bottle, using a bath of liquid nitrogen/ethanol solution 

at a temperature of -30 to -50°C. 1-Methylimidazole was added into the bottle, and then 

the bottle was sealed using a chemically inert Teflon screw cap, and removed from the 

glove bag. The reaction flask was heated on a hot plate using an oil bath at a temperature 
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of 55°C.  The solution was left to react for four days. After the reaction was completed, 

the reaction flask was removed from the heat and cooled down to room temperature, and 

then, it was refrigerated for around 12 hrs to crystallize white crystals of 1-Ethyl-3-

Methylimidazole Chloride. Once the crystals were formed, excess liquid was decanted 

and the crystals of EMImCl were dissolved in acetonitrile, recrystallized with diethyl 

ether and refrigerated until recrystallization was completed. The crystals were filtered 

under N2 using a Schlenk filtration flask and the crystals of 1-Ethyl-3-Methylimidazole 

Chloride were dried under vacuum for two days. The dry 1-Ethyl-3-Methylimidazolium 

Chloride was stored under dry nitrogen until use.    

 

 

Synthesis of 1-Ethyl-3-Methylimidazolium Tetrafluoroborate 

 1-Ethyl-3-Methylimidazolium Tetrafluoroborate was prepared by an ion exchange 

reaction between 1-Ethyl-3Methylimidazolium Chloride and Sodium Tetrafluoroborate in 

water. 0.605 Moles (88.66 g) of 1-Ethyl-3-Methylimidazolium Chloride were dissolved 

in 300 ml of distilled water, then an equimolar amount of Sodium Tetrafluoroborate (67 

g) dissolved in 300 ml of distilled water was added. The reaction flask was stirred on a 

stirring plate, and the solution was left to react for 24 hrs. After the reaction was 

completed, water was removed from the solution by rotatory evaporation under vacuum 

at a temperature of 80 °C.  After water was removed, a solution of 1-Ethyl-3-

Cl
-

Et

Me

N

N

Me

N

N

Cl+ 

1-Methylimidazole Chloroethane 1-Ethyl-3-Methylimidazolium Chloride 

+
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Methylimidazolium Tetrafluoroborate was filtered to remove NaCl using a fine porosity 

(4-8 µ) sintered-glass funnel.  Any excess of chloride in the solution was removed by 

dissolving 1-Ethyl-3-Methylimidazolium Tetrafluoroborate in distilled water and 

potentiometrically titrating the excess of Cl-  with AgBF4(aq) until an equivalence point of 

297 mV on Ag│AgCl  electrode was reached. An Ag|AgCl, HgSO4|Hg reference 

electrode was used to measure the equivalent point potential. Again, water removal was 

performed by rotatory evaporation at 80 °C under vacuum. 1-Ethyl-3-Methylimidazolium 

Tetrafluoroborate was filtered to remove any precipitated AgCl. After the solution was 

filtered, 500 ml of acetonitrile was added, and the solution was evaporated under vacuum. 

1-Ethyl-3-Methylimidazolium Tetrafluoroborate was tested with AgNO3 to confirm the 

absences of chloride ions. 1-Ethyl-3-Methylimidazolium Tetrafluoroborate was dried on 

the high vacuum (5 x 10-4  mm Hg) to remove any excess of water present. 
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Synthesis of 1-Ethyl-3-MethylimidazliumBis(trifluoromethanesulfonyl)imide 

1-Ethyl-3-Methylimidazolum Bis(trifluoromethanesulfonyl)imide 

 (EMImTFSI) was prepared by an ion exchange reaction, from 1-Ethyl-3-

Methylimidazolim Chloride and Lithium-bis-(trifluoromethanesulfonyl)imide.  

