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EPC-Derived Microvesicles Protect Cardiomyocytes from
Ang II-Induced Hypertrophy and Apoptosis
Shenhong Gu1,2., Wei Zhang3., Ji Chen1,4., Ruilian Ma1,3, Xiang Xiao1, Xiaotang Ma4, Zhen Yao3*",

Yanfang Chen1,4*"

1 Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Ohio, United States of America, 2 Department of Gerontology, the

Affiliated Hospital of Hainan Medical College, Haikou, China, 3 Department of Cardiology, the People’s Hospital of Sanya, Sanya, China, 4 Department of Neurology, the

Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China

Abstract

Cell-released microvesicles (MVs) represent a novel way of cell-to-cell communication. Previous evidence indicates that
endothelial progenitor cells (EPCs)-derived MVs can modulate endothelial cell survival and proliferation. In this study, we
evaluated whether EPC-MVs protect cardiomyocytes (CMs) against angiotensin II (Ang II)-induced hypertrophy and
apoptosis. The H9c2 CMs were exposed to Ang II in the presence or absence of EPC-MVs. Cell viability, apoptosis, surface
area and b-myosin heavy chain (b-MHC) expression were analyzed. Meanwhile, reactive oxygen species (ROS), serine/
threonine kinase (Akt), endothelial nitric oxide synthase (eNOS), and their phosphorylated proteins (p-Akt, p-eNOS) were
measured. Phosphatidylinositol-3-kinase (PI3K) and NOS inhibitors were used for pathway verification. The role of MV-
carried RNAs in mediating these effects was also explored. Results showed 1) EPC-MVs were able to protect CMs against Ang
II-induced changes in cell viability, apoptosis, surface area, b-MHC expression and ROS over-production; 2) The effects were
accompanied with the up-regulation of Akt/p-Akt and its downstream eNOS/p-eNOS, and were abolished by PI3K inhibition
or partially blocked by NOS inhibition; 3) Depletion of RNAs from EPC-MVs partially or totally eliminated the effects of EPC-
MVs. Our data indicate that EPC-MVs protect CMs from hypertrophy and apoptosis through activating the PI3K/Akt/eNOS
pathway via the RNAs carried by EPC-MVs.
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Introduction

Pathological cardiac hypertrophy leads to heart failure which

remains the major cause of cardiovascular morbidity and mortality

[1]. Its pathology is characterized by cardiomyocyte (CM)

hypertrophy, apoptosis and inflammation [2,3]. It is well accepted

that reactive oxygen species (ROS) plays an important role in the

pathogenesis of cardiac hypertrophy [4]. Ang II-induced oxidative

stress and inflammation have been demonstrated to contribute to

the pathogenesis of cardiac hypertrophy [5,6]. Some signaling

cascades such as phosphatidylinositol-3-kinase (PI3K) and serine/

threonine kinase (Akt) pathways may inhibit CM hypertrophy

[7,8]. The endothelial nitric oxide synthase (eNOS)/nitric oxide

(NO) pathway, known as an important factor in regulating

vascular function and one of the down-stream of Akt signaling, has

also been shown to reduce ROS generation and exert anti-

apoptotic effect on CMs [9,10].

Cellular microvesicles (MVs) released from various cell types in

response to different stimuli represent a novel way of cell-to-cell

communication. Cellular MVs are functional because they transfer

or deliver proteins and gene messages such as mRNA and

microRNA (miRNA) to the target cells [11,12]. Cellular MVs have

been shown to reverse endothelial injury probably through their

dual effects on NO and ROS production [13,14]. It is suggested

that bone marrow (BM)-derived endothelial progenitor cells

(EPCs) could ameliorate cardiac hypertrophy [15,16]. Of notes,

emerging evidence suggest that EPC-MVs have cell protective

features. They can increase Akt/eNOS protein expression and

phosphorylation, and induce the expression of the anti-apoptotic

protein Bcl-xL in target endothelial cells (ECs) [11]. EPC-MVs are

also shown to reprogram hypoxic resident renal cells to regenerate

[17] and to activate an angiogenic process in islet endothelium

[18]. However, the effects of EPC-MVs on CM hypertrophy and

apoptosis remains unclear.

In this study, we first determined the effects of EPC-MVs on

Ang II-induced CM hypertrophy, viability and apoptosis. Then,

we explored whether the underling mechanisms are associated

with ROS production and PI3K/Akt/eNOS signaling pathway.

