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Interpolation-based super-resolution
reconstruction: effects of slice thickness
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Abstract. Standard clinical magnetic resonance imaging (MRI) is acquired in two-dimensions where the in-plane
resolution is higher than the slice select direction. These acquisitions include axial, coronal, and sagittal planes.
To date, there have been few attempts to combine the information of these three orthogonal orientations. This
paper aims to take advantage of the different in-plane resolution acquired from each plane orientation and com-
bine them into one volume in order to attain a higher resolution image. This combination of MRI data will allow the
detection of smaller areas that would otherwise be missed using only one slice orientation. A comparison of slice
thicknesses along with image registration is performed. The mean-squared error and peak signal-to-noise were
computed for quantitative assessment. MRI and phantom scans and joint histograms were used for qualitative
assessment. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.1.3.034007]
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1 Introduction
Super-resolution reconstruction (SRR) is the process of attain-
ing several low-resolution (LR) images and combining them to
achieve a high-resolution (HR) image,1 as shown in Fig. 1.
These LR images are usually shifted in space such that one
image contains data that the other does not. In medical imaging,
the ability to reconstruct HR images is useful to a physician for
making a correct diagnosis by better detecting brain tumors or
pathological changes. Acquiring multiple scenes can be through
the use of one sensor with several acquisitions or from several
sensors placed in different positions. This concept is translated
to magnetic resonance imaging (MRI) where we utilize LR
images from different scanning planes/perspectives (axial, sag-
ittal, and coronal) with focus on unimodal data combination
based on a priori knowledge of voxel resolution.2,3 The major
advantage of the combination of MRI data from three planes is
that it will allow both visualization and data analysis of smaller
areas than by using only one plane of orientation. It will also
allow for an increase in signal-to-noise ratio (SNR) as a result
of combining thicker voxels. This is achievable because the in-
plane resolution is commonly higher than the slice select
direction.

Commonly, brain views are shown in one of three perspec-
tives. The transverse (axial or x-y) planes slice the patient from
top to bottom, the sagittal (y-z) planes slice the patient laterally,
and the coronal (x-z) planes slice the patient lengthwise from
front to back, as shown in Fig. 2. Different slice selection direc-
tions are utilized to obtain an image volume. Axial, sagittal, and
coronal planes in the brain MRI volume consist of two-dimen-
sional (2-D) slices. Each 2-D image is considered a slice plane,
whereas the slice selection direction is oriented along the z-axis.
In these cases, HR and isotropic images are important because
higher isotropic resolution could theoretically reduce partial vol-
ume artifacts, leading to better accuracy in deriving volumetric

measurement, and decreasing considerable errors in
registration.4

Clinically, acquiring a fully isotropic three-dimensional
(3-D) image set is not feasible because of time, motion artifacts,
and SNR factors. Thus typically, in 3-D MRI data, the in-plane
direction has a higher resolution than the slice direction (z-axis).
In this case, invaluable information will be lost in the latter
direction. The objective is to recover and fill in this missing
information in order to enable the physicians to obtain a
more accurate perspective of the underlying structure available
in the data by optimizing the choice of interpolation techniques.

1.1 Observation Model

In the absence of gold standards, simulations are sometimes
used to assess SRR accuracy. A common tactic is to take
real data and deform it using an appropriate spatial transforma-
tion model (affine, rigid, and projective) and other factors
thought to be relevant in limiting SRR accuracy, such as sim-
ulating the addition of noise and blurring. An observation
model describes the process of obtaining an LR image from
an HR image. The LR image can be obtained from warping,
subsampling, blurring, and noise operators executed on the
HR image. The observation model can be defined as5,6

Yk ¼ DkBkGkX þ Ek k ¼ f1: : : Ng; (1)

where X is the ideal undegraded HR image, Dk represents a
decimation operator for the k’th image (subsampling), Gk is
the geometric transformation operator for the k’th image, Bk

represents the blur operator of the k’th image, and Ek is the ran-
dom sensor noise.
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1.2 Super-Resolution Algorithms

There exists a variety of super-resolution methods; two will be
discussed, the maximum a-posteriori (MAP) super-resolution
and Irani and Peleg’s 7,8 method. The method utilized in this
paper will follow. It should be noted that there are many
great sources for in-depth discussions of reconstruction of
HR image from several LR MRI scans.9–12

