
Wright State University Wright State University

CORE Scholar CORE Scholar

Computer Science and Engineering Faculty
Publications Computer Science & Engineering

12-2004

Nichtmonotone, Neuro-Symbolische und Begriffliche Nichtmonotone, Neuro-Symbolische und Begriffliche

Wissensverarbeitung Wissensverarbeitung

Pascal Hitzler
pascal.hitzler@wright.edu

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

 Part of the Computer Sciences Commons, and the Engineering Commons

Repository Citation Repository Citation
Hitzler, P. (2004). Nichtmonotone, Neuro-Symbolische und Begriffliche Wissensverarbeitung. .
https://corescholar.libraries.wright.edu/cse/230

This Thesis is brought to you for free and open access by Wright State University’s CORE Scholar. It has been
accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of
CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse_comm
https://corescholar.libraries.wright.edu/cse?utm_source=corescholar.libraries.wright.edu%2Fcse%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fcse%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fcse%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Nichtmonotone, neuro-symbolische

und begriffliche Wissensverarbeitung

Zusammenfassung wissenschaftlicher Arbeiten von

Dr. Pascal Hitzler

zum Zwecke der Habilitation
eingereicht bei der

Fakultät Informatik der Technischen Universität Dresden
im Dezember 2004

Vorwort

Diese Schrift dient dem Bericht über die Hauptaspekte meiner Forschertätig-
keit an der TU Dresden seit der Promotion. In diesen dreieinhalb Jahren war
es mein Bestreben, selbstständig aktuelle, theoretisch fundierte und anwen-
dungsbezogene Fragestellungen zu entwickeln und zu verfolgen.

Naturgemäß war meine Forschung in dieser Zeit vor allem zu Anfang
sehr explorativ. Meine Suche konzentrierte sich dabei auf das Herausarbei-
ten theoretischer Zusammenhänge. Ob ich einen Ansatz dann weiterverfolgte
entschied sich anschließend aufgrund einer Evaluation aus angewandter Sicht.

Die in dieser Schrift dargestellten Forschungsansätze gedenke ich in Zu-
kunft fortzuführen. Sie bilden die Keimzellen für langfristig angelegte an-
gewandte und theoretische Untersuchungen. Ich werde in dieser Schrift ihr
Potenzial ausführlich diskutieren und anhand der bereits abgeschlossenen
Untersuchungen belegen.

In erster Linie sind meine Arbeiten der Wissensverarbeitung zuzuordnen.
Methodisch führen sie jedoch weit über diese hinaus und bemühen unter an-
derem Teile der Theoretischen Informatik. Auf der Anwendungsebene zielen
sie auf implementierbare und praktisch einsetzbare Systeme für verschiedene
Bereiche der Künstlichen Intelligenz.

Einige der vorgelegten Arbeiten sind in Zusammenarbeit mit Koautoren,
darunter einige von mir betreute Studenten, entstanden. Im Anhang habe
ich dargelegt, worauf sich mein Anteil an Arbeiten mit mehreren Autoren
jeweils erstreckt.

i

Danksagungen

Mein Dank gilt zuallererst Steffen Hölldobler. Die inhaltliche Arbeit zu mei-
ner Habilitation entstand während der dreieinhalb Jahre, in denen ich zu
seiner Arbeitsgruppe gehörte. Ich danke vor allem für den Freiraum, den er
mir schuf, und in dem ich mein kreatives Forscherpotenzial meinen eigenen
Interessen folgend entfalten konnte.

Meine Zeit dort wurde auch entscheidend geprägt von drei Studenten
— Sebastian Bader, Markus Krötzsch, Matthias Wendt — nur einige der
Früchte der vielen Diskussionen und Arbeitstreffen sind aus gemeinsamen
Veröffentlichungen ersichtlich.

Ursula Hans — Uschi — mit der ich das Büro und auch einige Arbeit in
der Lehre teilen durfte, trug ganz entscheidend zu meinem Wohlbefinden bei
der Arbeit bei.

Es sind viele Menschen, die für meinen
”
Dresdner“ Lebensabschnitt in

privater oder beruflicher Hinsicht wichtig waren. Ich versuche mich an einer
Aufzählung — und entschuldige mich schon jetzt für die Unvollständigkeit
dieses Unterfangens: Franz Baader, Federico Banti, Howard Blair, Gerd
Brewka, Kai Brünnler, Paola Bruscoli, Kathrin Dornbusch, Manfred Dro-
ste, Sylvia Epp, Matthias Fichtner, Bertram Fronhöfer, Bernhard Ganter,
Horst Graupner, Axel Großmann, Sandra Großmann, Alessio Guglielmi, Mi-
guel Gutierrez-Naranjo, Achim Jung, Reinhard Kahle, Uwe Kahler, Ozan
Kahramanogullari, Matthias Knorr, Torsten Linss mit Poldi, Ai(mee) Liu,
Carsten Lutz, Yves Martin, Judith und Reto Merges, Kristin Mitte, Rainer
Osswald, Luis Pereira, Ralf Riethmüller, Kersten Schäfer, Dietlind Scharlach
mit Jochen und Amelie, Sybille Schwarz, Tony and Martine Seda, Oxana Ser-
gueeva, Olga Skvortsova, Mariana Stantcheva, Mike Stange, Charles Stewart,
Rike, Friedrich und Moritz Stölzel, Hans-Peter Störr, Lutz Straßburger, Mi-
chael Thielscher, Pawel Waszkiewicz, Kerstin und Jürgen Weber, Maja von
Wedelstedt, Guo-Qiang Zhang.

Seit August 2004 habe ich am AIFB, Institut für Angewandte Informatik
und Formale Beschreibungsverfahren, Universität Karlsruhe, eine neue beruf-
liche Heimat gefunden, die mich sehr bereichert. Für Diskussionen, Hilfe und
Vertrauen danke ich Rudi Studer, Andreas Abecker, Andreas Eberhart, Lars
Schmidt-Thieme, Steffen Staab, York Sure, Wolfgang Sperling, Sudhir Agar-
wal, Ernst Biesalski, Stephan Bloehdorn, Saartje Brockmans, Philipp Cimi-
ano, Marc Ehrig, Stephan Grimm, Peter Haase, Sigfried Handschuh, Jens
Hartmann, Mark Hefke, Steffen Lamparter, Guido Lindner, Daniel Oberle,
Gisela Schillinger, Nenad und Ljiljana Stojanovic, Bernhard Tausch, Chri-
stoph Tempich, Zdenko (Denny) Vrandecic, Max Völkel, Johanna Völker,
Susanne Winter, Valentin Zacharias.

ii

Von Gerd Brewka, Bernhard Ganter und Steffen Hölldobler bekam ich
hilfreiches Feedback zu einem ersten Entwurf dieser Schrift. Gudrun Eber-
hardt half meinem Deutsch auf die Sprünge. Für verbleibende inhaltliche,
formelle und sprachliche Schwächen liegt jegliche Verantwortung bei mir.

Im Laufe meiner
”
Dresdner“ Zeit erhielt ich finanzielle Unterstützung

von folgenden Organisationen: Deutscher Akademischer Austauschdienst
(DAAD), Boole Center for Research in Informatics Cork (BCRI), Centro
de Inteligencia Artificial Lisboa (CENTRIA), Graduiertenkolleg Wissensre-
präsentation Leipzig, Bonn International Graduate School (BIGS). Ein be-
willigtes Stipendium der Foundation for Polish Science und des Mianowski
Fund Warschau konnte ich leider aus terminlichen Gründen nicht antreten.
Das International Quality Network Rational Mobile Agents and Systems of
Agents (IQN) des Bundesministeriums für Bildung und Forschung (BMBF)
und des DAAD machte Einladungen von Gastwissenschaftlern nach Dresden
möglich. Dem DAAD, dem Graduiertenkolleg Specification of discrete pro-
cesses and systems of processes by operational models and logics und dem
Verein der Freunde und Förderer der TU Dresden danke ich für die finan-
zielle Hilfe für einige von mir betreute Studenten bei Auslandsaufenthalten
und Konferenzbesuchen.

Auf meiner Stelle in Karlsruhe werde ich seit August 2004 finanziert vom
Bundesministerium für Bildung und Forschung (BMBF) im SmartWeb Pro-
jekt und von der EU über das KnowledgeWeb Network of Excellence.

Ich danke meiner Mutter Renate Hitzler, ihren Geschwistern Hannelo-
re Hauber und Rolf Hauber, meinem Schwager Friedemann Eberhardt, und
meinen Schwiegereltern Gudrun und Raimund Eberhardt, für ihre uneinge-
schränkte Hilfe und Unterstützung in allen Aspekten des Lebens.

Und ich danke Anne. Für Hilfe und Ratschläge. Aber vor allem fürs da-
sein.

iii

Inhaltsverzeichnis

Einführung 1

1 Semantik nichtmonotoner Logikprogrammierung 5
1.1 Kurzfassung . 5
1.2 Forschungskontext: Logikprogrammierung und nichtmonoto-

nes Schließen . 6
1.3 Technische Hinführung: Syntax und Semantik von Logikpro-

grammen . 9
1.4 Eigene Resultate: Überblick über die eingereichten Arbeiten . 12
1.5 Ausblick: Weiterführungen und Anwendungen 13

2 Neuro-symbolische Integration 17
2.1 Kurzfassung . 17
2.2 Forschungskontext: Logik und künstliche neuronale Netzwerke 18
2.3 Technische Hinführung: Konnektionistische Repräsentationen

von Logikprogrammen erster Stufe 19
2.4 Eigene Resultate: Überblick über die eingereichten Arbeiten . 22
2.5 Ausblick: Weiterführung und Anwendungen 25

3 Schließen über begrifflichem Wissen 27
3.1 Kurzfassung . 27
3.2 Forschungskontext: Logik und begriffliches Wissen 27
3.3 Technische Hinführung: Formale Begriffsanalyse und

Domänentheorie . 29
3.4 Eigene Resultate: Überblick über die eingereichten Arbeiten . 32
3.5 Ausblick: Schließen über dem Semantic Web 34

Anteil des Autors an den eingereichten Arbeiten 35

Literatur 39

Vorgelegte Veröffentlichungen 53

v

Einführung

Der Künstlichen Intelligenz zugehörig befindet sich die Wissensverarbeitung
traditionell im Spannungsfeld zwischen biologischer Motivation und Plau-
sibilität einerseits und maschineller Umsetzung andererseits. Eine Abgren-
zung zur einen oder anderen Seite mag für umgrenzte Forschungsprojekte
adäquat sein, eine ideologische Verfestigung und Separierung verschiedener
Forschungsgebiete jedoch wird weder der Entwicklung intelligenter Syste-
me noch der Erkenntnis um das Wesen der menschlichen Intelligenz dienen.
Das Ringen um eine Integration biologischer Plausibilität mit technologischer
Umsetzbarkeit gehört somit zu den zentralen Aufgaben der Wissensverarbei-
tung.

Wissensverarbeitung bedarf notwendigerweise der Wissensrepräsentation.
Die Repräsentation von Wissen muss auf eine solche Weise geschehen, dass
das Wissen einer maschinellen Verarbeitung zumindest grundsätzlich zu-
geführt werden kann. Die Wahl verschiedener Verarbeitungsmethoden zur
selben syntaktischen Repräsentationsform mag wiederum verschiedene In-
terpretationen des syntaktisch repräsentierten Wissens nahelegen.

Die Logik ist die wohl älteste und in der Künstlichen Intelligenz verbrei-
tetste Form der formalen Wissensrepräsentation. Durch sie wird die deklara-
tive Beschreibung von Wissen in vom Menschen handhabbarer symbolischer
Form möglich. Logische Kalküle erlauben außerdem den formalen Umgang
mit Schlussfolgerungen, und damit eine Modellierung menschlicher kognitiver
Fähigkeiten.

Die Logik in ihren klassischen Ausprägungen wie zum Beispiel der
Prädikatenlogik erster Stufe, ist jedoch für die Modellierung von Wissen und
Schlussfolgern und der maschinellen Umsetzung desselben nur bedingt direkt
geeignet. Je nach Anwendungsdomäne wird eine direkte Modellierung sehr
umständlich und deshalb unpraktisch und anwendungsfern, oder bleibt an-
deren, z.B. subymbolischen Ansätzen in der Leistung unterlegen. Seit jeher
werden also in der Wissensverarbeitung Systeme entwickelt, analysisert und
angewendet, die zwar symbolisch und im weitesten Sinne logikbasiert sind,
aber doch den Rahmen der klassischen Logik in gewissem Maße verlassen. An-

1

2 Einführung

dere in manchen Anwendungsdomänen erfolgreiche Systeme wiederum sind
im Ansatz nicht logikbasiert, werden aber durch ein Studium ihrer logischen
Aspekte auch in wissensbasierten Bereichen anwendbar.

Das Studium und die Anwendung logischer Aspekte verschiedener
Ansätze zur Wissensverarbeitung ist das Thema dieser Schrift. Insbeson-
dere werde ich Ergebnisse zu drei Arten von Wissensrepräsentation untersu-
chen, die in der Wissensverarbeitung eine Rolle spielen. Meine vorgestellten
Arbeiten konzentrieren sich dabei auf den Vergleich und das Zusammen-
spiel verschiedener Methoden, auf die Herausarbeitung fundamentaler Zu-
sammenhänge und zielen auf Umsetzungen in Anwendungsdomänen. Syste-
matisch lassen sie sich drei Formen der Wissensverarbeitung zuordnen.

Die erste dieser Arten der Wissensverarbeitung ist die des nichtmono-
tonen Schließens. Entstanden um 1980 handelt es sich dabei um eine lo-
gikbasierte Methodik zur Modellierung der menschlichen Fähigkeit zur Infe-
renz aus unsicherer und unvollständiger Faktenlage. Eine Leitintuition dieses
Fachgebietes ist die Annahme, dass der Mensch in Abwesenheit präziseren
Wissens auf Grundregeln zugreift, die in den meisten Fällen zutreffend sind,
zu denen es aber Ausnahmen geben kann. Solange also nicht bekannt ist, dass
es sich um einen Ausnahmefall handelt, wird die Grundregel herangezogen.

Diese Form der Wissensrepräsentation bedient sich häufig der Syntax
der Logikprogrammierung. Aus diesem syntaktischen Paradigma sind dann
verschiedene Ansätze zur nichtmonotonen Wissensverarbeitung hervorgegan-
gen, die miteinander konkurrieren aber auch verwandt sind. Diese Ansätze
entstanden aus Anforderungen der Praxis, wo je nach Anwendungsbereich
verschiedene Formalisierungen der Leitintuition angemessen erscheinen. Der
erste Teil meiner Arbeit behandelt Beziehungen verschiedener solcher nicht-
monotoner Semantiken für Logikprogramme, mit dem Ziel, die Eigenheiten
der unterschiedlichen Formalisierungen herauszustellen und greifbar zu ma-
chen. Insbesondere entwickle ich einen Ansatz zur uniformen Beschreibung
verschiedener Semantiken, der im Vergleich zu anderen solchen Methoden
sehr viel flexibler ist und eine größere Klasse verschiedener Semantiken um-
fasst.

Die zweite Art der Wissensverarbeitung, die ich behandle, ist die der
künstlichen neuronalen Netze. Diese in der Praxis der Künstlichen Intelli-
genz sehr erfolgreiche Methodik entstand aus der Abstraktion biologischer
neuronaler Netze, wie sie im Nervensystem von Menschen und Tieren vorlie-
gen. Seine praktischen Erfolge verdankt dieser Ansatz vor allem der Tatsache,
dass künstliche neuronale Netzwerke auf effiziente Weise anhand von Beispie-

Einführung 3

len trainiert werden können, komplexe Aufgaben wie z.B. Mustererkennung
zu bewältigen.

In biologischen Systemen werden elektrische Potenziale durch ein ge-
richtetes Netzwerk propagiert und auf bisher nicht vollständig verstandene
Weise massiv parallel verarbeitet. Für die künstlichen Gegenstücke werden
Netzwerke und Verarbeitungsprinzipien abstrahiert und dadurch stark ver-
einfacht. Dennoch entzieht sich das Verständnis der immer noch komplexen
Vorgänge in künstlichen Netzen unserem Verständnis im Sinne einer deklara-
tiven oder logischen Lesbarkeit. Künstliche neuronale Netze stellen dadurch
eine subsymbolische Art der Wissensverarbeitung dar, die von der logikba-
sierten stark verschieden ist. Letztere, insbesondere die auf Logikprogram-
men basierende, ist deklarativ, entzieht sich aber vergleichbar erfolgreichen
Lernmethoden. Ein weiterer Unterschied besteht in der Robustheit neuro-
naler Netzwerke, die — im Gegensatz zu Logikprogrammen — auch nach
Ausfall eines Teils der repräsentierenden Strukturen in der Regel noch zu-
friedenstellend arbeiten. Anforderungen der Praxis machen eine integration
logikbasierter und neuronaler Systeme wünschenswert. Systeme, die die Ro-
bustheit und Lernfähigkeit künstlicher neuronaler Netze mit der deklarativen
Ausdrucksstärke logikbasierter Wissensverarbeitung kombinieren, sind von
besonderem Interesse.

Im zweiten Teil dieser Schrift wende ich mich also Fragen der neuro-
symbolischen Integration zu. Dabei geht es um die Frage nach Möglichkeiten
zur Integration logikbasierter Wissensverarbeitung mit solcher, basierend auf
künstlichen neuronalen Netzen. Insbesondere widme ich mich der Frage einer
Integration von Logik erster Stufe, die besondere Schwierigkeiten mit sich
bringt. Die vorgestellten Ergebnisse beschreiben Repräsentationsmethoden
für den semantischen Gehalt von Logikprogrammen mit Hilfe von Standard-
architekturen für künstliche neuronale Netze. Zum Teil werden dabei wieder-
um nichtmonotone Semantiken betrachtet. Die von meinen Koautoren und
mir erarbeiteten Resultate konstituieren den aktuellen Stand der Forschung
auf diesem Gebiet.

Die dritte Form der Wissensverarbeitung, der ich mich zuwende, basiert
auf der abstrakten Beschreibung begrifflicher Inhalte und Ontologien, wie
sie z.B. im Bereich des Semantic Web zum Einsatz kommen. Begriffliche
Inhalte werden dabei zunächst durch Ordnungsstrukturen, genauer als Be-
griffshierarchien, dargestellt. Im Forschungsbereich Semantic Web stellt sich
aber zunehmend heraus, dass zu einer für Anwendungen genügend reichhal-
tigen Repräsentation ontologischen Wissens Begriffshierarchien durch Regeln
im Sinne der Logikprogrammierung erweiterbar sein müssen.

Im dritten Teil dieser Schrift wende ich mich daher Fragen des Zusam-

4 Einführung

menspiels von Begriffshierarchien, Logikprogrammierung und nichtmonoto-
nem Schließen zu. Genauer entwerfe ich ein generisches Paradigma zum inte-
grierten nichtmonotonen Schließen auf Ordnungsstrukturen und zeige, dass
es mit Standardansätzen aus den Bereichen nichtmonotones Schließen und
Begriffsstrukturen voll verträglich ist.

Struktur dieser Schrift

Die drei Kapitel dieser Schrift entsprechen den genannten drei Formen der
Wissensverarbeitung. Jedes Kapitel besteht aus fünf Teilen.

1. Eine knappen Zusammenfassung des Kapitels: Problemstellung,
Lösung, Ausblick.

2. Eine Darstellung des Forschungskontextes, in dem meine Arbeiten an-
gesiedelt sind.

3. Eine technisch gehaltene Hinführung zu einigen Grundbegriffe, die zum
Verständnis der allgemeinen Diskussion meiner Resultate hilfreich sind.
Es werden auch exemplarisch eigene Resultate formal beschrieben.

4. Ein allgemeiner gehaltener Überblick über eigene Resultate in den ein-
gereichten Arbeiten.

5. Ein Ausblick auf Weiterführungen und Anwendungen aus meinen Ar-
beiten heraus.

Ein Leser mit Vorkenntnissen im Themenbereich eines Kapitels mag sich
zunächst durch die Lektüre der Kurzfassung am Anfang des Kapitels sowie
der Aufstellung der Resultate in den eingereichten Arbeiten orientieren.

Im Anhang findet sich eine Aufstellung meines Eigenanteils an den mit
Koautoren publizierten Arbeiten. Die Arbeiten selbst sind beigefügt.