In addition, we examined whether the effects of EPC-MVs were

mediated by MV- carried RNAs.
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Materials and Methods

Ethics Statement
Adult C57BL/6J genetic background mice were used in the

present study to obtain BM-derived EPCs. The strains were

maintained in our laboratory (22uC) with a 12-hr light/dark cycle

and fed with standard chow and drinking water ad libitum. All

experimental procedures were approved by the Wright State

University Laboratory Animal Care and Use Committee and were

in accordance with the Guide for the Care and Use of Laboratory

Animals issued by the National Institutes of Health (NIH).

Culture of Myocardial H9c2 Cell Line
H9c2 is a CM cell line (American Type Culture Collection, VA)

derived from a clone of rat embryonic heart. Cells were cultured in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% fetal bovine serum (FBS) containing 100 U/ml of penicillin G

and 100 mg/ml of streptomycin, in a humidified atmosphere

containing 5% CO2 at 37uC. Before experimental intervention,

confluent cultured cells were serum-starved for 12 h [9].

Concentration-response Studies of Ang II on CMs
Ang II (Sigma-Aldrich, St. Louis, MO) induced H9c2 injury

model was produced as previously reported [19]. In brief, H9c2

CMs were seeded in 12-well plates (56104 cells/well) or 96-well

plate (56103 cells/well) during the logarithmic growth phase.

When the cells were nearly 80% confluent, cells were incubated

with different concentrations of Ang II (0, 1029, 1028, 1027 and

1026 M) for 24 h. After co-incubation, cells were collected for

analyses (cell surface areas, viabilities and apoptosis). Upon the

completion of this study, we chose 1026 M of Ang II for the

following studies.

Culture of EPCs
The BM derived EPCs were cultured from adult (8–10 weeks of

age, weight ranges from 25 g to 32 g) C57BL/6J genetic

background mice as we previously described [20]. Mouse tibias

and femurs were taken under deep anesthesia (pentobarbital,

150 mg/kg body weight) and BM was flushed out from tibias and

femurs. BM mononuclear cells (MNCs) were isolated by using

density gradient centrifuge method. After being washed with

Phoshate-buffered saline (PBS), BM MNCs were counted and

plated (16107 cells) on a 25 cm2 flask then grown in endothelial

cell basal medium (EBM-2) supplemented with 5% FBS contain-

ing EPC growth cytokine cocktail (Lonza, Walkersville, MD). After

3 days in culture, non-adherent cells were removed by washing

with PBS. Thereafter, culture medium was changed every 2 days.

Preparation of EPC-MVs and RNA-free EPC-MVs
After being cultured for 7 d, EPC cultures were washed with

PBS, and incubated with serum-free medium overnight. The

conditional medium which contained EPC secretions was collected

and centrifuged (1,000 g, 15 min) at 4uC. Then the supernatant

was ultracentrifuged (100,000 g, 60 min) at 4uC to pellet EPC-

MVs [20]. For preparation of RNA-free EPC-MVs, we disrupted

the EPC-MVs with ribonuclease A (RNase A) [21,22]. First, the

EPC-MVs were incubated with 0.1% Triton X-100 (TX-100) for

5 min. Then the MV fraction was added in 200 U/ml of RNase A

(Qiagen, CA) for 90 min at 37uC. After that, EPC-MVs were

ultracentrifuged (100,000 g, 60 min) at 4uC to pellet the RNA

deleted MVs (rdMVs) for the following experiments. To verify the

effect of RNase A on MVs, the total RNAs were isolated from

EPC-MVs and EPC-rdMVs using the RNA Isolation Kit

(Ambion, NY), and the RNA concentrations were tested using

quantitative assay (Thermo Scientific, Nanodrop 2000c, FL).

Concentration-response Studies of EPC-MVs on CM
Viability

To determine the effective EPC-MV dose for increasing CM

viability, CMs were treated with Ang II (1026 M) and different

doses (0, 12.5, 25 and 50 mg/ml) of EPC-MVs. After 24 h, CMs

were harvested for viability analysis. The protein concentration of

EPC-MVs was quantified by using Bradford assay (Bio-Rad,

Hercules, CA).