1.2.1 MAP Super-resolution image reconstruction

The MAP super-resolution image reconstruction of two
orthogonal planes was investigated by Bai et al.11 They inves-
tigated the combination of two orthogonal planes (axial and
coronal) in order to create an HR image based on an MAP
super-resolution method with improved resolution of in-plane
resolution in all directions as well as improved SNR. Below
is a summary of this MAP SRR method.11–12

SRR techniques typically start with an observation model
[see Eq. (1)]. An MAP method to find the best fit of X, denoted
by XMAP, which is intended to maximize the a-posteriori prob-
ability, P, where K represents of the total number of LR obser-
vations and it is assumed that the K observations are
independent of each other:11

XMAP ¼ arg maxx½PfXjY1; : : : ; Ykg�: (2)

The following equation can be obtained by applying Bayes
rule, and through some standard derivations:11

XMAP ¼ arg maxx

�XK
K¼1

log PfYkjXg þ log PfXg
�
; (3)

where log PfYkjXg is the log-likelihood function for the k’th
observation. log PfXg is the logarithm of the a-priori probabil-
ity distribution of X.

If it is assumed that typical noise in MR images is Gaussian,
the Markov random field (MRF) model as the prior distribution
for PfXg can be modeled by the following equation:11,12

XMAP ¼ arg minx JðXÞ; (4)

where

JðXÞ ¼ 1

λ

Z
νXðsÞdsþ

XK
K¼1

1

σ2k

Z
YKðsÞ − X½GkðsÞ�

× BkðsÞ ×DkðsÞds; (5)

where λ is the temperature parameter for the MRF model and
νXðsÞ is its local potential function. σ2k is the standard deviation
of Gaussian noise for the k’th observation.

1.2.2 Irani and Peleg’s approach

The approach by Irani and Peleg in reconstructing an HR image
treats dynamic scenes and more complex motions than static
scenes and pure translational motion in the image plane.6

Their algorithm can create a set of simulated LR images. The
image differences between the observed LR actual images
and simulated LR images are backprojected. The backprojecting
kernel can be used as an initial estimate of the HR image. The
observed LR images sequences fgkg are obtained from the HR
image. The imaging model can be expressed by the following
equation:

gkðm; nÞ ¼ αkðhfTk½fðx; yÞ�g þ ηkðx; yÞÞ; (6)

where gk is the k’th observed image, f is the HR image that the
super-resolution algorithm is trying to find and Tk is the 2-D
geometric transformation that transform f to gk. h is a blurring
operator, which is specified by the point spread function (PSF)
of the sensor. ηk is an additive noise term and αk is a downsam-
pling operator.6

The super-resolution algorithm starts creating a higher reso-
lution image with an initial guess f0 for the HR image, and then
the imaging process is simulated to acquire a set of LR images.
This simulated set of LR images fg0kgKk¼1 corresponds to the set
of observed images fgkgKk¼1.

6 The imaging process of gk at the
n’th iteration can be expressed by the following equation:

gðnÞk ¼ ½TkðfðnÞ Þ � h� ↓ s; (7)

Fig. 1 Combining low-resolution (LR) images to achieve a high-res-
olution (HR) image in order to achieve super-resolution (SR) image
construction.

Fig. 2 An illustration of the standard three perspectives of the brain, where axial is also known as the
transversal plane.

Journal of Medical Imaging 034007-2 Oct–Dec 2014 • Vol. 1(3)

Mahmoudzadeh and Kashou: Interpolation-based super-resolution reconstruction: effects of slice thickness

Downloaded From: http://medicalimaging.spiedigitallibrary.org/ on 01/07/2015 Terms of Use: http://spiedl.org/terms



where ↓ s is a downsampling by a factor s, * is the convolution
operator, and n is the n’th iteration.

If the initial estimate image f0 is the correct HR image, then
the simulated LR images fg0kgKk¼1 must be equivalent to the
observed LR images fgkgKk¼1. The difference between the

images fgk − gð0Þk gKk¼1 is computed and used to improve the ini-
tial guess image f0 by backprojecting in order to acquire an HR
image fð1Þ. Each value in the difference image is backprojected
onto its receptive field in the initial guess image. The following
equation is repeated iteratively to minimize the error function.6

1.2.3 Interdependence of interpolation, and registration
in our SRR technique

In this section, the foundations for this study are described by
discussing the interpolation techniques and image registration
processes and their relation to the SRR. The aim is to expand
the understanding of interpolation and registration and to dis-
cover how they are involved with SRR.