Kapitel 1

Semantik nichtmonotoner
Logikprogrammierung

1.1 Kurzfassung

Es gibt viele verschiedene Ausprägungen nichtmonotonen Schließens, die
sich in verschiedenen Semantiken für Logikprogramme niederschlagen. Diese
modellieren verschiedene Intuitionen, die sich wiederum jeweils aus Anwen-
dungsbeispielen motivieren.

Eine Systematisierung dieser verschiedenen Semantiken wird in jüngster
Zeit von vielen Autoren versucht. Ziel dieser Untersuchungen ist zum einen
ein vertieftes Verständnis verschiedener Semantiken für Fragen der Anwen-
dung, und zum anderen die Suche nach geeigneten Semantiken für syntakti-
sche Erweiterungen der Standardparadigmen, wie sie durch Anforderungen
der Praxis vonnöten sind.

In meinen eigenen Arbeiten wird ein konzeptionell neuer Ansatz zur Sy-
stematisierung und vereinheitlichten Beschreibung verschiedener Semantiken
— mit Hilfe von Stufenfunktionen — ausgeführt. Im Vergleich zu anderen
Ansätzen können damit sehr viel mehr verschiedenartige Semantiken syste-
matisch charakterisiert werden. Die Arbeiten zeigen außerdem, dass der An-
satz auf praxisrelevante syntaktische Erweiterungen übertragbar ist.

Zukünftige Arbeiten umfassen Methoden zum Herausarbeiten von pra-
xisrelevanten Eigenschaften von Semantiken wie Berechenbarkeit und Kom-
plexität, die Behandlung syntaktischer Erweiterungen für anwendungsnahe
Modellierungen, sowie die Ableitung von Algorithmen zur automatischen De-
duktion unter diesen Semantiken.

5

6 Kapitel 1. Semantik nichtmonotoner Logikprogrammierung

1.2 Forschungskontext: Logikprogrammierung und

nichtmonotones Schließen

Logikprogrammierung ist — Programmieren mit Logik. Kurz gesagt beruht
sie auf der Idee, Logik als Wissensrepräsentationssprache zu verwenden, um
damit ein vorliegendes Problem zu spezifizieren und Lösungen mit Hilfe ma-
schineller Deduktion herzuleiten. Die bahnbrechenden Arbeiten von Robert
Kowalski [80], die wiederum auf der von Alan Robinson [106] entwickelten
Resolutionsmethode als Grundlage für das Forschungsgebiet der Deduktion
aufbauen, können als die Ursprünge der Logikprogrammierung angesehen
werden. Kowalski entwickelte die SLD-Resolution als Verfeinerung der Reso-
lutionsmethode, die es einem erlaubt, logische Formeln erster Stufe direkt als
Programme für maschinelle Verarbeitung zu verwenden. Daraus entwickelte
sich dann die Programmiersprache Prolog, die von Alain Colmerauer als er-
stem realisiert wurde [24].

Mittlerweile wurde die Logikprogrammierung zu einem der Standardpro-
grammierparadigmen und wurde in eine Vielzahl verschiedener Richtungen
weiterentwickelt und zur Anwendung geführt. Als einige wenige Beispiele
seien Natural Language Processing, (Deduktive) Datenbanken, maschinelle
Deduktion, Wissensverarbeitung, Kognitive Robotik, Semantic Web, Rechts-
wesen und maschinelles Lernen genannt. Die Zahl der industriellen Anwen-
dungen der zugrundeliegenden Techniken — vor allem Prolog, aber auch
Constraint und Induktive Logikprogrammierung — wächst ständig, und es
kann erwartet werden, dass der Trend sich fortsetzt. In [7] findet man einen
hervorragenden Überblick über einige der wichtigsten Themen, die augen-
blicklich in der Logikprogrammierung behandelt werden. Standardreferenzen
für die Prolog zugrundeliegende Theorie sind [85, 5].

Das Forschungsgebiet Nichtmonotones Schließen entstand aus der Idee,
Aspekte des menschlichen Schließens zu formalisieren, die sich mit Hilfe klas-
sischer logischer Methoden nur schwer ausdrücken lassen. Vor allem ging es
um eine Formalisierung der Tatsache, dass Menschen in vielen Fällen da-
zu neigen, zwar logisch unscharfe, aber der Situation dennoch in praktischen
Belangen höchst angemessene Schlüsse zu ziehen, eine wünschenswerte Eigen-
schaft, über die intelligente Systeme zur Zeit nur sehr beschränkt verfügen.
Formaler betrachtet neigen Menschen dazu, aus einer gegebenen Wissens-
basis mehr Schlüsse zu ziehen, als es mit den Mitteln der Prädikatenlogik
erster Stufe eigentlich möglich wäre, was aber wiederum zur Folge hat, dass
solche Schlussfolgerungen bei Bekanntwerden weiteren Wissens eventuell wie-
der zurückgenommen werden müssen. Im Gegensatz dazu sind klassische Lo-
giken wie die Aussagen- oder die Prädikatenlogik monoton in dem Sinne,

1.2. Forschungskontext 7

dass aus dem Schluss einer Formel F aus einer Theorie Γ folgt, dass F auch
aus jeder Theorie folgt, die Γ enthält.

Es stellte sich jedoch heraus, dass sich diese nichtmonotonen Aspekte des
menschlichen Schließens nur schwer auf befriedigende Weise formalisieren
lassen. Frühe Arbeiten auf diesem Gebiet basierten im Wesentlichen auf drei
grundsätzlich verschiedenen Ansätzen, zu denen z.B. in [38] eine exzellente
Diskussion vorliegt: Circumscription von John McCarthy [91, 92], basierend
auf Logik zweiter Stufe, Autoepistemische Logik von Robert Moore [94, 95]
mit modallogischen Operatoren für geglaubte aber nicht notwendig gewusste
Annahmen und die Defaultlogik von Ray Reiter [105], die auf der Idee ba-
siert, dass manche Schlüsse immer dann (by default) gezogen werden sollten,
wenn kein explizites Wissen gegen diese Schlüsse spricht, d.h. keine bekannte
Ausnahme zum Schluss vorliegt.

In der zweiten Hälfte der 1980er Jahre erhielt die Forschung zum nichtmo-
notonen Schließen entscheidenden Aufwind durch Versuche, diese Methoden
zur semantischen Analyse von Prolog und verwandten Logikprogrammierpa-
radigmen einzusetzen. Tatsächlich enthält Prolog schon immer eine nichtmo-
notone Funktionalität: Wenn das System zeigen kann, dass ein Faktum A
nicht aus einer gegebenen Wissensbasis — oder einem Programm — folgt,
dann wird A als falsch angesehen, d.h. ¬A ist eine Schlussfolgerung, die von
Prolog gezogen wird. Nach Erweiterung der Wissensbasis um das Faktum A
kann jedoch A abgeleitet werden, was die Rücknahme des vorhergehenden
Schlusses ¬A notwendig macht. Es sei bemerkt, dass die in ¬A auftretende
Negation nicht im Sinne z.B. der Prädikatenlogik erster Sufe interpretiert
werden sollte. Vielmehr steht ¬A für Negation als Fehlschlag (des Beweises
von A).

Aus diesen und ähnlichen Gründen ist es nicht wirklich klar, ob Nega-
tion als Fehlschlag eine Negation in einem vernünftigen logischen Sinne ist
oder vielmehr als eine extralogische Funktionalität von Prologsystemen auf-
gefasst werden sollte. Untersuchungen dieser Frage haben jedoch viele Ideen
und Fragestellungen hervorgebracht, die die Forschung im Bereich Logikpro-
grammierung und Wissensverarbeitung nach wie vor inspirieren. Das oben-
genannte nichtmonotone Verhalten der Negation als Fehlschlag zum Beispiel
veranlasste Untersuchungen, ob es nicht mit Hilfe etablierter nichtmonotoner
Schlussparadigmen einer logischen Interpretation zugeführt werden könne.
Diese Studien brachten zwar nur Teilerfolge hervor insofern Negation als
Fehlschlag betroffen war. Doch sie führen auch zu der Beobachtung, dass
Logikprogramme — möglicherweise ausgestattet mit zusätzlichen syntakti-
schen Erweiterungen — eine hervorragende Sprache für die Wissensverarbei-
tung unter Nichtmonotonie liefern.

Um 1990 verschob sich darum der Fokus in Richtung der Erforschung

8 Kapitel 1. Semantik nichtmonotoner Logikprogrammierung

von Logikprogrammen als Wissensrepräsentationssprache für nichtmonoto-
nes Schließen, unter Inkorporation der allgemeineren Resultate und Einsich-
ten, die bis zu diesem Zeitpunkt erzielt worden waren. Die entstehenden
Paradigmen waren viel einfacher zu verstehen und aus maschineller Sicht
handzuhaben und führten schließlich zu einer Reihe von Systemimplementie-
rungen, bekannt als Answer Set Programming Systeme, deren Wichtigste zur
Zeit dlv und smodels sind [30, 89, 113]. Diese Paradigmen und Systeme
werden zur Zeit ausgebaut und verfeinert. Außerdem laufen ausgiebige Un-
tersuchungen zur Anwendbarkeit in verschiedenen Bereichen der Künstlichen
Intelligenz.

Answer Set Programming beruht dabei auf einer bestimmten semanti-
schen Interpretation von Logikprogrammen, nämlich der durch stabile Mo-
delle [45, 46] gegebenen. Diese ist wiederum nur eine der semantischen Les-
arten, der Logikprogramme zugeführt werden können. Das Studium von An-
wendungsbeispielen legt verschiedene Semantiken nahe, die auch tatsächlich
vorgeschlagen und untersucht wurden. Die Semantik der stabilen Modelle hat
sich Ende der 90er Jahre gegen eine Reihe von Konkurrenten als praktika-
belste Lösung weitgehend durchgesetzt. Die verschiedenen vorgeschlagenen
Semantiken sind jedoch zum großen Teil eng miteinander verwandt, und man-
che davon werden nach wie vor zur theoretischen Analyse oder zur Ableitung
von Algorithmen herangezogen. Für syntaktische Erweiterungen von Answer
Set Programming ist die Diskussion um geeignete semantische Lesarten wei-
terhin im Gange.

Eine Systematisierung dieser verschiedenen Semantiken wird in jüngster
Zeit von vielen Autoren versucht, darunter [27, 28, 26, 36, 88, 86, 108]. Ziel
dieser Untersuchungen ist zum einen ein vertieftes Verständnis verschiedener
Semantiken für Fragen der Anwendung, und zum anderen die Suche nach
geeigneten Semantiken für syntaktische Erweiterungen der Standardparadig-
men, wie sie durch Anforderungen der Praxis vonnöten sind.

In meinen eigenen Arbeiten wird ein konzeptionell neuer Ansatz zur Sy-
stematisierung und vereinheitlichten Beschreibung verschiedener Semantiken
— mit Hilfe von Stufenfunktionen — ausgeführt. Im Vergleich zu anderen
Ansätzen können damit sehr viel mehr verschiedenartige Semantiken syste-
matisch charakterisiert werden. Die Arbeiten zeigen außerdem, dass der An-
satz auf praxisrelevante syntaktische Erweiterungen übertragbar ist.

1.3. Technische Hinführung 9

1.3 Technische Hinführung: Syntax und Semantik

von Logikprogrammen

Zur vereinheitlichten Behandlung verschiedener Semantiken in der Logikpro-
grammierung bedienen wir uns des Hilfsmittels der Stufenfunktionen (engl.
Level Mappings). Eine Stufenfunktion ist dabei eine Abbildung von Grund-
instanzen von Atomen in eine wohlgeordnete Menge und dient informell der
Beschreibung von rekursiven Abhängigkeiten innerhalb von Logikprogram-
men. Wir führen zunächst Terminologie und Notation ein. Die meisten der
folgenden Begrifflichkeiten werden auch in den restlichen Kapiteln der Schrift
zur Verwendung kommen. Wir arbeiten im Folgenden über einer gegebenen
Sprache der Prädikatenlogik erster Stufe und folgen im Wesentlichen [85].

Eine Regel ist eine Formel der Form

∀X1 . . . ∀Xk(A← A1 ∧ · · · ∧ Am ∧ ¬B1 ∧ · · · ∧ ¬Bn)

der Prädikatenlogik erster Stufe, wobei X1, . . . , Xn genau die in der For-
mel vorkommenden Variablen sind. Die Reihenfolge der Atome auf der rech-
ten Seite des Implikationssymbols ist dabei unbedeutend. Eine solche Regel
schreiben wir abgekürzt als

A← A1, . . . , Am,¬B1, . . . ,¬Bn.

A wird als Kopf der Regel bezeichnet, A1, . . . , Am,¬B1, . . . ,¬Bn als Rumpf
der Regel. Eine Regel heißt ein Faktum, wenn m = n = 0 ist. Eine Regel
heißt definit, wenn n = 0 ist. Ein (normales) Logikprogramm P besteht aus
einer endlichen Menge von Regeln. Ein Logikprogramm heißt definit, wenn
es nur aus definiten Regeln besteht. Wir gehen stets (ohne Beschränkung
der Allgemeinheit) davon aus, dass die verwendete Sprache erster Stufe ge-
nau die in einem gegebenen Logikprogramm P vorkommenden Konstanten-,
Funktions- und Prädikatensymbole beinhaltet. Die zugehörige Herbrandbasis
BP bezeichnet die Menge aller Grundatome über der gegebenen Sprache. Die
Menge aller zu P gehörigen Grundinstanzen von Regeln bezeichnen wir mit
ground(P).

Eine Stufenfunktion l : BP → α für ein Programm P ist eine Abbildung
l von der Herbrandbasis BP in eine (abzählbare) Ordinalzahl α.

Herbrandinterpretationen für ein Logikprogramm P können kanonisch
mit Teilmengen von BP identifiziert werden. Die Menge all dieser Teilmen-
gen wird mit IP bezeichnet. Die Menge IP ist durch Teilmengeninklusion
geordnet. Ist I ⊆ BP , dann definieren wir ¬I = {¬A | A ∈ I}. Der Kon-
sequenzoperator TP ist eine Abbildung auf IP , wobei TP (I) für I ∈ IP die

10 Kapitel 1. Semantik nichtmonotoner Logikprogrammierung

Menge der A ∈ BP ist, für die eine Regel A← body in ground(P) existiert,
für die body wahr unter I ist.

Wir betrachten auch dreiwertige Logiken, in denen neben wahr und falsch
noch der Wahrheitswert unbekannt zur Verfügung steht. Negation, Konjunk-
tion und Disjunktion werden auf naheliegende Weise (wie in Kleenes starker
dreiwertiger Logik [32]) interpretiert: nicht wahr ergibt falsch, nicht falsch er-
gibt wahr, und nicht unbekannt ergibt unbekannt. Eine Konjunktion ist wahr
genau dann, wenn alle ihre Komponenten wahr sind. Sie ist falsch genau
dann, wenn mindestens eine ihrer Komponenten falsch ist. Eine Disjunktion
ist wahr genau dann, wenn mindestens eine ihrer Komponenten wahr ist. Sie
ist falsch genau dann, wenn alle ihre Komponenten falsch sind. Eine Implika-
tion p→ q ist wahr genau dann, wenn aus der Wahrheit von q die Wahrheit
von p folgt. Letzteres genügt für unsere Darstellung, das sonstige Verhalten
der Implikation ist nicht relevant.

Die (Herbrand-)Interpretationen in dreiwertiger Logik können mit den
konsistenten Teilmengen von BP ∪¬BP identifiziert werden. Eine Teilmenge
I von BP ∪ ¬BP heißt dabei konsistent, wenn für jedes A ∈ BP höchstens
eines von A und ¬A in I ist. Die Menge aller dreiwertigen Interpretationen
bezeichnen wir mit IP,3, sie ist durch Teilmengeninklusion geordnet.

Ein (zweiwertiges bzw. dreiwertiges) Modell für ein Logikprogramm P
ist eine (zweiwertige bzw. dreiwertige) (Herbrand-)Interpretation, die alle
Regeln in ground(P) (bezüglich zweiwertiger bzw. dreiwertiger Logik) wahr
macht. Wird nicht explizit darauf verwiesen, dass eine Interpretation oder
ein Modell dreiwertig ist, so ist ein klassisches zweiwertiges gemeint.

Semantiken für Logikprogramme sind in der Literatur auf sehr verschie-
dene Arten definiert und charakterisiert worden. Oft liegt dabei ein semanti-
scher Operator wie der oben eingeführte Konsequenzoperator zugrunde. Für
definite Programme zum Beispiel wird meist die Semantik betrachtet, die
sich aus dem kleinsten (Herbrand-)Modell des Programms ergibt. Die in mei-
nen Arbeiten vorgeschlagene vereinheitlichte Beschreibung von Semantiken
ermöglicht Charakterisierungen verschiedenster Semantiken unter Verwen-
dung von Stufenfunktionen als einzigem Hilfsmittel. Für definite Programme
ist diese Charakterisierung wie folgt. Sie kann als prototypisch angesehen
werden.

Satz 1.1 ([68])
Sei P ein definites Programm. Dann gibt es ein eindeutiges (zweiwertiges)
Modell M für P , für das eine Stufenfunktion l : BP → α existiert, so dass
die folgende Bedingung erfüllt ist: Für jedes A ∈ M gibt es eine Regel A←
A1, . . . , An in ground(P) mit Ai ∈ M und l(A) > l(Ai) für alle i. Außerdem
ist M dann das kleinste (zweiwertige) Modell für P .

1.3. Technische Hinführung 11

Satz 1.1 enthält eine Charakterisierung des kleinsten Modells für defi-
nite Programme mit Hilfe von Stufenfunktionen. Die Charakterisierung ist
semi-syntaktischer Natur: Die Stufenfunktion beschreibt syntaktische Bedin-
gungen zur rekursiven Abhängigkeit von Atomen in ground(P). Durch das
zu charakterisierende Modell selbst wird festgelegt, wann diese syntaktischen
Bedingungen berücksichtigt werden müssen. Man vergleiche Satz 1.1 mit dem
folgenden, welcher stabile Modelle [45] beschreibt und für andere Zwecke be-
wiesen wurde.

Satz 1.2 ([31])
Sei P ein normales Programm und M ein (zweiwertiges) Modell für P . Dann
ist M genau dann ein stabiles Modell von P , wenn eine Stufenfunktion l :
BP → α existiert, so dass die folgende Bedingung erfüllt ist: Für jedes A ∈M
gibt es eine Regel A← A1, . . . , An,¬B1, . . . ,¬Bm in ground(P) mit Ai ∈M
und l(A) > l(Ai) für alle i.

Die Sätze 1.1 und 1.2 unterscheiden sich nur geringfügig; vor allem ist die
behandelte Programmklasse eine andere. Der formale Vergleich legt nahe,
dass stabile Modelle für normale Programme eine ähnliche Rolle spielen wie
das kleinste Modell für definite Programme. In der Tat haben sich stabile
Modelle dafür durchgesetzt.

Der Beweis von Satz 1.1 folgt einem bestimmten Raster, welches auch für
die meisten anderen Resultate unseres vereinheitlichten Ansatzes Verwen-
dung finden kann. Zunächst ist bekannt, dass sich das kleinste Modell eines
definiten Programms P als Vereinigung

⋃
n∈N T n

P (∅) von Iterationen von ∅
unter TP beschreiben lässt. Der Konsequenzoperator TP ist in diesem Falle
monoton, d.h. wir erhalten T n

P (∅) ⊆ T n+1
P (∅) für alle n ∈ N. Wir definieren

nun die Menge l−1(n), für n ∈ N, als T n+1
P \ T n

P . Man kann dann die charak-
terisierende Bedingung nachweisen. Umgekehrt zeigt man induktiv, dass aus
der charakterisierenden Bedingung die Aussage l−1(n) ∩M ⊆ T n+1

P für alle
n ∈ N folgt.

Das Raster für andere Beweise unseres Ansatzes erhält man durch
Veränderung des betrachteten Operators. Die Beweisdetails gestalten sich
dennoch in vielen Fällen als schwierig.

Andere Ansätze zur vereinheitlichten Beschreibung verschiedener Seman-
tiken verwenden abstraktere Ansätze zur Charakterisierung nichtmonotoner
Logiken [27, 28, 88], oder basieren auf Biverbänden [26, 36, 86]. Erstere sind
sehr abstrakt, zweitere sehr restriktiv. Vor allem aber zeigt sich, dass alle an-
deren versuchten Ansätze nicht ausreichen, um die vielfältigen syntaktische
Erweiterungen zu erfassen, die zur Zeit diskutiert werden. Eine Ausnahme
ist der Vorschlag in [108], das Verhältnis dieser Arbeit mit dem auf Stufen-
funktionen basierenden Ansatz ist in einer der eingereichten Arbeiten ([60])

12 Kapitel 1. Semantik nichtmonotoner Logikprogrammierung

untersucht worden.