Experimental Groups
Based on above studies, 1026 M of Ang II and 50 mg/ml of

EPC-MVs were used in the subsequent experiments. After

reaching confluence, H9c2 CMs were randomly assigned to 4

different groups: serum-free medium (control), Ang II, Ang

II+EPC-MVs, Ang II+drEPC-MVs. After incubation for 24 h,

cells were harvested for analyses. For pathway blocking experi-

ments, H9c2 CMs were pre-incubated with PI3K inhibitor

(LY294002, 20 mM; Cayman Chemical, MI) or NOS inhibitor

NG-nitro-arginine methyl ester (L-NAME, 100 mM; Sigma-

Aldrich, St. Louis, MO) for 2 h [23].

Detection of EPC-MV Merging with H9c2 CMs
For observing whether EPC-MVs could merge with H9c2 CMs,

a lipid membrane-intercalating fluorescent dye (PKH26) was used

to label EPC-MVs before co-incubation. Briefly, 50 mg/ml EPC-

MVs was mixed with 2 ml of PKH26 (261026 M; Sigma-Aldrich,

St. Louis, MO) at room temperature (RT) for 5 min. The labeled

mixtures were dialyzed in 2 ml of 1% bovine serum albumin (BSA)

and ultracentrifuged at 100,000 g for 60 min at 4uC to pellet the

labeled MVs. After washed with EBM-2, the pellet was suspended

with 1 ml of culture medium and added into H9c2 cells for 24 h

incubation. The 49, 6-diamidino-2 -phenylindole (DAPI, 1 ug/ml;

Wako Pure Chemical Industries Ltd) was used for nuclear staining.

Cell images were taken using an inverted microscope (EVOS,

NY).

Measurement of Cell Surface Area
The surface area of CMs in different groups was measured

according to the method of Simpson [24]. In brief, cell images

were captured by a 206magnification digital inverted microscope.

Then the images of CMs were traced and the cell surface areas

were analyzed by using Image J software (NIH, MA). The surface

areas of CMs in 6 different fields were averaged. The surface area

data in each treatment group was presented as the rate of that in

control group.

Methyl Thiazolyl Tetrazolium (MTT) Assay
The viabilities of H9c2 CMs after different treatments were

determined using the MTT Assay Kit (Invitrogen, NY) by

following the manufacture’s protocol. The CMs culture was

replaced with 100 ml of fresh culture medium. Cells in 96-well

plate were added in 10 ml of 12 mM MTT solution and incubated

at 37uC for 4 h. Then 100 ml of the sodium dodecyl sulfate (SDS)-

HCl solution was added to each well and incubated at 37uC for

4 h. Finally, the 96-well plate was read by a microtiterplate reader

(Packard) at 535 nm. The percentage of viability was defined as

the relative absorbance of the treated cells versus the untreated

controls [19].

Protective Effects of EPC-MVs on Cardiomyocytes
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Flow Cytometry Analysis of Cell Apoptosis
The CM apoptosis was assessed by using an Apoptosis Assay Kit

(Invitrogen, NY). The H9c2 CMs were collected by using 0.25%

trypsin, and centrifuged at 200 g for 7 min. Cells were

resuspended in 100 ml annexin-binding buffer, and incubated

with 5 ml of annexin V-FITC and 1 ml of propidium iodide (PI) at

RT in the dark for 15 min. Apoptotic cells were detected by a flow

cytometer (Accuri C6 flow cytometer). The CMs stained with both

annexin V and PI were considered to be late apoptotic CMs, and

the cells stained only with annexin V were considered to be early

apoptotic CMs [19].

Immunohistochemistry of b-myosin Heavy Chain (b-
MHC)

H9c2 CMs were fixed with 2% paraformaldehyde at RT for

30 min and then permeated with 0.1% TX-100 at RT for 15 min.

After being blocked with 1% BSA and 2% donkey serum for 1 h,

the cells were incubated with b-MHC antibody (1:50; Millipore,

MA) overnight at 4uC, and followed by incubation with Cy3-

conjugated donkey anti-mouse antibody (1:250; Jackson, PA) at

RT in the dark for 1 h. DAPI was used for nuclear stain. Images

were obtained with an inverted microscope.

Intracellular ROS Detection
Intracellular ROS levels were determined by Dihydroethidium

(DHE; Sigma-Aldrich, St. Louis, MO) staining [25,26]. Cells were

incubated with the DHE working solution (2 mM) at 37uC for 2 h.