Interpolation. Interpolation has become a default operation
in image processing and medical imaging and is one of the
important factors in the success of SRR. Interpolation is needed
if the fractional unit of motion is not matched and located on the
HR grid. The study of interpolation approaches date back to the
1980s,13 for which a great diversity of techniques can be found
in the literature. For example, B-splines were sometimes
referred to as cubic splines,14 whereas cubic interpolation was
also known as cubic convolution15–17 and as HR spline interpo-
lation.18 In our paper,19 eight interpolation algorithms have
been reviewed in more detail, including trilinear, nearest neigh-
bor, cubic Lagrangian, quintic Lagrangian, heptic Lagrangian,
B-spline third order, B-spline fourth order, and windowed
Sinc. In Sec. 3, we discuss and evaluate the performance of
these interpolation algorithms in order to find the best interpo-
lation method for the high accuracy of super-resolution image
reconstruction.

Image registration algorithms. This study focuses on an
intensity-based registration method. In this registration, interpo-
lation, geometric transformation, and cost function assessment
are essential steps, as they can affect the accuracy of registration.
This section examines 3-D affine registration of brain images
using voxel intensities similarity measures such as normalized
mutual information, normalized cross correlation, least squares,
and correlation ratio. More explicitly, if a target image is re-
sampled to match a reference image, the image intensities at
each voxel should be similar in the two images. In fact,
when utilizing an intensity-based cost function, it is essential
to repeatedly re-sample one of the images to match the other
at several various resolutions, while searching for the min
cost function. This re-sampling process requires interpolation
during the registration process.20 In the optimized automatic
image registration (OAIR) method, interpolation involves the
re-sampling of anisotropic voxels in the z-direction into isotropic
cubic voxels. Also, it is important to note that in the OAIR
method, the interpolation technique utilized for registration
does not necessarily need to be the same interpolation technique
used during registration to compute a final image using the opti-
mal parameters. The OAIR technique has been explained in
more details in our paper.19

2 Materials and Methods
This work utilizes the concept of acquiring LR images that are
not from the same slice planes. Figure 3 shows three scans with
the same in-plane resolution but different orientations. Each LR
volume is then mapped onto an HR grid based on a priori
knowledge of the in-plane resolution. Afterward, three HR-fitted
volumes from different planes are combined.

2.1 Main Stages for Our Super-Resolution Method

The SR image reconstruction technique consists of four main
stages: up-sampling, restoration, registration, and combination.
These stages can be performed separately or simultaneously.
Our scheme for super-resolution is illustrated in Fig. 4.

2.1.1 Determining an appropriate interpolation

A 3-D spoiled gradient recalled (SPGR) dataset of an American
College of Radiology (ACR) magnetic resonance accreditation
phantom was acquired. The phantom was acquired with an in-
plane resolution of 1 × 1 mm, and slice thicknesses of 1, 2, 3, 4,
and 5 mm in axial, coronal, and sagittal directions. Additionally,
an SPGR MRI of the brain was acquired at Nationwide
Children’s Hospital of Columbus, Ohio, using a 3 Tesla
General Electric MRI scanner, from a 34-year-old participant
in order to check the final result. In the absence of LR
SPGR of the brain image, the 3-D HR SPGR of the brain
image was subsampled in order to create an LR SPGR
image. Relevant imaging parameters are listed in Table 1.
The HR SPGR of brain images were 512 × 512 × 120 (this is
the native scanner output) with a slice thickness of 1.3 mm
(acquiring a fully isotropic 3-D scan was not feasible because
of time, motion artifacts, and SNR factors). Because of interpo-
lation time, we simulated the new 3-D HR images (simulated
from HR SPGR of brain image) with a resolution
256 × 256 × 120, a voxel size of 1 × 1 × 1.3 mm3 and with
slice thickness and spacing between the slices of 1.3 mm.