 

 

1-Ethyl-3-Methylimidazolium Chloride (65 g) was dissolved in 300 ml of 

distilled water. Then an equimolar amount of Lithium-bis(trifluoromethanesulfonyl)imide 

(129 g) was dissolved in 300 ml of distilled water was added. The reaction flask was 

stirred for 24 hrs. After the reaction was completed, 1-Ethyl-3-Methylimidazolium 

Bis(trifluoromethanesulfonyl)imide layer was separated, and washed with several 

portions (7 small portions) of distilled water using a separatory funnel to remove any 

excess of chloride. The presence of chloride was tested with AgNO3.    
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III. RESULTS AND DICUSSION 

 

 The objective of this work was to synthesize and characterized the room 

temperature ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) and 

1-ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (EMImTFSI), and to 

study the electrochemical behavior of ethanol, and propanol in these ionic liquids on a 

platinum electrode. In accordance with previous literature data, the chemical oxidation of 

ethanol on platinum electrode in acid media involves several reaction pathways. One 

predominant pathway involves oxidation of ethanol to acetaldehyde which can be further 

oxidized to acetic acid. However, at higher ethanol concentration (> 1 M) the poisoning 

of the Pt electrode occurs. Poisoning of the electrode is due to the formation of PtO and 

Pt(OH)2. For that reason it is necessary to reactivate poisoned Pt electrode. 

  It is expected that use of the room temperature ionic liquids, EMImBF4 and 

EMImTFSI, as electrolytes in the electrochemical oxidation ethanol, and  propanol 

should have some advantages in comparison to aqueous HClO4, such as eliminating the 

poisoning of the Pt electrode and favoring  one of these pathways and possible oxidize 

ethanol to CO2. 
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Synthesis and Characterization of Ionic Liquids 

1-Ethyl-3-Methylimidazolium Tetrafluoroborate 

As mention before, a key criterion for the selection of a solvent for 

electrochemical study is the electrochemical stability of the solvent. This is most clearly 

manifested by the range of potential over which the solvent is electrochemically inert. 

This useful electrochemical potential window depends primarily on the resistance of the 

cation to reduction, the resistance of the anion to oxidation and the presence of impurities 

(e.g. halide ions, water). 28  

It is known from previous investigations that while 1-ethyl-3-methylimidazolium 

tetrafluoroborate (EMImBF4) is commercially available, this is not electrochemically 

pure due to presence of impurities (Cl-, H2O) making it unsuitable for electrochemical 

studies.  

 In our case, EMImBF4 was synthesized from 1-methylimidazole. The synthesis 

involved ethylation of 1-methylimidazole with ethyl chloride (CH3CH2Cl) and the 

formation of 1-ethyl-3-methylimidazolium chloride (EMImCl) at low temperature (< 50 

°C. The next step involved replacement of the Cl- ion with the BF4
- ion. This uses 

equivalent amounts of EMImCl with NaBF4.  Since EMImBF4 is soluble in water, it was 

necessary to remove traces of Cl- with AgBF4. In order to avoid addition of excess of 

Ag+, the titration was carried up to the equivalence point which was determined using an 

Ag|AgCl, HgSO4|Hg electrode. 

 As shown in Figure 7, EMImBF4 prepared by the reaction of EMImCl with 

NaBF4 does not contain Cl-and exhibits an electrochemical window of 4.4 V at platinum 

working electrode which is very close to the potential window reported in previous 
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work28.

 

 

Figure 7: Cyclic Voltammogram of EMImBF4 at Platinum Working Electrode 

 

1-Ethyl-3-Methylimidazlium Bis(trifluoromethanesulfonyl)imide 

1-ethyl-3-ethylimidazolium Bis(trifluoromethanesulfonyl)imide (EMImTFSI) was 

made by an ion exchange reaction between 1-ethyl-3-methylimidazolim chloride with 

lithium-bis-(trifluoromethanesulfonyl)imide in water. Since EMImTFSI is not soluble in 

water, the excess of Cl- was removed by washing the ionic liquid with H2O. 

As shown in Figure 8, EMImTFSI prepared by the ion exchange reaction of 

EMImCl with lithium-bis-(trifluoromethanesulfonyl)imide have an electrochemical 
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window of 5.0 V at platinum working electrode. 