After that, the solution was replaced with fresh culture medium,

and the cells were observed under an inverted microscope. The

cells were then trypsinized and collected by centrifugation (200 g,

7 min). The percentage of DHE positive cells was measured by

using flow cytometry method.

Western Blot Analysis
After different treatments, proteins from H9c2 cells were

obtained with lysis buffer (Thermo Scientific, FL) containing

protease inhibitor. The proteins were subjected to electrophoresis

and transferred onto nitrocellulose membranes. The membranes

were blocked by incubating with 5% dry milk for 1 h, and then

incubated with primary antibodies: against b-MHC (1:1000;

Sigma-Aldrich, St. Louis, MO), Akt (1:500; Cell Signaling

Technology, MA), p-Akt (Thr-308, 1:500; Cell Signaling Tech-

nology, MA), eNOS (1:500; Cell Signaling Technology, MA) or p-

eNOS (ser-1177, 1:500; Cell Signaling Technology, MA), at 4uC
overnight. b-actin (1:4000; Sigma-Aldrich, St. Louis, MO) was

used to normalize protein loading. After being washed thoroughly,

membranes were incubated with horseradish peroxidase (HRP)

conjugated IgG (1:40000; Jackson ImmunoResearch Labs, INC.

PA) for 1 h at RT. Blots were then developed with enhanced

chemiluminescence developing solutions and quantified [27].

Statistical Analysis
Experimental data were expressed as the mean 6 S.E, and were

analyzed using one-way analysis of variance (ANOVA) followed by

Bonferroni’s t-test. Values of P,0.05 were considered to be

statistical significance.

Results

Effects of Ang II on H9c2 CM Cell Surface Area, Viability
and Apoptosis

To determine the effective dose of Ang II for inducing CM

hypertrophy and apoptosis, H9c2 CM cells were treated with

various concentrations (0, 1029, 1028, 1027 or 1026 M) of Ang II

for 24 h. As seen in Figure 1A and 1B, Ang II dose-dependently

increased cell surface area (P,0.05). The dose-dependent effects

were also obtained in decreasing cell viability (P,0.01; Figure 1C)

and in increasing cell apoptosis (P,0.05; Figure 1D). These results

indicate the success of Ang II-induced CM hypertrophy and

apoptosis model in H9c2 CMs. Based on these data, we chose

1026 M Ang II for the following experiments.

Effective Dose of EPC-MVs for Preventing Ang II-induced
Reduction in CM Viability

To determine the effective dose of EPC-MVs, we co-incubated

different doses (0, 12.5, 25 or 50 mg/ml) of EPC-MVs and Ang II

(1026 M) with CMs for 24 h. We found that EPC-MVs at the dose

of 50 mg/ml did not affect the survival of H9c2 cells, but

significantly alleviated Ang II-induced reduction in CM viability

(P,0.01; Figure 2). Thus, we chose 50 mg/ml EPC-MVs for the

following experiments.

EPC-MVs Merge with H9c2 CMs after Co-incubation
The PKH26 labeled EPC-MVs were co-incubated with H9c2

CMs for 24 h. The PKH26 fluorescent was able to be detected in

the cytoplasm of the H9c2 CMs, suggesting that EPC-MVs could

merge with H9c2 CMs (Figure 3A).

RNase Treatment Effectively Depletes RNAs from EPC-
MVs

To investigate the possible role of EPC-MV carried RNAs in

MV function, we digested the total RNAs inside MVs by using

RNAse A. As expected, we found that RNase A was able to

deplete more than 80% of total RNAs in EPC-MVs (100610.1%

and 17.563.5%, P,0.01, MVs vs. rdMVs; Figure 3B).

EPC-MVs Decrease Ang II-induced CM Hypertrophy via
their Carried RNAs

Ang II induced CM hypertrophy is characterized by cell size

increase and activation of fetal cardiac genes such as b-MHC [28].

Here, we found that EPC-MVs decreased Ang II-induced CM

enlargement in cell surface area (1.960.4 and 2.760.2, Ang

II+MVs vs. Ang II, P,0.01; Figure 4A and 4B) and up-regulation

in b-MHC expression (P,0.01; Figure 4A and 4C). In contrast,

EPC-rdMVs totally blocked these effects (P,0.01; Figure 4).