1.4 Eigene Resultate: Überblick über die einge-

reichten Arbeiten

In [68] wird der vereinheitlichende Ansatz erstmalig entwickelt und vorge-
schlagen. Das oben genannte Beweisraster wird entwickelt. Die Flexibilität
des Verfahrens wird demonstriert, indem die folgenden Semantiken charak-
terisiert werden: kleinstes Modell für definite Programme (Satz 1.1), Fittings
Semantik [32], die wohlfundierte Semantik [119] und die schwach stratifizierte
Semantik [103]. Mit Ausnahme der kleinsten Modellsemantik sind dies drei-
wertige Semantiken. Das bereits zitierte Resultat von Fages (Satz 1.2) rundet
die Darstellung ab.

Insbesondere durch die Behandlung der schwach stratifizierten Seman-
tik zeigt sich, wie allgemein das beschriebene Verfahren ist. Andere Ansätze
zur vereinheitlichten Beschreibung sind in der Regel nicht in der Lage, diese
inzwischen weniger wichtig gewordene Semantik mit einzubeziehen. Die Dar-
stellung lässt auch erwarten, dass unser Ansatz auf die meisten Semantiken,
die sich mit monotonen Operatoren oder anderen monotonen Konstruktionen
beschreiben lassen, übertragbar ist.

Das Hauptresultat der Veröffentlichung besteht in der Darstellung des
konzeptionell neuen Ansatzes zur vereinheitlichten Beschreibung verschiede-
ner Semantiken. Gleichzeitig ergeben sich aus den technischen Resultaten
noch einige interessante Nebeneinsichten. Zum einen wird die Ähnlichkeit
zwischen der kleinsten Modellsemantik für definite Programme und der sta-
bilen Modellsemantik für normale Programme formalisiert und deutlich —
wie bereits oben argumentiert. Eine ähnliche Parallele ergibt sich aus den
Resultaten zu Fittings Semantik und der wohlfundierten Semantik: Letztere
wird als eine stratifizierte Version (im Sinne von [6, 104]) der ersteren er-
kannt. Interessanterweise war es eigentlich die schwach stratifizierte Seman-
tik, die aus dieser Motivation heraus konstruiert wurde. Die Resultate zeigen
aber, dass sie — im Gegensatz zu der aus anderen Motiven entstandenen
wohlfundierten Semantik — diesen Anspruch nicht erfüllt.

Die Veröffentlichung ist eine stark überarbeitete und erweiterte Version
von [66].

In [54] werden Fragen behandelt, die durch die in [68] hergeleiteten Cha-
rakterisierungen verschiedener Semantiken aufgeworfen werden. Insbesonde-
re zeigt sich in [68], dass die wohlfundierte Semantik aus Fittings Semantik

1.5. Ausblick 13

abgeleitet werden kann, indem bestimmte Selbstbezüglichkeiten, die in Fit-
tings Semantik zum Wahrheitswert unbekannt führen, als falsch ausgewertet
werden. Diese Beobachtung deckt sich mit der sehr viel älteren, aber bis
dahin hauptsächlich informellen Einsicht, dass die wohlfundierte Semantik
Falschheit bevorzugt [35].

Der vereinheitlichte Ansatz erlaubt nun durch einfache formale
Veränderungen der Charakterisierungen bekannter Semantiken, die Bevorzu-
gung von Falschheit zugunsten von Wahrheit oder Unbestimmtheit aufzuge-
gen. In [54] wird gezeigt, dass eine solche Behandlung zu einer Theorie führt,
die völlig analog zur üblichen aufgebaut ist. Die Resultate zeigen, dass eine
Entwicklung neuer und interessanter Semantiken mit Hilfe von Charakteri-
sierungen durch Stufenfunktionen grundsätzlich möglich ist. Es ist natürlich
nicht zu erwarten, dass die für diese Demonstration neu entwickelten Seman-
tiken direkt praktische Relevanz haben werden; erst für die Behandlung noch
nicht so eingehend studierter syntaktischer Erweiterungen sind entsprechen-
de Ergebnisse zu erwarten.

Diese Veröffentlichung ist leicht überarbeitet beim Journal of Logic and
Computation eingereicht worden.

In [60] wird unser Ansatz zur vereinheitlichten Charakterisierung von Se-
mantiken mit einem anderen, in [108] entwickelten Ansatz ähnlicher Zielge-
bung, verglichen. Es wird bewiesen, dass sämtliche mit Hilfe von [108] be-
handelbaren Semantiken auch mit Hilfe von Stufenfunktionen charakterisiert
werden können. Der formal anspruchsvolle Beweis wirft außerdem eine Reihe
von Korollaren ab. In diesen werden verschiedene Semantiken für disjunktive
Logikprogramme charakterisiert. Letztere sind eine syntaktische Erweiterung
normaler Logikprogramme, indem statt eines einzigen Atoms im Kopf von
Regeln auch Disjunktionen von Atomen zugelassen werden.

Die Resultate demonstrieren die Stärke und Allgemeinheit des auf Stu-
fenfunktionen beruhenden Ansatzes.

Diese Veröffentlichung ist beim 19. Workshop on (Constraint) Logic Pro-
gramming eingereicht worden.

1.5 Ausblick: Weiterführungen und Anwendungen

Ein vereinheitlichter Ansatz zur Charakterisierung verschiedener Semantiken
führt direkt zu einem vertieften Verständnis der Modellierungsprinzipien in
der Logikprogrammierung. Es ist zu erwarten, dass durch eine Weiterentwick-
lung Einsichten gewonnen werden können, die zu konkreten Anwendungen
führen.

14 Kapitel 1. Semantik nichtmonotoner Logikprogrammierung

Zunächst ist zu vermuten, dass unser Ansatz durch die Verwendung von
Wohlordnungen Relevanz für Entscheidbarkeitsfragen hat. Tatsächlich ist das
im Bereich nichtmonotonen Schließens zur Zeit vorherrschende Paradigma
Answer Set Programming nur für aussagenlogische oder vergleichbar end-
liche Problemstellungen implementiert, was Ausdrucksstärke und Anwend-
barkeit für die Wissensverarbeitung stark einschränkt. Trotz hohen Bedarfs
wird an diesem Punkt kaum geforscht, wohl vor allem aus Mangel an innova-
tiven Ideen. Die prominenteste Ausnahme sind die Arbeiten von Bonatti [17].
Da das Schließen mit nichtmonotonen Semantiken wie der der stabilen oder
der wohlfundierten Modelle im Allgemeinen nicht semi-entscheidbar ist, ist
die Identifizierung entscheidbarer oder semi-entscheidbarer Fragmente eine
naheliegende Vorgehensweise. Mit Hilfe der Charakterisierungen durch Stu-
fenfunktionen können solche Fragmente in etwa wie folgt gewonnen werden:
Zunächst charakterisiert man eine Semantik mit Hilfe von Stufenfunktionen.
Dann beschreibt man Bedingungen, unter denen die Herleitung des Wahr-
heitswertes von Atomen der Stufe n + 1 aus denen der Stufe n entscheidbar
ist und terminiert. Es folgt dann, dass die Wahrheitswerte aller Atome bis
zur Stufe ω entscheidbar sind.1 Sind entscheidbare Fragmente solcherart cha-
rakterisiert, ist eine Algorithmisierung entsprechender Beweis- oder Entschei-
dungsverfahren unproblematisch. Eine vergleichbare Konstruktion wurde in
[83] für SLD-Resolution verfolgt.

Eine andere Forschungsrichtung, die sich aus dem vereinheitlichten An-
satz eröffnet, ist die semantische Untersuchung syntaktischer Erweiterungen
für die Logikprogrammierung. Vor allem sind dazu disjunktive Programme
zu untersuchen, was in der von mir betreuten Arbeit [79] schon im Ansatz ge-
schehen ist. Von besonderem Interesse ist dabei allerdings die Untersuchung
der verschiedenen konkurrierenden Vorschläge für wohlfundierte Semantiken
für disjunktive Programme. Mit Hilfe unseres Ansatzes lassen sich diese dann
vergleichen und Anhaltspunkte herausarbeiten, welche Semantiken in wel-
chem Kontext zu bevorzugen sind. Andere syntaktische Erweiterungen, die
ähnlichen Analysen zugeführt werden sollen, sind geordnete Disjunktion [18],
Präferenzen [19], quantitative Erweiterungen [118, 77, 122, 90, 87] und an-
dere.

Ist eine kritische Masse an Beschreibungen verschiedener Semantiken mit
unserem Verfahren erst vorhanden, dann liegt natürlich auch die Entwicklung
einer Metatheorie auf der Hand, mit deren Hilfe z.B. Komplexitätsklassen
und andere Eigenschaften direkt aus den vereinheitlichten Charakterisierun-
gen ablesbar sein könnten.

Zuletzt sei erwähnt, dass auch im Zusammenhang approximativer Deduk-

1ω ist die kleinste unendliche Ordinalzahl.

1.5. Ausblick 15

tionsverfahren Charakterisierungen mit Hilfe von Stufenfunktionen hilfreich
sein können. In [59] zum Beispiel wird ein Verfahren zur approximativen
Deduktion mit Hilfe von Stufenfunktionen semantisch beschrieben.

Kapitel 2

Neuro-symbolische Integration

2.1 Kurzfassung

Neuro-symbolische Integration befasst sich mit der Entwicklung intelligenter
Systeme, die wünschenswerte Eigenschaften logikbasierter und konnektio-
nistischer Wissensverarbeitung vereinen. Diese Forschung ist motiviert aus
Anforderungen der Praxis, in der die Entscheidung für eines der beiden Pa-
radigmen meist eine Entscheidung gegen die wünschenswerten Eigenschaften
des anderen notwendig macht. Während erste Systeme für die konnektioni-
stische Behandlung von Aussagenlogik bereits vorliegen, gestaltet sich die
Integration mit der Prädikatenlogik als eine sehr schwierige Herausforderung
für die Forschung.

Meine Arbeiten befassen sich mit der Integration von Logikprogrammen
erster Stufe mit künstlichen neuronalen Netzen in Standardarchitekturen.
In ihnen werden die zur Zeit einzigen vorliegenden Techniken beschrieben,
wie solche Logikprogramme konnektionistisch repräsentiert werden können.
Konkret behandelt werden Repräsentationen mit dreischichtigen Perzeptro-
nen, mit RBF-Netzwerken, und mit fibred Netzwerken, wobei die konkreten
Umsetzungen mit jeweils anderen Methoden erfolgen.

Zukünftige Arbeiten betreffen die Erweiterung dieser Techniken zu intel-
ligenten Systemen mit Lern- und Erklärungsfähigkeiten, sowie die konkrete
Umsetzung derselben und das Studium von Anwendungsszenarien.

17

18 Kapitel 2. Neuro-symbolische Integration

2.2 Forschungskontext: Logik und künstliche neu-

ronale Netzwerke

Intelligente Systeme, die auf künstlichen neuronalen Netzen (auch konnektio-
nistische Systeme genannt) basieren, unterscheiden sich grundlegend von lo-
gikbasierten. Logikprogramme zum Beispiel sind normalerweise stark rekur-
siv und sind deklarativ gut verstanden. Die zugrundeliegende Sprache ist die
der Prädikatenlogik, die es aufgrund ihrer symbolischen Natur einfach macht,
Programmspezifikationen mehr oder weniger direkt als Programme aufzufas-
sen. Der Erfolg von künstlichen neuronalen Netzen ist darin begründet, dass
sie mit Hilfe von Rohdaten trainiert werden können, und sich in wichtigen
Anwendungsgebieten die erlernten Funktionalitäten als höchst nützlich und
anwendbar herausstellen — selbst wenn die Rohdaten verrauscht sind. Erfolg-
reiche Netzarchitekturen verwenden jedoch kaum rekurrente (d.h. rekursive)
Strukturen. Ausserdem ist Wissen in einem trainierten Netz nur sehr impli-
zit repräsentiert, und adäquate Verfahren zur Extraktion dieses Wissens in
symbolischer Form konnten bis heute nicht entwickelt werden.

Eine Integration der robusten auf neuronalen Netzen basierenden Lern-
verfahren mit symbolischen Wissensverarbeitungsverfahren wie der Logik-
programmierung ist daher erstrebenswert, insbesondere wenn die jeweiligen
Stärken der beiden Paradigmen erhalten werden können. Der aktuelle Stand
der Forschung auf diesem Gebiet ist jedoch von diesem Ziel noch weit ent-
fernt. Eines der Hauptprobleme bei der Entwicklung integrierter Systeme ist
die Frage, wie symbolisches Wissen mit Hilfe künstlicher neuronaler Netze
repräsentiert werden kann. Zufriedenstellende Antworten auf diese Frage wer-
den auf natürliche Weise zu Wissensextraktionsverfahren und anwendbaren
integrierten neuro-symbolischen Systemen führen.

Bisher waren die Ansätze zur Integration logischer und konnektioni-
stischer Systeme hauptsächlich aussagenlogischer Natur oder beschränkt
auf prädikatenlogische Logikprogramme ohne Funktionssymbole oder auf
ähnliche endliche Einschränkungen, die sich auf eine aussagenlogische Be-
handlung zurückführen lassen. Diese Ansätze reichen zurück bis zu den bahn-
brechenden Arbeiten von McCulloch und Pitts [93] und führten in den 80er
und 90er Jahren zu einer Reihe von Systemen wie KBANN [117], SHRU-
TI [112, 111], BUR [73] und anderen Arbeiten wie z.B. [84, 97, 70, 41, 44].
Überblicksarbeiten zu diesem Gebiet sind z.B. [20, 42, 49].

Die Entwicklung integrierter neuro-symbolischer Systeme wird sehr
viel schwieriger, wenn man die Einschränkung auf endliche Systeme zu
überwinden sucht. Ein prinzipielles Hindernis besteht dabei in der Notwen-
digkeit, eine im Grunde unendliche Sprache (z.B. der Prädikatenlogik) mit

2.3. Technische Hinführung 19

Hilfe endlich vieler Netzwerkknoten zu behandeln. Neben den Arbeiten zu
Autoassoziativspeichern (RAAM), die von Pollack initiiert wurden [100] und
lediglich das Lernen von Termen erster Ordnung betreffen, und den verwand-
ten holographic reduced representations [98] gibt es dazu im Grunde nur einen
einzigen Ansatz, der auf [72] zurückgeht, welcher wiederum von der aussagen-
logischen Arbeit [71] motiviert ist. Er basiert auf der Idee, Logikprogramme
mit Hilfe ihres Konsequenzoperators zu repräsentieren. Der Operator wird
dazu in eine reellwertige Funktion übertragen, die unter gewissen Bedingun-
gen durch neuronale Netze mit Standardarchitekturen berechnet oder appro-
ximiert werden kann.

Von zentraler Wichtigkeit für diesen Ansatz ist ein Approximationssatz
von Funahashi [37], welcher grob gesprochen aussagt, dass sich jede auf
einem Kompaktum definierte stetige reellwertige Funktion durch Eingabe-
Ausgabe-Funktionen von neuronalen Netzwerken in Standardarchitektur —
mehrschichtige Perzeptronen mit sigmoidalen Aktivierungsfunktionen — be-
liebig genau in der Maximumsnorm approximieren lässt. In [72] wird gezeigt,
dass sich dieses Resultat verwenden lässt, um in diesem Sinne die Appro-
ximierbarkeit einer eingeschränkten Programmklasse, nämlich der von Pro-
grammen, die azyklisch bezüglich einer bijektiven Stufenfunktion sind, zu
zeigen. Der Beweis in [72] ist jedoch ein reiner Existenzbeweis, d.h. konkrete
Angaben, wie ein approximierendes Netzwerk gefunden werden kann, können
daraus nicht direkt abgeleitet werden.

Schon in meiner Dissertation [51], bzw. in [63], findet sich eine erste ge-
ringfügige Verallgemeinerung dieser Resultate. Meine Anstrengungen seither
verfolgten zum einen das Ziel, die in [72] behandelte sehr eingeschränkte Pro-
grammklasse zu verallgemeinern, und zum anderen auf konstruktive — und
daher praktisch anwendbare — Repräsentationen hinzuarbeiten. In meinen
Arbeiten werden die zur Zeit einzigen vorliegenden Techniken beschrieben,
wie solche Logikprogramme konnektionistisch repräsentiert werden können.
Konkret behandelt werden Repräsentationen mit dreischichtigen Perzeptro-
nen, mit RBF-Netzwerken, und mit fibred Netzwerken, wobei die konkreten
Umsetzungen mit jeweils anderen Methoden erfolgen.

2.3 Technische Hinführung: Konnektionistische

Repräsentationen von Logikprogrammen er-

ster Stufe

Biologische neuronale Netze bestehen aus einer Menge von Neuronen, die aus
Soma, Axon und Dendriten bestehen und miteinander verbunden sind. Elek-

20 Kapitel 2. Neuro-symbolische Integration

trische Potenziale können durch molekulare Mechanismen entlang der Den-
driten zum Soma gelangen und ein elektrisches Erregungspotenzial auslösen,
welches dann entlang des Axons zu den Dendriten anderer Neuronen trans-
portiert wird.

Künstliche neuronale Netzwerke sind Abstraktionen der biologischen. Die
Neuronen entsprechen einer Menge von Knoten in einem gerichteten Gra-
phen; die Kanten des Graphen entsprechen den Verbindungen der Neuro-
nen durch Axone und Dendriten. Anstelle elektrischer Potenziale werden in
künstlichen Netzen in der Regel reelle Zahlen entlang der Verbindungen wei-
tergegeben. Zu jedem Zeitpunkt wird also mit jedem Knoten oder Neuron
eine reelle Zahl assoziiert, die wir die Erregung des Knotens nennen. Die
Kanten sind zudem mit reellwertigen sogenannten Gewichten ausgestattet,
deren Funktion noch erklärt werden wird. Mit jedem Knoten wird außerdem
eine reellwertige Aktivierungsfunktion assoziiert.

Die Weiterleitung von Erregungen geschieht nun wie folgt. Sind
N1, . . . , Nn die Vorgängerknoten eines Knotens N , und ist xi die Erregung
von Ni für alle i, dann errechnet sich die Erregung x von N nach der Formel

x = φ

(
n∑

i=1

wixi

)
,

wobei wi, für alle i, das reellzahlige Gewicht der Verbindung von Ni nach
N ist, und φ : R → R die Aktivierungsfunktion von N . Die Weiterleitung
von Erregung im Netzwerk ist meist synchronisiert, d.h. die Aktualisierung
der Erregung von allen oder von Gruppen von Knoten geschieht gleichzeitig
in diskreten Zeitschritten. Ist der zugrundeliegende Graph azyklisch, dann
sprechen wir von einem vorwärtsgerichteten Netz; in diesem Falle sind die
Knoten meist in Schichten angeordnet, Verbindungen gehen immer nur von
einer Schicht zur nächsten, und die Schichten werden nacheinander aktuali-
siert. Ist der zugrundeliegende Graph nicht azyklisch, sprechen wir von ei-
nem rekurrenten Netz. In vielen Fällen werden außerdem gewisse Knoten
als Eingangsknoten und andere als Ausgangsknoten betrachtet. Mit ihrer
Hilfe werden Eingaben ins Netzwerk gemacht und Ausgaben abgelesen. In
vorwärtsgerichteten Netzen sind meist die Knoten der ersten Schicht die Ein-
gangsknoten und die der letzten Schicht die Ausgangsknoten. In einem sol-
chen Fall assoziiert man mit einem Netzwerk eine Eingabe-Ausgabefunktion,
die folgendermaßen bestimmt ist: Sind x1, . . . , xn die Erregungen der n Ein-
gangsknoten, und sind y1, . . . , ym die Erregungen der m Ausgangsknoten, so
bildet die Eingabe-Ausgabefunktion des Netzwerks das Tupel (x1, . . . , xn)
auf das Tupel (y1, . . . , ym) ab, sie ist also eine Funktion von Rn nach Rm.