 

 

Figure 8: Cyclic Voltammogram of EMImTFSI at Platinum Working Electrode 

 

Electrochemistry of Ethanol in HClO4 

In order to compare the electrochemical properties of ethanol in ionic liquids to 

the electrochemical properties in HClO4/H2O, the electrochemical properties in HClO4 

were studied. A cyclic voltammogram of HClO4 without ethanol is shown in Figure 9. 

The voltammogram displays a strong reduction peak at Epc = 500 mV at platinum 

working electrode which corresponds to reduction of H+ to H2, and a small oxidation 

peak at 0.85 V which is attributed to the oxidation of Pt to PtO. 
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Figure 9: Cyclic Voltammogram of 0.1 M HClO4 at Platinum Working Electrode 

 

 The electrochemical properties of ethanol on platinum working electrode in acidic 

medium were studied using different concentrations of ethanol (0.1, 0.2, 0.4, and 1 M) 

and different temperatures. In accordance with previous literature30, three characteristic 

oxidation peaks were observed during the electrochemical oxidation of ethanol in HClO4 

depending of the conditions at which the experiment were made.  
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Figure 10: Cyclic Voltammogram of 1 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 70 °C 
 
 

These three peaks have been attributed to the following oxidation steps: 

Peak 1 at Epa = 0.66 V. This oxidation peak corresponds to a two electron 

oxidation of ethanol to acetaldehyde: 

CH3CH2OH → CH3CHO + 2H+  + 2e-       (Equation 8) 

The overall process consists of two, one-electron steps. The first step involves 

chemisorptions of ethanol on Pt and fast one-electron oxidation, and then a slower one-

electron oxidation of absorbed species to acetaldehyde: 

Pt + CH3CH2OH → Pt-CH(CH3)OH + e- + H+        (Equation 9) 

Pt-CH(CH3)OH → CH3CHO + e- + H+        (Equation 10) 

At the same potential, a surface oxidation of Pt to PtO occurs: 

Pt + H2O → PtO – e- + H+        (Equation 11) 
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Peak 2 at Epa = 1.1 V. This oxidation peak involves a slow one-electron oxidation 

of Pt and the formation of Pt-OCH2-CH3. Followed the oxidation of Pt and the formation 

of Pt-OCH2-CH3, a one-electron oxidation of Pt-OCH2CH3 to PtO and the oxidation of 

Pt-OCH2CH3 to acetaldehyde takes place: 

Pt + CH3CH2OH → Pt-OCH2CH3 + e- + H+        (Equation 12) 

Pt-OCH2CH3 + H2O → PtO + CH3CH2OH + e- + H+        (Equation 13) 

Pt-OCH2CH3 → Pt + CH3CHO + e- + H+        (Equation 14) 

It is believed, that at this potential, oxidation of acetaldehyde to acetic acid will 

also take place. It is important to notice that poisoning of the platinum electrode occurs 

by the formation of PtO.  This will occur if reaction 13 is faster than reaction 14. If 

reaction 14 is faster than reaction 13, poisoning of the platinum electrode will not occur. 

Peak 3 at Epc = 0.4 V. Peak 3 is observed when the potential is reversed at +2V 

to the negative direction. According to the same literature data, this peak has been 

attributed to the reactivation of platinum surface by the reduction of PtO with 

CH3CH2OH to PtOH, and the re-oxidation of PtOH to PtO. 

CH3CH2OH + PtO → CH3CHO + e- + H+ + PtOH        (Equation 15) 

PtOH→ PtO + e- + H+        (Equation 16) 
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Electrochemistry of 0.1 M Ethanol in 0.1 M HClO4  

Figures 11a - f show the cyclic voltammograms of 0.1 M ethanol in 0.1 M HClO4 

at different temperatures obtained on a platinum electrode. The potential is scanned from 

E1 = -500 mV to E2 = +2 V, and then reversed to negative direction from E2 = +2 V to E3 

= -1V at scan rate of 50 mV/s. 