EPC-MVs Protect CMs from Ang II-induced Decrease in
Viability Partially via their Carried RNAs which Activate
PI3K/NOS Pathway

Fig. 5 shows co-incubation of EPC-MVs prevented Ang II-

induced decrease in cell viability (81.262.6% and 52.262.1%,

Ang II+MVs vs. Ang II, P,0.01). EPC-rdMVs were less effective

on improving H9c2 cell viability compromised by Ang II

(61.363.3% and 81.262.6%, Ang II+EPC-rdMVs vs. Ang

II+EPC-MVs, P,0.01), suggesting that the RNAs carried by

EPC-MVs were partially required for the protective effect. In

addition, LY294002 could abolish and L-NAME partially blocked

the protective effect of EPC-MVs (52.863.7%, 65.764.6% and

81.262.6%, MVs+LY294002 or MVs+L-NAME vs. MVs,

P,0.01). These demonstrate the involvement of PI3K/NOS

pathway in the protective effect of EPC-MVs.

Protective Effects of EPC-MVs on Cardiomyocytes
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EPC-MVs Protect CMs from Ang II-induced Apoptosis via
their Carried RNAs which Activate the PI3K/NOS Pathway

As shown in Figure 6, EPC-MVs significantly decreased Ang II-

induced CM apoptosis (16.161.2% and 32.864.5%, Ang II+MVs

vs. Ang II, P,0.01). This effect was significantly reduced in the

EPC-rdMV group (22.161.6% and 16.161.2%, Ang II+rdMVs

vs. Ang II+MVs, P,0.01). Furthermore, LY294002 could abolish

and L-NAME partially blocked the protective effect of EPC-MVs

(29.161.7%, 22.461.4% and 16.161.2%, MVs+LY294002 or

MVs+L-NAME vs. MVs, P,0.01).

EPC-MVs Inhibit Ang II-induced ROS Overproduction in
CMs via their Carried RNAs which Activate PI3K/NOS
Pathway

Oxidative stress is one of the main contributing factors that

initiate hypertrophy and apoptosis in Ang II treated CMs [28]. We

examined the role of EPC-MVs on ROS overproduction in CMs

induced by Ang II. As shown in Figure 7A, Ang II induced an

Figure 1. Concentration-response study of Ang II on H9c2 hypertrophy and apoptosis. (A) Representative images of H9c2 CMs. Scale bar,
100 mm. (B) Dose- dependent effect of Ang II on H9c2 cell surface area. (C) Dose-dependent effect of Ang II on H9c2 cell viability. (D) Dose-dependent
effect of Ang II on H9c2 cell apoptosis. **P,0.01 vs. control; 1P,0.05, 11P,0.01 vs. 1029 M Ang II; +P,0.05, ++P,0.01 vs. 1028 M Ang II; n = 6/group.
doi:10.1371/journal.pone.0085396.g001

Figure 2. Dose-dependent effects of EPC-MVs on H9c2
viability. Summarized data on the effects of different EPC-MV doses
on cell viabilities of H9c2 treated with 0 or 1026 M Ang II. *P,0.05,
**P,0.01 vs. control; ##P,0.01 vs. Ang II, {{P,0.01 vs. Ang II +25 mg/ml
MVs; n = 6/group.
doi:10.1371/journal.pone.0085396.g002

Figure 3. The incorporation of EPC-MVs with H9c2 and the
RNAs depletion from EPC-MVs. (A) Representative images showing
that EPC-MVs merge with H9c2 CMs. MVs were labeled with PKH26
(red). Nucleuses were labeled with DAPI (blue). Scale bar, 100 mm. (B)
Summarized data of total RNAs in MVs and rdMVs. RNase treatment is
effective in depleting RNAs from EPC-MVs. **P,0.01, EPC-rdMVs vs.
EPC-MVs; n = 3/group. rdMVs: RNA deleted MVs.
doi:10.1371/journal.pone.0085396.g003

Protective Effects of EPC-MVs on Cardiomyocytes
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increase in DHE positive cells, which was suppressed by EPC-

MVs. The flow cytometric data also showed that EPC-MVs

significantly suppressed Ang II-induced intracellular ROS over-

production (Figure 7B). EPC-rdMVs were less effective on

reducing Ang II-induced ROS overproduction in CMs (P,0.05).

