
Wright State University Wright State University

CORE Scholar CORE Scholar

Computer Science and Engineering Faculty
Publications Computer Science & Engineering

5-2013

The Role of String Similarity Metrics in Ontology Alignment The Role of String Similarity Metrics in Ontology Alignment

Michelle Cheatham

Pascal Hitzler
pascal.hitzler@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

 Part of the Computer Sciences Commons, and the Engineering Commons

Repository Citation Repository Citation
Cheatham, M., & Hitzler, P. (2013). The Role of String Similarity Metrics in Ontology Alignment. .
https://corescholar.libraries.wright.edu/cse/241

This Report is brought to you for free and open access by Wright State University’s CORE Scholar. It has been
accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of
CORE Scholar. For more information, please contact library-corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/36749092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse_comm
https://corescholar.libraries.wright.edu/cse?utm_source=corescholar.libraries.wright.edu%2Fcse%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fcse%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fcse%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

The Role of String Similarity Metrics in Ontology Alignment

Michelle Cheatham and Pascal Hitzler

August 9, 2013

1 Introduction

Tim Berners-Lee originally envisioned a much different world wide web than the one we
have today – one that computers as well as humans could search for the information they
need [3]. There are currently a wide variety of research efforts towards achieving this goal,
one of which is ontology alignment.

An ontology is a representation of the concepts in a domain and how they relate to one
another. Engineering new ontologies is not a deterministic process – many design decisions
must be made, and the designers’ backgrounds and the application they are targeting
will influence their decisions in different ways. The end result is that two ontologies that
represent the same domain will not be the same. They may use synonyms for the same
concept, they may be at different levels of abstraction, they may not include all of the
same concepts, and they may not even be in the same language. The goal of ontology
alignment is to determine when an entity in one ontology is semantically related to an
entity in another ontology (for a comprehensive discussion of ontology alignment, including
a formal definition, see [22]). This would allow software applications to ingest information
across different websites.

There have been dozens of ontology alignment algorithms developed over the last decade.
In researching past and present alignment systems, it became obvious that nearly all such
systems make use of a string similarity metric. But despite the ubiquity of these metrics,
there has been little systematic analysis on which string similarity metrics perform well
when applied to ontology alignment. This paper seeks to fill in that gap by analyzing string
similarity metrics in this domain, as well as the utility of string pre-processing approaches
such as tokenization, translation, synonym lookup, and others.

This study leads naturally to a follow-up question: how much performance can we squeeze
out of string-based techniques? We therefore consider how much an existing alignment
algorithm can be improved by incorporating string similarity metrics that are optimized
for the particular ontology matching problem at hand.

1

In particular, we seek to answer the following questions in this paper:

• What is the most effective string similarity metric for ontology alignment if the
primary concern is precision? recall? f-measure?

• Does the best metric vary based on the nature of the ontologies being aligned?

• Does the performance of the metrics vary between classes and properties?

• Do string pre-processing strategies such as tokenization, synonym lookup, transla-
tions, normalization, etc improve ontology alignment results?

• What is the best we can do on the ontology alignment task using only string pre-
processing and string similarity metrics?

• When faced with the task of aligning two ontologies, how can we automatically select
which string similarity metrics and pre-processing strategies are best, without any
training data available?

• How much does using optimized string similarity metrics improve an existing ontology
alignment system?

2 Related Work

There has been some prior analysis of string similarity metrics in the context of ontology
alignment as part of the development of a new string similarity metric designed specifically
for this domain done by Stoilos and his colleagues [69]. They compared the performance of
their own metric to that of Levenstein, Needleman-Wunsch (a weighted version of Leven-
stein), Smith-Waterman, Monge Elkan, Jaro Winkler, 3-gram, and substring on a subset
of the OAEI benchmark test set. The benchmark test set is an older OAEI track that was
phased out in 2010 in favor of a dynamically generated test set. Stoilos and his colleagues
found that the Monge Elkan and Smith Waterman metrics performed very poorly on this
task. The metric developed by the researchers performed the best. Another piece of work
done in this area is a report produced by the Knowledge Web Consortium in 2004 that
contained a description of a variety string (terminological) metrics applied to the problem
of ontology alignment [21]. This document also discussed string pre-processing strategies
such as normalization and stemming.

When the area of interest is expanded to include string similarity metric studies for other
domains, we find some more interesting surveys. For instance, Branting looked at string
similarity metrics as applied to the names of people, businesses, and organizations, partic-
ularly in legal cases [8]. Nine categories of name variations were identified: punctuation,
capitalization, spacing, qualifiers, organizational terms, abbreviations, misspellings, word

2

omissions, and word permutations. His work evaluated the performance of various combi-
nations of normalization, indexing (determining which names would be compared to one
another) and similarity metrics. He found that string normalization was useful for this
application and that a string similarity metric that he called RWSA (described below)
resulted in the best performance. In addition, Cohen, Ravikumar, and Fienberg did a very
thorough analysis of string similarity metrics as applied to name-matching tasks [12]. They
found that TF-IDF, Monge Elkan, and Soft TF-IDF performed well on the data sets they
analyzed. In addition, they developed the SecondString Java library of string similarity
metrics, which has become very widely used in the research community (including in our
work here).

Some researchers have not set out to study string similarity metrics but have learned
some interesting things about the topic while developing ontology alignment systems. For
instance, the developers of Onto-Mapology tried Jaro, Jaro-Winkler, TF-IDF, and Monge
Elkan in their alignment system and found Jaro-Winkler to have the highest performance
[4], and the developers of SAMBO, which focuses on biomedical ontologies, found that a
weighted sum of n-gram, edit distance, and an unnamed set metric performed better than
any of those metrics alone [39]. In addition, the X-SOM developers note that the optimal
combination of metrics does not vary based on the domain of the ontologies but rather
based on their design characteristics [16].

While string similarity metrics are certainly not a new area of research, it remains unclear
which string metric(s) are best for use in ontology alignment systems. In the OAEI com-
petition algorithms surveyed for this work, 24 different string similarity metrics were used.
In just the work cited above, Monge Elkan was found to be among the best performing
metrics for name matching but among the worst performing for ontology alignment, yet
several of the systems in the OAEI competition use Monge Elkan. Since nearly all align-
ment algorithms use a string similarity metric, more clarity in this area would be of benefit
to many researchers. The work presented here expands on the previous efforts discussed
above by considering a wider variety of string metrics, string pre-processing strategies, and
ontology types. It also takes the work further by placing the string metrics into a complete
ontology alignment system and comparing the results of that system to the current state
of the art.

3 String Similarity Metrics

The Ontology Alignment Evaluation Initiative has become the primary venue for work in
ontology alignment. Since 2006, participants in the OAEI competition have been required
to submit a short paper describing their approach and results. All of these papers were
surveyed to determine what lexical metrics were employed and what pre-processing steps

3

were being used (or proposed). In cases where the paper was not explicit about the string
similarity metric used, the code for the alignment algorithm was downloaded and examined
when possible. The results of this survey are shown in appendix A.

We can group string metrics along three major axes: global versus local, set versus whole
string, and perfect-sequence versus imperfect-sequence.

Global versus local refers to the amount of information the metric needs in order to classify
a pair of strings as a match or a non-match. In some cases, the string metric needs to
compute some information over all of the strings in one or both ontologies before it can
match any strings. Such a metric is global. In other cases, the pair of strings currently
being considered is all the input that is required. Such a metric is local. Global metrics
can be more tuned to the particular ontology pair being matched, but that comes at the
price of increased time complexity.

Perfect-sequence metrics require characters to occur in the same position in both strings
in order to be considered a match. Imperfect-sequence metrics equate matching characters
as long as their positions in the strings differ by less than some threshold. In some metrics,
this threshold is the entire length of the string. Imperfect-sequence metrics are thought to
perform better when the word ordering of labels might differ. This is common in biology-
based ontologies. For instance, we would like to match leg bone with bone of the leg.
Imperfect sequence metrics are more likely to identify such matches. The drawback is that
they also frequently result in more false positives. For instance, the words stop and post
would be a perfect match for an imperfect-sequence metric if the threshold were the entire
length of the string.

Largely orthogonal to these axes lie set-based string similarity metrics. A set-based string
metric works by finding the degree of overlap between the sets of tokens contained in two
strings. Tokens are most commonly the words within the strings. The set-based metric
must still use a basic string metric to establish if the individual tokens are equal (or close
enough to be considered equal). This helper metric is often exact match, but it could be
any non-set string metric. Word-based set metrics are generally thought to perform well on
longer strings such as sentences or documents whereas they are assumed to give relatively
high precision but low recall for shorter strings. Many ontologies have elements with short
names that contain only a word or two, but ontologies in some domains may have longer
labels. Also, the labels of individuals (versus classes or properties) in an ontology often
have longer labels. Word-based set string similarity metrics may perform well in these
situations.

The list below contains all string similarity metrics found in the review of OAEI participants
and categorizes them based on the classifications described above. For set-based metrics,
the underlying base metric used is given in parentheses. One combination does not contain
any metrics: non-set/global/perfect-sequence. A subset of these metrics has been chosen

4

for analysis related to various aspects of the ontology alignment problem. These metrics
were chosen to reflect those most commonly used in existing alignment systems as well as
to cover as fully as possible all combinations of the classification system provided. The
chosen metrics are shown in bold.

• Set

– Global

∗ Perfect-sequence

· Evidence Content (with exact)

· TF-IDF (with exact match)

∗ Imperfect-sequence

· Soft TF-IDF (with Jaro-Winkler)

– Local

∗ Perfect-sequence

· Jaccard (with exact match)

· Overlap Coefficient (with exact)

∗ Imperfect-sequence

· RWSA

· Soft Jaccard (with Levenstein)

• Non-set

– Global

∗ Perfect-sequence

· None

∗ Imperfect-sequence

· COCLU

– Local

∗ Perfect-sequence

· Exact Match

· Longest Common Substring

5

· Prefix

· Substring Inclusion

· Suffix

∗ Imperfect-sequence

· Jaro

· Jaro-Winkler

· Levenstein

· Lin

· Monge Elkan

· N-gram

· Normalized Hamming Distance

· Smith Waterman

· Smith Waterman Gotoh

· Stoilos

· String Matching (SM)

The basic idea behind each metric is explained below. The list is organized alphabeti-
cally.

3.1 COCLU

COCLU is short for Compression-based Clustering. The metric uses a Huffman tree to
cluster the strings in one ontology and then matches each string in the second ontology to
the appropriate cluster. Strings in the same cluster are considered equivalent. Whether to
put a new string in a given cluster or create a new one is based on a distance metric called
Cluster Code Difference (CCDiff), which is the difference between the summed length of
the Huffman codes of all the strings in the cluster and the same with the new string added
to the cluster. This has the effect of grouping together strings with the same frequent
characters, regardless of the order of those characters. More information about COCLU
can be found in [74].