The first LR images were generated from simulated HR
SPGR MRI of the brain, and the resolution was decreased
(256 × 256 × 60 with a voxel size of 1 × 1 × 2.6 mm3) along
the slice direction by subsampling by factor of 2 (axial
plane). The second and third LR images were generated from
simulated HR SPGR MRI of the brain image, and they were
subsampled by a factor of 2 in the x and y directions. The second
LR images were generated with a resolution of 256 × 128 × 120
(sagittal plane) and with a voxel size of 1 × 2 × 1.3 mm3, and
finally, the third LR images were generated with a resolution
128 × 256 × 120 (coronal plane) and with a voxel size of
2 × 1 × 1.3 mm3.

After the LR SPGR MRI of the brain images were created
and simulated like LR phantom images, they were rotated in the
x direction by 5 deg. Then, we translated the rotated image in x
by 2 mm and in y by 3 mm. Each LR image is corrupted by
Gaussian noise (10 standard deviations) and Gaussian blurring
(5-mm radius).

Afterward, the LR MRI images were used as input to inter-
polation algorithms (trilinear, cubic Lagrangian, quintic
Lagrangian, heptic Lagrangian, windowed Sinc, B-spline
third order, and B-spline fourth order) to remap to a common
size. They were upsampled and changed back to their original
dimensions (256 × 256 × 120), and then we compared them to
the reference images (simulated HR images) in order to find the
best interpolation (quantitative and qualitative assessments).
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Image restorations (adaptive noise reduction and blind deconvo-
lution techniques) were implemented on the upsampled MRI of
the brain and phantom images to reduce blurring and noise. The
adaptive noise reduction consists of three main phases. The first
phase of the scheme efficiently determines whether a pixel is
noise or not based on some predefined threshold and calculated
values. Once pixels are detected as noise in the previous phase,
their new value will be estimated and set in the noise reduction
phase. Finally, a conditional image enhancement phase will be
conducted for those images which have been corrupted with

high density noise to preserve the edges and details of the
restored image. This allows the adaptive noise reduction to
have a great performance even at a high noise density. The
major advantage of the adaptive noise reduction algorithm is
reducing noise without blurring the edges by replacing a
pixel value with a weighted sum of all the local pixels reached
by following a path with small pixel intensity values between
neighboring pixels. Blind deconvolution is a method for this
process and allows recovering of the target object from a set
of blurred images in the presence or a poorly specified or

Fig. 4 Scheme for super-resolution. Y1, Y2, and Y3 are LR images. X is an HR image.

Fig. 3 The proposed scheme includes three stages: (a) acquiring LR volumes, (b) mapping LR volumes
to a common HR grid, and (c) combining and interpolating the registered LR volumes.
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unknown PSF.21 Restoration can be implemented by applying
any deconvolution method that considers the presence of
noise and blurring.

2.1.2 Implementation of registration algorithm
on 3-D MR images

The OAIR was applied on an HR dataset with a resolution of
256 × 256 × 120 and with a voxel size of 1 × 1 × 1.3 mm3, and
the transformed image had a resolution of 256 × 256 × 120 and
a voxel size of 1 × 1 × 1.3 mm3. This was repeated for the ACR
phantom data. Throughout the OAIR, when an optimal fit was
achieved, the target image was reformatted using the transfor-
mation function and interpolations described above to match
the reference image. For achieving a good registration (inten-
sity-based cost function) between the fixed image (reference
image) and the moving image (target image), the resampling
was essential because the moving image did not necessarily
have the same origin, spacing, and number of pixels as the
fixed image. Therefore, the resampling process helped us to
have the moving image in the grid of the fixed image. The inten-
sity-based registration method looked for the transformation that
would give the smallest value of the cost function, which we
assumed was the transformation that also gave the best
alignment.

2.1.3 Implementation of our super-resolution algorithm

In the implementation of our super-resolution algorithm, the
best registered images with the minimum error in interpolation
were selected. This was performed based on the findings that
accurate image registration and interpolation are critical in
the super-resolution process. As a result, the super-resolution
requires the same size images in three perspectives with the min-
imum error in interpolation (axial, sagittal, and coronal). Image
registration was performed after the three planes were mapped
onto a common space, and one volume was chosen as the fixed

image (axial) and the other two as the moving images (sagittal
and coronal). The best interpolation during registration was then
quantitatively determined. Then each registered image was
mapped onto an HR grid based on a priori knowledge of the
in-plane resolution. Afterward, the three HR fitted volumes
from different planes were combined.