In addition, pre-incubation with LY294002 or L-NAME could

abolish or partially block the protective effect of EPC-MVs

(P,0.01; Figure 7).

EPC-MVs Activate PI3K/Akt/eNOS Signaling Pathway in
CMs

Akt phosphorylation has been demonstrated to reflect Akt

activation. EPC-MVs significantly increased the protein expres-

sion of p-Akt/Akt (P,0.01; Figure 8A) and p-eNOS/eNOS

(P,0.01; Figure 8B) in CMs. EPC-rdMVs were less effective on

up-regulating Akt, p-Akt, eNOS and p-eNOS (P,0.05 or 0.01;

Figure 8).

Discussion

In this study, we demonstrated for the first time that EPC-MVs

protect CMs from Ang II-induced hypertrophy and apoptosis. The

underlying mechanism may partially rely on the RNAs carried by

EPC-MVs which could inhibit ROS overproduction and activate

the PI3K/Akt/eNOS signaling pathway.

MVs were first described about 30 years ago and considered to

be membrane nano-fragments (0.05–1 mm) [13]. MVs are shed

from the cell surface upon activation, stress or apoptosis. It can be

derived from various cell types, such as platelets, endothelial cells,

EPCs and leukocytes, etc [29,30]. They express different cell

surface markers, which vary according to their cell origin, and the

process of MV formation. Therefore, MVs can be used as

Figure 4. Effects of EPC-MVs on Ang II-induced CM hypertrophy and b-MHC protein expression. (A) Representative
immunohistochemistry images of b-MHC expression in H9c2 CMs in each group. H9c2 CMs were labeled with b-MHC antibody (red), and DAPI
(blue, for nucleus). Scale bar, 100 mm. (B) Summarized data of surface areas of CMs in each group. (C) Western blot bands and graphs showing the b-
MHC expression in H9c2 CMs in different treatment groups. The molecular weights are 223 kDa for b-MHC and 43 kDa for b-actin. *P,0.05, **P,0.01
vs. control, #P,0.05, ##P,0.01 vs. Ang II, +P,0.05, ++P,0.01 vs. Ang II+ MVs; n = 4/group. rdMVs: RNA deleted MVs.
doi:10.1371/journal.pone.0085396.g004

Figure 5. Effect of EPC-MVs on cell viability of Ang II-treated
H9c2 CMs. Summarized data on H9c2 CM viability in each group.
**P,0.01 vs. control; #P,0.05, ##P,0.01 vs. Ang II; ++P,0.01 vs. Ang
II+EPC-MVs; n = 6/group. rdMVs: RNA deleted MVs.
doi:10.1371/journal.pone.0085396.g005

Protective Effects of EPC-MVs on Cardiomyocytes
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biomarkers for disease and indicators for therapeutic efficacy.

More recently, studies showed that MVs exert effects on anti-

inflammatory, anticoagulant and angiogenesis [31]. Our previous

study demonstrated that circulating MVs from db/db diabetic

mice impair the EPC function in vitro and in vivo [20]. EPCs have

been shown to have beneficial effects on cardiovascular regener-

ation and protection [32–34]. MVs released from EPCs could

carry their parent cell biological information and thus are

functional to the target cells [13]. For examples, EPC-MVs trigger

a repair program to injured tissues such as vasculatures, kidney

and pancreatic islets [11,17,18]. Therefore, targeting the func-

tional properties of EPC-MVs could open a novel therapeutic

approach for vascular disease. However, there is no information

regarding the effects of EPC-MVs on cardiac hypertrophy and

apoptosis.

For testing our hypothesis that EPC-MVs play a protective role

in cardiac hypertrophy and apoptosis, we produced the model of

Ang II-induced CM hypertrophy and apoptosis as previously

reported [35,36]. As we expected, Ang II dose-dependently

induced CM hypertrophy and apoptosis, suggesting a success of

model reproduce. After co-incubation of EPC-MVs with CM, we

found that EPC-MVs can effectively incorporate into CMs. This

finding is in agreement with previous reports showing that the

MVs can merge with CMs or ECs [11,37]. Most of the previous

studies on EPC-MVs are focusing on angiogenesis. For examples,

EPC-MVs are able to trigger in vivo angiogenesis in a murine

model of hindlimb ischemia [11]. Incubation of EPC-MVs with

HUVECs promotes EC survival, proliferation and in vitro forma-

tion of capillary-like structures [11]. Here, we demonstrate for the

first time that EPC-MVs prevent CMs from Ang II-induced

hypertrophy and apoptosis.