6

3.2 Document Indexing

The idea behind this approach is to use existing document indexing and retrieval tools as
a string similarity metric. Each entity in the second ontology to be matched is treated as
a document. The content of the document varies in different approaches. Options include
any combination of an entity’s label, name, id, comment, neighbors, ancestors, descendants,
and instances. The documents (e.g. entities) are first indexed by a standard search engine
tool such as Lucene or Indri. Then entities in the first ontology to be matched are treated
as search queries over the second ontology. Matches are made to the best search results,
provided that the quality is above a threshold set by the user.

3.3 Exact Match

The most straightforward string similarity metric, exact match simply returns one if the
two strings are identical and zero otherwise.

3.4 Evidence Content

Evidence content is a cousin of the Jaccard metric. Rather than weighting each word
equally, however, words are weighted based on their evidence content, which is the negative
logarithm of the frequency of the number of entities a word appears in, relative to the entire
ontology. See [23] for a discussion of this metric with respect to ontology alignment.

3.5 Hamming Distance (normalized)

The Hamming distance is the number of substitutions required to transform one string into
another. The normalized version divides this distance by the length of the string. This is
similar to the Levenstein distance, but it only applies to strings of the same length.

3.6 Jaccard

This is a classic string similarity metric. The formula is:

Jaccard(s1, s2) = |A∩B|
|A∪B|

The Jaccard metric is most commonly used as a set metric, where the union of A and B
refer to all of the unique words in the two strings being compared and the intersection
refers to the words common to both strings (as determined by simple string equality). It is

7

also possible to use this metric as a base rather than set metric by considering individual
letters instead of words in the strings.

3.7 Jaro

This is another classic string similarity metric. The formula is:

Jaro(s1, s2) = 1
3(m
|s1| + m

|s2| + m−t
m)

where m is the number of matching characters and t is the number of transpositions. Two
characters match if they are not further apart than b(max(s1.length, s2.length)/2) − 1c.
Transpositions are cases where two characters match but appear in the reverse order.

3.8 Jaro-Winkler

This variation on the Jaro metric gives a preference to strings that share a common prefix.
The thought is that many similar strings, particularly verbs and adjectives, have common
roots but a variety of possible endings. The formula is:

JaroWinkler(s1, s2) = Jaro(s1, s2) + (lp(1− Jaro(s1, s2))

where l is the length of the common prefix, up to four characters, and p is a weight for
consideration of the common prefix (this must be less than 0.25 and is usually set to
0.1).

3.9 Longest Common Substring (LCS)

This metric simply normalizes the length of the largest substring that the two strings have
in common. The formula is:

LCSSim(s1, s2) = 2·length(maxCommonSubstring(s1,s2))
length(s1)+length(s2.length)

where length returns the number of characters in a string.

3.10 Levenstein Edit Distance

This is by far the most commonly used string similarity metric in ontology alignment sys-
tems. The Levenstein edit distance is the number of insertions, deletions, and substitutions
required to transform one string into another. It can be normalized by dividing the edit
distance by the length of the string (either the first string, to create an asymmetric metric,

8

or the average of the lengths of both strings). Variations on this metric weight different
types of edits differently.

3.11 Lin

This metric is described in [42]. The idea behind this metric is that the similarity between
two things can be assessed by taking a measure of what they have in common and dividing
by a measure of the information it takes to describe them. This definition has its basis
in information theory. They apply this intuition to determining string similarity using the
following formula:

Sim(s1, s2) =

2·
∑

t|tri(s1)∩tri(s2)

logP (t)∑
t|tri(s1)

logP (t) +
∑

t|tri(B)

logP (t)

where tri enumerates the trigrams in a string and P (t) is the probability of a particular
trigram occurring in a string, which is estimated by their frequencies in the words (i.e. over
all of the words in the ontologies).

3.12 Monge Elkan

Monge and Elkan describe both a set-based similarity metric and a variant of the Smith-
Waterman metric in their paper [47]. Different groups appear to refer to each of these as
the Monge Elkan metric. The SecondString library, a Java-based implementation of many
different string similarity metrics, implements the Smith-Waterman variant as Monge-
Elkan, so that is what we will consider here.

This metric uses the Smith-Waterman approach with a match score of -3 for mismatched
characters, +5 or the same characters (case insensitive), and +3 for approximately the
same characters. This approximation is a variation on the original Smith-Waterman, along
with the non-linear gap penalties used – 5 for a gap start and 1 for a gap continuation. The
alphabet is upper and lower case letters, digits, period, comma, space – all other characters
are ignored.

Two characters are approximately equal if they fall into the same set:

• {d t}

• {g j}

• {l r}

9

• {m n}

• {b p v}

• {a e i o u}

• {. ,}

3.13 N-gram

This metric converts each of the strings into a set of n-grams. For instance, if one of the
words is hello and n is 3, the set of n-grams wold be {hel, ell, llo}. The resulting sets for
both strings are then compared using any set similarity metric (cosine similarity and Dice’s
coefficient are common). A variation is to have special characters to indicate prior to the
start of the string and after the end of the string. Using this approach, hello would result
in the set {##h, #he, hel, ell, llo, lo%, o%%}.

3.14 Overlap Coefficient

This is very similar to the Jaccard metric. The formula is:

Overlap(s1, s2) = |A∩B|
min(|A|,|B|)

where A is the set of tokens (either words or characters) in the first string and B is the
same for the second string.

3.15 Prefix

This metric returns one if the first string is a prefix of the second, zero otherwise.

3.16 RWSA

RWSA stands for Redundant, Word-by-word, Symmetrical, Approximate. This is based
on the classification system for string similarity metrics presented in [8]. Each string is
indexed by the Soundex representation of its first and last words. Soundex is a phonetic
encoding consisting of the first letter of the string followed by three digits representing the
phonetic categories of the next three consonants, if they exist. The phonetic categories
are:

1. B, P, F, V

10

2. C, S, K, G, J, Q, X, Z

3. D, T

4. L

5. M, N

6. R

When comparing two strings, a list of possible matches is retrieved by hashing the shorter
of the two strings, and the remainder of the algorithm is run on these potential matches
to find the best one and determine if it is above a threshold. These potential matches
are all considered with respect to the indexing string. Both strings are broken into their
component words. Two strings are considered to be a match if each word in the smaller of
the two strings approximately matches a unique work in the larger string. An approximate
match is one in which the edit distance is within a mismatch threshold. When computing
the edit distance, there is a penalty of 1.0 for insertions, deletions and substitutions and a
penalty of 0.6 for transpositions. The indexing to retrieve candidate matches may enable
this metric to be used on larger ontologies than others that require each string to be
compared against every other.

3.17 String Matching (SM)

This metric was developed by Alexander Maedche and Steffen Staab and is described in
[43]. It is essentially a normalized Levenstein edit distance in which the difference between
the length of the shorter string and the edit distance is divided by the length of the shorter
string.

3.18 Smith-Waterman

This is a variant of the Needleman-Wunch metric and like that metric, it uses a dynamic
programming algorithm [20]. To compare two strings, a matrix is created with the number
of columns equal to the length of the first string and the number of rows equal to the length
of the second string. The first row and first column are all zeros. All other elements i, j
are set to the maximum of the following:

• 0

• H(i − 1, j − 1) + w(s1(i), s2(j)), for a match/mismatch where w is the weight for a
match/mismatch

11

• H(i−1, j)+w(deletion), for a deletion where w(deletion) is the starting or continuing
gap penalty

• H(i, j − 1) + w(insertion), for an insertion where w(insertion) is the starting or
continuing gap penalty

Once this matrix has been created, the distance between the two strings is found by starting
with the highest value in the matrix and moving either up, left, or diagonally up and left,
towards whichever value is highest. This is repeated until either a zero or the upper left
corner of the matrix is reached. The distance is the sum of all of the values that were
traversed.

3.19 Smith Waterman Gotoh

This is a variation of the Smith-Waterman metric that has affine (non-linear) gap penalties.
Because the length of the gaps doesn’t matter in this version (a flat penalty is assessed for
elongating an existing gap), a significantly faster implementation is possible [24].

3.20 Stoilos Metric (SMOA)

This string metric was specifically developed for use in ontology alignment systems. The
main idea is to explicitly consider both the commonalities and differences of the two strings
being compared. The formula is:

Sim(s1, s2) = Comm(s1, s2)−Diff(s1, s2) + JaroWinkler(s1, s2)

Comm(s1, s2) finds the longest common substring, then removes it from both strings and
finds the next longest substring, and so on until none remain. Then their lengths are
summed and divided by the sum of the original string lengths. The formula for this
is:

Comm(s1, s2) = 2·
∑

length(maxCommonSubString(s1,s2))
length(s1)+length(s2)

Diff(s1, s2) is computed using the following formula:

Diff(s1, s2) = uLen(s1)·uLen(s2)
p+(1−p)·(uLen(s1)+uLen(s2)−uLen(s1)·uLen(s2))

where uLen is the length of the unmatched part of the string from the first step divided
by the length of the corresponding original string and p is the importance of the difference
factor. The authors experimentally found 0.6 to be a good choice.

This metric ranges from -1 for completely different strings to +1 for identical strings. More
information about this metric can be found in [69].

12

3.21 Soft Jaccard

Unlike the Jaccard metric, soft Jaccard is a set metric only. It must be used in conjunction
with a base similarity metric. First, the base similarity metric is run on all combinations of
the words in both strings. The metric counts the number of these pairs in which the base
metric result is greater than some threshold. This number is then divided by the number
of words in the string with the higher word count. This is summarized in the formula
below:

SoftJaccard(s1, s2, t) =
|sim(Ai,Bj)>=t|

max(|A|,|B|)

where A is the set of words in the first string, B is the set of words in the second string, t
is the threshold for the base similarity metric, and sim is that base metric. The subscript
i goes from 0 to the number of words in the first string and j does the same for the second
string.

3.22 Soft TF-IDF

This version of the TF-IDF metric is identical except that rather than requiring exact
matches when computing the cosine similarity, words are considered matching if their
similarity according to some base similarity metric is above a threshold. In our work, we
have followed the lead of Cohen and his colleagues in [12] and used Jaro-Winkler as the
base metric.

3.23 Substring Inclusion

This metric returns one if the first string is contained within the second and zero other-
wise.

3.24 Suffix

This metric returns one if the first string is a suffix of the second one and zero other-
wise.

3.25 TF-IDF/cosine

TF-IDF stands for Term Frequency – Inverse Document Frequency. It is a technique used
for document indexing in information retrieval systems. The term frequency is the number
of times a word appears in a document, divided by the number of words in the document.

13

The inverse document frequency is the logarithm of the number of documents divided by
the number of documents that contain the word in question. The idea behind using this
approach for ontology alignment is that it is more indicative of similarity if two entities
share a word that is rare in the ontologies than if they share a common word such as
“the.”

