Wright State University CORE Scholar

Physics Faculty Publications

Physics

6-2008

Infrared Simulations Derived from Submillimeter Wave Analyses

Douglas T. Petkie Wright State University - Main Campus, dpetkie@yahoo.com

Rebecca A. H. Butler

Paul Helminger

Zbigniew Kisiel

Kenneth W. Jucks

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/physics

Part of the Physics Commons

Repository Citation

Petkie, D. T., Butler, R. A., Helminger, P., Kisiel, Z., Jucks, K. W., Winnewisser, B. P., Winnewisser, M., & De Lucia, F. C. (2008). Infrared Simulations Derived from Submillimeter Wave Analyses. . https://corescholar.libraries.wright.edu/physics/806

This Presentation is brought to you for free and open access by the Physics at CORE Scholar. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

Authors

Douglas T. Petkie, Rebecca A. H. Butler, Paul Helminger, Zbigniew Kisiel, Kenneth W. Jucks, Brenda P. Winnewisser, Manfred Winnewisser, and Frank C. De Lucia

Infrared Simulations Derived from Submillimeter Wave Analyses

Douglas T. Petkie Department of Physics, Wright State University Rebecca A. H. Butler

Department of Physics, Pittsburg State University

Paul Helminger

Department of Physics, University of South Alabama

Zbigniew Kisiel Institute of Physics, Polish Academy of Sciences

Kenneth W. Jucks Earth Science Division, NASA Brenda P. Winnewisser, Manfred Winnewisser, Frank C. De Luica Department of Physics, Ohio State University

International Symposium on Molecular Spectroscopy 63rd Meeting June 16-20, 2008 The Ohio State University Columbus, Ohio

A

Motivation

- The synergism between mm/submm/THz and Infrared spectroscopy
 - The same physics
 - Vibrational-rotational energy levels
 - Interactions
 - Advantage of pure rotational spectra in the mm/submm/THz
 - Higher resolution
 - Resolve the thermally populated rotational spectra of heavier molecules
 - Compliment the databases (such as HITRAN, GEISA, ...) used for infrared remote sensing by providing additional spectroscopic information on
 - Overlapping hot and combination bands
 - Infrared dark states

Microwave Laboratory

Overview

- Nitric acid, HONO₂
 - Simulation of the ν_5 - ν_9 and $2\nu_9$ - ν_9 infrared bands

- Chlorine nitrate, CIONO₂
 - Simulation of the v_6 - v_0 fundamental band and the hot bands
 - Much more challenging

Atmospheric Spectra

 Spectra from the balloon-borne FIRS-2 instrument HONO₂

63rd International Symposium on Molecular Spectroscopy

WRIGHT STATE

Department of Physics Microwave Laboratory

Simulation of $v_9 - v_0$, $v_5 - v_9$, $2v_9 - v_9$ of HONO₂

- Stringent test for infrared simulation based only on mm/submm-wave data
- Complex Spectrum
 - Fermi and Coriolis type interactions
 - **Torsional splitting**
- High-resolution infrared studies for comparison

Using submm based simulation

Atmospheric Spectra

• Spectra from the balloon-borne FIRS-2 instrument

Chlorine Nitrate Analyses and Simulation

NASA

CIONO₂ scan near 242 GHz, ~350 MHz scan

Department of Physics Microwave Laboratory

$\nu_6 \text{-} \nu_0$ Fundamental and Hot Bands

 $\frac{I_{37Cl}}{1} = 0.32$

 I_{35Cl}

 $\mu_a = 0.72 D$

 $\mu_{b} = 0.24 D$

Physical Considerations

- Isotope abundance
- Dipole transition moment
 - Hybrid with both a & b type transitions
 - NO Stretch and NO₂ rock
 - Hot Bands

$$S_{\nu+1\leftarrow\nu} = \frac{8\pi^3}{3hc} \nu \frac{N}{q_{\nu}} \left[1 - e^{-hc\nu/kT}\right] \left|R_{\nu+1\leftarrow\nu}\right|^2 \qquad R_{\nu+1\leftarrow\nu}^2 \sim \left(\nu+1\right) \left(\frac{\partial\mu}{\partial Q}\right)^2$$

i-9 (

• Vibrational partition function

Mode, v_i	Band Center (cm ⁻¹)	q_v^i (296K)	$q_{\upsilon} = \prod_{i=1}^{r} \left(\frac{1}{1 - e^{-hc v_i/kT}} \right)$
\mathbf{v}_1	1736.9	1.0002	
v_2	1292.7	1.0019	
v_3	809.4	1.0200	Integrated Band Intensity
ν_4	778.8	1.0231	$\mathbf{Q} = \mathbf{A}$
ν_8	711.2	1.0326	$S_{n+1 \leftarrow n} = \frac{8\pi}{2L} v \frac{N}{2L} \left[1 - e^{-hc v/kT} \left\ R_{n+1 \leftarrow n} \right\ ^2 \right]$
v_5	561.4	1.0692	$3hc q_v$
ν_6	434.0	1.1380	S
\mathbf{v}_7	273.3	1.3603	$\frac{D_{\text{mod eled}}}{C} \approx 0.35$ Fundamental and
V 9	123.7	2.2127	S_{Total} first hot band for
$q_{\nu}(29\overline{6K})$		3.9545	each isotope