Eine Vielzahl verschiedener Weiterleitungsmechanismen und Architektu-

2.3. Technische Hinführung 21

ren werden in der Theorie behandelt und in der Praxis angewandt; nicht alle
von ihnen fallen unter das vorgestellte Schema, das aber für unsere Diskussion
genügen wird. Eine der meistverbreiteten Architekturen ist die des dreischich-
tigen Perzeptrons. Es handelt sich dabei um ein vorwärtsgerichtetes Netz
mit drei Schichten, einer Eingabeschicht, einer versteckten Schicht und einer
Ausgabeschicht. Die Aktivierungsfunktion ist sigmoidal, d.h. sie ist nichtkon-
stant, beschränkt, monoton steigend und stetig. Meist wird die Funktion

φ : x 7→ 1

1 + e−x

oder eine ähnliche dafür verwendet.

Der auf [72] zurückgehende Ansatz zur Repräsentation logischer Program-
me durch künstliche neuronale Netze verwendet folgendes Resultat:

Satz 2.1 ([37])
Sei φ : R → R eine nichtkonstante, beschränkte, monoton steigende und
stetige Funktion, K ⊆ Rn kompakt, f : K → R stetig und ε > 0. Dann
existiert ein dreischichtiges Perzeptron mit Aktivierungsfunktion φ, dessen
Eingabe-Ausgabefunktion f̄ : K → R die Bedingung maxx∈K d(f(x), f̄(x)) <
ε erfüllt, wobei d eine die natürliche Topologie auf R erzeugende Metrik ist.

Zur Repräsentation eines Logikprogrammes P verwenden wir nun den
zugehörigen Konsequenzoperator TP : IP → IP und repräsentieren ihn mit
Hilfe der Eingabe-Ausgabefunktion F : K → R mit K ⊆ R kompakt, eines
mehrschichtigen Perzeptrons. Dazu muss zunächst die Menge IP aller Inter-
pretationen als eine kompakte Teilmenge von R verstanden werden. Dazu
bedienen wir uns einer bijektiven Stufenfunktion l : BP → N, wählen eine
natürliche Zahl B > 2 und definieren die Einbettung

ι : IP → R : I 7→
∞∑

n=0

B−nI(l−1(n)).

Dabei ist I(A) = 1 wenn I |= A, und I(A) = 0 wenn I 6|= A.
Die Bilder ι(IP) sind wohlbekannte Teilmengen von [0, 1], nämlich Can-

tormengen, die zum einen in der mathematischen Topologie (z.B. [124]), zum
anderen in der Theorie der Fraktale (z.B. [13]) und anderswo Verwendung
finden.

Mit Hilfe der Einbettung ι könnnen wir nun den Operator TP auf die
reellen Zahlen übertragen: Wir definieren

ι(TP) : ι(IP)→ ι(IP) : x 7→ ι(TP (ι−1(x))).

22 Kapitel 2. Neuro-symbolische Integration

Die Funktion ι(TP) ist nun nach Funahashis Satz durch dreischichtige Per-
zeptronen approximierbar, wenn sie stetig ist. Versieht man IP mit der durch
ι vermittelten Initialtopologie2 Q, dann ist ι(TP) approximierbar, wenn TP

stetig bezüglich Q ist.
Die Cantortopologie Q auf IP hat unabhängig davon in die Theorie der

Logikprogrammierung zur Behandlung nichtmonotoner Konsequenzoperato-
ren Eingang gefunden (z.B. [14, 110, 65]), ist also eine in der Logikprogram-
mierung natürlich auftretende Struktur. Zur Charakterisierung der Stetigkeit
von TP bezüglich Q sei das folgende Resultat angeführt.

Satz 2.2 (Spezialisierung eines Resultats aus [57])
Sei P ein Logikprogramm. Dann ist TP genau dann stetig in der Cantorto-
pologie, wenn für alle A ∈ BP und I ∈ IP mit A 6∈ I eine endliche Menge
S ⊆ BP existiert, so dass für alle J ∈ IP , die mit I auf S übereinstimmen,
gilt: A ∈ TP (J) genau dann, wenn A ∈ TP (I).

Zusammenfassend erhalten wir folgenden Satz, der als Ausgangspunkt für
die Diskussion meiner Beiträge zu diesem Forschungsgebiet dient.

Satz 2.3 (Spezialisierung eines Resultats aus [57])
Sei P ein Logikprogramm, so dass TP die Bedingungen aus Satz 2.2 erfüllt.
Dann ist TP im Sinne von Satz 2.1 durch Eingabe-Ausgabefunktionen von
dreischichtigen Perzeptronen approximierbar.

Die durch Satz 2.3 behandelbaren Programme sind z.B. alle aussagenlogi-
schen, sowie alle überdeckten; das sind solche, bei denen jede in einem Rumpf
auftretende Variable auch im zugehörigen Kopf auftritt. Nach [50] ist diese
Einschränkung für definite Programme unerheblich.

2.4 Eigene Resultate: Überblick über die einge-

reichten Arbeiten

In [57] wird der in [72] behandelte Spezialfall zur Repräsentation von Lo-
gikprogrammen mit dreischichtigen Perzeptronen bedeutend erweitert. Dies
wird ermöglicht durch eine sehr viel umfassendere Behandlung des Themas
aus topologischer Sicht. Dadurch wird dieses Forschungsthema eingebettet in
den größeren Forschungskontext der Arbeiten um topologische Methoden in
der Logikprogrammierung, zu denen z.B. [14, 34, 110, 16, 101, 65] gehören.

In [57] werden neben dem üblichen Konsequenzoperator TP eine ganze
Klasse von verwandten semantischen Operatoren behandelt, die in der Lo-

2[124]

2.4. Eigene Resultate 23

gikprogrammierung auftreten. Darunter fällt zum Beispiel der üblicherweise
mit Fittings Semantik assoziierte Operator aus [32], aber auch andere, wie
in [33, 61, 36].

Gleichzeitig wird in [57] die Behandlung aller Programme mit Cantor-
stetigem semantischem Operator ermöglicht, und Stetigkeitscharakterisie-
rungen für diese erarbeitet. Es wird außerdem gezeigt, dass unter gewissen
Bedingungen an das Logikprogramm auch das Iterationsverhalten semanti-
scher Operatoren mit Hilfe der approximierenden Netzwerke simuliert wer-
den kann. Dafür werden unter Anderem genaue Fehlerabschätzungen für die
Approximationen abgeleitet.

Es wird auch kurz eine Alternative zum Satz von Funahashi betrachtet,
die auf [74] zurückgeht. In diesem Approximationsresultat wird für die zu ap-
proximierende Funktion nur Messbarkeit vorausgesetzt, die Approximation
selbst ist dann jedoch auch nur bezüglich einer aus dem zugrundeliegenden
Maß abgeleiteten Metrik zu gewährleisten. In [57] wird gezeigt, dass die ent-
sprechend in R eingebetteten semantischen Operatoren für alle Programme
stets messbar sind. Aufgrund der genannten Einschränkungen bezüglich der
zu gewährleistenden Approximation bleibt die Anwendbarkeit dieser Einsicht
jedoch zunächst zweifelhaft.

In der Veröffentlichung werden außerdem ausführlich aussagenlogische
Resultate behandelt, die auf [71] zurückgehen.

Die Veröffentlichung ist eine Zusammenführung, Überarbeitung und Er-
weiterung von [71, 64].

In [11] wird das Problem der Repräsentation beziehungsweise Approxima-
tion von ι(TP) mit Hilfe von künstlichen neuronalen Netzen auf grundsätzlich
andere Weise und unter Umgehung des Satzes von Funahashi behandelt. Aus-
gangspunkt ist die Beobachtung, dass näherungsweise Darstellungen des Gra-
phen der Funktion ι(TP) für beliebige P selbstähnlich im Sinne der Fraktal-
und Chaostheorie erscheinen. Solche selbstähnlichen Strukturen treten als
Attraktoren von iterierten Funktionensystemen im Sinne von [13] auf.

Da sich iterierte Funktionensysteme recht einfach mit Hilfe rekurrenter
Netze bestimmter Architektur darstellen lassen, liegt es auf der Hand, ein
Verfahren zu entwickeln, mit dem sich aus einem gegebenen Programm P
ein iteriertes Funktionensystem ableiten lässt, dessen Attraktor ι(TP) ist oder
approximiert. Durch Überführung in ein rekurrentes Netz erhält man dann
eine konnektionistische Darstellung von P .

Es stellt sich nun heraus, dass Stetigkeit von ι(TP) für eine solche Be-
handlung nur bedingt ausreicht. Gewährleisten lässt sich die Existenz eines
iterierten Funktionensystems, dessen Attraktor der Graph von ι(TP) ist, nur

24 Kapitel 2. Neuro-symbolische Integration

unter der Bedingung, dass ι(TP) Lipschitz-stetig [124] ist. Das gewonnene Re-
sultat ist jedoch stark genug, um die experimentell gewonnene Beobachtung
der Selbstähnlichkeit der Graphen zu begründen.

Das genannte Resultat liefert jedoch keine befriedigende Darstellung ei-
nes approximierenden iterierten Funktionensystems. In einer technisch sehr
aufwändigen Darstellung wird daher gezeigt, wie unter der genannten Be-
dingung der Lipschitz-stetigkeit zu P eine Folge von iterierten Funktionen-
systemen gewonnen werden kann, deren Folge von Attraktoren gegen den
Graphen von TP konvergiert. Die verwendete Technik ist eine Abwandlung
der fraktalen Interpolation aus [13].

Abschließend wird in der Veröffentlichung dargelegt, wie konnektionisti-
sche Systeme aus den erhaltenen iterierten Funktionensystemen gewonnen
werden können.

Die Arbeit führt die Forschung um die konnektionistische Behandlung
von prädikatenlogischen Logikprogrammen insofern entscheidend weiter, als
in ihr erstmalig konkrete Algorithmen zur Konstruktion approximierender
Netzwerke vorstellt werden.

[55] ist eine Weiterführung der unter meiner Betreuung entstandenen Ar-
beit [123]. In letzterer wird ein Ergebnis über die Fixpunktvervollständigung
fix(P) eines Programms P , wie in [29] eingeführt, vorgetragen. Es besagt
unter anderem, dass der die stabile Modellsemantik charakterisierende zu
P gehörige Gelfond-Lifschitz-Operator mit Tfix(P) identisch ist, d.h. die Be-
handlung des ersteren Operators lässt sich auf den einfacheren letzteren
zurückführen. Gleichzeitig wird auch einer der zur wohlfundierten Semantik
gehörenden Operatoren auf den einfacheren zu Fittings Semantik gehörenden
Operator zurückgeführt.

In [55] werden verschiedene Korollare aus diesen Resultaten gezogen. Ob-
wohl der Gelfond-Lifschitz-Operator nicht unter die in [57] behandelten Ope-
ratoren fällt, werden mit Hilfe des in [123] erzielten Resultats die Ergebnisse
dennoch übertragbar, und ebenso die Ergebnisse aus [11]. Gleiches gilt auch
für den genannten, zur wohlfundierten Semantik gehörenden Operator, der
sich mit den in [57] genannten Methoden nicht direkt behandeln lässt — der
zu Fittings Semantik gehörende Operator aber schon.

In der Veröffentlichung werden außerdem weitere Korollare behandelt, die
auf ähnliche Weise aus einigen in meiner Dissertation gezeigten Ergebnissen
abgeleitet werden können.

In dieser Arbeit wird erstmalig vorgestellt, wie prädikatenlogische Logik-
programme unter stabiler Modellsemantik konnektionistisch behandelt wer-
den können.

2.5. Ausblick 25

[12] ist eine Übersichtsarbeit, in der der Stand der aktuellen Forschung zu
neuro-symbolischer Integration jenseits der Aussagenlogik dargestellt wird.
Dabei wird ein Fragenkatalog vorgestellt, der aktuelle Herausforderungen in
diesem Gebiet aufzeigt und zukünftige vorausgreift.

Von dieser Veröffentlichung ist eine Zeitschriftversion in Vorbereitung.

In [10] wird die Suche nach geeigneten konnektionistischen Darstellungs-
formen für Logikprogramme weitergeführt. Ausgangspunkt sind neueste Ar-
beiten zu sogenannten fibring Netzwerken [43], bei denen Erregungen von
Knoten die Gewichte oder Aktivierungsfunktionen anderswo im Netzwerk
kontrolliert verändern können.

In [10] wird exemplarisch vorgestellt, wie Programme mit Hilfe von ein-
fachen fibring Netzwerken dargestellt werden können. Die Vorgehensweise
ist konstruktiv, d.h. es werden Verfahren angegeben, mit denen konkret die
entsprechenden Netzwerke gewonnen werden können.

Diese Veröffentlichung ist bei der FLAIRS 2005 im Special Track on In-
tegrated Intelligent Systems eingereicht worden.

2.5 Ausblick: Weiterführung und Anwendungen

In jüngster Zeit wurden auf dem Gebiet der neuro-symbolischen Integration
Fortschritte erzielt, die eine Überführung dieser Technologie in den Anwen-
dungsbereich attraktiv machen. Ein Anwendungsgebiet, das ich in absehbarer
Zeit dafür erschließen möchte, ist das automatische Erlernen ontologischen
Wissens, wie es zur Zeit im Zusammenhang mit dem Semantic Web erforscht
wird. Dabei geht es um die Bereitstellung von Hintergrundwissen in Form
von Ontologien, um das Internet, dessen Inhalte bis heute nur von Men-
schen erschlossen werden können, für die intelligente maschinelle Verarbei-
tung zugänglich zu machen.

Beim Lernen von Ontologien geht es um die Generierung dieses ontolo-
gischen Hintergrundwissens mit Hilfe von maschinellen Lernverfahren, moti-
viert durch die vernünftige Annahme, dass auch in Zukunft viele Webseiten,
wenn nicht die meisten, ohne entsprechende Annotation mit Ontologien im
Internet bereitgestellt, also automatisch erschlossen werden müssen. Es kann
angenommen werden, dass sich die für Ontologien verwendeten Wissensre-
präsentationssprachen, insbesondere das auf Beschreibungslogiken basierende
OWL [96, 4], für eine konnektionistische Behandlung eignen. Bei OWL han-
delt es sich z.B. um ein entscheidbares Fragment der Prädikatenlogik erster
Stufe und es sollte deshalb mit endlichen Netzen abbildbar sein. Einen Aus-
gangspunkt für solche Untersuchungen bietet das in [48, 121] beschriebene

26 Kapitel 2. Neuro-symbolische Integration

Fragment. Das zur Zeit entstehende Gebiet des Lernens von Ontologien ist
ausserdem noch in der Phase der Konsolidierung, in der geeignete Techniken
zum maschinellen Lernen gesucht werden, und die erfolgreichen Techniken
der künstlichen neuronalen Netze können nicht ohne eine neuro-symbolische
Brücke für diese Zwecke genutzt werden.

Parallel zur praktischen Umsetzung der bekannten Techniken der neuro-
symbolischen Integration stellen sich auch noch einige grundsätzliche Fragen,
die durch die oben diskutierten Arbeiten aufgeworfen werden. Zum einen
fehlen noch immer in vielen Fällen konkrete Algorithmen zur Konstruktion
von approximierenden Netzen. Zum anderen ist die behandelbare Programm-
klasse immer noch eingeschränkt und sollte erweitert werden, in etwa durch
geeignete Transformation der Programme vor der Approximation durch Netz-
werke.

Ein weiterer naheliegender nächster Schritt ist die Bereitstellung von Wis-
sensextraktionsverfahren aus neuronalen Netzen, basierend auf den diskutier-
ten Repräsentationen, sowie die Entwicklung von Lernalgorithmen, z.B. Mo-
difikationen des Backpropagation-Algorithmus (siehe [15]), die repräsentiertes
symbolisches Wissen respektieren. Diese Arbeiten sollten jedoch in enger Ver-
knüpfung mit der Entwicklung angewandter Verfahren vorgenommen werden.

Kapitel 3

Schließen über begrifflichem
Wissen

3.1 Kurzfassung

Anforderungen aus der Praxis im Umfeld des Semantic Web zeigen, dass eine
Integration begrifflichen Wissens — z.B. in Form von Ontologien — mit re-
gelbasierten Systemen — z.B. der Logikprogrammierung — erforderlich ist.
Wie diese Integration am besten zu bewerkstelligen ist, ist zur Zeit Gegen-
stand intensiver Forschungsanstrengungen.

In meinen Arbeiten verfolge ich systematisch die Frage der Integration
von Begriffshierarchien und regelbasiertem nichtmonotonem Schließen. Mei-
ne Resultate liefern konkrete normative Charakterisierungen der erstrebens-
werten Systeme und ihrer Semantiken. Sie zeichnen sich dadurch aus, dass
sie die einzigen Arbeiten sind, die diese Frage von einem systematischen
und strukturorientierten Standpunkt aus betrachten und eine Integration
aus grundlegenden Prinzipien ableiten.

Zukünftige Arbeiten befassen sich mit der konkreten Algorithmisierung
und praktischen Umsetzung der Integration auf Anwendungsszenarien im
Bereich der Formalen Begriffsanalyse und des Semantic Web.

3.2 Forschungskontext: Logik und begriffliches

Wissen

Die Darstellung begrifflichen Wissens nimmt gerade in jüngster Zeit in der
Wissensverarbeitung an Bedeutung zu. Insbesondere im Umfeld der Semantic
Web-Forschung entstanden und entstehen Repräsentationssprachen, die spe-

27

28 Kapitel 3. Schließen über begrifflichem Wissen

ziell auf explizite oder implizite Darstellung und Verarbeitung begrifflichen
Wissens ausgelegt sind [115]. Prominente Vertreter sind Beschreibunslogiken
[8], insbesondere OWL [96, 4], F-Logik [76, 3], aber auch Begriffsgraphen
und andere. Die entsprechenden begrifflichen Wissensbasen werden meist als
Ontologien bezeichnet. In der Semantic Web-Forschung interessiert unter an-
derem, welche Repräsentationsmittel grundsätzlich für die Praxis am geeig-
netsten sind.

Die entsprechenden Repräsentationssprachen sind logischer Natur, ob-
gleich dieser Sachverhalt nicht immer im Vordergrund steht. Tatsächlich las-
sen sie sich oft als Fragmente der Prädikatenlogik erster Stufe auffassen.
Gleichzeitig werden aber auch Repräsentationsmittel benötigt, die über die-
se hinausgehen und zum Beispiel arithmetische Aspekte oder nichtmonotones
Schließen möglich machen. Die Diskussion um geeignete Mittel dazu ist im
Augenblick in vollem Gange.

Begriffliches Wissen handelt von Begriffen und ihren Beziehungen zuein-
ander, zum Beispiel in Form von Taxonomien. Durch die natürlichen Be-
ziehungen zwischen Unterbegriffen und Oberbegriffen ist begriffliches Wissen
daher in erster Linie hierarchisch organisiert, d.h. kann mit Hilfe von Ord-
nungsstrukturen dargestellt werden. Die Formale Begriffsanalyse [40] stellt
mathematische Methoden zur Erzeugung von Begriffshierarchien aus Rohda-
ten zur Verfügung und findet dazu immer weitere Verbreitung in der Informa-
tik und im Bereich des Semantic Web [116]. Durch die ihr zugrunde liegende
reichhaltige Theorie der Verbandsstrukturen eröffnen sich Begriffshierarchien
somit einer formalen Analyse mit diesen Mitteln. Da die logische Lesart von
Begriffshierarchien für die Wissensverarbeitung von entscheidender Bedeu-
tung ist, ergibt sich außerdem ein Zusammenspiel von Ordnungsstrukturen
und Logik in diesem Gebiet, das formal zwangsläufig mit Themen und Me-
thoden aus dem Bereich der Stone-Dualität [75] eng verwandt ist.

Für die Informatik relevante Aspekte der Stone-Dualität und — allgemei-
ner — des Zusammenspiels zwischen Ordnungsstrukturen und Logik werden
in der Domänentheorie [2, 47] untersucht, die die formalen Grundlagen zur
Untersuchung von denotationellen Semantiken für Programmiersprachen zur
Verfügung stellt. Sie befasst sich mit Ordnungsstrukturen, die zur Modellie-
rung von Aspekten der Berechenbarkeit verwendet werden können. Elemen-
te einer Ordnungsstruktur werden dabei als nach ihrem Informationsgehalt
geordnet verstanden und formal in maschinell repräsentierbare und approxi-
mierbare unterteilt.