When computing the metric, the term frequency and inverse document frequency for each
word in each document is computed (where document here means the same as described for
the document indexing metric). This must be done for both ontologies before any entities
can be compared. Then to compare two strings, each word’s term frequency is multiplied
by its inverse document frequency, creating a vector for each string. The string similarity
is then the cosine similarity of the vectors.

4 String Pre-processing Strategies

This section describes all of the pre-processing approaches that were either tried or proposed
by OAEI participants. The approaches mentioned by more than two participants are
shown in bold italics – these will be examined in detail. Some operations are directly
beneficial to the string similarity metric, while others primarily help with returning valid
synonyms/translations (and so hopefully benefit the metric indirectly).

These approaches can be divided into two major categories: syntactic and semantic. Syn-
tactic pre-processing methods are based on the characters in the strings or the rules of
the language in which the strings are written. They can generally be applied quickly and
without reference to an outside data store. Semantic methods relate to the meanings of
the strings. These methods generally involve using a dictionary, thesaurus, or translation
service to retrieve more information about a word or phrase.

• Syntactic

– tokenization

– split compound words

– normalization

– stemming/lemmatization

– stop word removal

– consider part-of-speech (i.e. weight functional words less)

• Semantic

– synonyms

14

– antonyms

– categorization

– use language tag

– translations

– expand abbreviations and acronyms

4.1 Abbreviations and Acronyms

Abbreviations and acronyms are particularly challenging for string similarity metrics.
There have been several attempts to expand such shortcuts into their original representa-
tion by either looking them up in external knowledge sources or using language production
rules. Reliable expansion of abbreviations and acronyms would be useful not just for the
string metric, but also in improving synonym lookup and translations.

4.2 Antonyms

Some similarity metrics consider differences as well as commonalities. A possible strat-
egy for such metrics is to gather antonyms from a thesaurus in the same manner that
synonyms are retrieved. These can then be used to determine that two strings are not
equivalent.

4.3 Categorization

In this approach, an external source containing a category hierarchy is used. Strings falling
into the same category are considered more similar.

4.4 Compound Words

It is possible that splitting compound words into their constituents can improve the per-
formance of some set-based string similarity metrics.

4.5 Language Tag

Ontology files sometimes use a language tag to specify the language of a particular string
in the ontology. This can be used to avoid potentially misleading comparisons of words

15

in different languages. It can also be used in conjunction with translations, to determine
which language to translate from and which to translate to.

4.6 Normalization

The idea behind normalization is to eliminate stylistic differences between strings as much
as possible. This generally involves putting all characters into either upper or lower case,
replacing punctuation characters with a space, and standardizing word order, often by
alphabetizing the words within the string. Normalization might also involve transliterating
characters not in the Latin alphabet to their closest equivalent.

4.7 Part-of-speech

Similar in concept to stop word removal, it is possible to remove functional words such
as articles, conjunctions, and prepositions from strings prior to assessing their similarity.
Another possibility is to keep these words in the strings but weight them less than other
words when a set-based string similarity metric is used.

4.8 Stemming/Lemmatization

Stemming attempts to eliminate grammatical differences between words due to verb tense,
plurals, and other word forms by finding the root of each word in the string. This topic has
been studied in computer science since the sixties, and there are many existing algorithms.
Stemming is both directly useful for string metrics and helpful in synonym lookup and
translation.

4.9 Stop Word Removal

Stop words are the most commonly used words in a language. The idea behind removing
stop words from strings prior to computing their similarity is that very common words
add little useful information. There are many lists of stop words available for different
languages.

4.10 Synonyms

In this pre-processing phase, strings are supplemented with their synonyms using either
a general thesaurus such as WordNet or a domain-specific one such as UMLS for the

16

biomedical domain. Biomedical ontologies also frequently have synonyms embedded in the
ontology itself. Synonym lookup is by far the most often proposed pre-processing operation,
but some who have actually implemented it report that it did not improve the performance
of their system (e.g. SAMBO, GeRoMeSuite/SMB).

4.11 Tokenization

Tokenization involves splitting strings into their component words. Word boundaries vary
based on implementation, but often some combination of whitespace, underscores, hyphens,
slashes, and lower-to-uppercase changes (to detect camelCase) is used. Tokenization is
useful when comparing ontologies with different naming conventions, such as underscores
versus hyphens to delineate words. This is particularly important for set-based string
similarity metrics. In addition, tokenization is also needed for some other pre-processing
steps, such as synonym lookup, translations, and word stemming.

4.12 Translation

Translating strings when the ontologies to be matched are known to be in different lan-
guages has been suggested for a long time, but implementation has only become common
in ontology alignment systems with the introduction on the multifarm test set in the OAEI.
The language tag can be used to know which languages are involved, or a sample of the
words in the ontologies can be analyzed to determine the languages.

5 Experimental Setup

In this section we describe the experimental framework and metric implementations in
enough detail that others can reproduce our results. In addition, the source code for these
experiments can be downloaded from http://www.pascal- hitzler.de/pub/StringMetricTester.jar.

The Ontology Alignment Evaluation Initiative (OAEI)1 was started in 2004 with the goal
of making it easier for researchers to compare the results of their ontology alignment algo-
rithms. The organizers hold a contest each year in which participants run their algorithms
on a large set of ontology matching problems and compare the results based on precision,
recall, and f-measure. The OAEI features several tracks to test different types of ontology
matching problems, three of which were used in this work.

The conference track consists of finding equivalence relations among 16 real-world ontolo-
gies describing the same domain – conference organization. The ontologies are based on

1http://oaei.ontologymatching.org/

17

conference websites, software tools designed to support conference organization, and input
from experienced conference organizers. These ontologies are all fairly small, with each
one containing less than 200 classes and properties. The multifarm track consists of the
ontologies from the conference track translated by native speakers into eight different lan-
guages: Chinese, Czech, Dutch, French, German, Portuguese, Russian, and Spanish (along
with the original English). The goal is to align all combinations of languages. Finally, the
anatomy track consists of two ontologies from the biomedical domain: one describing the
anatomy of a mouse and the other the anatomy of a human. As is common for biomedical
ontologies, these are significantly larger than those found in the conference track, with each
containing around 3000 classes.

In order to get a sense of whether the results on the OAEI test sets generalize to similar
cases, we have also run our tests on other ontology pairs of the same type. As an analog to
the conference test set, we have used two BizTalk files representing the domain of purchase
orders: CIDX and Excel.2 These were converted to an OWL format using a script that
simply created a class for each entity (because we are only using the labels and not any
relationship information, this is sufficient). The reference alignment for this dataset was
created by domain experts. In addition, native speakers have assisted us in translating these
schemas into German, Portuguese, Finish, and Norwegian so that we also have an analog
for the OAEI multifarm track. Finally, we have attempted to match the Gene Ontology3

to the multifun schema4, both of which cover topics from biomedicine (the Gene Ontology
covers the general domain of genetics, while the multifun schema is a description of cell
function). The multifun schema was put into an OWL format using the same procedure as
the CIDX and Excel data sets. The reference alignment for this test set was also generated
by domain experts.5 The GO ontology and associated schema mappings are made possible
by the work of the Gene Ontology Consortium [2].

Our test framework takes the two ontologies to be aligned and compares the label of every
entity in the first ontology to every entity in the second ontology. The label is first con-
sidered to be the URI of the ontology entity, with the namespace (everything before the #
character) removed. In the case that this approach results in an empty or null string, the la-
bel annotation of the entity is used instead. For each pair of labels, the metric being tested
is run in both directions: metric.compute(labelA, labelB) and metric.compute(labelB, la-
belA). These results are put into two separate two dimensional arrays. Then the stable
marriage algorithm is run on these two arrays to determine the best matches between the
two ontologies. This algorithm finds a mapping that ensures there are no As matched
to a B where A is more similar to a different B and B is more similar to a different A.
This approach is used because in the OAEI test set gold standards each entity is involved

2http://disi.unitn.it/˜accord/Experimentaldesign.html
3http://www.geneontology.org/GO.database.shtml
4http://genprotec.mbl.edu/files/MultiFun.html
5http://www.geneontology.org/GO.indices.shtml

18

in at most one equality mapping. The version of the stable marriage algorithm used is
deterministic. Finally, any mappings for which the minimum of metric.compute(labelA,
labelB) and metric.compute(labelB, labelA) is less than one threshold or the maximum
of those two values is less than a second threshold are thrown out. The resulting align-
ment is scored against the OAEI-provided gold standard in terms of precision, recall, and
f-measure.

Due to the nature of the test framework, each metric requires at least two parameters: the
thresholds for the similarities between the two strings (in both directions). For each test,
each metric had both of the parameters initially set at 1.0. The parameters were then both
decreased in steps of 0.1 until the f-measure ceased to improve. Then the first parameter was
decreased in steps of 0.1 while the second was held constant. Then the second parameter
was decreased in steps of 0.1 while the first was held constant. Then the first parameter
was increased in steps of 0.1 and finally the second parameter was increased in steps of
0.1. This entire process was repeated as long as improvements in f-measure continued
to be made. In addition, the soft set metrics (soft Jaccard and soft TF-IDF) require an
additional parameter. This was initially set at 0.9 (setting it at 1.0 would have negated the
soft aspect of the metrics), the test was run according to the previous description, then the
third parameter was set to 0.8 and the process was repeated. This process was repetitive
in some cases, but it was a reasonably thorough search of the parameter space for each
metric.

5.1 Tokenization

Tokens are delimited by dash, underscore, space, camelCase, forward slash, and back slash.
Each token is put into all lowercase. This is done to prevent camelCase labels from retaining
a difference between tokens.

5.2 Stop Word Removal

The Glasgow IR group’s stop words list is used.6 It consists of 318 common English words.
The Tokenization is done prior to stop word removal.

5.3 Stemming

Tokenization is done prior to stemming to handle cases like runningTotal. The Porter
stemming algorithm is used [57].

6http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop words

19

5.4 Normalization

Any whitespace is replaced by a single space. Any letters with diacritic marks, umlauts,
etc are replaced with the closest corresponding letter from the English alphabet. Russian
characters are transliterated using the approach specified here: http://www.translit.cc/.
We were unable to transliterate the Chinese symbols. As a final step, the label is tokenized
and the tokens are ordered alphabetically.

5.5 Synonyms

This test was only run on the conference and anatomy test sets. The language test set could
be included in the future if appropriate electronic thesauri could be found for each language.
The labels are first tokenized and then synonyms are looked up either in Wordnet, for the
conference set, or in the synonyms attribute of the entity itself, for the anatomy set.