The underlying mechanisms of EPC-MVs’ protective effects on

CMs might involve oxidative stress and PI3K/Akt/eNOS

signaling pathway. Firstly, ROS overproduction has been dem-

onstrated in Ang II-treated CMs by others [36,38] and in our

present study. Meanwhile, our results reveal that the anti-

hypertrophic and anti-apoptotic effects of EPC-MVs are correlat-

ed with the inhibition of ROS overproduction. Secondly, we found

in this study that EPC-MVs up-regulate Akt/eNOS and p-Akt/p-

eNOS expression in CM hypertrophy model. The PI3K/Akt

signaling pathway has been shown to play a crucial role in

protecting CMs from Ang II-induced hypertrophy and apoptosis

Figure 6. Effect of EPC-MVs on Ang II-induced CM apoptosis. (A) Representative flow cytometric plots of H9c2 CM apoptosis in different
treatment groups. (B) Summarized data on the percentage of apoptotic H9c2 CMs in each group. **P,0.01 vs. control, #P,0.05, ##P,0.01 vs. Ang II,
++P,0.01 vs. Ang II+MVs; n = 6/group. rdMVs: RNA deleted MVs.
doi:10.1371/journal.pone.0085396.g006

Figure 7. Effect of EPC-MVs on intracellular ROS production of Ang II-treated H9c2 CMs. (A) Representative images of intracellular DHE
staining and flow traces in different groups. Scale bar, 200 mm. (B) Summarized data on the measurement of ROS production in H9c2 CMs in different
groups. *P,0.05, ** P,0.01 vs. control, ##P,0.01 vs. Ang II, +P,0.05, ++P,0.01 vs. Ang II+MVs; n = 6/group. rdMVs: RNA deleted MVs.
doi:10.1371/journal.pone.0085396.g007
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[39,40]. In particular, it is indicated that EPC-MVs are involved in

the angiogenic and anti-apoptotic program by shuttling specific

RNAs associated with PI3K/Akt and eNOS pathways [11].

Supported by these previous studies, our data suggest that

activation of PI3K/Akt/eNOS pathway could be responsible for

the effects of EPC-MVs on preventing CMs from Ang II-induced

hypertrophy and apoptosis. Thirdly, activation of eNOS/NO

production scavenges superoxide anion to prevent ROS overpro-

duction [41,42]. These studies provide mechanism explanations

for our novel findings that EPC-MVs activate eNOS and reduce

ROS production in Ang II-treated H9c2 CMs. Finally and most

importantly, we have applied the pathway inhibitors to verify the

role of PI3K/Akt/eNOS pathway in EPC-MVs’ protective effects.

We found that the pathway blockers partially (L-NAME) or totally

(LY294002) inhibit the protective effects of EPC-MVs on Ang II-

induced CM hypertrophy, apoptosis and oxidative stress. Taken

together, our results demonstrate that EPC-MVs could trigger the

PI3K/Akt/eNOS signaling cascades to reduce ROS production,

and consequently to inhibit Ang II-induced hypertrophy and

apoptosis.

MVs exert different functions depending on their composition,

such as protein, receptor, mRNA and miRNA. A recent report

suggests that RNAs in MVs have led to the genetic communication

between cells, and the mRNAs in these RNAs could be translated

into proteins after being taken up by the cells [37]. Deregibus et al

showed that EPC-MVs activate angiogenic program in ECs by a

horizontal transfer of mRNA [11]. In the present study, we

investigated the role of EPC-MVs carried RNAs in the effects of

EPC-MVs. Interestingly, our data showed that the protective

effects of EPC-MVs on CM apoptosis, cell viability and ROS

production could be partially blocked by RNA depletion.

Depletion of RNAs abolished EPC-MVs’ effects on hypertrophy

and modulating Akt/eNOS signaling pathway, suggesting that the

other mechanisms such as their carried protein components might

also be involved. Our findings suggest that the beneficial effects of

EPC-MVs are partly mediated by their carried RNAs. Neverthe-

less more detailed mechanisms, such as the responsive miRNAs,

mRNAs and/or proteins, await future exploration.
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