 Figure 11a shows a cyclic voltammogram of 0.1 M Ethanol in 0.1 M HClO4 

obtained at 22.6 °C. The voltammogram displays a small oxidation peak at 0.84 V (peak 

2) due to oxidation of ethanol, which probably corresponds to the oxidation given in 

equation 12. However the CV does not displays the first oxidation peak at 0.66 V.  

 

Figure 11a: Cyclic Voltammogram of 0.1 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 22.6 °C 
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Figures 11b – e show cyclic voltammograms of 0.1 M ethanol in 0.1 M HClO4 

obtained at 30.2, 40.6, 50.3 and 60.2 °C. At these temperatures, the cyclic 

voltammograms also display an oxidation peak at 0.84 V (peak 2), but with increasing 

temperature from 30.2 to 60.2 °C, CV’s show that the oxidation peak becomes more 

pronounced. The peak current increases from 0.5 mA to 2.5 mA. 

Figure 11f shows a cyclic voltammogram of 0.1 M ethanol in 0.1 M HClO4 

obtained at 70.1 °C. At his temperature, the cyclic voltammogram displays in addition to 

oxidation peak at 0.84 V (peak 2), a new oxidation peak at 0.13 V (peak 3) which 

corresponds to the reduction of PtO with ethanol to PtOH (equation 16).         

 

Figure 11b: Cyclic Voltammogram of 0.1 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 30.2 °C 
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Figure 11c: Cyclic Voltammogram of 0.1 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 40.6 °C 
 
 

    

Figure 11d: Cyclic Voltammogram of 0.1 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 50.3 °C 
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Figure 11e: Cyclic Voltammogram of 0.1 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 60.2 °C 
 
 

  

Figure 11f: Cyclic Voltammogram of 0.1 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 70.1 °C 
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Electrochemistry of 0.2 M Ethanol in 0.1 M HClO4 

Cyclic voltammograms of 0.2 M ethanol in 0.1 M HClO4 on a platinum electrode 

at different temperatures, are shown in Figures 12a - f.  

Figure 12a, shows the cyclic voltammogram of 0.2 M ethanol in 0.1 M HClO4 at 

23.0 °C. At this temperature, the voltammogram displays an oxidation peak at 0.84 V 

(peak 2), an oxidation peak at 0.13 V (peak 3) and a new oxidation peak at 0.30 V (peak 

1). The cyclic voltammogram obtained at these conditions shows that peak 1, 2 and 3 

give density currents of 0.6, 1.6 and 1.3 mA respectively. In comparison to the cyclic 

voltammograms obtained for 0.1 M ethanol (Figure 11e – f) these voltammograms show 

the oxidation peak at 0.30V. This peak corresponds to the oxidation of ethanol to 

CH3CHO (equation 8). 

  

Figure 12a: Cyclic Voltammogram of 0.2 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 23.0 °C 
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 Figures 12b – f show cyclic voltammograms of 0.2 M ethanol in 0.1 M HClO4 

obtained at 33.0, 43.0, 53.0, 63.0 and 73.0 °C. The cyclic voltammograms obtained at this 

concentration of ethanol and at these temperatures also display three oxidation peaks. 

However, as the temperature was increased from 23.0 to 73.0 °C, peak current increased 

(Table 3).  

Table 3. Peak current obtained at 0.2 M ethanol in 0.1 M HClO4. 

T(°C) Peak 1 (mA) Peak 2 (mA) Peak 3 (mA) 

23.0 0.6 1.6 1.3 

33.0 0.65 2 3 

43.0 1 2.9 4.6 

53.0 1.9 4 6.7 

63.0 2.3 4.8 10.5 

73.0 2.4 5 12.4 
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Figure 12b: Cyclic Voltammogram of 0.2 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 33.0 °C 
 
 

  

 
Figure 12c: Cyclic Voltammogram of 0.2 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 43.0 °C 
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Figure 12d: Cyclic Voltammogram of 0.2 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 53.0 °C 
 
 

  

Figure 12e: Cyclic Voltammogram of 0.2 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 63.0 °C 
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Figure 12f: Cyclic Voltammogram of 0.2 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 73.0 °C 
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Electrochemistry of 0.4 and 1 M Ethanol in 0.1 HClO4 

Figure 13 shows the cyclic voltammograms of the oxidation of 0.4 M ethanol in 

HClO4 obtained at 21.5, 32.8, 42.5, 51.5, 61.2, and 73.5 °C, and  Figure 14 shows the 

cyclic voltammograms of ethanol obtained at   22.9, 32.0,  41.6, 50.1, 61.1, and 72.5 °C.  