In dem mit Stone-Dualität eng verwandten Teilbereich der
Domänenlogiken werden logische Repräsentationsformen für in der
Domänentheorie auftretende Ordnungsstrukturen untersucht. Diese Vor-
gehensweise wurde schon von Scott [109] initiiert, dessen Arbeiten auch

3.3. Technische Hinführung 29

maßgeblich für die Entstehung der Domänentheorie als Forschungsgebiet wa-
ren. Arbeiten, die diese Gedanken fortführen, sind z.B. [120, 1, 126, 114, 25].
Die auftretenden logischen Formalismen erinnern dabei oft an regelbasierte
Systeme, wie sie in der Logikprogrammierung vorkommen. Die Verwendung
domänentheoretischer Methoden im Bereich des nichtmonotonen Schließens
mit Logikprogrammen liegt daher auf der Hand und wurde ansatzweise
ebenfalls untersucht, z.B. in [78, 62, 107, 128, 65, 127].

Meine jüngsten Beiträge zu diesem Gebiet zielen auf die Erarbeitung von
theoretisch sauber fundierten Grundlagen zur Behandlung von hierarchisch
strukturiertem begrifflichem Wissen, die als normativ für die Entwicklung
von anwendbaren Verfahren gelten können. Mein Interesse gilt dabei insbe-
sondere der Verbindung von regelbasiertem nichtmonotonem Schließen und
hierarchischem Wissen, aber auch Methoden zur Verknüpfung von heteroge-
nen ontologischen Wissensbasen. Meine Resultate liefern konkrete normative
Charakterisierungen der erstrebenswerten Systeme und ihrer Semantiken. Sie
zeichnen sich dadurch aus, dass sie die einzigen Arbeiten sind, die diese Frage
von einem systematischen und strukturorientierten Standpunkt aus betrach-
ten und eine Integration aus grundlegenden Prinzipien ableiten.

3.3 Technische Hinführung: Formale Begriffsana-

lyse und Domänentheorie

Zur formalen Behandlung begrifflichen Wissens bedienen wir uns der For-
malen Begriffsanalyse [40]. Sie entstand aus philosophischem Gedankengut
[125] und dient in Anwendungsgebieten vor allem der Erzeugung und visu-
ellen Darstellung von Begriffshierarchien aus Rohdaten, die in der Form von
Gegenstands-Merkmals-Beziehungen vorliegen.

Ein formaler Kontext (G, M, I) besteht aus einer Menge G von Ge-
genständen, einer Menge M von Merkmalen und einer infix notierten In-
zidenzrelation I ⊆ G×M . Für A ⊆ G und B ⊆M definieren wir

α(A) = {m ∈M | aIm für alle a ∈ A} und

ω(B) = {g ∈ G | gIb für alle b ∈ B}.

Ein Paar (A, B) mit A ⊆ G und B ⊆ M heißt ein formaler Begriff, wenn
α(A) = B und ω(B) = A ist. Wir nennen A den Extent und B den Intent
des Begriffs (A, B). Die Menge B(G, M, I) aller formalen Begriffe des forma-
len Kontexts (G, M, I) lässt sich auch äquivalent beschreiben als die Menge
aller Paare (ω(B), α(ω(B))) für B ∈ M . Für unsere Diskussion können wir
deshalb formale Begriffe mit ihren Intenten identifizieren. Für zwei Begriffe

30 Kapitel 3. Schließen über begrifflichem Wissen

(d.h. Beggriffsintenten) B und C schreiben wir B � C, falls C ⊆ B. Wir be-
trachten B(G, M, I) als geordnet durch �. Es stellt sich heraus, dass die so
zu erhaltenden Ordnungsstrukturen genau die vollständigen Verbände sind.
(B(G, M, I),�) heißt entsprechend der zu (G, M, I) gehörige Begriffsverband.
Die geordnete Teilmenge, die aus (B(G, M, I),�) durch Einschränkung auf
alle Elemente der Form α(g) oder α(ω(m)), für g ∈ G bzw. m ∈M , entsteht,
heißt die Galois-Teilhierarchie von B(G, M, I).

In Anwendungsszenarien in der Informatik, den Natur- und Sozialwissen-
schaften (siehe z.B. [116, 81, 102]) stellen sich die durch formale Begriffsanaly-
sen gewonnenen Begriffshierarchien meist für den menschlichen Experten als
intuitiv einsichtige Form der Wissensrepräsentation dar. Durch ihre dadurch
begründete hohe Anwendungsrelevanz und ihre saubere formale Grundlegung
in der Mathematik ist sie daher für das Studium begrifflichen Wissens bestens
geeignet. Entsprechend gibt es bereits zahlreiche Arbeiten z.B. im Kontext
der Beschreibungslogiken [9] und anderer Bereiche der Wissensrepräsentation
mit Ontologien (z.B. [23, 22, 21]).

Auch logische Aspekte der formalen Begriffsanalyse wurden schon un-
tersucht (z.B. [39]). Wir suchen allerdings die Nähe zu den für die Infor-
matik relevanten Strukturen im Umfeld der Stone-Dualität. Als das geeig-
nete Werkzeug stellt sich die ursprünglich für die Charakterisierung von
Smyth-Powerdomänen entwickelte Domänenlogik RZ heraus. Wir benötigen
zunächst etwas Begriffsbildung. Sie folgt [107].

Eine kohärente algebraische Cpo ist eine Ordnungsstruktur (D,v), die
folgenden Bedingungen genügt:

(i) (D,v) ist eine partiell geordnete Menge mit einem kleinsten Element
⊥.

(ii) D enthält das Supremum jeder gerichteten Teilmenge.

(iii) Für alle d ∈ D gilt d = sup (↓d ∩ K(D)), wobei↓d = {c ∈ D | c v d} ist
und K(D) die Menge aller c ∈ D ist, so dass für jede gerichtete Menge
A ⊆ D mit c v sup A ein a ∈ A mit c v a existiert. K(D) heißt die
Menge der kompakten Elemente von D.

(iv) Die Schnittmenge endlich vieler Scott-kompakt-offener Teilmengen von
D ist wieder Scott-kompakt-offen. Scott-kompakt-offen bezieht sich da-
bei auf die Scott-Topologie auf (D,v), zu der eine Basis durch die Men-
gen der Form {y | x v y} für x ∈ K(D) gegeben ist.

Intuitiv erschließt sich die gerade gegebene Definition in etwa fol-
gendermaßen. Die Menge D besteht aus Informationseinheiten, die nach

3.3. Technische Hinführung 31

Informations- oder Wissensgehalt geordnet sind. Das kleinste Element ⊥ ist
das Element ohne Information. Hat man eine verträgliche (gerichtete) Teil-
menge an Informationseinheiten, so existiert auch eine Einheit (das Supre-
mum), die die Gesamtinformation dieser Teilmenge repräsentiert (Bedingung
(ii)). Kompakte Elemente stehen für maschinell repräsentierbare, d.h. in ei-
nem gewissen Sinne endliche Einheiten. In D lässt sich somit jede Informa-
tion durch repräsentierbare Informationen annähern. Die letzte Bedingung
(iv) ist eine technische Bedingung, die einen zusätzlichen finitistischen Cha-
rakter von D erzwingt. Übersetzt im Sinne von [107] steht es in etwa für
die Aussage: Endliche Disjunktionen repräsentierbarer Einheiten sind wieder
repräsentierbar.

Ein Hauptbeispiel für eine kohärente algebraische Cpo ist die Menge
(IP,3,⊆) aus Abschnitt 1.3. Die Menge K(IP,3) besteht dabei wie intuitiv
zu erwarten genau aus den endlichen Teilmengen von IP,3, und es ist ⊥ = ∅.
Die Menge (IP,3,⊆) ist auch als Tω in der Domänentheorie bekannt [99].

Außerdem ist jede endliche partiell geordnete Menge mit kleinstem Ele-
ment eine kohärente algebraische Cpo.

Die Logik RZ wird nun folgendermaßen definiert, folgend [107].
Sei (D,v) eine kohärente algebraische Cpo. Eine Klausel oder Disjunktion

über D ist eine endliche Teilmenge von K(D). Wir nennen w ∈ D ein Modell
für eine Klausel X und schreiben d |= X, wenn es ein x ∈ X gibt mit x v d.
Eine Theorie T ist eine Menge von Klauseln, und wir schreiben w |= T ,
wenn w |= X für alle X ∈ T gilt. Wir schreiben T |= X, wenn aus w |= T
immer w |= X folgt, und nennen die Klausel X in diesem Fall eine logische
Konsequenz aus T .

Die gerade gegebene Definition wird unmittelbar einsichtig, wenn man
sich Beispiele aus (IP,3,⊆) vor Augen führt. Zum Beispiel gelten {{{p, q}}} |=
{{p}} und {{{p}, {¬q}}, {{q}}} |= {{p}}. Ersteres entspräche in etwa der
Implikation von p aus p ∧ q. Das Zweite sagt aus, dass aus (p ∨ ¬q) ∧ q die
Aussage p folgt.

Das Verhältnis zwischen Formaler Begriffsanalyse und der Logik RZ er-
schließt sich nun z.B. aus folgendem Resultat:

Satz 3.1 ([56])
Sei (D,v) eine kohärente algebraische Cpo, (G, M, I) ein formaler Kontext
und (L,≤) die Galois-Teilhierarchie von B(G, M, I). Sei außermdem ι : L→
D eine ordnungsumkehrende injektive Funktion mit K(D) ⊆ ι(L). Ist nun
A = {m1, . . . ,mn} ⊆ M eine Menge von Merkmalen mit ι(mi) ∈ K(D) für
alle i, dann gilt

α(ω(A)) = {m | {{ι(m1)}, . . . , {ι(mn}} |= {ι(m)}}.

32 Kapitel 3. Schließen über begrifflichem Wissen

Informell ausgedrückt sagt Satz 3.1, dass (endlicher) Begriffsabschluss
in der Formalen Begriffsanalyse dem konjunktiven Fragment der Logik RZ
entspricht.

3.4 Eigene Resultate: Überblick über die einge-

reichten Arbeiten

In [56] werden die Formale Begriffsanalyse und Answer Set Programming
als nichtmonotones Wissensverarbeitungsparadigma zum ersten Mal mit Hil-
fe der Domänenlogik RZ verknüpft. Satz 3.1 bietet dabei den Ausgangspunkt.
Die Logik RZ wird zu einem disjunktiven Logikprogrammierparadigma auf
kohärenten algebraischen Cpos erweitert und mit nichtmonotonen Aspekten
im Sinne des Answer Set Programming ausgestattet. Mittels der Logik RZ
wird jedem solchen RZ-Logikprogramm eine Semantik zugeordnet.

Das so erhaltene Logikprogrammierparadigma ist eine Verallgemeine-
rung von Answer Set Programming in folgendem Sinne: Jedes Answer-Set-
Programm im Sinne von [46] kann direkt in ein RZ-Logikprogramm über
Tω übersetzt werden, so dass die bezüglich RZ erhaltene Semantik genau
der stabilen Modellsemantik des ursprünglichen Programms entspricht. In
diesem Sinne sind RZ-Logikprogramme eine konservative Verallgemeinerung
von Answer Set Programming auf (geeignete) Ordnungsstrukturen. Die Ein-
schränkung der Ordnungsstrukturen auf kohärente algebraische Cpos ist da-
bei nicht bedenklich, da in der Praxis der Wissensverarbeitung auftretende
Hierarchien dieser Bedingung meist trivialerweise genügen.

Das soeben diskutierte grundlegende Resultat liefert nun zum einen ein
Paradigma zur Fragebeantwortung über begrifflichem Wissen im Sinne der
Formalen Begriffsanalyse. Dabei können RZ-Logikprogramme wahlweise als
komplexe Anfragen oder als regelbasierte Erweiterung der hierarchischen
Wissensbasis verstanden werden. Eine entsprechende nicht veröffentlichte
Prototypimplementierung in Prolog hat gezeigt, dass die erhaltenen Ant-
worten wie zu erwarten intuitiv einleuchten. Es sei auch bemerkt, dass die
zugrundeliegende Ordnungsstruktur keineswegs aus einem formalen Kontext
gewonnen sein muss — Klassenhierarchien über OWL-Ontologien können
genauso dafür verwendet werden wie Taxonomien und anderes ontologisches
Wissen.

Zum anderen und Wesentlicheren ist das diskutierte Resultat aber funda-
mentaler und normativer Natur. Die erfolgreiche und kohärente Verknüpfung
fortgeschrittener Techniken und Resultate aus verschiedenen Disziplinen ist
ein starker Hinweis darauf, dass ein sauberes Verfahren zum Answer Set

3.4. Eigene Resultate 33

Programming über begrifflichem Wissen semantisch dem vorgestellten ent-
sprechen sollte. Die Entwicklung von konkreten Umsetzungen dieser Einsicht
steht allerdings noch aus.

Von dieser Veröffentlichung ist eine Zeitschriftenversion in Vorbereitung.

In [58] wird das Verhältnis von Formaler Begriffsanalyse und Domänenlogik
ausgiebig beleuchtet. Zentral ist dabei der neu eingeführte Begriff der ap-
proximierbaren Begriffsverbände. Ein approximierbarer Begriff ist dabei eine
Menge B von Merkmalen, so dass für jede endliche Teilmenge E ⊆ B die Be-
ziehung α(ω(E)) ⊆ B gilt. Für approximierbare Begriffe B, C definiert man
wieder B � C wenn C ⊆ B gilt. Jeder (herkömmliche) formale Begriff ist
approximierbar. Die aus formalen Kontexten erhältlichen approximierbaren
Begriffsverbände sind genau die vollständigen algebraischen Verbände.

Auf der domänenlogischen Seite kommen spezielle Scott-
Informationssysteme [109] zum Einsatz, die sich als deduktive Systeme über
Konjunktionen von Aussagen verstehen lassen. Formal wird gezeigt, dass
die Kategorie der Scott-Informationssyteme mit den üblichen Morphismen
und trivialer Konsistenzrelation äquivalent zur Kategorie Cxt der formalen
Kontexte ist, wobei letztere mit Hilfe von zu approximierbaren Begriffen
passenden, intuitiv einleuchtenden und natürlichen Morphismen gebildet
wird. Aus bekannten Resultaten folgt damit sofort, dass Cxt äquivalent zur
Kategorie der in der Domänentheorie wichtigen vollständigen algebraischen
Verbände ist.

In der Veröffentlichung wird dieser Sachverhalt von logischer und alge-
braischer Seite weiter beleuchtet durch Bezugnahme und Einbindung in das
Umfeld der Stone-Dualität und durch eine Diskussion von Satz 3.1 in diesem
Kontext.

Diese Veröffentlichung ist eine sehr stark überarbeitete und erweiterte
Version von [69]. Sie wurde bei Theoretical Computer Science eingereicht.

In [52] werden im Wesentlichen zwei Resultate bewiesen. Zum einen wird
die zur Logik RZ gehörende Beweistheorie vereinfacht. Zum anderen wird
gezeigt, unter welchen Nebenbedingungen sich logische Konsequenz in RZ
durch ein Resolutionsverfahren berechnen lässt. Diese Ansätze bieten Poten-
zial für Anwendungen, wurden aber noch nicht weiterentwickelt.

Eine Kurzversion dieser Veröffentlichung erschien in [53].

In [67] wird der zu Satz 3.1 gehörige Fall endlicher Kontexte und Ordnungs-
strukturen durchleuchtet. Die formalen Resultate sind in diesem Fall ähnlich,
aber wie zu erwarten sehr viel stärker. Da in Anwendungen der Formalen Be-

34 Kapitel 3. Schließen über begrifflichem Wissen

griffsanalyse meist nur endliche Kontexte auftreten, ist diese Beschränkung
für die Praxis kaum von Relevanz.

3.5 Ausblick: Schließen über dem Semantic Web

Aus meinen Arbeiten ergeben sich mindestens die folgenden drei Ansätze zur
Umsetzung in Anwendungsgebieten.

Zum Ersten liefern RZ-Logikprogramme ein Paradigma für Regelerweite-
rungen begrifflicher Wissensbasen, zusammen mit einer komplexen Anfra-
gesprache für dieselben. Vor allem im Umfeld erfolgreicher Anwendungs-
szenarien der Formalen Begriffsanalyse erscheinen entsprechende Fallstudien
lohnenswert. Insbesondere kann dadurch das implizit in großen als formale
Kontexte vorliegenden Rohdatenmengen enthaltene Wissen ohne vorherige
aufwändige Berechnung des Begiffsverbandes erschlossen werden. Die algo-
rithmische Umsetzung kann durch Kombination der Beweistheorie der Logik
RZ mit erfolgreichen Methoden des Answer Set Programming erfolgen.

Zum Zweiten geben die in [56] angestellten Untersuchungen Hinweise dar-
auf, wie eine formal saubere Verknüpfung von hierarchischem Wissen und
regelbasiertem nichtmonotonem Schließen auf semantischer Ebene zu gestal-
ten ist. Um konkrete Paradigmen zu entwickeln ist eine Übertragung auf die
im Umfeld des Semantic Web verwendeten Wissensrepräsentationssprachen
vorzunehmen und sind entsprechende Deduktionsalgorithmen zu entwerfen.

Zum Dritten berührt [58] Fragen des Zusammenführens von ontologischen
Wissensbasen. Wie z.B. in [82] ausführlich dargelegt, lassen sich solche Ver-
fahren aus kategorientheoretischen Konstruktionen herleiten. Die Identifika-
tion geeigneter Kategorien von für die Semantic-Web-Forschung relevanten
Wissensrepräsentationsformalismen zielt daher auf Anwendungen in diesem
Bereich.

Anteil des Autors an den
eingereichten Arbeiten

Pascal Hitzler and Matthias Wendt. A uniform approach to logic program-
ming semantics. Theory and Practice of Logic Programming, 5(1–2), 2005,
123–159. Im Druck. [68]. Stark überarbeitete und erweiterte Fassung von [66].

Mein Koautor war zum Zeitpunkt der Entstehung dieser Arbeit Student
im Hauptstudium an der Fakultät für Informatik der TU Dresden. Unter
meiner Anleitung erarbeitete er Spezialfälle der Resultate, die ich dann ver-
allgemeinerte und in einen größeren Kontext einbettete. Die Fragestellung
stammt von mir.

Pascal Hitzler. Towards a systematic account of different logic program-
ming semantics. In Proceedings of the 26th German Conference on Artificial
Intelligence, KI2003, Hamburg, September 2003, Lecture Notes in Artificial
Intelligence. Springer, Berlin, 2003. [54]. Leicht überarbeitet beim Journal of
Logic and Computation eingereicht.

Ich bin alleiniger Autor dieser Arbeit.

Pascal Hitzler and Sibylle Schwarz. Level mapping characterizations of
selector-generated models for logic programs. Technical Report WV–04–04,
Knowledge Representation and Reasoning Group, Department of Computer
Science, Dresden University of Technology, 2004. [60]. Beim 19. Workshop
on (Constraint) Logic Programming eingereicht.

Meine Koautorin war zur Zeit der Entstehung dieser Arbeit Doktorandin
unter Prof. Herre an der Fakultät für Mathematik und Informatik an der
Universität Leipzig. Die Arbeit entstand in enger Kooperation und ist beiden
Autoren zu gleichen Teilen zuzurechnen.

Pascal Hitzler, Steffen Hölldobler, and Anthony K. Seda. Logic programs
and connectionist networks. Journal of Applied Logic, 2(3), 2004, 245-
272, Special Issue on Neural-Symbolic Systems. [57]. Zusammenführung und
Überarbeitung von [71, 64].

35

36 Anteil des Autors an den eingereichten Arbeiten

Die Arbeit besteht im Wesentlichen aus einem aussagenlogischen und ei-
nem prädikatenlogischen Teil. Am aussagenlogischen Teil war ich kaum betei-
ligt. Die Fragestellung und die Resultate zum prädikatenlogischen Teil — mit
Ausnahme einer kurzen Diskussion von Ergebnissen aus [72] — wurden von
mir erdacht, entworfen und in erster Näherung ausgeführt. Die detaillierte
Ausarbeitung dieses Teils wurde zusammen mit Anthony K. Seda vorgenom-
men.

Sebastian Bader and Pascal Hitzler. Logic programs, iterated function sy-
stems, and recurrent radial basis function networks. Journal of Applied
Logic 2(3), 2004, 273-300, Special Issue on Neural-Symbolic Systems. [11].

Zum Zeitpunkt der Entstehung dieser Arbeit arbeitete mein Koautor un-
ter meiner Anleitung an seiner Masterarbeit im Studiengang Computational
Logic an der TU Dresden. Die Fragestellung entstand bei ausführlichen Dis-
kussionen zur Thematik, wobei Sebastian Bader dabei die massgeblichen Ide-
en einbrachte. In die Ausführung der zum Teil sehr anspruchsvollen Beweise
war ich an vielen Punkten lenkend und korrigierend involviert und ebenso
bei der Ausarbeitung und Verallgemeinerung der Resultate zu einem für eine
gehobene Zeitschrift angemessenen Beitrag.