63rd International Symposium on Molecular Spectroscopy

Simulation $v_6 - v_0$ Fundamental and Hot Bands

- Method
 - Simulated the fundamental and first hot band
 - Fit for the band centers (fundamental + v_9 hot band)
 - Dominated by Q-branch position
 - Isotopes included
 - Fit a/b-type moments
 - Use a smoothed spectrum to account for left out hot bands
 - Q-branch intensity was also smoothed out
 - Use same a/b-type moment ratio

 $S_{\underline{\text{mod eled}}} \approx 0.35$

S_{Total}

16 June 2008

⁶³rd International Symposium on Molecular Spectroscopy

$v_6 - v_0$ Fundamental and Hot Bands

$v_6 - v_0$ a-type Simulation

Microwave Laboratory

Q-Branch Region

R-Branch Region

Conclusions and Future Work

- Successfully simulated the fundamental and first hot band
 - Significant features Q/P/R branch regions
 - Included the analysis of a dyad, v_5/v_6v_9
- Total integrated intensity and dipole transition moments are very reasonable
 HONO₂
 CIONO₂
- Incorporate
 - nitric acid
 - Incorporate next set of hot bands

- Bell, W., G. Duxbury, et al. (1992). "High-Resolution Spectra of the n4 Band of Chlorine Nitrate." J. Mol. Spectrosc. 152: 283-297.
- Butler, R. A. H., S. Albert, et al. (1999). "The Pure Rotational Spectrum of Chlorine Nitrate." <u>OSU Int. Symp. Mol.</u> <u>Spectrosc.</u> **54**: 161.
- Butler, R. A. H., S. Albert, et al. (2002). "The Millimeter-wave Spectra of Chlorine Nitrate (CIONO2): the 2n9 and n7 Interacting Dyad." <u>J. Mol. Spectrosc.</u> 213: 8-14.
- Butler, R. A. H., D. T. Petkie, et al. (2003). "The millimeter-wave spectrum of chlorine nitrate (CIONO2): the 3 nu(9) and nu(7)nu(9) interacting dyad." 220(1): 150-152.
- Butler, R. A. H., D. T. Petkie, et al. (2007). "The millimeter-wave spectrum of chlorine nitrate (CIONO2): The nu(6) vibrational state." **244**(2): 113-116.
- Butler, R. A. H., D. T. Petkie, et al. (2007). "The rotational spectrum of chlorine nitrate (CIONO2): The nu(5)/nu(6)nu(9) dyad." 243(1): 1-9.
- Flaud, J. M., W. J. Lafferty, et al. (2003). "First high-resolution analyses of the nu(8) and nu(8)+nu(9) spectral regions of (CIONO2)-CI-35: determination of the nu(9) band centre." 101(10): 1527-1533.
- Johnson, D. G., K. W. Jucks, et al. (1995). "Smithsonian stratospheric far-Infrared spectrometer and data reduction system." <u>Journal of Geophysical Research-Atmospheres</u> 100(D2): 3091-3106.
- Johnson, D. G., J. Orphal, et al. (1996). "Measurement of Chlorine Nitrate in the Stratosphere Using the n4 and n5 Bands." <u>Geophys. Res. Lett.</u> 23: 1745-1748.
- Laffertyy, W. J., J. M. Flaud, et al. (2005). "High resolution ro-vibrational analysis of the nu(2) spectral region of chlorine nitrate." 103(4): 521-526.
- McPheat, R. and G. Duxbury (1996). "Absorption coefficients of CIONO2 at 780 cm(-1)." **101**(D3): 6803-6810.
- Muller, H. S. P., P. Helminger, et al. (1997). "Millimeter and Submillimeter Spectroscopy of Chlorine Nitrate: The Cl Quadrupole Tensor and the Harmonic Force Field." <u>J. Mol. Spectrosc.</u> 181: 363-378.
- Orphal, J., M. Morillon-Chapey, et al. (1997). "High-Resolution Infrared Spectra and Harmonic Force Field of Chlorine Nitrate." <u>j. Chem. Phys. A</u> 101(6): 1062-1067.
- Petkie, D. T., R. A. H. Butler, et al. (2004). "Molecular structure, spectral constants, and fermi resonances in chlorine nitrate." Journal of Molecular Structure 695: 287-293.
- Xu, S., T. A. Blake, et al. (1996). "High-Resolution Infrared Spectroscopy of the n4 Fundamental Band of Chlorine Nitrate." J. Mol. Spectrosc. **175**: 303-314.