The cyclic voltammograms obtained at these two concentrations of ethanol and at these 

temperatures also display three oxidation peaks, which increased with temperature. 

However, during the electro-oxidation of ethanol at a concentration of 1 M ethanol, it was 

found that poisoning of the electrode occurred. The poisoning is due to the formation of 

PtO and/or adsorption of some species. For that reason, reactivation of the Pt electrode 

was made after each scan according to the method described in section 2. 
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Figure 13: Cyclic Voltammogram of 0.4 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 21.5, 32.8, 42.5, 51.5, 61.2, and 73.5 °C  
  
 

  

Figure 14: Cyclic Voltammogram of 1 M Ethanol in 0.1 M HClO4 at Platinum 
Working Electrode at 22.9, 32.0, 41.6, 50.1, 61.1, and 72.5 °C 
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Electrochemistry of Ethanol in Ionic Liquids 

 The electrochemical study of ethanol in aqueous perchloric acid showed that the 

oxidation of ethanol strongly depends on the concentration of ethanol and on the 

temperature of the solution. Poisoning of the platinum working electrode occurred at 

higher concentration of ethanol. At a low concentration of ethanol (0.1 M), cyclic 

voltammograms showed one oxidation peak (peak 2) at a temperature of 22.6 °C and two 

oxidation peaks (peak 2 and peak 3) at a temperature of 70.1 °C. Oxidation peak current 

(peak 2) increased as the temperature increased. However, at higher concentration of 

ethanol (> 0.2 M), cyclic voltammograms showed three oxidation peaks, and at 

concentration of ethanol higher than 1 M poisoning of the electrode occurred due to the 

formation of PtO. 

 Previous work in this laboratory has shown that in ionic liquids the oxidation of 

ethanol, even at a very large ethanol concentration, does not show poisoning of the 

electrode by formation of PtO. In this study, the electrochemical properties of ethanol in 

1-ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (EMImTFSI) and 1-

ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) was studied and compared to 

the electrochemical data obtained for ethanol in aqueous HClO4. In addition, 

electrochemical properties of propanol in ionic liquids were also studied. 

 In the first set of experiments, an attempt to oxidize ethanol at low concentrations 

(0.1, 0.2, and 0.4 M) was made, but the cycle voltammograms did not show any activity 

on the platinum electrode. Therefore electrochemical studies of ethanol in ionic liquids 

were made at higher concentrations (1, 2, 5, 10, and 15 M).   
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Electrochemistry of Ethanol in EMImTFSI 

Cyclic voltammograms of 1 M ethanol in EMImTFSI on platinum electrode at 

different temperatures are shown in Figures 15a – e. 

Figure 15a displays the cyclic voltammograms of 1 M ethanol in 

EMImTFSI obtained at 25.4 °C. At these conditions, the cyclic voltammogram shows an 

irreversible oxidation peak (peak 1) at Epa = 1.8 V. On reversed scan the voltammogram 

did not display cathodic current indicating the oxidized species undergo chemical 

changes (EC process). On the continuing negative scan a new cathodic peak was 

observed at Epc = 0.93 V (peak 2) and a new oxidation peak at Epa = 0.05 V (peak 3).  