Pascal Hitzler. Corollaries on the fixpoint completion: studying the sta-
ble semantics by means of the Clark completion. In D. Seipel, M. Hanus,
U. Geske, and O. Bartenstein, editors, Proceedings of the 15th Internatio-
nal Conference on Applications of Declarative Programming and Knowled-
ge Management and the 18th Workshop on Logic Programming, Potsdam,
Germany, March 4-6, 2004, Technichal Report 327, pages 13–27. Bayerische
Julius-Maximilians-Universität Würzburg, Institut für Informatik, 2004. [55].

Ich bin alleiniger Autor dieser Arbeit.

Sebastian Bader, Pascal Hitzler and Steffen Hölldobler. The integration of
connectionism and knowledge representation and reasoning as a challenge
for artificial intelligence. In: L. Li and K.K. Yen, Proceedings of the Third In-
ternational Conference on Information, Tokyo, Japan, November/December
2004, pages 22–33. ISBN 4-901329-02-2, International Information Institute,
2004. Eine Zeitschriftversion ist in Vorbereitung.

Der Erstautor war zum Zeitpunkt der Entstehung dieser Arbeit Dokto-
rand unter meiner Anleitung. Sie entstand aus einem ähnlichen älteren Ent-
wurf von Steffen Hölldobler, den ich substantiell ergänzte, auf den neuesten
Stand brachte und nach Diskussionen mit meinen Koautoren erweiterte.

Sebastian Bader, Artur S. d’Avila Garcez and Pascal Hitzler. Computing
first-order logic programs by fibring artificial neural networks. Technical

Anteil des Autors an den eingereichten Arbeiten 37

Report, Institute AIFB, University of Karlsruhe, 2004. [10]. Eingereicht bei
FLAIRS 2005, Special Session on Integrated Systems.

Der Erstautor war zum Zeitpunkt der Entstehung dieser Arbeit Dokto-
rand unter meiner Anleitung. Sie entstand aus einer Diskussion der ersten
beiden Autoren und wurde vom Erstautor und mir ausgeführt.

Pascal Hitzler. Default reasoning over domains and concept hierarchies.
In Biundo, Frühwirth and Palm, Proceedings of the 27th German conference
on Artificial Intelligence, KI’2004, Ulm, Germany, September 2004, Lecture
Notes in Artificial Intelligence 3238, pages 351–365. Springer, Berlin, 2004.
[56]. Eine Zeitschriftversion ist in Vorbereitung.

Ich bin alleiniger Autor dieser Arbeit.

Pascal Hitzler, Markus Krötzsch, and Guo-Qiang Zhang. A categorical view
on algebraic lattices in formal concept analysis. Technischer Bericht, AIFB,
Universität Karlsruhe. [58]. Bei Theoretical Computer Science eingereicht. Sie
ist eine stark überarbeitete und erweiterte Fassung von [69].

Markus Krötzsch arbeitete zum Zeitpunkt der Entstehung dieser Arbeit
an seiner Masterarbeit im Studiengang Computational Logic an der TU Dres-
den unter der Anleitung der anderen beiden Autoren. Die Arbeit ist eine Aus-
arbeitung von [69], in der die wesentlichen neuen Resultate enthalten sind.
Zu diesen stammt die Fragestellung von Guo-Qiang Zhang, die Ausarbeitung
im Wesentlichen von mir. Die Erweiterungen zu [58] wurden in erster Linie
von Markus Krötzsch mit Ergänzungen von mir eingebracht.

Pascal Hitzler. A generalized resolution theorem. Journal of Electrical En-
gineering, Slovak Academy of Sciences, 55(1–2):25–30, 2003. [52]. Eine Kurz-
version erschien in [53].

Ich bin alleiniger Autor dieser Arbeit.

Pascal Hitzler and Matthias Wendt. Formal concept analysis and resolution
in algebraic domains. In Aldo de Moor and Bernhard Ganter, editors, Using
Conceptual Structures — Contributions to ICCS 2003, pages 157–170. Shaker
Verlag, Aachen, 2003. [67].

Zum Zeitpunkt der Entstehung dieser Arbeit war mein Koautor Student
im Masterstudiengang Computational Logic an der TU Dresden. Die Fra-
gestellung und ersten Ergebnisse stammen von mir, wurden von meinem
Koautor verallgemeinert und dann in enger Zusammenarbeit ausgearbeitet.

Literaturverzeichnis

[1] Samson Abramsky. Domain theory in logical form. Annals of Pure and
Applied Logic, 51:1–77, 1991.

[2] Samson Abramsky and Achim Jung. Domain theory. In Samson Ab-
ramsky, Dov Gabbay, and Thomas S.E. Maibaum, editors, Handbook
of Logic in Computer Science, volume 3. Clarendon, Oxford, 1994.

[3] Jürgen Angele and Georg Lausen. Ontologies in F-logic. In Steffen
Staab and Rudi Studer, editors, Handbook on Ontologies, pages 29–50.
Springer, 2004.

[4] Grigoris Antoniou and Frank van Harmelen. Web Ontology Langua-
ge: OWL. In Steffen Staab and Rudi Studer, editors, Handbook on
Ontologies, pages 67–92. Springer, 2004.

[5] Krzysztof R. Apt. From Logic Programming to Prolog. International
Series in Computer Science. Prentice Hall, 1997.

[6] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a
theory of declarative knowledge. In Jack Minker, editor, Foundations
of Deductive Databases and Logic Programming, pages 89–148. Morgan
Kaufmann, Los Altos, CA, 1988.

[7] Krzysztof R. Apt, V. Wiktor Marek, Miroslav Truszczyński, and Da-
vid S. Warren, editors. The Logic Programming Paradigm: A 25-Year
Perspective. Springer, Berlin, 1999.

[8] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nar-
di, and Peter Patel-Schneider, editors. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cambridge University
Press, 2003.

[9] Franz Baader and Ralf Molitor. Building and structuring descripti-
on logic knowledge bases using least common subsumers and concept

39

40 Literaturverzeichnis

analysis. In B. Ganter and G. Mineau, editors, Conceptual Structu-
res: Logical, Linguistic, and Computational Issues – Proceedings of the
8th International Conference on Conceptual Structures (ICCS2000),
volume 1867 of Lecture Notes in Artificial Intelligence, pages 290–303.
Springer Verlag, 2000.

[10] Sebastian Bader, Artur S. d’Avila Garcez, and Pascal Hitzler. Com-
puting first-order logic programs by fibring artificial neural networks.
Technical report, Institute AIFB, University of Karlsruhe, September
2004. Submitted to FLAIRS 2005, Special Track on Integrated Sy-
stems.

[11] Sebastian Bader and Pascal Hitzler. Logic programs, iterated functi-
on systems, and recurrent radial basis function networks. Journal of
Applied Logic, 2(3):273–300, 2004.

[12] Sebastian Bader, Pascal Hitzler, and Steffen Hölldobler. The integrati-
on of connectionism and knowledge representation and reasoning as a
challenge for artificial intelligence. In L. Li and K.K. Yen, editors, Pro-
ceedings of the Third International Conference on Information, Tokyo,
Japan, November/December 2004, pages 22–33. International Informa-
tion Institute, 2004. ISBN 4-901329-02-2.

[13] Michael Barnsley. Fractals Everywhere. Academic Press, San Diego,
CA, USA, 1993.

[14] Aida Batarekh and V.S. Subrahmanian. Topological model set defor-
mations in logic programming. Fundamenta Informaticae, 12:357–400,
1989.

[15] Christopher M. Bishop. Neural Networks for Pattern Recognition. Ox-
ford University Press, 1995.

[16] Howard A. Blair, Fred Dushin, David W. Jakel, Angel J. Rivera, and
Metin Sezgin. Continuous models of computation for logic programs.
In Krzysztof R. Apt, V. Wiktor Marek, Miroslav Truszczyński, and
David S. Warren, editors, The Logic Programming Paradigm: A 25-
Year Persepective, pages 231–255. Springer, Berlin, 1999.

[17] Piero A. Bonatti. Reasoning with infinite stable models. Artificial
Intelligence, 156(1):75–111, 2004.

Literaturverzeichnis 41

[18] Gerhard Brewka. Logic programming with ordered disjunction. In
Proceedings of the Eighteenth National Conference on Artificial Intel-
ligence and Fourteenth Conference on Innovative Applications of Ar-
tificial Intelligence, July/August, 2002, Edmonton, Alberta, Canada,
pages 100–105. AAAI Press, 2002.

[19] Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended
logic programs. Artificial Intelligence, 109:297–356, 1999.

[20] Anthony Browne and Ron Sun. Connectionist inference models. Neural
Networks, 14(10):1331–1355, 2001.

[21] Philipp Cimiano, Andreas Hotho, and Steffen Staab. Clustering onto-
logies from text. In Proceedings of the Conference on Lexical Resources
and Evaluation (LREC), 2004.

[22] Philipp Cimiano, Gerd Stumme, Andreas Hotho, and Julien Tane. Con-
ceptual knowledge processing with formal concept analysis and onto-
logies. In Proceedings of the The Second International Conference on
Formal Concept Analysis (ICFCA 04), 2004.

[23] Richard J. Cole, Peter W. Eklund, and Gerd Stumme. Document re-
trieval for email search and discovery using formal concept analysis.
Journal of Applied Artificial Intelligence (AAI), 17(3):257–280, 2003.

[24] Alain Colmerauer and Philippe Roussel. The birth of Prolog. In ACM
SIGPLAN Notices, volume 28(3), pages 37–52. ACM Press, 1993.

[25] Thierry Coquand and Guo-Qiang Zhang. Sequents, frames, and com-
pleteness. In 14th International Workshop on Computer Science Logic,
Fischbachau, Germany, August 2000, volume 1862 of Lecture Notes in
Computer Science, pages 277–291. Springer, 2000.

[26] Marc Denecker, V. Wiktor Marek, and Miroslaw Truszczynski. Appro-
ximating operators, stable operators, well-founded fixpoints and appli-
cations in non-monotonic reasoning. In Jack Minker, editor, Logic-based
Artificial Intelligence, chapter 6, pages 127–144. Kluwer Academic Pu-
blishers, Boston, 2000.

[27] Jürgen Dix. A classification theory of semantics of normal logic pro-
grams: I. Strong properties. Fundamenta Informaticae, 22(3):227–255,
1995.

42 Literaturverzeichnis

[28] Jürgen Dix. A classification theory of semantics of normal logic pro-
grams: II. Weak properties. Fundamenta Informaticae, 22(3):257–288,
1995.

[29] Phan Minh Dung and Kanchana Kanchanasut. A fixpoint approach to
declarative semantics of logic programs. In Ewing L. Lusk and Ross A.
Overbeek, editors, Logic Programming, Proceedings of the North Ame-
rican Conference 1989, NACLP’89, Cleveland, Ohio, pages 604–625.
MIT Press, 1989.

[30] Thomas Eiter, Nicola Leone, Christinel Mateis, Gerald Pfeifer, and
Francesco Scarcello. A deductive system for nonmonotonic reasoning.
In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors, Proceedings
of the 4th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’97, volume 1265 of Lecture Notes in
Artificial Intelligence. Springer, Berlin, 1997.

[31] François Fages. Consistency of Clark’s completion and existence of
stable models. Journal of Methods of Logic in Computer Science, 1:51–
60, 1994.

[32] Melvin Fitting. A Kripke-Kleene-semantics for general logic programs.
The Journal of Logic Programming, 2:295–312, 1985.

[33] Melvin Fitting. Bilattices and the semantics of logic programming. The
Journal of Logic Programming, 11:91–116, 1991.

[34] Melvin Fitting. Metric methods: Three examples and a theorem. The
Journal of Logic Programming, 21(3):113–127, 1994.

[35] Melvin Fitting. A theory of truth that prefers falsehood. Journal of
Philosophical Logic, 26:477–500, 1997.

[36] Melvin Fitting. Fixpoint semantics for logic programming — A survey.
Theoretical Computer Science, 278(1–2):25–51, 2002.

[37] Ken-Ichi Funahashi. On the approximate realization of continuous
mappings by neural networks. Neural Networks, 2:183–192, 1989.

[38] Dov M. Gabbay, C.J. Hogger, and J.A. Robinson. Nonmonotonic Re-
asoning and Uncertain Reasoning, volume 3 of Handbook of Logic in
Artificial Intelligence and Logic Programming. Clarendon Press, Ox-
ford, 1994.

Literaturverzeichnis 43

[39] Bernhard Ganter and Rudolf Wille. Contextual attribute logic. In Wil-
liam M. Tepfenhart and Walling R. Cyre, editors, Conceptual Structu-
res: Standards and Practices. Proceedings of the 7th International Con-
ference on Conceptual Structures, ICCS ’99, July 1999, Blacksburgh,
Virginia, USA, volume 1640 of Lecture Notes in Artificial Intelligence,
pages 377–388. Springer, Berlin, 1999.

[40] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis — Ma-
thematical Foundations. Springer, Berlin, 1999.

[41] Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Symbolic
knowledge extraction from trained neural networks: A sound approach.
Artificial Intelligence, 125:155–207, 2001.

[42] Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M. Gabbay. Neural-
Symbolic Learning Systems — Foundations and Applications. Perspec-
tives in Neural Computing. Springer, Berlin, 2002.

[43] Artur S. d’Avila Garcez and Dov M. Gabbay. Fibring neural networks.
In In Proceedings of the 19th National Conference on Artificial Intelli-
gence (AAAI 04). San Jose, California, USA, July 2004. AAAI Press,
2004. To appear.

[44] Artur S. d’Avila Garcez and Gerson Zaverucha. The connectionist
inductive learning and logic programming system. Applied Intelligence,
Special Issue on Neural networks and Structured Knowledge, 11(1):59–
77, 1999.

[45] Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In Robert A. Kowalski and Kenneth A. Bowen,
editors, Logic Programming. Proceedings of the 5th International Con-
ference and Symposium on Logic Programming, pages 1070–1080. MIT
Press, 1988.

[46] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9:365–
385, 1991.

[47] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S.
Scott. Continuous Lattices and Domains, volume 93 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2003.

[48] Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription logic programs: Combining logic programs with description

44 Literaturverzeichnis

logics. In Proc. of WWW 2003, Budapest, Hungary, May 2003, pages
48–57. ACM, 2003.

[49] Hans W. Güsgen and Steffen Hölldobler. Connectionist inference sy-
stems. In Bertram Fronhöfer and Graham Wrightson, editors, Paralle-
lization in Inference Systems, volume 590 of Lecture Notes in Artificial
Intelligence, pages 82–120. Springer, Berlin, 1992.

[50] Michael Hanus. On extra variables in (Equational) Logic Programming.
In Leon Sterling, editor, Logic Programming, Proceedings of the Twelfth
International Conference on Logic Programming, June 1995, Tokyo,
Japan, pages 665–679. MIT Press, 1995.

[51] Pascal Hitzler. Generalized Metrics and Topology in Logic Program-
ming Semantics. PhD thesis, Department of Mathematics, National
University of Ireland, University College Cork, 2001.

[52] Pascal Hitzler. A generalized resolution theorem. Journal of Electrical
Engineering, Slovak Academy of Sciences, 55(1–2):25–30, 2003.

[53] Pascal Hitzler. A resolution theorem for algebraic domains. In Georg
Gottlob and Toby Walsh, editors, Proceedings of the 18th International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, August
2003, pages 1339–1340. Morgan Kaufmann Publishers, 2003.

[54] Pascal Hitzler. Towards a systematic account of different logic pro-
gramming semantics. In Andreas Günter, Rudolf Kruse, and Bernd
Neumann, editors, Proceedings of the 26th German Conference on Ar-
tificial Intelligence, KI2003, Hamburg, September 2003, volume 2821 of
Lecture Notes in Artificial Intelligence, pages 355–369. Springer, Berlin,
2003.

[55] Pascal Hitzler. Corollaries on the fixpoint completion: studying the sta-
ble semantics by means of the clark completion. In D. Seipel, M. Ha-
nus, U. Geske, and O. Bartenstein, editors, Proceedings of the 15th
International Conference on Applications of Declarative Programming
and Knowledge Management and the 18th Workshop on Logic Pro-
gramming, Potsdam, Germany, March 4-6, 2004, volume 327 of Tech-
nichal Report, pages 13–27. Bayerische Julius-Maximilians-Universität
Würzburg, Institut für Informatik, 2004.

[56] Pascal Hitzler. Default reasoning over domains and concept hierar-
chies. In Susanne Biundo, Thom Frühwirth, and Günther Palm, editors,

Literaturverzeichnis 45

Proceedings of the 27th German conference on Artificial Intelligence,
KI’2004, Ulm, Germany, September 2004, volume 3238 of Lecture No-
tes in Artificial Intelligence, pages 351–365. Springer, Berlin, 2004.

[57] Pascal Hitzler, Steffen Hölldobler, and Anthony K. Seda. Logic pro-
grams and connectionist networks. Journal of Applied Logic, 3(2):245–
272, 2004.

[58] Pascal Hitzler, Markus Krötzsch, and Guo-Qiang Zhang. A catego-
rical view on algebraic lattices in formal concept analysis. Technical
report, AIFB, Universität Karlsruhe, 2004. Submitted to Theoretical
Computer Science.

[59] Pascal Hitzler and Boris Motik. Towards resolution-based approximate
reasoning for OWL-DL. In: Perry Groot, Pascal Hitzler, Boris Motik,
Holger Wache, Methods for Approximate Reasoning. EU Knowledge-
Web Network of Excellence deliverable D2.1.2, 2004. To appear.

[60] Pascal Hitzler and Sibylle Schwarz. Level mapping characterizations of
selector-generated models for logic programs. Technical Report WV–
04–04, Knowledge Representation and Reasoning Group, Department
of Computer Science, Dresden University of Technology, 2004. Submit-
ted to the 19th Workshop on (Constraint) Logic Programming.

[61] Pascal Hitzler and Anthony K. Seda. Characterizations of classes of
programs by three-valued operators. In Michael Gelfond, Nicola Leo-
ne, and Gerald Pfeifer, editors, Logic Programming and Nonmonotonic
Reasoning, Proceedings of the 5th International Conference on Logic
Programming and Non-Monotonic Reasoning, LPNMR’99, El Paso,
Texas, USA, volume 1730 of Lecture Notes in Artificial Intelligence,
pages 357–371. Springer, Berlin, 1999.

[62] Pascal Hitzler and Anthony K. Seda. Some issues concerning fixed
points in computational logic: Quasi-metrics, multivalued mappings
and the Knaster-Tarski theorem. In Proceedings of the 14th Summer
Conference on Topology and its Applications: Special Session on Topo-
logy in Computer Science, New York, volume 24 of Topology Procee-
dings, pages 223–250, 1999.

[63] Pascal Hitzler and Anthony K. Seda. A note on relationships between
logic programs and neural networks. In Paul Gibson and David Sinclair,
editors, Proceedings of the Fourth Irish Workshop on Formal Methods,

46 Literaturverzeichnis

IWFM’00, Electronic Workshops in Comupting (eWiC). British Com-
puter Society, 2000.

[64] Pascal Hitzler and Anthony K. Seda. Continuity of semantic operators
in logic programming and their approximation by artificial neural net-
works. In Andreas Günter, Rudolf Kruse, and Bernd Neumann, editors,
Proceedings of the 26th German Conference on Artificial Intelligence,
KI2003, volume 2821 of Lecture Notes in Artificial Intelligence, pages
105–119. Springer, 2003.

[65] Pascal Hitzler and Anthony K. Seda. Generalized metrics and unique-
ly determined logic programs. Theoretical Computer Science, 305(1–
3):187–219, 2003.

[66] Pascal Hitzler and Matthias Wendt. The well-founded semantics is
a stratified Fitting semantics. In Matthias Jarke, Jana Koehler, and
Gerhard Lakemeyer, editors, Proceedings of the 25th Annual German
Conference on Artificial Intelligence, KI2002, Aachen, Germany, Sep-
tember 2002, volume 2479 of Lecture Notes in Artificial Intelligence,
pages 205–221. Springer, Berlin, 2002.

[67] Pascal Hitzler and Matthias Wendt. Formal concept analysis and re-
solution in algebraic domains. In Aldo de Moor and Bernhard Ganter,
editors, Using Conceptual Structures — Contributions to ICCS 2003,
pages 157–170. Shaker Verlag, Aachen, 2003.