2.2 Image Assessment

There are various ways to evaluate the accuracy of interpolation
techniques, registration, and SRR. They can be divided into
qualitative and quantitative methods.

2.2.1 Quantitative assessment

For the quantitative assessment, we considered a mean square
error (MSE) and peak-signal-to-noise ratio (PSNR). The
MSE and PSNR measures are estimates of the quality of regis-
tration images.

Mean square error. The MSE was computed between the
original image (reference) and registered image in order to mea-
sure the average of the squared difference in image intensities:

SEijk ¼ ðRijk − IijkÞ2; (8)

where I, j, k represent the direct comparison of each coordinate
location, R is the reference image, and I is the reconstructed
image. The MSE was computed for a 3-D brain image in
order to assign a value and compare the results.

MSE ¼
P

n
i¼1

P
m
j¼1

P
l
k¼1 SEijk

n · m · l
; (9)

where n, m, l are the number of points in the x, y, z directions,
respectively, for the reconstructed volume.

Peak signal-to-noise. The PSNR in decibels (dB) between
the original image and the registered image is defined by22

PSNR ¼ 20 × log10

�
MAX

RMSE

�
; (10)

where MAX is the maximum pixel value of the image and
RMSE is the square root of the MSE.

2.2.2 Qualitative assessment

One way for qualitative assessment is to create a joint histogram.
The joint histogram is a functional tool for visualizing the rela-
tionship between the intensities of corresponding voxels in two
or more images. Visual assessment is also considered for quali-
tative assessment.

Joint histogram. The joint histogram is 2-D for two gray-
scale images A and B and is created by plotting the intensity of
each voxel in image A against the intensity of the corresponding
voxel in image B. When two images of different modalities are
produced, the spatial resolution is likely to be different.
Therefore, before calculating a joint histogram, it is essential
to rescale the range of data of the first image to the range of
data of the second image. When two images are perfectly
aligned, the corresponding anatomical areas overlap, and

Table 1 Imaging parameters associated with three-dimensional
(3-D) spoiled gradient recalled (SPGR) phantom and brain images.

3-D images # of slice
Matrix
size

Voxel
size (mm)

SPGR MRI high resolution 120 512 × 512 0.5 × 0.5 × 1.3

Simulated SPGR MRI high
resolution

120 256 × 256 1 × 1 × 1.3

SPGR MRI low resolution 1 60 256 × 256 1 × 1 × 2.6

SPGR MRI low resolution 2 120 256 × 128 1 × 2 × 1.3

SPGR MRI low resolution 3 120 128 × 256 2 × 1 × 1.3

SPGR phantom high resolution 12 256 × 256 1 × 1 × 1

SPGR phantom low resolution 1 12 256 × 256 1 × 1 × 2

SPGR phantom low resolution 2 12 256 × 256 1 × 1 × 3

SPGR phantom low resolution 3 12 256 × 256 1 × 1 × 4

SPGR phantom low resolution 4 12 256 × 256 1 × 1 × 5
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their joint histogram is highly focused. In misaligned images,
anatomical areas are not matched, they are mixed up and
their joint histogram is scattered. For example, images of the
cerebrum over the skull cause a more dispersed joint histogram.
Example joint histograms for different modalities like magnetic
resonance - computed tomography and positron emission
tomography - magnetic resonance at different stages have
been investigated in some papers.23,24 We implemented the
joint histogram technique on the registered images for checking
the effect of interpolations on the accuracy of OAIR.

3 Results

3.1 Evaluating Effect of Slice Thickness
on Super-Resolution Technique

The 3-D MSE and PSNR of LR datasets were computed. The 3-
D MSE and PSNR of the combined (all three planes) SPGR
phantom datasets with different slice thicknesses were tabulated
in Table 2. The MSE is proportional to the slice thickness. As a
result, a thinner slice thickness has a lower MSE value.

The SPGR phantom datasets were also quantitatively evalu-
ated by computing the PSNR, which is widely used in the evalu-
ation of reconstructed images.20 The 3-D PSNRs for different
slice thickness phantoms were computed. As can be seen in
Table 2, the combined LR SPGR phantom 1 with a smaller
slice thickness shows the PSNR superiority against the other
combined LR SPGR with a bigger slice thickness. In addition,

Table 2 3-D mean square error (MSE) and peak-signal-to-noise
(PSNR) for SPGR phantom with different slice thickness.