There were some differences between using Wordnet and the internal synonyms. The
JWNL Java Wordnet API was used to query Wordnet. Tokenization must be done to get
reasonable hit rates for synonym lookup from Wordnet. In addition, the Wordnet API does
its own form of word stemming internally, and that was left in place because it is the most
common way to use Wordnet in applications. A question arose on how to handle labels
that are phrases when querying Wordnet. Looking up “masters thesis” returned only the
synonyms for “masters” and nothing for thesis or for the phrase as a whole. The same was
true when masters thesis was used as the query (even though Wordnet will return items in
a similar form, such as baseball bat). Therefore the synonym set is generated by querying
Wordnet for each token in the label and aggregating the results. So for this example, the
synonym set contains all synonyms for masters plus all synonyms for thesis.

A second question concerned how to compute the overall similarity value based on the
similarity values of the synonyms. After some preliminary experimentation, it was deter-
mined that the synonyms provided within the anatomy ontologies are far more specific and
relevant than those arrived at by querying Wordnet for the conference ontologies. As a
result, the best strategy for computing overall similarity in the anatomy case was to take
the maximum value of the similarity of the label of the first entity compared to that of the
label and each of the synonyms of the second entity (and the same for the other direction).
For the Wordnet case the best result was obtained by employing a set similarity metric:
the similarity values for the first entity’s label and all of its synonyms where computed
with respect to the second entity’s label and all of its synonyms. All of these values were
summed and divided by the size of the synonym set of the first entity, plus one for the
label itself. We also tried using the same approach on the conference test set that was used
on the anatomy test set, but the results were much worse than those resulting from the
approach just outlined.

20

5.6 Translation

Only the language test set was used for this experiment. Google Translate (via the Google
Translate API) is used to translate from one language to another. Google Translate can
handle translations between all of the languages in the OAEI test set. Unfortunately, it
is not free. The cost is $20 per 2 million characters. It cost $12.08 to align all of the
ontology pairs in the test set once. To avoid paying that for each metric multiple times
(to optimize the parameter values), the results were cached and the cache was used after
the first run. This does not affect the accuracy of the metrics. The service can also detect
the language of the input it is provided with – the labels of ten randomly chosen entities
were submitted to the translation service to detect the language. Google Translate does
some internal pre-processing involving stemming, but Google does not provide details on
this.

5.7 Exact

The Java String class’s startsWith method is used for this metric. The reason for using
startsWith rather than the equals method is that this makes the metric asymmetric. For
instance, exact.compute(“leg bone”, “leg”) returns 1 because “leg bone” starts with “leg”
while exact.compute(“leg”, “leg bone”) returns 0 since “leg” does not start with “leg
bone”.

5.8 Jaccard

The SecondString library implementation of this metric is used.

5.9 Jaro-Winkler

The SecondString library implementation of this metric is used.

5.10 Longest Common Substring

This metric was coded based on the following logic: find the shorter of the two strings,
for each character in that string, check to see if the longer string contains that character.
If it does, find the length of the longest common substring starting with that character.
The maximum of all of these lengths is then divided by the length of the first string and
returned. This is an asymmetric metric.

21

5.11 Levenstein

The distance between the two input strings is computed using the SecondString imple-
mentation of the Levenstein metric. The distance is then normalized by dividing it by the
length of the first input string (creating an asymmetric metric). In order to have 1 rather
than 0 represent a perfect match, the normalized distance is then subtracted from 1.

5.12 Monge Elkan

The SecondString implementation of this metric is used.

5.13 N-gram

After some initial experimentation, n was set equal to 3 for all of these tests. This metric
was coded based on the following logic: construct all trigrams for each input string, rep-
resenting characters prior to the beginning of the string with ’#’ and those after the end
of the string with ’%’. Return the number of trigrams common to the two strings, divided
by the number within the first string (asymmetric metric), being sure to handle duplicate
trigrams correctly.

5.14 Soft Jaccard

A set of the unique words in the first string (where uniqueness is determined by a Levenstein
distance less than a threshold from any word already in the set) and another set of the
unique words in the second string are created. The intersection and union of these two
sets are computed, and the metric returns the size of the intersection divided by the
size of the union. The Levenstein distance is computed using the Second String library
implementation.

5.15 Soft TF-IDF

The Second String library SoftTFIDF class was used as the basis for this implementation.
The internal metric used was the Second String implementation of JaroWinkler. A Simple-
Tokenizer was created to split the strings into words with whitespace as the delimiter. The
SoftTFIDF dictionary was created using the words from all of the labels in both ontolo-
gies. If the test considered synonyms, sets of synonymous words were maintained and only
one representative word from each set was added to the dictionary. If the test considered

22

translation, the word was first translated to the appropriate language before being added
to the dictionary. A BasicStringWrapperIterator was used to train the metric.

5.16 Stoilos

This is coded based on the definition provided in the paper in which the metric was origi-
nally proposed. There was a point of confusion related to the Jaro-Winkler-based improve-
ment factor mentioned in that paper, however. The paper states that the metric should
range from -1 to +1, but with that factor in it ranges from -1 to +2. We tried both ap-
proaches when attempting to reproduce the results mentioned in the paper but achieved at
best an f-measure that was around 0.1 lower than what was reported. For instance, on the
301 benchmark test with a 0.6 threshold, our tests resulted in precision = .83 and recall
= .68 for an f-measure of .75 while the authors report a precision of .98, recall of .79, and
f-measure of .87. The results using the Jaro-Winkler improvement factor were significantly
worse. The experiments here were conducted without that factor included.

5.17 TF-IDF

The Second String library TFIDF class was used as the basis for this implementation. A
SimpleTokenizer was created to split the strings into words with whitespace as the delimiter.
The TFIDF dictionary was created using the words from all of the labels in both ontologies.
If the test considered synonyms, sets of synonymous words were maintained and only one
representative word from each set was added to the dictionary. If the test considered
translation, the word was first translated to the appropriate language before being added
to the dictionary. A BasicStringWrapperIterator was used to train the metric.

6 Results

In this section we review the results of the experiments described above.

6.1 OAEI Results

First, we look at the effect of the different string pre-processing strategies on precision,
recall, and f-measure for the OAEI test sets. Figures 1 through 7 show the results for
one string pre-processing strategy on all three OAEI datasets (conference, multifarm, and
anatomy. F-measure, precision, and recall are all shown on the graphs.

Figure 1 shows the results of when no string pre-processing is employed.

23

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Conf	 -‐	
F-‐meas	

Conf	 -‐	
Prec	

Conf	 -‐	
Rec	

Mul>	 -‐	
F-‐meas	

Mul>	 -‐	
Prec	

Mul>	 -‐	
Rec	

Anat	 -‐	
F-‐meas	

Anat	 -‐	
Prec	

Anat	 -‐	
Rec	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐gram	

SoM	 Jaccard	

SoM	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 1: Results of all metrics on the OAEI test sets without any string pre-processing.

The conference dataset does not reveal much disparity among the string similarity metrics.
If we leave out the Monge Elkan and Longest Common Substring metrics, which perform
very poorly, we are left with very little standard deviation for either precision or recall in
this test set. Also, the optimal thresholds indicate that the best approach is to look for
matches that are as exact as possible.

The multifarm test set is much more challenging than the conference domain – both pre-
cision and recall are less than one fourth what they were in that case. This test set also
reveals a much wider disparity among string similarity metrics. There is a large standard
deviation for both precision and recall. This is likely because most ontologies, including
these, contain the majority of the semantic information in labels. This intrinsic information
is hidden from string similarity metrics by translation.

The exact, n-gram, and TF-IDF metrics cannot generate any matches for the anatomy
test set. Furthermore, the longest common substring, Stoilos, and Monge Elkan metrics
perform very poorly. For the remaining metrics, we find that this test is easier for string
similarity metrics than the conference dataset. This is expected because biomed datasets
usually deal with a smaller, more regular vocabulary. There is often a small set of nouns
with associated modifiers. The precision for this dataset is extremely high and the standard
deviation of the precision is relatively low. There is a much higher standard deviation of

24

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Conf	 -‐	
F-‐meas	

Conf	 -‐	
Prec	

Conf	 -‐	
Rec	

Mul>	 -‐	
F-‐meas	

Mul>	 -‐	
Prec	

Mul>	 -‐	
Rec	

Anat	 -‐	
F-‐meas	

Anat	 -‐	
Prec	

Anat	 -‐	
Rec	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐gram	

SoM	 Jaccard	

SoM	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 2: Results of all metrics on the OAEI test sets using tokenization.

recall. In particular, the metric with the next-to-highest precision (Soft Jaccard) has by
far the lowest recall. This is a dataset where set metrics do particularly well, again because
the biomed domain frequently involves phrases that can be presented in different orders.
The anatomy test set is also interesting in that there is a more clear choice to be made
between metrics that have good precision and those that have good recall there is not a
lot of overlap between these two sets.

Figure 2 shows the same results using tokenization.

On the conference dataset, there were improvements in the recall of most metrics (a large
one for LCS and TF-IDF) with little to no decrease in precision, except for TF-IDF. The
recall of TF-IDF went from average to much better than any of the other metrics on this
dataset with tokenization. This improvement in recall seems primarily due to the use of
underscores as word separators in some ontologies and camelCase in others.

For the multifarm test set there were no improvements in the best-performing metrics due
to tokenization.

After tokenization, the exact, n-gram, and TF-IDF metrics are capable of producing results
on the anatomy dataset whereas without it they could not. In fact, exact now has perfect
precision. The recall of most metrics was improved slightly or left unchanged. In the case

25

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Conf	 -‐	
F-‐meas	

Conf	 -‐	
Prec	

Conf	 -‐	
Rec	

Mul>	 -‐	
F-‐meas	

Mul>	 -‐	
Prec	

Mul>	 -‐	
Rec	

Anat	 -‐	
F-‐meas	

Anat	 -‐	
Prec	

Anat	 -‐	
Rec	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐gram	

SoM	 Jaccard	

SoM	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 3: Results of all metrics on the OAEI test sets using stemming.

of the n-gram metric this was significant enough to make it one of the best-performing
metrics in terms of recall. These changes were enough to change the set of top performing
metrics in terms of f-measure as well.

In general, it makes sense to perform tokenization as a pre-processing step – it improves
overall performance (especially recall) slightly, particularly for metrics that involve exact-
match.

Figure 3 shows that when compared with tokenization as a baseline, stemming does not
improve performance on any of the test sets (it actually slightly hurts precision on the
conference set). The only exception is that recall of the Soft TF-IDF metric is improved
by 27% on the conference test set, and that metric becomes the best choice for that test
set in terms of recall. Recall of the n-gram metric on the anatomy test set is hurt badly
enough to move it out of the best-performing metrics for that category.

Removing stop words lowers precision on the conference test set and has essentially no
effect on the other two test sets when compared to tokenization (figure 4).