[68] Pascal Hitzler and Matthias Wendt. A uniform approach to logic pro-
gramming semantics. Theory and Practice of Logic Programming, 5(1–
2):123–159, 2005. To appear.

[69] Pascal Hitzler and Guo-Qiang Zhang. A cartesian closed category of ap-
proximable concept structures. In Karl-Erich Wolff, Heather D. Pfeiffer,
and Harry S. Delugach, editors, Proceedings of the International Con-
ference On Conceptual Structures, Huntsville, Alabama, USA, Lecture
Notes in Computer Science, pages 170–185. Springer, July 2004.

[70] Steffen Hölldobler. Automated Inferencing and Connectionist Models.
Fakultät Informatik, Technische Hochschule Darmstadt, 1993. Habili-
tationsschrift.

[71] Steffen Hölldobler and Yvonne Kalinke. Towards a massively parallel
computational model for logic programming. In Proceedings ECAI94
Workshop on Combining Symbolic and Connectionist Processing, pages
68–77. ECCAI, 1994.

Literaturverzeichnis 47

[72] Steffen Hölldobler, Yvonne Kalinke, and Hans-Peter Störr. Approxi-
mating the semantics of logic programs by recurrent neural networks.
Applied Intelligence, 11:45–58, 1999.

[73] Steffen Hölldobler, Yvonne Kalinke, and Jörg Wunderlich. A recursive
neural network for reflexive reasoning. In Stefan Wermter and Ron
Sun, editors, Hybrid Neural Systems. Springer, Berlin, 1999.

[74] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural Networks,
2:359–366, 1989.

[75] Peter T. Johnstone. Stone Spaces. Number 3 in Cambridge studies in
advanced mathematics. Cambridge University Press, 1982.

[76] Michael Kifer, Georg Lausen, and James Wu. Logical foundations
of object-oriented and frame-based languages. Journal of the ACM,
42:741–843, 1995.

[77] Michael Kifer and V.S. Subrahmanian. Theory of generalized anno-
tated logic programming and its applications. The Journal of Logic
Programming, 1993.

[78] Eric Klavins, William C. Rounds, and Guo-Qiang Zhang. Experimen-
ting with power default reasoning. In Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence and Tenth Innovative App-
lications of Artificial Intelligence Conference, AAAI 98, IAAI 98, July
1998, Madison, Wisconsin, USA, pages 846–852. AAAI Press / The
MIT Press, 1998.

[79] Matthias Knorr. Level mapping characterizations for quantitative and
disjunctive logic programs. Bachelor’s Thesis, Department of Computer
Science, Technische Universität Dresden, Germany, 2003.

[80] Robert A. Kowalski. Predicate logic as a programming language. In
Proceedings IFIP’74, pages 569–574. North-Holland, 1974.

[81] Sabine Krolak-Schwerdt and Bernhard Ganter. Cognitive organizati-
on of person attributes: Measurement procedures and statistical mo-
dels. In Exploratory Data Analysis in Empirical Research, volume 22 of
Studies in Classification, Data Analysis, and Knowledge Organization,
pages 472–482. Springer, 2002.

48 Literaturverzeichnis

[82] Markus Krötzsch, Pascal Hitzler, Marc Ehrig, and York Sure. What
is ontology merging? — a category-theoretical perspective using pu-
shouts. Technical report, AIFB, Universität Karlsruhe, 2004. Submit-
ted to the 2nd European Semantic Web Conference.

[83] Kenneth Kunen. Negation in logic programming. The Journal of Logic
Programming, 4:289–308, 1987.

[84] Trent E. Lange and Michael G. Dyer. Frame selection in a connectionist
model of high-level inferencing. In COGSCI, pages 706–713, 1989.

[85] John W. Lloyd. Foundations of Logic Programming. Springer, Berlin,
1988.

[86] Yann Loyer, Nicolas Spyratos, and Daniel Stamate. Parametrized se-
mantics of logic programs — a unifying framework. Theoretical Com-
puter Science, 308(1–3):429–447, 2003.

[87] Thomas Lukasiewicz. Fixpoint characterizations for many-valued dis-
junctive logic programs with probabilistic semantics. In Proceedings
of the 6th International Conference on Logic Programming and Non-
Monotonic Reasoning, Vienna, Austria, September 2001.

[88] David Makinson. Bridges between classical and nonmonotonic logic.
Logic Journal of the IGPL, 11(1):69–96, 2003.

[89] V. Wiktor Marek and Miroslav Truszczyński. Stable models and an al-
ternative logic programming paradigm. In Krzysztof R. Apt, V. Wiktor
Marek, Miroslav Truszczyński, and David S. Warren, editors, The Lo-
gic Programming Paradigm: A 25-Year Persepective, pages 375–398.
Springer, Berlin, 1999.

[90] Cristinel Mateis. Quantitative disjunctive logic programming: Seman-
tics and computation. AI communications, 13(4):225–248, 2000.

[91] John McCarthy. Epistemological problems of artificial intelligence. In
Proceedings of IJCAI-77, pages 1038–1044, 1977.

[92] John McCarthy. Circumscription — a form of non-monotonic reaso-
ning. Artificial Intelligence, 13(1):27–39, 1980.

[93] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics,
5:115–133, 1943.

Literaturverzeichnis 49

[94] Robert Moore. Possible-worlds semantics for autoepistemic logic. In
Proceedings of the 1984 Non-monotonic Reasoning Workshop. AAAI,
Menlo Park, CA, 1984.

[95] Robert Moore. Semantical considerations on nonmonotonic logic. Ar-
tificial Intelligence, 25(1), 1985.

[96] Web ontology language (OWL). www.w3.org/2004/OWL/, 2004.

[97] Gadi Pinkas. Propositional non-monotonic reasoning and inconsisten-
cy in symmetric neural networks. In John Mylopoulos and Raymond
Reiter, editors, Proceedings of the 12th International Joint Conference
on Artificial Intelligence, pages 525–530. Morgan Kaufmann, 1991.

[98] Tony A. Plate. Holographic reduced representations. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages
30–35, 1991.

[99] Gordon Plotkin. T ω as a universal domain. Journal of Computer and
System Sciences, 17:209–236, 1978.

[100] Jordan B. Pollack. Recursive distributed representations. AIJ, 46:77–
105, 1990.

[101] Sibylla Prieß-Crampe and Paolo Ribenboim. Ultrametric spaces and
logic programming. The Journal of Logic Programming, 42:59–70, 2000.

[102] Uta Priss. Linguistic applications of formal concept analysis. In Pro-
ceedings of ICFCA 2003, 2003. To appear.

[103] Halina Przymusinska and Teodor C. Przymusinski. Weakly stratified
logic programs. Fundamenta Informaticae, 13:51–65, 1990.

[104] Teodor C. Przymusinski. On the declarative semantics of deductive
databases and logic programs. In Jack Minker, editor, Foundations of
Deductive Databases and Logic Programming, pages 193–216. Morgan
Kaufmann, Los Altos, CA, 1988.

[105] Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13:81–132, 1980.

[106] J. Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965.

50 Literaturverzeichnis

[107] William C. Rounds and Guo-Qiang Zhang. Clausal logic and logic
programming in algebraic domains. Information and Computation,
171(2):156–182, 2001.

[108] Sibylle Schwarz. Selektor-erzeugte Modelle verallgemeinerter logischer
Programme. PhD thesis, Universität Leipzig, 2004.

[109] Dana S. Scott. Domains for denotational semantics. In Magens Nielsen
and Erik M. Schmidt, editors, Automata, Languages and Programming,
9th Colloquium, July 1982, Aarhus, Denmark, Proceedings, volume 140
of Lecture Notes in Computer Science, pages 577–613. Springer, Berlin,
1982.

[110] Anthony K. Seda. Topology and the semantics of logic programs. Fun-
damenta Informaticae, 24(4):359–386, 1995.

[111] Lokenda Shastri. Advances in Shruti — A neurally motivated model of
relational knowledge representation and rapid inference using temporal
synchrony. Applied Intelligence, 11:78–108, 1999.

[112] Lokendra Shastri and Venkat Ajjanagadde. From associations to syste-
matic reasoning: A connectionist representation of rules, variables and
dynamic bindings using temporal synchrony. Behavioural and Brain
Sciences, 16(3):417–494, September 1993.

[113] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and im-
plementing the stable model semantics. Artificial Intelligence, 138(1–
2):181–234, 2002.

[114] Michael B. Smyth. Topology. In Samson Abramsky, Dov M. Gabbay,
and Thomas S.E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 1, pages 641–761. Clarendon, Oxford, 1994.

[115] Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. In-
ternational Handbooks on Information Systems. Springer, 2004.

[116] Gerd Stumme. Formal concept analysis on its way from mathematics
to computer science. In U. Priss, D. Corbett, and G. Angelova (eds.),
editors, Conceptual Structures: Integration and Interfaces, Proc. ICCS
2002, LNAI, pages 2–19. Springer, 2002.

[117] Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial
neural networks. Artificial Intelligence, 70(1–2):119–165, 1994.

Literaturverzeichnis 51

[118] Maarten H. van Emden. Quantitative deduction and its fixpoint theory.
The Journal of Logic Programming, 1:37–53, 1986.

[119] Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-
founded semantics for general logic programs. Journal of the ACM,
38(3):620–650, 1991.

[120] Steven Vickers. Topology via Logic. Cambridge University Press, Cam-
bridge, UK, 1989.

[121] Raphael Volz. Web Ontology Reasoning with Logic Databases. PhD
thesis, AIFB, University of Karlsruhe, 2004.

[122] Gerd Wagner. Negation in fuzzy and possibilistic logic programs. In
Trevor Martin and Francesca Arcelli, editors, Logic Programming and
Soft Computing. Research Studies Press, 1998.

[123] Matthias Wendt. Unfolding the well-founded semantics. Journal of
Electrical Engineering, Slovak Academy of Sciences, 53(12/s):56–59,
2002. (Proceedings of the 4th Slovakian Student Conference in Applied
Mathematics, Bratislava, April 2002).

[124] Stephen Willard. General Topology. Addison-Wesley, Reading, MA,
1970.

[125] Rudolf Wille. Restructuring lattice theory: An approach based on hier-
archies of concepts. In Ivan Rival, editor, Ordered Sets, pages 445–470.
Reidel, Dordrecht-Boston, 1982.

[126] Guo-Qiang Zhang. Logic of Domains. Birkhauser, Boston, 1991.

[127] Guo-Qiang Zhang and William Rounds. Reasoning with power
defaults. Theoretical Computer Science, 323(1–3):321–350, 2004.

[128] Guo-Qiang Zhang and William C. Rounds. Semantics of logic programs
and representation of Smyth powerdomains. In Klaus Keimel et al.,
editors, Domains and Processes, pages 151–179. Kluwer, 2001.

Vorgelegte Veröffentlichungen

53

To appear in Theory and Practice of Logic Programming 1

A uniform approach to logic programming
semantics

Pascal Hitzler and Matthias Wendt
Knowledge Representation and Reasoning Group, Artificial Intelligence Institute

Department of Computer Science, Dresden University of Technology

Dresden, Germany
(e-mail: {phitzler,mw177754}@inf.tu-dresden.de)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Part of the theory of logic programming and nonmonotonic reasoning concerns the study of
fixed-point semantics for these paradigms. Several different semantics have been proposed
during the last two decades, and some have been more successful and acknowledged than
others. The rationales behind those various semantics have been manifold, depending
on one’s point of view, which may be that of a programmer or inspired by commonsense
reasoning, and consequently the constructions which lead to these semantics are technically
very diverse, and the exact relationships between them have not yet been fully understood.
In this paper, we present a conceptually new method, based on level mappings, which
allows to provide uniform characterizations of different semantics for logic programs. We
will display our approach by giving new and uniform characterizations of some of the
major semantics, more particular of the least model semantics for definite programs, of
the Fitting semantics, and of the well-founded semantics. A novel characterization of the
weakly perfect model semantics will also be provided.

KEYWORDS: Level mapping, Fitting semantics, well-founded semantics, least model se-
mantics, stable semantics, weak stratification

Contents

1 Introduction 2
2 Preliminaries and Notation 4
3 Least and Stable Model Semantics 7
4 Fitting Semantics 9
5 Well-Founded Semantics 11
6 Weakly Perfect Model Semantics 15
7 Related Work 23
8 Conclusions and Further Work 26
References 27

Theory and Practice of Logic Programming 5(1-2) pp 93-121, 2005, in print.

2 P. Hitzler and M. Wendt

1 Introduction

Negation in logic programming differs from the negation of classical logic. Indeed,
the quest for a satisfactory understanding of negation in logic programming is still
inconclusive — although the issue has cooled down a bit recently — and has proved
to be very stimulating for research activities in computational logic, and in partic-
ular amongst knowledge representation and reasoning researchers concerned with
commonsense and nonmonotonic reasoning. During the last two decades, differ-
ent interpretations of negation in logic programming have lead to the development
of a variety of declarative semantics, as they are called. Some early research ef-
forts for establishing a satisfactory declarative semantics for negation as failure
and its variants, as featured by the resolution-based Prolog family of logic pro-
gramming systems, have later on been merged with nonmonotonic frameworks for
commonsense reasoning, culminating recently in the development of so-called an-
swer set programming systems, like smodels or dlv (Eiter et al. 1997; Marek and
Truszczyński 1999; Lifschitz 2002; Simons et al. 200x).

Systematically, one can understand Fitting’s proposal (Fitting 1985) of a Kripke-

Kleene semantics — also known as Fitting semantics — as a cornerstone which plays
a fundamental rôle both for resolution-based and nonmonotonic reasoning inspired
logic programming. Indeed, his proposal, which is based on a monotonic semantic
operator in Kleene’s strong three-valued logic, has been pursued in both commu-
nities, for example by Kunen (Kunen 1987) for giving a semantics for pure Prolog,
and by Apt and Pedreschi (Apt and Pedreschi 1993) in their fundamental paper
on termination analysis of negation as failure, leading to the notion of acceptable

program. On the other hand, however, Fitting himself (Fitting 1991a; Fitting 2002),
using a bilattice-based approach which was further developed by Denecker, Marek,
and Truszczynski (Denecker et al. 2000), tied his semantics closely to the major
semantics inspired by nonmonotonic reasoning, namely the stable model semantics

due to Gelfond and Lifschitz (Gelfond and Lifschitz 1988), which is based on a non-
monotonic semantic operator, and the well-founded semantics due to van Gelder,
Ross, and Schlipf (van Gelder et al. 1991), originally defined using a different mono-
tonic operator in three-valued logic together with a notion of unfoundedness.

Another fundamental idea which was recognised in both communities was that
of stratification, with the underlying idea of restricting attention to certain kinds
of programs in which recursion through negation is prevented. Apt, Blair, and
Walker (Apt et al. 1988) proposed a variant of resolution suitable for these pro-
grams, while Przymusinski (Przymusinski 1988) and van Gelder (van Gelder 1988)
generalized the notion to local stratification. Przymusinski (Przymusinski 1988) de-
veloped the perfect model semantics for locally stratified programs, and together
with Przymusinska (Przymusinska and Przymusinski 1990) generalized it later to
a three-valued setting as the weakly perfect model semantics.

The semantics mentioned so far are defined and characterized using a variety
of different techniques and constructions, including monotonic and nonmonotonic
semantic operators in two- and three-valued logics, program transformations, level
mappings, restrictions to suitable subprograms, detection of cyclic dependencies

Uniform LP semantics 3

etc. Relationships between the semantics have been established, but even a simple
comparison of the respective models in restricted cases could be rather tedious. So,
in this paper, we propose a methodology which allows to obtain uniform character-
izations of all semantics previously mentioned, and we believe that it will scale up
well to most semantics based on monotonic operators, and also to some nonmono-
tonic operators, and to extensions of the logic programming paradigm including
disjunctive conclusions and uncertainty. The characterizations will allow immedi-
ate comparison between the semantics, and once obtained we will easily be able
to make some new and interesting observations, including the fact that the well-
founded semantics can formally be understood as a Fitting semantics augmented
with a form of stratification. Indeed we will note that from this novel perspective
the well-founded semantics captures the idea of stratification much better than the
weakly perfect model semantics, thus providing a formal explanation for the historic
fact that the latter has not received as much attention as the former.

The main tool which will be employed for our characterizations is the notion
of level mapping. Level mappings are mappings from Herbrand bases to ordinals,
i.e. they induce orderings on the set of all ground atoms while disallowing infinite
descending chains. They have been a technical tool in a variety of contexts, including
termination analysis for resolution-based logic programming as studied by Bezem
(Bezem 1989), Apt and Pedreschi (Apt and Pedreschi 1993), Marchiori (Marchiori
1996), Pedreschi, Ruggieri, and Smaus (Pedreschi et al. 2002), and others, where
they appear naturally since ordinals are well-orderings. They have been used for
defining classes of programs with desirable semantic properties, e.g. by Apt, Blair,
and Walker (Apt et al. 1988), Przymusinski (Przymusinski 1988) and Cavedon
(Cavedon 1991), and they are intertwined with topological investigations of fixed-
point semantics in logic programming, as studied e.g. by Fitting (Fitting 1994;
Fitting 2002), and by Hitzler and Seda (Seda 1995; Seda 1997; Hitzler 2001; Hitzler
and Seda 2003b). Level mappings are also relevant to some aspects of the study of
relationships between logic programming and artificial neural networks, as studied
by Hölldobler, Kalinke, and Störr (Hölldobler et al. 1999) and by Hitzler and Seda
(Hitzler and Seda 2000; Hitzler and Seda 2003a). In our novel approach to uniform
characterizations of different semantics, we will use them as a technical tool for
capturing dependencies between atoms in a program.

The paper is structured as follows. Section 2 contains preliminaries which are
needed to make the paper relatively self-contained. The subsequent sections contain
the announced uniform characterizations of the least model semantics for definite
programs and the stable model semantics in Section 3, of the Fitting semantics in
Section 4, of the well-founded semantics in Section 5, and of the weakly perfect
model semantics in Section 6. Related work will be discussed in Section 7, and we
close with conclusions and a discussion of further work in Section 8.

Part of this paper was presented at the 25th German Conference on Artificial
Intelligence, KI2002, Aachen, Germany, September 2002 (Hitzler and Wendt 2002).

Acknowledgement. We thank Tony Seda for pointing out some flaws in a previous
version of the proof of Theorem 5.2.

4 P. Hitzler and M. Wendt

2 Preliminaries and Notation

A (normal) logic program is a finite set of (universally quantified) clauses of the
form ∀(A ← A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm), commonly written as A ←
A1, . . . ,An ,¬B1, . . . ,¬Bm , where A, Ai , and Bj , for i = 1, . . . ,n and j = 1, . . . ,m,
are atoms over some given first order language. A is called the head of the clause,
while the remaining atoms make up the body of the clause, and depending on con-
text, a body of a clause will be a set of literals (i.e. atoms or negated atoms) or
the conjunction of these literals. Care will be taken that this identification does not
cause confusion. We allow a body, i.e. a conjunction, to be empty, in which case it
always evaluates to true. A clause with empty body is called a unit clause or a fact.
A clause is called definite, if it contains no negation symbol. A program is called
definite if it consists only of definite clauses. We will usually denote atoms with A
or B , and literals, which may be atoms or negated atoms, by L or K .

Given a logic program P , we can extract from it the components of a first order
language. The corresponding set of ground atoms, i.e. the Herbrand base of the
program, will be denoted by BP . For a subset I ⊆ BP , we set ¬I = {¬A | A ∈
I }. The set of all ground instances of P with respect to BP will be denoted by
ground(P). For I ⊆ BP ∪ ¬BP we say that A is true with respect to (or in) I if
A ∈ I , we say that A is false with respect to (or in) I if ¬A ∈ I , and if neither
is the case, we say that A is undefined with respect to (or in) I . A (three-valued

or partial) interpretation I for P is a subset of BP ∪ ¬BP which is consistent, i.e.
whenever A ∈ I then ¬A 6∈ I . A body, i.e. a conjunction of literals, is true in an
interpretation I if every literal in the body is true in I , it is false in I if one of
its literals is false in I , and otherwise it is undefined in I . For a negative literal
L = ¬A we will find it convenient to write ¬L ∈ I if A ∈ I and say that L is false in
I etc. in this case. By IP we denote the set of all (three-valued) interpretations of
P . It is a complete partial order (cpo) via set-inclusion, i.e. it contains the empty
set as least element, and every ascending chain has a supremum, namely its union.
A model of P is an interpretation I ∈ IP such that for each clause A ← body we
have that body true in I implies A true in I , and body undefined in I implies A
true or undefined in I . A total interpretation is an interpretation I such that no
A ∈ BP is undefined in I .