MSE PSNR (dB)

Combined low resolution SPGR phantom 1 53.61 1.52E1

Combined low resolution SPGR phantom 2 119.594 1.41E1

Combined low resolution SPGR phantom 3 192.280 1.32E1

Combined low resolution SPGR phantom 4 210.345 1.24E1

Table 3 3-D MSE and PSNR for MR images of 256 for axial, coronal,
sagittal, and combined three volumes.

MSE PSNR (dB)

Axial view 0.002743 111.43

Sagittal view 0.002821 110.98

Coronal view 0.002783 111.22

Combined 0.002191 116.48

Fig. 5 Spoiled gradient recalled (SPGR) phantom images of the axial, coronal, and sagittal with different
slice thickness (top to bottom). Each column displays the axial, coronal, and sagittal perspectives (left to
right). The joint histogram for each LR dataset is dissimilar to the HR SPGR phantom and LR1, LR2, LR3,
and LR4 show the histograms with a significant dispersion.
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the PSNR was found to slowly increase as slice thickness
decreased. The smaller slice thickness yielded a lower MSE
error and higher PSNR. Statistical analysis of Table 2 showed
that there was an insignificant difference between the sets of
images registered with the minimum difference slice thickness
(P-value >0.78). But it was observed that a significant differ-
ence was between the set of images registered with the maxi-
mum slice thickness (i.e., combined LR1 and combined LR4)
(P-value <0.0001). For instance, sets of images of combined
LR SPGR phantom 1 and 2 (smaller slice thickness) were sig-
nificantly better than the sets of images of the combined LR
SPGR phantom 3 and 4 (bigger slice thickness). In addition,
the 3-D MSE and PSNR of SPGR MRI of the brain datasets
tabulated and used for the validation of the original information
preservation method were anatomical volumes in the axial
(256 × 256 × 128), sagittal (256 × 120 × 256), and coronal
(120 × 256 × 256) planes (see Table 3). Each plane was mapped
to a 256 × 256 × 256 grid preserving original data in order to
obtain the same size image, then they were combined with
each other. Our method yielded more accurate results than sep-
arately interpolating each plane.

As Table 3 shows, combining the SPGR MRI of the brain
image from the three planes has a lower MSE in comparison
with the individual volumes. The runtimes of each plane
and the combined SPGR MRI of the brain were computed
(run times measured on the Intel Xeon with 2.13 GHz 2 proc-
essor). The interpolation and registration of the axial view
(256 × 256 × 128) took ∼184 s. The sagittal and coronal
views required around 190 and 193 s for 3-D MR images of

256 × 120 × 256 and 120 × 256 × 256, respectively. Compared
with the axial view took 4.89% of the coronal view time. The
reconstruction of the combined data took about 1.5 times as long
as the reconstruction of the axial, sagittal, and coronal views
individually.

3.2 Visual Quality of Reconstructed Images

Combining the datasets would lead to mis-mapping of data. This
misalignment was ameliorated by applying image registration.
The axial, coronal, and sagittal planes are demonstrated in
Figs. 5, 6, and 7 for the LR SPGR phantom dataset and com-
bined LR SPGR phantom dataset and MRI of the brain,
respectively.

In Fig. 5, resolution of SPGR phantoms in three perspectives
were decreased by increasing the slice thickness (top to bottom).
We also computed the joint histograms of axial, sagittal, and
coronal planes for the SPGR phantom and MRI of the brain
along the 3-D combined datasets in order to evaluate the accu-
racy of the SRR method (see Figs 5–7). As is clearly seen in
Fig. 6, combined LR1 and LR2 datasets (smaller slice thickness)
have a lower dispersion in the joint histogram compared to the
combined LR3 and LR4 datasets (bigger slice thickness). Also,
the combined LR datasets yielded more accurate and more
highly resolved results than the LR datasets without the combi-
nation (Figs. 5 and 6).