Figure 5 shows that normalization had little effect on the conference test set. Performance
in terms of both precision and recall on the languages test set greatly improved with
normalization (mostly due to the transliteration). Normalization had little effect on the

26

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Conf	 -‐	
F-‐meas	

Conf	 -‐	
Prec	

Conf	 -‐	
Rec	

Mul>	 -‐	
F-‐meas	

Mul>	 -‐	
Prec	

Mul>	 -‐	
Rec	

Anat	 -‐	
F-‐meas	

Anat	 -‐	
Prec	

Anat	 -‐	
Rec	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐gram	

SoM	 Jaccard	

SoM	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 4: Results of all metrics on the OAEI test sets using stop word removal.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Conf	 -‐	
F-‐meas	

Conf	 -‐	
Prec	

Conf	 -‐	
Rec	

Mul>	 -‐	
F-‐meas	

Mul>	 -‐	
Prec	

Mul>	 -‐	
Rec	

Anat	 -‐	
F-‐meas	

Anat	 -‐	
Prec	

Anat	 -‐	
Rec	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐gram	

SoM	 Jaccard	

SoM	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 5: Results of all metrics on the OAEI test sets using normalization.

27

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Conf	 -‐	
F-‐meas	

Conf	 -‐	
Prec	

Conf	 -‐	
Rec	

Anat	 -‐	
F-‐meas	

Anat	 -‐	
Prec	

Anat	 -‐	
Rec	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐gram	

SoK	 Jaccard	

SoK	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 6: Results of all metrics on the OAEI test sets using synonyms.

precision or recall of any metric on the anatomy test set.

Figure 6 shows the results when synonyms are considered. This hurts both precision and
recall for all metrics on the conference test set. On the anatomy test set, the precision of
all metrics was either flat or worse than for tokenization alone, but the recall of several
metrics improved enough to raise the f-measure when synonyms were considered.

Translations result in huge improvements in both precision and recall for all metrics on
the multifarm test set, both over tokenization alone and over normalization (see figure 7).
There is a wide variation in the performance of metrics in this configuration on this test
set. Also, the metrics with good precision have mediocre recall and vice versa.

6.2 Comparative Results

The next set of graphs contains the results of the same tests on the non-OAEI data sets.
These were conducted in order to determine whether the results presented above are specific
to the OAEI data sets or if they carry over to other ontologies of the same general type.
Figure 8 shows the f-measure of the best-performing metric using each pre-processing
strategy while figure 9 shows the f-measure of each metric using the best-performing pre-
processing strategy. The same information is shown for the analogous OAEI data set for

28

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Mul0	 -‐	 F-‐meas	 Mul0	 -‐	 Prec	 Mul0	 -‐	 Rec	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐gram	

SoK	 Jaccard	

SoK	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 7: Results of all metrics on the OAEI test sets using translations.

comparative purposes. Variations in the absolute heights of the bars between analogous
data sets are to be expected because the overall difficulty of matching a particular ontology
pair may vary considerably – what we are looking for is the same general shape of the bars
for the adjacent sets (or a clear understanding of any differences).

For the most part the pre-processing strategies exhibit similar behavior on the analogous
data sets, as shown on figure 8. The only exception is that stemming improves performance
on the Genes test set but not on Anatomy. Further analysis shows that this difference turns
out to not be significant, however. The TF-IDF metric is the top-performing metric on
the Genes test set. It turns out that many of the entities in the Genes dataset that
are successfully matched using stemming contain the word transport or transporter. When
stemming is used, these two words are considered the same and the TF-IDF metric weights
them less due to a more frequent occurrence in the ontologies, thereby allowing more
correct results. In short, a single lucky break has resulted in a rather noticeable variation
in performance.

The significantly smaller sizes of the non-OAEI test sets cause more variability in metric
performance (i.e. because there is a small number of matches, a metric is more heavily
rewarded if it gets lucky on a particular match and more heavily penalized if it does not).
However, we see from figure 9 that choosing a string similarity metric is less important for

29

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

CID
X-‐t
o-‐E
xce
l	

Co
nfe
ren
ce
	

CID
X-‐t
o-‐E
xce
l	 (M

L)	

Mu
lAf
arm

	

Ge
ne
s	

An
ato
my
	

None	

TokenizaAon	

Stemming	

Stopwords	

NormalizaAon	

Synonyms	

TranslaAons	

Figure 8: F-measures of the best-performing metric on all test sets for all string pre-
processing strategies.

standard ontologies because performance varies little among metrics. This is not the case
for the multilingual and biomedical ontologies. In addition, we see that choosing a string
similarity metric based on its performance on the OAEI test sets leads to good relative
performance on analogous ontology matching problems.

6.3 Classes vs Properties

Others have found that human experts have a more difficult time agreeing on when proper-
ties match than on classes [43]. We seek here to determine if string similarity metrics also
have particular difficulty with properties. In this section we look at the performance of the
metrics on classes versus properties for the Conference and Multifarm data sets. There are
no matching properties in the Anatomy test set.

From figures 10 and 11 it is evident that string similarity metrics perform much worse
on properties than on classes. This suggests that more work should be done in this area
in the future. It appears from an empirical analysis of the results here that properties
are particularly challenging for ontology alignment systems for several reasons. Properties
frequently involve verbs, which can appear in a wider variety of forms than nouns (in ad-
dition to plurality/conjugation, verbs vary by tense). There are also often more functional
words, such as articles and prepositions, in property names. Also, there are generally more

30

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

CID
X-‐t
o-‐E
xce
l	

Co
nfe
ren
ce
	

CID
X-‐t
o-‐E
xce
l	 (M

L)	

Mu
lAf
arm

	

Ge
ne
s	

An
ato
my
	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐gram	

SoQ	 Jaccard	

SoQ	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 9: F-measures of all metrics on all test sets using the best-performing string pre-
processing strategy.

31

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Class	 Prec	 Class	 Rec	 Class	 F-‐
meas	

Prop	 Prec	 Prop	 Rec	 Prop	 F-‐
meas	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐gram	

SoJ	 Jaccard	

SoJ	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 10: F-measures of all metrics on the classes and properties in the conference dataset
using string tokenization.

32

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Class	 Prec	 Class	 Rec	 Class	 F-‐
meas	

Prop	 Prec	 Prop	 Rec	 Prop	 F-‐
meas	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐gram	

SoJ	 Jaccard	

SoJ	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 11: F-measures of all metrics on the classes and properties in the multifarm dataset
using string tokenization.

33

0	
0.02	
0.04	
0.06	
0.08	
0.1	

0.12	
0.14	
0.16	
0.18	

Monge	 Elkan	 TF-‐IDF	

None	

Tokeniza:on	

Stemming	

Stopwords	

Normaliza:on	

Synonyms	

Figure 12: F-measures of Monge Elkan and TF-IDF on properties in the conference dataset
for all of the string pre-processing strategies.

common synonyms available for the (often very generic) verbs in property names than the
(often more specific) nouns in class names. We therefore thought that stemming, stop
word removal, or synonym lookup might be effective when matching properties. However,
that turned out not to be the case. Figure 12 shows the effect of various pre-processing
strategies in combination with the two metrics that performed the best on properties for
the conference test set: Monge Elkan and TF-IDF. Tokenization is required for the TF-IDF
metric to work because it is a global set metric. Normalization improved the performance
of Monge Elkan but not TF-IDF. Analysis of the results seems to indicate this is because
putting the words into alphabetical order reduced the number of gap penalties for match-
ing properties in Monge Elkan. This had no effect for TF-IDF because set metrics are not
sensitive to word order.

It is curious that properties are more easily matched on the mulitfarm data set. This
data set consists of exactly the same ontologies as the conference set, just translated into
a variety of languages. It will be interesting to explore what is going on there, but the
assistance of native speakers of some of the other languages will likely be required.

The above results were collected using the best thresholds found by optimizing the f-
measure on the overall alignment problem (both classes and properties). In addition, we
wanted to determine whether it was helpful to choose different thresholds for classes and
properties. Figures 13 and 14 show the best results achieved for property matching on both
the conference and multifarm data sets when the thresholds were optimized based solely on
the f-measure for properties. The precision, recall, and f-measure when the thresholds were
optimized for overall f-measure are reproduced here for ease of comparison. The results

34

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

Separate	
Precision	

Joint	
Precision	

Separate	
Recall	

Joint	 Recall	 Separate	 F-‐
measure	

Joint	 F-‐
measure	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐Gram	

SoG	 Jaccard	

SoG	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 13: F-measures of all metrics using tokenization on the conference dataset when
the thresholds were optimized once for classes and properties together versus separately
for properties.

are better than in the previous case, indicating that for these data sets there is value in
selecting different similarity metric thresholds for class and property comparisons.

7 Analysis

The results of the different metrics on the test sets reveal a potential trap for developers
of ontology alignment systems. Results on the conference test set, which is representative
of many real-world ontologies, do not reveal much difference in the performance of the
metrics in terms of f-measure. Basically, if you pick any string similarity metric and set the
threshold high (i.e. between .9 and 1.0) then the results will be near optimal. However, the
other test sets reveal that all string metrics are not created equal – performance of different
metrics on the multi-lingual and biomedical test sets varied considerably. Choosing a
string metric for use on these alignment tasks involves a significant impact on precision
and recall. The moral of the story is that when choosing a string metric for use in an
ontology alignment algorithm, one should consider the characteristics of the ontologies
being aligned and whether precision or recall is more important for the algorithm. Below

35

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

Separate	
Precision	

Joint	
Precision	

Separate	
Recall	

Joint	 Recall	 Separate	 F-‐
measure	

Joint	 F-‐
measure	

Exact	

Jaccard	

Jaro	 Winkler	

LCS	

Levenstein	

Monge	 Elkan	

N-‐Gram	

SoG	 Jaccard	

SoG	 TF-‐IDF	

Stoilos	

TF-‐IDF	

Figure 14: -measures of all metrics using tokenization on the multiform dataset when the
thresholds were optimized once for classes and properties together versus separately for
properties.

36

are some general guidelines:

• Standard ontology

– Precision: All but Monge Elkan

– Recall: TF-IDF

– F-measure: All but Monge Elkan and LCS

• Multilingual

– Precision: Soft Jaccard, Jaccard

– Recall: Soft TF-IDF

– F-measure: Soft TF-IDF

• Biomedical

– Precision: Levenstein

– Recall: Jaccard, Soft Jaccard, Soft TF-IDF

– F-measure: Soft TF-IDF, Jaccard, Soft Jaccard

Of the pre-processing strategies analyzed, few were beneficial. Tokenization is useful if
the naming conventions differ between the ontologies (camelCase versus underscores to
separate words, for example). Translation is very helpful when ontologies involve multiple
languages. If translation is not available, normalization can be useful for multilingual
ontology pairs, particularly if one of the languages uses a non-Latin alphabet and can be
transliterated. Synonyms can be useful (particularly with respect to recall) for biomedical
ontologies, where the synonyms are often embedded in the ontologies themselves.

Class labels are significantly easier for string metrics to match than are property labels.
Performance can be improved by using different thresholds for classes and properties. It
would be helpful to look into this further by examining what enables some metrics to do
better than others and potentially develop a new metric that emphasizes these strengths
further when it comes to property labels.