This indicates that the reduced species formed at peak 1 is stable and is reoxidized at 0.05 

V. The peak potential separation ΔEp (Ep2 – Ep3) was rather large ΔEp = 850 mV. This 

unusual large value of ΔEp is probably due to relatively high internal resistance of ionic 

liquid. It is probable, based on figure 16, that the whole process involves oxidation of 

ethanol to acetaldehyde or/and acetic acid (Peak 3) and peak 2 corresponds to the 

reduction of acetaldehyde or/and acetic acid CH3COOH + e- → CH3COOH-. 
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Figure 15a: Cyclic Voltammogram of 1 M Ethanol in EMImTFSI at Platinum 
Working Electrode at 25.4 °C 
 

Figure 15b – e show the cyclic voltammograms of 1 M ethanol in EMImTFSI at 

35.4, 42.3, 54.0, and 64.9 °C. At this concentration of ethanol, and at these temperatures, 

the cyclic voltammograms does not change their general appearance except that peak 

currents increased. However, at larger temperature, re-oxidation peak 3 becomes smaller 

indicating that the reduced species is not chemically stable and undergoes further 

chemical change.  

 Finally, the cycle voltammograms obtained at these conditions, display a new 

oxidation peak (peak 4) which becomes more pronounced as the temperature is increased. 
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Figure 15b: Cyclic Voltammogram of 1 M Ethanol in EMImTFSI at Platinum 
Working Electrode at 35.4 °C 
 

 

Figure 15c: Cyclic Voltammogram of 1 M Ethanol in EMImTFSI at Platinum 
Working Electrode at 42.3 °C 
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Figure 15d: Cyclic Voltammogram of 1 M Ethanol in EMImTFSI at Platinum 
Working Electrode at 54.0 °C 
 
 

 

Figure 15e: Cyclic Voltammogram of 1 M Ethanol in EMImTFSI at Platinum 
Working Electrode at 64.9 °C 
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Figure 16: Cyclic Voltammogram of Acetaldehyde in EMImTFSI at Platinum 
Working Electrode. 
 

Figures 17 – 20 show the cyclic voltammograms of 2, 5, 10, and  

15 M ethanol in EMImTFSI obtained at different temperatures.  

Cyclic voltammograms of ethanol obtained at these concentrations and at 

these temperatures were similar to that of 1 M ethanol. However, with increasing 

temperature and concentration, oxidation peaks 1 and 4 become more pronounced.  

Through the study of the electrochemistry of ethanol in EMImTFSI, it  

was found that the platinum working electrode showed high activity. When 

concentrations of 1, 2, and 5 M of ethanol are used poisoning of the electrode does not 

occur.  At higher concentrations (10, and 15 M) poisoning of the electrode occurs.    
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Figure 17: Cyclic Voltammogram of 2 M Ethanol in EMImTFSI at Platinum 
Working Electrode at 26.4, 34.2, 45.7, 53.6, and 66.0 °C 
 

 

Figure 18: Cyclic Voltammogram of 5 M Ethanol in EMImTFSI at Platinum 
Working Electrode at 27.7, 30.9, 42.9, 50.6, and 60.9 °C 
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Figure 19: Cyclic Voltammogram of 10 M Ethanol in EMImTFSI at Platinum 
Working Electrode at 24.3, 33.6, 40.0, 53.7, and 65.3 °C 
 
 

 

 

Figure 20: Cyclic Voltammogram of 15 M Ethanol in EMImTFSI at Platinum 
Working Electrode at 27.7, 34.3, 42.2, 52.9, and 68.1 °C 
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Electrochemistry of Ethanol in EMImBF4 

Cyclic voltammograms of 1, 2, 5, 10, and 15 M ethanol in EMImBF4 are  

shown in Figures 21 – 25.   

Figures 21 and 22 show the cyclic voltammograms of 1, and 2 M 

ethanol in EMImBF4 obtained at different temperatures.  At these conditions,   cyclic 

voltammograms show a large irreversible oxidation peak 1 at 1.6 V. On the reverse scan, 

two new reduction peaks (peak 2, and peak 5) are observed, indicating that two new 

oxidation products of ethanol were observed. Comparing these two new reductions peaks 

(peak 2 and 5) with the reduction of acetaldehyde and acetic acid (Figure 26), peak 2 

could be assigned to the presence of acetaldehyde, and peak 5, to the presence of acetic 

acid. 