Visually inspecting Fig. 7 for each scan demonstrates higher
quality images for each orientation, respectively, and a lower
quality for the other two methods. This was the case in all

Fig. 6 SPGR phantom images of the axial, coronal, sagittal, and combined datasets (top to bottom).
Each column displays the axial, coronal, and sagittal perspectives (left to right). Joint histograms for
the combined LR datasets are similar to the HR SPGR phantom dataset and all gray value correspond-
ences lie on the diagonal with minor dispersion; however, in the first and second top rows, all three per-
spectives have a higher resolution compared to other two datasets (LR3 and LR4).
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three planes; the quality was better than just in the axial, sagittal,
and coronal planes. For instance, the top row (axial plane) dem-
onstrated better quality for the first row (axial perspective) and
worse quality for the other two.

We have introduced our method to exploit the original infor-
mation from MRI data using different planes to increase the res-
olution and SNR. Thus, by scanning in two or three different
planes, we are adding new information, specifically since the
in-plane resolution (xy) is usually higher than the slice thickness
(z). Note, if slice gaps are not present, the voxels are averaged
from either two or three planes, taking advantage of the higher
SNR as a result of the slice thickness. This is recommended
since small voxels have a lower SNR, so the high spatial reso-
lution image may be too noisy to be diagnostically useful if the
voxels are too small for an adequate signal. Also, it is known
that small voxels are particularly a problem on low-field imag-
ing systems. This problem is alleviated by our technique since
we combined information from the in-plane resolution of
another plane and thus do not have to decrease the voxel size
at the time of acquisition.

4 Discussion
Theoretically, acquiring three volumes with thicker slices then
generating thin slice images is practical as this will have a gain
in SNR due to the thick slices, and thus a gain in the total acquis-
ition time. By scanning in two or three different planes new
information is added, specifically since the in-plane resolution
(xy) is usually higher than the slice thickness (z). This is rec-
ommended since small voxels have a lower SNR so the high

spatial resolution image may be too noisy to be diagnostically
useful if the voxels are too small for an adequate signal. Also
having LR volumes results in the partial volume effect, which
arises when the interface between two different tissues occurs
within a single voxel.25 It is also known that small voxels are
particularly a problem with low field imaging systems. This
problem is alleviated by our technique since we combine infor-
mation from the in-plane resolution of another plane and do not
have to decrease the voxel size at the time of acquisition. In
SRR, each LR input image focuses on a slightly shifted field
of view (FOV) of the HR scene and does increase the resolu-
tion.25 However, in our case, the FOV is not shifted, but is com-
pletely rotated onto a separate plane allowing for HR voxels
from three planes as opposed to one. In turn, this allows for
an increase in resolution in all three directions (3-D) as opposed
to only the in-plane (2-D) direction. SRR is a process of com-
bining several LR images to create an HR image. Thus, our
method is novel in that the images are not purely LR because
the in plane resolutions are HR.We are combining HR data from
three perspectives or planes.

We noted that the study presented in the tables and figures
relied on the same modality (MRI); in addition, these results are
not representative of different modality combinations. Perhaps
other conclusions would be obtained by the use of different
modality combinations or transformations, for instance, MRI-
PET or CT-MRI.

According to the above discussion, our new method has sev-
eral advantages when compared to the MAP-Huber method.
These advantages are listed below.

Fig. 7 Brain images of the axial, coronal, sagittal, and combined datasets (top to bottom). Each column
displays the axial, sagittal, and coronal perspectives (left to right). Joint histogram for the combined data-
sets is similar to reference datasets and all gray value correspondences lie on the diagonal with minor
dispersion: axial, coronal, and sagittal show the histograms with significant dispersion.
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1. Our method is relatively simple and very intuitive to
implement, whereas the MAP-Huber method results in
a more complicated optimization problem.

2. The MAP-Huber method creates simple blur and
white noise.

3. Our proposed SRR method has a more powerful inclu-
sion of a priori information.

A disadvantage, however, would be the increase in comput-
ing time and it is important to develop efficient algorithms to
reduce computational costs.

5 Conclusion
The goal of this paper was to assess the effects of slice thick-
nesses on the combination of the orthogonal plane MRI SPGR
brain and SPGR ACR phantom scans. This combination can be
utilized for reducing artifact data loss by utilizing nonisotropic
volumes of the same object and combining them to extract the
most information from all the volumes. This ability to combine
information will enrich the data sets by both enhancing the
image for visualization and the data for further computational
processing. Future extensions of this study will include the
investigation of better registration techniques and the improve-
ment of computational speed.
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