8 String-centric Ontology Alignment

With this analysis of string similarity metrics as applied to ontology alignment, we now
turn to the question of how far we can get using only these metrics. To answer this question
we developed a very simple ontology alignment algorithm. This algorithm works in the
same way as our test framework – comparing every label in the first ontology to every label

37

Metric Precision Recall F-measure

YAM++ 0.81 0.69 0.75
LogMap 0.82 0.58 0.68
StringsOpt 0.85 0.55 0.67
StringsAuto 0.79 0.57 0.66
Optima 0.62 0.68 0.65
CODI 0.74 0.57 0.64
GOMMA 0.85 0.47 0.61
Wmatch 0.74 0.50 0.60
WeSeE 0.76 0.49 0.60
Hertuda 0.74 0.50 0.60
MaasMatch 0.63 0.57 0.60
LogMapLt 0.73 0.50 0.59
HotMatch 0.71 0.51 0.59
Baseline 2 0.79 0.47 0.59
ServOMap 0.73 0.46 0.56
Baseline 1 0.80 0.43 0.56
ServOMapLt 0.88 0.40 0.55
MEDLEY 0.54 0.50 0.52
ASE 0.63 0.43 0.51
MapSSS 0.50 0.51 0.50
AUTOMSv2 0.67 0.36 0.47
AROMA 0.33 0.48 0.39

Table 1: Results of the StringsOpt alignment algorithm together with the competitors from
the OAEI 2012 competition on the conference data set

in the second and using the stable marriage algorithm to find the best mappings. The
difference is that here we run the algorithm repeatedly: first with a high-precision metric
and then with a high-recall metric. If a mapping in the second pass involves an entity
that has already been used in the previous pass then it is ignored. Because string metrics
were found to perform extremely poorly on properties, this approach does not attempt to
match those (e.g. any property matches in the reference alignment are automatically false
negatives). For the anatomy test set, the approach used here first runs the high precision
and high recall metrics on the entity labels themselves, and then considers synonyms. For
this proof-of-concept, the algorithm is hardcoded with the optimal metrics and thresholds
for the particular test set under consideration. The results are shown in tables 1, 2, and 3,
along with the results of the OAEI 2012 competitors. This approach is labeled StringsOpt,
to indicate that this is the optimal configuration of the framework for each alignment
task.

38

Metric Prec F-meas Rec Prec F-meas Rec
diff diff diff same same same

AUTOMSv2 0.49 0.17 0.10 0.69 0.11 0.06
GOMMA 0.29 0.32 0.36 0.63 0.40 0.29
MEDLEY 0.16 0.10 0.07 0.34 0.14 0.09
WeSeE 0.61 0.42 0.32 0.90 0.42 0.27
Wmatch 0.22 0.22 0.22 0.43 0.18 0.11
YAM++ 0.50 0.42 0.36 0.91 0.64 0.49
StringsOpt 0.58 0.40 0.31 0.90 0.38 0.24
StringsAuto 0.64 0.39 0.28 0.93 0.26 0.15

Table 2: Results of the StringsOpt alignment algorithm together with the competitors from
the OAEI 2012 competition on the multifarm data set

Using only optimized string similarity metrics achieves an f-measure of .67 on the confer-
ence data set, which makes it the third highest performer. The strings only approach also
significantly outperforms the baselines, which are unrefined string metrics (Baseline 1 uses
string equality and Baseline 2 is the same but with dashes, underscores and the word has
removed from strings prior to comparison). For the multifarm test set, only the results
of metrics that have been designed to handle multilingual alignment problems are shown.
These results are divided into two groups: alignments of the same ontologies in different
languages (labeled same) and alignments of different ontologies in different languages (la-
beled different). The strings only approach scores third when aligning different ontologies
and fourth when aligning the same ontologies, using f-measure as the quality metric. This
approach ties for fourth on the anatomy test set.

It is evident that these results compare very well with the current state-of-the-art in on-
tology alignment systems, but this is not an apples-to-apples comparison because
this approach is not generic (due to the hard-coded metrics based on the test set). The
next step is to add some means of selecting the appropriate string metrics and thresholds
at runtime. Our goal is to develop a method that is fully autonomous and does not rely on
any training data. We have started out with some basic observations based on the results
we have gathered above:

• Precision does not vary widely among string similarity metrics for most standard
ontologies.

• TF-IDF has high recall for most standard ontologies.

• When many entities in an ontology contain multiple words, it is best to use set-based
string similarity metrics. Soft Jaccard and Soft TF-IDF often perform particularly
well in these cases.

39

Metric Precision Recall F-measure

GOMMA-bk 0.92 0.93 0.92
YAM++ 0.94 0.86 0.90
CODI 0.97 0.83 0.89
StringsOpt 0.88 0.87 0.88
LogMap 0.92 0.85 0.88
GOMMA 0.96 0.80 0.87
StringsAuto 0.86 0.84 0.85
MapSSS 0.94 0.75 0.83
WeSeE 0.91 0.76 0.83
LogMapLt 0.96 0.73 0.83
TOAST* 0.85 0.76 0.80
ServOMap 1.00 0.64 0.78
ServOMapLt 0.99 0.64 0.78
HotMatch 0.98 0.64 0.77
AROMA 0.87 0.69 0.77
StringEquiv 1.00 0.62 0.77
Wmatch 0.86 0.68 0.76
Optima 0.85 0.58 0.69
Hertuda 0.69 0.67 0.68
MaasMatch++ 0.43 0.78 0.56

Table 3: Results of the StringsOpt alignment algorithm together with the competitors from
the OAEI 2012 competition on the anatomy data set

• Thresholds need to be lower when recall is of more concern than precision.

• Thresholds need to be lower when synonyms or translations are involved.

Based on these insights, we have developed an analysis module that runs before our main
alignment algorithm to select the string metrics. This analysis module examines an ontol-
ogy to find the answers to three simple questions:

• Is the ontology in English?

• What is the average number of words per entity label (after tokenization)?

• Does the ontology contain embedded synonyms?

The implementation of the analysis module is straightforward. The language of the ontol-
ogy is determined by selecting ten entity labels and concatenating these into a single string,
which is then used in a call to the translate function of the Google Translate API with
English as the target language. This call is made with no value for the source language
parameter, which causes Google to return its best guess as to the source language along

40

with the translation. If the language is something other than English, the English trans-
lation is used in the remaining steps. The calculation of the average number of words is
straightforward. Synonym detection is done simply by checking the input files for mention
of the word synonym. The analysis module only considers classes - properties and instances
are ignored.

Table 4 shows the average number of words per label for each data set. From this we see
that the labels in biomedical ontologies are typically made up of more words than those
in standard ontologies. Also interesting is that the number of words per label is slightly
greater for the multi-lingual version of a test set than the same ontologies in English (i.e.
the metrics are higher for multifarm than for conference and for cidx-to-excel (ML) than
for plain cidx-to-excel). This seems to be because Google Translate sometimes produces a
multiword phrase instead of a single word when performing translations.

Based on these results of the analysis module and whether precision or recall is currently
of interest in the alignment process, a string metric is chosen. This is currently done
using a hard-coded set of rules, but more research remains to be done in this area. When
precision is the primary concern, it doesn’t matter too much which metric we choose for
most standard ontologies. We have decided to use Jaro-Winkler. In cases where multiple
words per label are involved, word ordering often confuses the results. We therefore use
the Soft Jaccard metric in these cases, with Levenstein as the base metric. When recall
is the primary focus, we use TF-IDF for ontologies with predominantly one word per
label and Soft TF-IDF for those with mostly multi-word labels. The thresholds used are
shown in the decision tree below. In general, if translations or synonyms are involved then
lower thresholds are appropriate. Note that these rules do not break cleanly among the
different OAEI test sets – they are based on underlying features of the ontologies to be
matched.

• Precision

– Less than two words per label

Jaro-Winkler 1, 1

– Two or more words per label

∗ Synonyms

Soft Jaccard .2, .5 with Levenstein .9 base metric

∗ No synonyms

Soft Jaccard 1, 1 with Levenstein .8 base metric

• Recall

– Less than two words per label

41

Test set Words per label

conference 1.85
cidx-to-excel 1.57
multifarm 2.24
cidx-to-excel (ML) 1.61
anatomy 2.64
genes 4.11

Table 4: Comparison of data sets based on word length and number of words per label

TF-IDF .8, .8

– Two or more words per label

∗ Synonyms

Soft TF-IDF .5, .8 with Jaro-Winkler .8 base metric

∗ Different Languages

Soft TF-IDF 0, .7 with Jaro-Winkler .9 base metric

∗ Other

Soft TF-IDF .8, .8 with Jaro-Winkler .8 base metric

We have added this automatic metric selection step to our approach. The results for this
are shown in tables 1, 2 and 3 under StringsAuto. We have also added it to MapSSS,
an existing ontology alignment system [10]. The results for the version of MapSSS using
these optimized metrics and string pre-processing strategies are compared with the results
of the original system in Table 5. The deeper insight into string labels has significantly
improved the performance of MapSSS on the conference test set and marginally improved
it on the anatomy test set. The extremely large gains on the multiform test set are due to
the inclusion of translation as a string pre-processing strategy.

9 Conclusions and Future Work

For some types of ontologies, the performance of different string similarity metrics varies
greatly in terms of both precision and recall. It is important to be cognizant of this when
selected a string metric for a particular use. This paper has established guidelines to
assist researchers in making this selection. In addition, we have found that many string
pre-processing strategies commonly used, such as stop word removal and word stemming
are in many cases unhelpful and in some cases counter-productive. We have presented

42

Test Set Measure Original Improved Improvement OAEI 2012

Conference Precision 0.5 0.73 46% Tied 11th
Recall 0.51 0.57 12% Tied 4th
F-measure 0.5 0.64 28% Tied 4th

Anatomy Precision 0.94 0.86 -8% Tied 14th
Recall 0.75 0.84 12% 4th
F-measure 0.83 0.85 2% 6th

Multifarm Precision diff 0.08 0.45 463% 4th
Recall diff 0.04 0.28 600% 4th
F-measure diff 0.05 0.35 547% 3rd
Precision same 0.97 0.96 -1% 1st
Recall same 0.5 0.25 -50% 4th
F-measure same 0.66 0.40 -40% Tied 3rd

Table 5: Results of the original and improved MapSSS alignment algorithm on the OAEI
2012 data sets

data on which pre-processing strategies are useful in particular situations. In addition,
we have developed a basic system to automatically select an appropriate string similarity
metric for a given pair of ontologies at runtime. Finally, we have applied this technique to
an existing ontology alignment algorithm and quantified the improvement in performance.
Because nearly all ontology alignment algorithms make use of string similarity metrics, this
work can similarly be integrated into other existing alignment algorithms and is therefore
directly relevant to many researchers in this field.