 

 

Figure 21: Cyclic Voltammogram of 1 M Ethanol in EMImBF4 at Platinum 
Working Electrode at 25.4, 35.8, 45.5, 55.2, and 65.2 °C 
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Figure 22: Cyclic Voltammogram of 2 M Ethanol in EMImBF4 at Platinum 
Working Electrode at 27.0, 38.5, 48.2, 57.6, and 68.5 °C 
 

Figure 23 – 25 show the cyclic voltammograms of 5, 10, and 15 M ethanol   

in EMImBF4 recorded at different temperatures. Electrochemical properties of ethanol at 

higher concentrations are similar to that determined for 1 and 2 M ethanol. 

 In comparison to the CV of ethanol obtained in HClO4, poisoning of the electrode 

occurs at much higher concentration of ethanol (> 10 M).  

 Similarly to the behavior in EMImTFSI, as the temperature and concentration of 

ethanol is increased, the oxidation current of peak 1 increased. 
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Figure 23: Cyclic Voltammogram of 5 M Ethanol in EMImBF4 at Platinum 
Working Electrode at 24.9, 34.7, 44.7, 54.8, and 64.0 °C 
 

 

Figure 24: Cyclic Voltammogram of 10 M Ethanol in EMImBF4 at Platinum 
Working Electrode at 25.3, 34.4, 44.5, 53.2, and 64.9 °C 
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Figure 25: Cyclic Voltammogram of 15 M Ethanol in EMImBF4 at Platinum 
Working Electrode at 26.9, 36.1, 46.8, 56.9, and 66.6 °C 
 

 

Figure 26: Cyclic Voltammogram of Acetic Acid and Acetaldehyde in EMIBF4 at 
Platinum Working Electrode 
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Electrochemistry of Propanol  

Figure 27 shows the cyclic voltammograms obtained for the electro- 

oxidation 1 M propanol in HClO4 at 25.5, 35.9, 45.9, 58.0, 65.9, and 75.4°C on a 

platinum electrode. At these conditions, oxidation of propanol in HClO4 displays similar 

voltammetric response to the oxidation of ethanol in acidic media. The cyclic 

voltammogram obtained, shows two oxidation peaks at Epa = 0.90 V, and peak 2 at Epa = 

1.41 V. Compared to oxidation of 1 M ethanol in HClO4, oxidation of 1 M propanol in 

acidic media shows much lower currents. However, current increases as the temperature 

increases. 

 

 
 

Figure 27: Cyclic Voltammogram of 1 M Propanol in 0.1 M HClO4 at Platinum 
Working Electrode at 25.5, 35.9, 45.9, 58.0, 65.9, and 75.4 °C 
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Figure 28 and 29 show the cyclic voltammograms of 1 M propanol in  

EMImTFSI at 25.2, 35.9, 44.7, 54.5, 65.3, and 76.3°C and for the electro-oxidation of 

propanol in EMImBF4 at 29.1, 36.3, 49.3, 59.5, 67.3, and 77.2 °C  on a platinum 

electrode.  

 Compared to oxidation of 1 M ethanol in EMImTFSI, oxidation of  

1 M propanol in this ionic liquid is very similar (Figure 28).  The oxidation peak at Epa= 

1.5 V, probably corresponds to the oxidation of CH3CH2CH2OH to propionic acid 

CH3CH2COOH, and the reduction peak at Epc = -0.8 corresponds to the reduction of 

propionic acid. 

 

Figure 28: Cyclic Voltammogram of 1 M Propanol in EMImTFSI at Platinum 
Working Electrode at 25.2, 35.9, 44.7, 54.5, 65.3, and 76.3 °C 
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Figure 29 shows that, compared to the oxidation of 1 M ethanol in EMImBF4, 

oxidation of 1 M propanol in this ionic liquid is also very similar. At these conditions a 

large oxidation peak (1) is observed. On the reverse scan, two new reduction peaks are 

obtained corresponding to the reduction of propionic acid and propionaldehyde. 