There are several paths for future work based on the idea of pushing string similarity
metrics as far as they can go in terms of ontology alignment. A first step is to develop a
string similarity metric that performs better on properties. Another possibility is to create
a string-based structural metric by considering the similarity between the labels of all of
an entity’s neighbors with those of another entity. For biomedical ontologies, it might also
be possible to use string metrics to find subsumption relations in addition to equivalencies
since many labels in these ontologies are of the form noun and modifiers+noun (e.g. vein
and pulmonary vein). In terms of the work presented in this paper, the results should be
validated for more pairs of ontologies. Also, the analysis module for metric selection can
be made more flexible.

References

[1] Samur Araujo, Arjen de Vries, and Daniel Schwabe. Serimi results for oaei 2011.
Ontology Matching, page 212, 2011.

43

[2] Michael Ashburner et al. Gene Ontology: tool for the unification of biology. Nature
Genetics, 25(1):25–29, 2000.

[3] Tim Berners-Lee, Mark Fischetti, and Michael L Foreword By-Dertouzos. Weaving
the Web: The original design and ultimate destiny of the World Wide Web by its
inventor. HarperInformation, 2000.

[4] Wayne L Bethea, Clayton Fink, and John Beecher-Deighan. Jhu/apl onto-mapology
results for oaei 2006. In Ontology Matching, page 144, 2006.

[5] Jurgen Bock, Carsten Danschel, and Matthias Stumpp. Mappso and mapevo results
for oaei 2011. In Proc. 6th ISWC workshop on ontology matching (OM), Bonn (DE),
pages 179–183, 2011.

[6] Jürgen Bock, Peng Liu, and Jan Hettenhausen. Mappso results for oaei 2009. In OM.
Citeseer, 2009.

[7] Gosse Bouma. Cross-lingual dutch to english alignment using eurowordnet and dutch
wikipedia. In Proceedings of the 4th International Workshop on Ontology Matching,
CEUR-WS, volume 551, pages 224–229. Citeseer, 2009.

[8] L Karl Branting. A comparative evaluation of name-matching algorithms. In Pro-
ceedings of the 9th International Conference on Artificial Intelligence and Law, pages
224–232. ACM, 2003.

[9] Silvana Castano, Alfio Ferrara, and Gianpaolo Messa. Results of the hmatch ontology
matchmaker in oaei 2006. In Ontology Matching, page 134, 2006.

[10] Michelle Cheatham. MapSSS results for OAEI 2011. In Proceedings of the ISWC 2011
Workshop on Ontology Matching, pages 184–190, 2011.

[11] Watson Wei Khong Chua and Jung-Jae Kim. Eff2match results for oaei 2010. Ontology
Matching, page 150, 2010.

[12] William W Cohen, Pradeep Ravikumar, Stephen E Fienberg, et al. A comparison of
string distance metrics for name-matching tasks. In Proceedings of the IJCAI-2003
Workshop on Information Integration on the Web (IIWeb-03), volume 47, 2003.

[13] Isabel Cruz, Flavio Palandri Antonelli, Cosmin Stroe, Ulas C Keles, and Angela
Maduko. Using agreementmaker to align ontologies for oaei 2009: Overview, results,
and outlook. In Proceedings of the ISWC 2009 Workshop on Ontology Matching, pages
135–146. Citeseer, 2009.

[14] Isabel F Cruz, Cosmin Stroe, Michele Caci, Federico Caimi, Matteo Palmonari,
Flavio Palandri Antonelli, and Ulas C Keles. Using agreementmaker to align on-
tologies for oaei 2010. In ISWC International Workshop on Ontology Matching (OM).
CEUR Workshop Proceedings, volume 689, pages 118–125, 2010.

44

[15] Isabel F Cruz, Cosmin Stroe, Federico Caimi, Alessio Fabiani, Catia Pesquita, Fran-
cisco M Couto, and Matteo Palmonari. Using agreementmaker to align ontologies for
oaei 2011? In ISWC international workshop on ontology matching (OM), volume 814,
pages 114–121, 2011.

[16] Carlo Curino, Giorgio Orsi, and Letizia Tanca. X-som results for oaei 2007. In
Proceedings of the Second International Workshop on Ontology Matching, pages 276–
285. Citeseer, 2007.

[17] Jérôme David. Aroma results for oaei 2008. In Proc. 3rd ISWC workshop on ontology
matching (OM), pages 128–131, 2008.

[18] Jérôme David. Aroma results for oaei 2011. Ontology Matching, page 122, 2011.

[19] Jean-François Djoufak-Kengue, Jérôme Euzenat, Petko Valtchev, et al. Ola in the
oaei 2007 evaluation contest. In Proc. 2nd ISWC 2007 workshop on ontology matching
(OM), pages 188–195, 2007.

[20] Richard Durbin. Biological sequence analysis: probabilistic models of proteins and
nucleic acids. Cambridge university press, 1998.

[21] Jérôme Euzenat et al. State of the art on ontology alignment. Knowledge Web Deliv-
erable D, 2:2–3, 2004.

[22] Jérôme Euzenat and Pavel Shvaiko. Ontology matching, volume 18. Springer Heidel-
berg, 2007.

[23] Sylvain Gaudan, A Jimeno Yepes, Vivian Lee, Dietrich Rebholz-Schuhmann, et al.
Combining evidence, specificity, and proximity towards the normalization of gene on-
tology terms in text. EURASIP Journal on Bioinformatics and Systems Biology, 2008,
2008.

[24] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal of
Molecular Biology, 162(3):705–708, 1982.

[25] Jorge Gracia, Jordi Bernad, and Eduardo Mena. Ontology matching with cider: eval-
uation report for oaei 2011. Ontology Matching, page 126, 2011.

[26] Jorge Gracia and Eduardo Mena. Matching with cider: Evaluation report for the oaei
2008. In 3rd Ontology Matching Workshop (OM?08) at the 7th International Semantic
Web Conference (ISWC?08), Karlsruhe, Germany, 2008.

[27] Fayçal Hamdi, Brigitte Safar, Nobal Niraula, Chantal Reynaud, et al. Taxomap in
the oaei 2009 alignment contest. In The Fourth International Workshop on Ontology
Matching, 2009.

45

[28] Fayçal Hamdi, Brigitte Safar, Nobal B Niraula, and Chantal Reynaud. Taxomap
alignment and refinement modules: Results for oaei 2010. Ontology Matching, page
212, 2010.

[29] Faycal Hamdi, Haifa Zargayouna, Brigitte Safar, and Chantal Reynaud. Taxomap in
the oaei 2008 alignment contest, ontology alignment evaluation initiative (oaei) 2008
campaign-int. In Workshop on Ontology Matching, 2008.

[30] Wei Hu, Jianfeng Chen, Gong Cheng, and Yuzhong Qu. Objectcoref & falcon-ao:
results for oaei 2010. Ontology Matching, page 158, 2010.

[31] Wei Hu, Gong Cheng, Dongdong Zheng, Xinyu Zhong, and Yuzhong Qu. The results
of falcon-ao in the oaei 2006 campaign. In Ontology Matching, page 124, 2006.

[32] Wei Hu, Yuanyuan Zhao, Dan Li, Gong Cheng, Honghan Wu, and Yuzhong Qu.
Falcon-ao: Results for oaei 2007. In OM, 2007.

[33] Jakob Huber, Timo Sztyler, Jan Noessner, and Christian Meilicke. Codi: Combinato-
rial optimization for data integration–results for oaei 2011. Ontology Matching, page
134, 2011.

[34] Yves R Jean-Mary, E Patrick Shironoshita, and Mansur R Kabuka. Asmov: Results
for oaei 2010. Ontology Matching, 126, 2010.

[35] Ernesto Jiménez-Ruiz, Antón Morant, and Bernardo Cuenca Grau. Logmap results
for oaei 2011. Ontology Matching, page 163, 2011.

[36] Marouen Kachroudi, Essia Ben Moussa, Sami Zghal, and Sadok Ben. Ldoa results for
oaei 2011. Ontology Matching, page 148, 2011.

[37] Ching-Chieh Kiu and Chien-Sing Lee. Ontodna: Ontology alignment results for oaei
2007. In OM, 2007.

[38] Konstantinos Kotis, Alexandros G Valarakos, and George A Vouros. Automs: Au-
tomated ontology mapping through synthesis of methods. In Ontology Matching,
page 96, 2006.

[39] Patrick Lambrix, He Tan, and Qiang Liu. Sambo and sambodtf results for the on-
tology alignment evaluation initiative 2008. In Proceedings of the Third International
Workshop on Ontology Matching, pages 190–198, 2008.

[40] Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. Rimom: A dynamic multistrategy ontol-
ogy alignment framework. Knowledge and Data Engineering, IEEE Transactions on,
21(8):1218–1232, 2009.

[41] Yi Li, Juan-Zi Li, Duo Zhang, and Jie Tang. Result of ontology alignment with rimom
at oaei’06. In Ontology Matching, page 181, 2006.

46

[42] Dekang Lin. An information-theoretic definition of similarity. In Proceedings of the
15th International Conference on Machine Learning, volume 1, pages 296–304. San
Francisco, 1998.

[43] Alexander Maedche and Steffen Staab. Measuring similarity between ontologies. In
Knowledge Engineering and Knowledge Management: Ontologies and the Semantic
Web, pages 251–263. Springer, 2002.

[44] Ming Mao and Yefei Peng. Prior system: Results for oaei 2006. In Ontology Matching,
page 173, 2006.

[45] Ming Mao and Yefei Peng. The prior+: Results for oaei campaign 2007. In OM, 2007.

[46] Sabine Massmann, Daniel Engmann, and Erhard Rahm. Coma++: Results for the
ontology alignment contest oaei 2006. In Ontology Matching, page 107, 2006.

[47] Alvaro E Monge and Charles Elkan. The field matching problem: Algorithms and
applications. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, pages 267–270, 1996.

[48] Miklos Nagy, Maria Vargas-Vera, and Enrico Motta. Dssim-ontology mapping with
uncertainty. 2006.

[49] Miklos Nagy, Maria Vargas-Vera, and Enrico Motta. Dssim-managing uncertainty on
the semantic web. 2007.

[50] Miklos Nagy, Maria Vargas-Vera, Piotr Stolarski, and Enrico Motta. Dssim results for
oaei 2008. In Proceedings of the Third International Workshop on Ontology Matching,
pages 147–159, 2008.

[51] Duy Hoa Ngo, Zohra Bellahsene, Remi Coletta, et al. Yam++–results for oaei 2011.
In ISWC’11: The 6th International Workshop on Ontology Matching, volume 814,
pages 228–235, 2011.

[52] S lawomir Niedba la. Owl ctxmatch in the oaei 2006 alignment contest. Ontology
Matching, page 165, 2006.

[53] Xing Niu, Shu Rong, Yunlong Zhang, and Haofen Wang. Zhishi. links results for oaei
2011. Ontology Matching, page 220, 2011.

[54] Jan Noessner and Mathias Niepert. Codi: Combinatorial optimization for data
integration–results for oaei 2010. Ontology Matching, page 142, 2010.

[55] Roelant Ossewaarde. Simple library thesaurus alignment with silas. In OM, 2007.

[56] Catia Pesquita, Cosmin Stroe, Isabel Cruz, and Francisco M Couto. Blooms on agree-
mentmaker: results for oaei 2010. Ontology Matching, page 134, 2010.

47

[57] Martin F Porter. An algorithm for suffix stripping. Program: Electronic Library and
Information Systems, 14(3):130–137, 1980.

[58] Christoph Quix, Avigdor Gal, Tomer Sagi, and David Kensche. An integrated match-
ing system: Geromesuite and smb–results for oaei 2010. Ontology Matching, page 166,
2010.

[59] Christoph Quix, Sandra Geisler, David Kensche, and Xiang Li. Results of gerome-
suite for oaei 2008. In Proceedings of the Third International Workshop on Ontology
Matching, pages 160–166, 2008.

[60] Quentin Reul and Jeff Z Pan. Kosimap: ontology alignments results for oaei 2009.
In Proceedings of the ISWC 2009 Workshop on Ontology Matching, pages 177–185.
Citeseer, 2009.

[61] M. Sabou and J. Gracia. Spider: Bringing non-equivalence mappings to oaei. In
Proceedings of the Third International Workshop on Ontology Matching, 2008.

[62] Fatiha Saıs, Nobal Niraula, Nathalie Pernelle, and Marie-Christine Rousset. Ln2r–a
knowledge based reference reconciliation system: Oaei 2010 results. Ontology Match-
ing, page 172, 2010.

[63] Frederik C Schadd and Nico Roos. Maasmatch results for oaei 2011. Ontology Match-
ing, page 171, 2011.

[64] Md Hanif Seddiqui and Masaki Aono. Alignment results of anchor-flood algorithm
for oaei-2008. In Proceedings of Ontology Matching Workshop of the 7th International
Semantic Web Conference, Karlsruhe, Germany, pages 120–127, 2008.

[65] Md Hanif Seddiqui and Masaki Aono. Anchor-flood: results for oaei 2009. In Pro-
ceedings of the ISWC 2009 Workshop on Ontology Matching, pages 127–134. Citeseer,
2009.

[66] Guohua Shen, Lantao Jin, Ziyue Zhao, Zhe Jia, Wenmin He, and Zhiqiu Huang.
Omreasoner: using reasoner for ontology matching: results for oaei 2011. Ontology
Matching, page 197, 2011.

[67] Vassilis Spiliopoulos, Alexandros G Valarakos, George A Vouros, and Vangelis
Karkaletsis. Sema: Results for the ontology alignment contest oaei 2007. In OM,
2007.

[68] Heiko Stoermer and Nataliya Rassadko. Results of okkam feature based entity match-
ing algorithm for instance matching contest of oaei 2009. Ontology Matching, page
200, 2009.

[69] Giorgos Stoilos, Giorgos Stamou, and Stefanos Kollias. A string metric for ontology
alignment. In The Semantic Web–ISWC 2005, pages 624–637. Springer, 2005.

48

[70] William Sunna and Isabel F Cruz. Using the agreementmaker to align ontologies for
the oaei campaign 2007. In OM. Citeseer, 2007.

[71] He Tan and Patrick Lambrix. Sambo results for the ontology alignment evaluation
initiative 2007. In OM, 2007.

[72] Uthayasanker Thayasivam and Prashant Doshi. Optima results for oaei 2011. In Proc.
of 6th OM Workshop, pages 204–211, 2011.

[73] Quang-Vinh Tran, Ryutaro Ichise, and Bao-Quoc Ho. Clusterbased similarity aggre-
gation for ontology matching. In Proc. 6th ISWC workshop on ontology matching
(OM), Bonn (DE), pages 142–147, 2011.

[74] Alexandros G Valarakos, Georgios Paliouras, Vangelis Karkaletsis, and George Vouros.
A name-matching algorithm for supporting ontology enrichment. In Methods and
Applications of Artificial Intelligence, pages 381–389. Springer, 2004.

[75] Peng Wang. Lily results on seals platform for oaei 2011. In Proc. of 6th OM Workshop,
pages 156–162, 2011.

[76] Peng Wang and Baowen Xu. Lily: the results for the ontology alignment contest oaei
2007. In Proceedings of the Second International Workshop on Ontology Matching,
pages 179–187. Citeseer, 2007.

[77] Peng Wang and Baowen Xu. Lily: Ontology alignment results for oaei 2008. In
Proceedings of the Third International Workshop on Ontology Matching, pages 167–
175, 2008.

[78] Song Wang, Gang Wang, and Xiaoguang Liu. Results of nbjlm for oaei 2010. Ontology
Matching, page 187, 2010.

[79] Zhichun Wang, Xiao Zhang, Lei Hou, Yue Zhao, Juanzi Li, Yu Qi, and Jie Tang.
Rimom results for oaei 2010. Ontology Matching, 195, 2010.

[80] Peigang Xu, Yadong Wang, Liang Cheng, and Tianyi Zang. Alignment results of
sobom for oaei 2010. In OM, 2010.

[81] Boutheina Ben Yaghlane and Najoua Laamari. Owl-cm: Owl combining matcher
based on belief functions theory. In OM. Citeseer, 2007.

[82] Haifa Zargayouna, Brigitte Safar, Chantal Reynaud, et al. Taxomap in the oaei 2007
alignment contest. In Proceedings of The Second International Workshop on Ontology
Matching (OM’07), pages 268–275, 2007.

[83] Sami Zghal, Marouen Kachroudi, Sadok Ben Yahia, and Engelbert MEPHU. Oacas:
results for oaei 2011. Ontology Matching, page 190, 2011.

49

[84] Sami Zghal, Sadok Ben Yahia, Engelbert Mephu Nguifo, Yahya Slimani, et al. Soda:
an owl-dl based ontology matching system. In OM, 2007.

[85] Songmao Zhang and Olivier Bodenreider. Nlm anatomical ontology alignment system.
results of the 2006 ontology alignment contest. In Ontology Matching, page 153, 2006.

[86] Songmao Zhang and Olivier Bodenreider. Hybrid alignment strategy for anatomical
ontologies: Results of the 2007 ontology alignment contest. In OM, 2007.

[87] Xiao Zhang, Qian Zhong, Juanzi Li, Jie Tang, Guotong Xie, and Hanyu Li. Rimom
results for oaei 2008. In Proceedings of the 3rd International Workshop on Ontology
Matching, volume 431, page 182, 2008.

50

A OAEI String Metric Survey

Algorithm Lexical Metrics Pre-processing

AgreementMaker [70, 13,
14, 15]

edit distance, LCS, TF-IDF stemming, stop words, syn-
onyms, normalization

Anchor-flood [64, 65] JaroWinker, SMOA, SM tokenization, ab-
brev/acronym expansion,
stop words, categorization
(WordNet)

AROMA [17, 18] JaroWinkler, exact match stemming

ASMOV [34] exact match, Levenstein,
set similarity metric for
comments

tokenization, normaliza-
tion, synonyms, part-of-
speech

AUTOMS [38] COCLU

BLOOMS [56] exact match, Jaccard, evi-
dence content

tokenization, stop words,
synonyms, normalization,
stemming, spelling variants
(proposed)

CIDER [26, 25] exact match, Levenstein normalization, synonyms

Cluster-based similarity ag-
gregation [73]

edit distance, TF-
IDF/cosine similarity

CODI [54, 33] Levenstein, cosine, Jaro-
Winker, Smith-Waterman
Gotoh, overlap coefficient,
Jaccard

tokenization, normaliza-
tion, stop words

COMA++ [46]

Cross-lingual Dutch to En-
glish alignment [7]

stemming, split compound
words, synonyms

51

DSSim [48, 49, 50] Monge-Elkan, Jaccard,
Jaro-Winkler

synonyms, split compound
words, language tag, trans-
lations, abbrev expansion

Eff2Match [11] exact match tokenization, stemming,
synonyms, normalization

Falcon-AO/ObjectCoref
[31, 32, 30]

SMOA, edit distance synonyms (proposed),
translations (proposed)

GeRoMeSuite/SMB
[59, 58]

Levenstein, Jaro-Winkler,
SMOA, soft TF-IDF

synonyms

HMatch [9]

Hybrid alignment strategy
for anatomical ontologies
[86]

exact match synonyms, normalization

JHU/APL Onto-Mapology
[4]

Jaro-Winkler, 2-gram, doc-
ument indexing

stop words

KOSIMap [60] Jaro-Winkler, Q-gram,
SMOA, Monge-Elkan

stop words, stemming

LDOA [36] Levenstein, Jaro-Winkler,
soft Jaccard

LILY [76, 77, 75] Levenstein, edit distance

LN2R [62] soft Jaccard synonyms (proposed)

LogMap [35] exact match, SMOA synonyms, alternate words
forms (i.e. reverse stem-
ming)

MaasMatch [63] document vectors stemming, stop words

MapPSO [6, 5] SMOA, TF-IDF

NBJLM [78] exact match synonyms

52

NLM Anatomical Ontology
Alignment System [85]

exact match normalization, synonyms,
stemming

OACAS [83] Levenstein, Q-gram, Jaro-
Winkler

OKKAM [68] Levenstein

OLA [19] LCS, normalized Hamming
distance, edit distance

tokenization, synonyms

OMReasoner [66] edit distance, prefix, suffix split compound words (pro-
posed)

OntoDNA [37] Levenstein normalization, stop words

Optima [72] Smith-Waterman

OWL-CM [81] edit distance

OWL-CtxMatch [52] synonyms

PRIOR/PRIOR+ [44, 45] cosine similarity, Leven-
stein, document indexing

synonyms (proposed),
translations (proposed)

RiMOM [41, 40, 87, 79] edit distance, KNN, TF-
IDF/cosine distance

tokenization, stemming,
stop words, synonyms

SAMBO/SAMBOdtf
[71, 39]

n-gram, edit distance tokenization, stemming,
stop words, synonyms

SEMA [67] COCLU synonyms

SERIMI [1] RWSA tokenization, normalization

SILAS [55] exact match

SOBOM [80] edit distance, SMOA

53

SODA [84] Jaro-Winkler, Monge-
Elkan

Spider [61]

TaxoMap [82, 29, 27, 28] Lin’s similarity measure,
exact match, substring in-
clusion

stop words, part-of-speech,
translation, synonyms (pro-
posed)

X-SOM [16] Jaro, Levenstein

YAM++ [51] Levenstein, Smith-
Waterman, Jaro, Jaro-
Winkler, Monge-Elkan,
prefix, suffix, LCS, SMOA

Zhishi.links [53] exact match

54

	The Role of String Similarity Metrics in Ontology Alignment
	Repository Citation

	tmp.1408983431.pdf.TMd9I