 

 

Figure 29: Cyclic Voltammogram of 1 M Propanol in EMImBF4 at Platinum 
Working Electrode at 29.1, 36.3, 49.3, 59.5, 67.3, and 77.2 °C 

 

 

 

 

 

 

 

E (V) vs. Ag Quazi reference 

- - 

I (
m

A
/1

0)
 

2mA 

29.1 °C 

36.3 °C 
49.3 °C 
59.5 °C 
67.3 °C 
77.2 °C 



77 
 

 

 

IV. CONCLUSION 

 

 In this study, 1-Ethyl-3-Methylimidazolium Tetrafluoroborate and 1-Ethyl-3-

Methylimidazolium Bis(trifluromethanesulfonyl)imide ionic liquids were synthesized, 

and characterized.  

 Cyclic voltammograms indicated that 1-Ethyl-3-Methylimidazolium 

Tetrafluoroborate as well as 1-Ethyl-3-Methylimidazolium 

Bis(trifluromathanesulfonyl)imide exhibit a wide electrochemical window making them 

potential solvents for the electrochemical study of ethanol and other alcohols.  

 Cyclic voltammetry of ethanol in perchloric acid solution show that at a 

concentration of 0.1 M ethanol,  voltammograms display an oxidation peak (peak2) at  

temperatures of 22.6, 30.2, 40.6, 50.3, and 60.2 °C, and two oxidation peaks (peaks 2 and 

3)at a temperature of 70.1°C. It was also observed that, with an increase in temperature, 

an increase of current in peak 2 occurs.  

 Electrochemistry of 0.2, 0.4, and 1 M ethanol in HClO4 at different temperatures 

was also studied.  It was observed that oxidation of ethanol at these conditions show three 

oxidation peaks. Peak current density increases with temperature and concentration. 

Poisoning of the electrode occurs at higher concentration of ethanol (> 1 M). 

 Electrochemistry of ethanol in ionic liquids was similar. Cyclic voltammograms 

of ethanol in 1-Ethyl-3-Methylimidazolium Bis(trifluromathanesulfonyl)imide show 

three oxidation peaks (1, 3and 4), and reduction peak 2.  
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  It is believed, based on Figure 16 (cyclic voltammogram of acetaldehyde in 

EMImTFSI), that peak 2 corresponds to one electron reduction of acetaldehyde, and peak 

3 corresponds to the oxidation product of acetaldehyde. Through the study of the 

electrochemistry of ethanol in EMImTFSI, it was found that the platinum working 

electrode showed high activity hours when concentrations of 1, 2, and 5 M of ethanol are 

used (poisoning of the electrode does not occur), and when using concentrations of 10, 

and 15 M poisoning of the electrode occurs.    

  Cyclic voltammograms of ethanol in 1-Ethyl-3-Methylimidazolium 

Tetrafluoroborate shows oxidation peaks 1, 3 and 4, reduction peak 2, and a new 

reduction peak 5. It is believed; based on Figure 26, that reduction peak 2 is due the 

reduction of acetaldehyde, and peak 5, to the reduction of acetic acid.   

Through the study of the electro-oxidation of ethanol in EMImBF4, it was  

found that, the platinum working electrode showed high activity. When concentrations of 

1, 2, and 5 M of ethanol are used, poisoning of the electrode does not occur, and when 

concentrations of 10, and 15 M are used, poisoning of the electrode occurs.    

 Electrochemistry of propanol in HClO4, show that, compared to oxidation of 1 M 

ethanol, oxidation of 1 M propanol in acidic media shows similar behavior with 

somewhat lower currents. However, current increases as the temperature increases. 

Electro-oxidation of propanol in ionic liquids was similar to that of ethanol in this melts. 

The study of the electro-oxidation of 1 M propanol in HClO4,  

EMImTFSI and EMImBF4 showed that the platinum working electrode does not get 

poisoned. 
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