For an interpretation I and a program P , an I -partial level mapping for P is
a partial mapping l : BP → α with domain dom(l) = {A | A ∈ I or ¬A ∈ I },
where α is some (countable) ordinal. We extend every level mapping to literals by
setting l(¬A) = l(A) for all A ∈ dom(l). A (total) level mapping is a total mapping
l : BP → α for some (countable) ordinal α.

Given a normal logic program P and some I ⊆ BP ∪¬BP , we say that U ⊆ BP is
an unfounded set (of P) with respect to I if each atom A ∈ U satisfies the following
condition: For each clause A ← body in ground(P) (at least) one of the following
holds.

(Ui) Some (positive or negative) literal in body is false in I .
(Uii) Some (non-negated) atom in body occurs in U .

Given a normal logic program P , we define the following operators on BP ∪¬BP .

Uniform LP semantics 5

TP (I) is the set of all A ∈ BP such that there exists a clause A← body in ground(P)
such that body is true in I . FP (I) is the set of all A ∈ BP such that for all clauses
A ← body in ground(P) we have that body is false in I . Both TP and FP map
elements of IP to elements of IP . Now define the operator ΦP : IP → IP by

ΦP (I) = TP (I) ∪ ¬FP (I)·

This operator is due to Fitting (Fitting 1985) and is monotonic on the cpo IP ,
hence has a least fixed point by the Tarski fixed-point theorem, and we can obtain
this fixed point by defining, for each monotonic operator F , that F ↑ 0 = ∅, F ↑
(α + 1) = F (F ↑α) for any ordinal α, and F ↑β =

⋃
γ<β F ↑γ for any limit ordinal

β, and the least fixed point lfp(F) of F is obtained as F ↑ α for some ordinal α.
The least fixed point of ΦP is called the Kripke-Kleene model or Fitting model of
P , determining the Fitting semantics of P .

Example 2.1
Let P be the program consisting of the two clauses p ← p and q ← ¬r . Then
ΦP ↑1 = {¬r}, and ΦP ↑2 = {q ,¬r} = ΦP ↑3 is the Fitting model of P .

Now, for I ⊆ BP ∪ ¬BP , let UP (I) be the greatest unfounded set (of P) with
respect to I , which always exists due to van Gelder, Ross, and Schlipf (van Gelder
et al. 1991). Finally, define

WP (I) = TP (I) ∪ ¬UP (I)

for all I ⊆ BP ∪ ¬BP . The operator WP , which operates on the cpo BP ∪ ¬BP ,
is due to van Gelder et al. (van Gelder et al. 1991) and is monotonic, hence has a
least fixed point by the Tarski fixed-point theorem, as above for ΦP . It turns out
that WP ↑α is in IP for each ordinal α, and so the least fixed point of WP is also
in IP and is called the well-founded model of P , giving the well-founded semantics

of P .

Example 2.2
Let P be the program consisting of the following clauses.

s ← q
q ← ¬p
p ← p
r ← ¬r

Then {p} is the largest unfounded set of P with respect to ∅ and we obtain

WP ↑1 = {¬p},
WP ↑2 = {¬p, q}, and
WP ↑3 = {¬p, q , s}

= WP ↑4·

Given a program P , we define the operator T+
P on subsets of BP by T+

P (I) =
TP (I ∪ ¬(BP \ I)). It is well-known that for definite programs this operator is
monotonic on the set of all subsets of BP , with respect to subset inclusion. Indeed
it is Scott-continuous (Lloyd 1988; Abramsky and Jung 1994; Stoltenberg-Hansen

6 P. Hitzler and M. Wendt

et al. 1994) and, via Kleene’s fixed-point theorem, achieves its least fixed point M
as the supremum of the iterates T+

P ↑ n for n ∈ N. So M = lfp(T+
P) = T+

P ↑ ω

is the least two-valued model of P . In turn, we can identify M with the total
interpretation M ∪¬(BP \M), which we will call the definite (partial) model of P .

Example 2.3
Let P be the program consisting of the clauses

p(0) ←
p(s(X)) ← p(X),

where X denotes a variable and 0 a constant symbol. Write sn(0) for the term
s(· · · s(0) · · ·) in which the symbol s appears n times. Then

T+
P ↑n =

{
p

(
sk (0)

)
| k < n

}
for all n ∈ N and {p(sn(0)) | n ∈ N} is the least two-valued model of P .

In order to avoid confusion, we will use the following terminology: the notion of
interpretation will by default denote consistent subsets of BP ∪ ¬BP , i.e. interpre-
tations in three-valued logic. We will sometimes emphasize this point by using the
notion partial interpretation. By two-valued interpretations we mean subsets of BP .
Given a partial interpretation I , we set I + = I ∩BP and I− = {A ∈ BP | ¬A ∈ I }.
Each two-valued interpretation I can be identified with the partial interpretation
I ′ = I ∪¬(BP \I). Both, interpretations and two-valued interpretations, are ordered
by subset inclusion. We note however, that these two orderings differ: If I ⊆ BP ,
for example, then I ′ is always a maximal element in the ordering for partial inter-
pretations, while I is in general not maximal as a two-valued interpretation. The
two orderings correspond to the knowledge- and the truth-ordering due to Fitting
(Fitting 1991a).

There is a semantics using two-valued logic, the stable model semantics due to
Gelfond and Lifschitz (Gelfond and Lifschitz 1988), which is intimately related to
the well-founded semantics. Let P be a normal program, and let M ⊆ BP be a
set of atoms. Then we define P/M to be the (ground) program consisting of all
clauses A← A1, . . . ,An for which there is a clause A← A1, . . . ,An ,¬B1, . . . ,¬Bm

in ground(P) with B1, . . . ,Bm 6∈ M . Since P/M does no longer contain negation,
it has a least two-valued model T+

P/M ↑ω. For any two-valued interpretation I we
can therefore define the operator GLP (I) = T+

P/I ↑ ω, and call M a stable model

of the normal program P if it is a fixed point of the operator GLP , i.e. if M =
GLP (M) = T+

P/M ↑ω. As it turns out, the operator GLP is in general not monotonic
for normal programs P . However it is antitonic, i.e. whenever I ⊆ J ⊆ BP then
GLP (J) ⊆ GLP (I). As a consequence, the operator GL2

P , obtained by applying
GLP twice, is monotonic and hence has a least fixed point LP and a greatest
fixed point GP . Van Gelder (van Gelder 1989) has shown that GLP (LP) = GP ,
LP = GLP (GP), and that LP ∪¬(BP \GP) coincides with the well-founded model
of P . This is called the alternating fixed point characterization of the well-founded
semantics.

Uniform LP semantics 7

Example 2.4
Consider the program P from Example 2.2. The subprogram Q consisting of the
first three clauses of the program P has stable model M = {s, q}, which can be
verified by noting that Q/M consists of the clauses

s ← q
q ←
p ← p,

and has M as its least two-valued model.
For the program P we obtain

GLP (∅) = {q , s, r},
GLP ({q , s, r}) = {q , s}

= GL2
P ({q , s}), and

GLP (BP) = ∅·

So LP = {q , s} while GP = {q , s, r}, and LP ∪ ¬(BP \ GP) = {q , s,¬p} is the
well-founded model of P .

3 Least and Stable Model Semantics

The most fundamental semantics in logic programming is based on the fact men-
tioned above that the operator T+

P has a least fixed point M = T+
P ↑ω whenever P

is definite. The two-valued interpretation M turns out to be the least two-valued
model of the program, and is therefore canonically the model which should be con-
sidered for definite programs. Our first result characterizes the least model using
level mappings, and serves to convey the main ideas underlying our method. It is a
straightforward result but has, to the best of our knowledge, not been noted before.

Theorem 3.1
Let P be a definite program. Then there is a unique two-valued model M of P
for which there exists a (total) level mapping l : BP → α such that for each atom
A ∈ M there exists a clause A ← A1, . . . ,An in ground(P) with Ai ∈ M and
l(A) > l(Ai) for all i = 1, . . . ,n. Furthermore, M is the least two-valued model of
P .

Proof
Let M be the least two-valued model T+

P ↑ω, choose α = ω, and define l : BP → α

by setting l(A) = min{n | A ∈ T+
P ↑(n + 1)}, if A ∈ M , and by setting l(A) = 0, if

A 6∈ M . From the fact that ∅ ⊆ T+
P ↑1 ⊆ . . . ⊆ T+

P ↑n ⊆ . . . ⊆ T+
P ↑ω =

⋃
m T+

P ↑
m, for each n, we see that l is well-defined and that the least model T+

P ↑ω for P
has the desired properties.

Conversely, if M is a two-valued model for P which satisfies the given condition
for some mapping l : BP → α, then it is easy to show, by induction on l(A), that
A ∈ M implies A ∈ T+

P ↑ (l(A) + 1). This yields that M ⊆ T+
P ↑ω, and hence that

M = T+
P ↑ω by minimality of the model T+

P ↑ω.

8 P. Hitzler and M. Wendt

Example 3.2
For the program P from Example 2.3 we obtain l(p(sn(0))) = n for the level
mapping l defined in the proof of Theorem 3.1.

The proof of Theorem 3.1 can serve as a blueprint for obtaining characterizations
if the semantics under consideration is based on the least fixed point of a monotonic
operator F , and indeed our results for the Fitting semantics and the well-founded
semantics, Theorems 4.2 and 5.2, together with their proofs, follow this scheme.
In one direction, levels are assigned to atoms A according to the least ordinal α

such that A is not undefined in F ↑ (α + 1), and dependencies between atoms of
some level and atoms of lower levels are captured by the nature of the considered
operator, which will certainly vary from case to case. In Theorem 3.1, the condition
thus obtained suffices for uniquely determining the least model, whereas in other
cases which we will study later, so for the Fitting semantics and the well-founded
semantics, the level mapping conditions will not suffice for unique characterization
of the desired model. However, the desired model will in each case turn out to be
the greatest among all models satisfying the given conditions. So in these cases it
will remain to show, by transfinite induction on the level of some given atom A,
that the truth value assigned to A by any model satisfying the given conditions is
also assigned to A by F ↑ (l(A) + 1), which at the same time proves that lfp(F) is
the greatest model satisfying the given conditions. For the proof of Theorem 3.1,
the proof method just described can be applied straightforwardly, however for more
sophisticated operators may become technically challenging on the detailed level.

We now turn to the stable model semantics, which in the case of programs with
negation has come to be the major semantics based on two-valued logic. The fol-
lowing characterization is in the spirit of our proposal, and is due to Fages (Fages
1994). It is striking in its similarity to the characterization of the least model for
definite programs in Theorem 3.1. For completeness of our exhibition, we include a
proof of the fact.

Theorem 3.3
Let P be normal. Then a two-valued model M ⊆ BP of P is a stable model of P
if and only if there exists a (total) level mapping l : BP → α such that for each
A ∈ M there exists A ← A1, . . . ,An ,¬B1, . . . ,¬Bm in ground(P) with Ai ∈ M ,
Bj 6∈ M , and l(A) > l(Ai) for all i = 1, . . . ,n and j = 1, . . . ,m.

Proof
Let M be a stable model of P , i.e. GLP (M) = T+

P/M ↑ω = M . Then M is the least
model for P/M , hence is also a model for P , and, by Theorem 3.1, satisfies the
required condition with respect to any level mapping l with l(A) = min{n | A ∈
TP/M ↑(n + 1)} for each A ∈ M . Conversely, let M be a model which satisfies the
condition in the statement of the theorem. Then, for every A ∈ M , there is a clause
C in ground(P) of the form A ← A1, . . . ,An ,¬B1, . . . ,¬Bk such that the body of
C is true in M and satisfies l(A) > l(Ai) for all i = 1, . . . ,n. But then, for every
A ∈ M , there is a clause A ← A1, . . . ,An in P/M whose body is true in M and

Uniform LP semantics 9

such that l(A) > l(Ai) for all i = 1, . . . ,n. By Theorem 3.1, this means that M is
the least model for P/M , that is, M = T+

P/M ↑ω = GL(M).

The proof of Theorem 3.3 just given partly follows the proof scheme discussed
previously, by considering the monotonic operator T+

P/M , which is used for defining
stable models.

Example 3.4
Recall the program P from Example 2.2, and consider the program Q consisting
of the first three clauses of P . We already noted in Example 2.4 that Q has stable
model {s, q}. A corresponding level mapping, as defined in the proof of Theorem
3.3, satisfies l(q) = 0 and l(s) = 1, while l(p) can be an arbitrary value.

4 Fitting Semantics

We next turn to the Fitting semantics. Following the proof scheme which we de-
scribed in Section 3, we expect levels l(A) to be assigned to atoms A such that
l(A) is the least α such that A is not undefined in ΦP ↑(α + 1). An analysis of the
operator ΦP eventually yields the following conditions.

Definition 4.1
Let P be a normal logic program, I be a model of P , and l be an I -partial level
mapping for P . We say that P satisfies (F) with respect to I and l , if each A ∈
dom(l) satisfies one of the following conditions.

(Fi) A ∈ I and there exists a clause A← L1, . . . ,Ln in ground(P) with Li ∈ I and
l(A) > l(Li) for all i .

(Fii) ¬A ∈ I and for each clause A← L1, . . . ,Ln in ground(P) there exists i with
¬Li ∈ I and l(A) > l(Li).

If A ∈ dom(l) satisfies (Fi), then we say that A satisfies (Fi) with respect to I and

l , and similarly if A ∈ dom(l) satisfies (Fii).

We note that condition (Fi) is stronger than the condition used for characterizing
stable models in Theorem 3.3. The proof of the next theorem closely follows our
proof scheme.

Theorem 4.2
Let P be a normal logic program with Fitting model M . Then M is the greatest
model among all models I , for which there exists an I -partial level mapping l for
P such that P satisfies (F) with respect to I and l .

Proof
Let MP be the Fitting model of P and define the MP -partial level mapping lP as
follows: lP (A) = α, where α is the least ordinal such that A is not undefined in
ΦP ↑ (α + 1). The proof will be established by showing the following facts: (1) P
satisfies (F) with respect to MP and lP . (2) If I is a model of P and l an I -partial
level mapping such that P satisfies (F) with respect to I and l , then I ⊆ MP .

10 P. Hitzler and M. Wendt

(1) Let A ∈ dom(lP) and lP (A) = α. We consider two cases.
(Case i) If A ∈ MP , then A ∈ TP (ΦP ↑α), hence there exists a clause A← body

in ground(P) such that body is true in ΦP ↑α. Thus, for all Li ∈ body we have that
Li ∈ ΦP ↑α, and hence lP (Li) < α and Li ∈ MP for all i . Consequently, A satisfies
(Fi) with respect to MP and lP .

(Case ii) If ¬A ∈ MP , then A ∈ FP (ΦP ↑α), hence for all clauses A ← body in
ground(P) there exists L ∈ body with ¬L ∈ ΦP ↑α and lP (L) < α, hence ¬L ∈ MP .
Consequently, A satisfies (Fii) with respect to MP and lP , and we have established
that fact (1) holds.

(2) We show via transfinite induction on α = l(A), that whenever A ∈ I (respec-
tively, ¬A ∈ I), then A ∈ ΦP ↑ (α + 1) (respectively, ¬A ∈ ΦP ↑ (α + 1)). For the
base case, note that if l(A) = 0, then A ∈ I implies that A occurs as the head of
a fact in ground(P), hence A ∈ ΦP ↑1, and ¬A ∈ I implies that there is no clause
with head A in ground(P), hence ¬A ∈ ΦP ↑ 1. So assume now that the induction
hypothesis holds for all B ∈ BP with l(B) < α. We consider two cases.

(Case i) If A ∈ I , then it satisfies (Fi) with respect to I and l . Hence there is a
clause A← body in ground(P) such that body ⊆ I and l(K) < α for all K ∈ body.
Hence body ⊆ MP by induction hypothesis, and since MP is a model of P we obtain
A ∈ MP .

(Case ii) If ¬A ∈ I , then A satisfies (Fii) with respect to I and l . Hence for all
clauses A ← body in ground(P) we have that there is K ∈ body with ¬K ∈ I and
l(K) < α. Hence for all these K we have ¬K ∈ MP by induction hypothesis, and
consequently for all clauses A← body in ground(P) we obtain that body is false in
MP . Since MP = ΦP (MP) is a fixed point of the ΦP -operator, we obtain ¬A ∈ MP .
This establishes fact (2) and concludes the proof.

Example 4.3
Consider the program P from Example 2.1. Then the level mapping l , as defined
in the proof of Theorem 4.2, satsifies l(r) = 0 and l(q) = 1.

It is interesting to consider the special case where the Fitting model is total.
Programs with this property are called Φ-accessible (Hitzler and Seda 1999; Hitzler
and Seda 2003b), and include e.g. the acceptable programs due to Apt and Pedreschi
(Apt and Pedreschi 1993).

Corollary 4.4
A normal logic program P has a total Fitting model if and only if there is a total
model I of P and a (total) level mapping l for P such that P satisfies (F) with
respect to I and l .

The result follows immediately as a special case of Theorem 4.2, and is closely
related to results reported in (Hitzler and Seda 1999; Hitzler and Seda 2003b).
The reader familiar with acceptable programs will also note the close relationship
between Corollary 4.4 and the defining conditions for acceptable programs. Indeed,
the theorem due to Apt and Pedreschi (Apt and Pedreschi 1993), which says that
every acceptable program has a total Fitting model, follows without any effort from

Uniform LP semantics 11

our result. It also follows immediately, by comparing Corollary 4.4 and Theorem
3.3, that a total Fitting model is always stable, which is a well-known fact.

5 Well-Founded Semantics

The characterization of the well-founded model again closely follows our proof
scheme. Before discussing this, though, we will take a short detour which will even-
tually reveal a surprising fact about the well-founded semantics: From our new
perspective the well-founded semantics can be understood as a stratified version of
the Fitting semantics.

Let us first recall the definition of a (locally) stratified program, due to Apt, Blair,
Walker, and Przymusinski (Apt et al. 1988; Przymusinski 1988): A normal logic
program is called locally stratified if there exists a (total) level mapping l : BP → α,
for some ordinal α, such that for each clause A ← A1, . . . ,An ,¬B1, . . . ,¬Bm in
ground(P) we have that l(A) ≥ l(Ai) and l(A) > l(Bj) for all i = 1, . . . ,n and
j = 1, . . . ,m.

The notion of (locally) stratifed program, as already mentioned in the introduc-
tion, was developed with the idea of preventing recursion through negation, while
allowing recursion through positive dependencies. There exist locally stratified pro-
grams which do not have a total Fitting model and vice versa. Indeed, the program
consisting of the single clause p ← p is locally stratified but p remains undefined in
the Fitting model. Conversely, the program consisting of the two clauses q ← and
q ← ¬q is not locally stratified but its Fitting model assigns to q the truth value
true.

By comparing Definition 4.1 with the definition of locally stratified programs, we
notice that condition (Fii) requires a strict decrease of level between the head and a
literal in the rule, independent of this literal being positive or negative. But, on the
other hand, condition (Fii) imposes no further restrictions on the remaining body
literals, while the notion of local stratification does. These considerations motivate
the substitution of condition (Fii) by the condition (WFii), as given in the following
definition.

Definition 5.1
Let P be a normal logic program, I be a model of P , and l be an I -partial level
mapping for P . We say that P satisfies (WF) with respect to I and l , if each
A ∈ dom(l) satisfies one of the following conditions.

(WFi) A ∈ I and there exists a clause A← L1, . . . ,Ln in ground(P) with Li ∈ I and
l(A) > l(Li) for all i .

(WFii) ¬A ∈ I and for each clause A← A1, . . . ,An ,¬B1, . . . ,¬Bm in ground(P) (at
least) one of the following conditions holds:

(WFiia) There exists i ∈ {1, . . . ,n} with ¬Ai ∈ I and l(A) ≥ l(Ai).
(WFiib) There exists j ∈ {1, . . . ,m} with Bj ∈ I and l(A) > l(Bj).

If A ∈ dom(l) satisfies (WFi), then we say that A satisfies (WFi) with respect to I
and l , and similarly if A ∈ dom(l) satisfies (WFii).

12 P. Hitzler and M. Wendt

We note that conditions (Fi) and (WFi) are identical. Indeed, replacing (WFi)
by a stratified version such as the following seems not satisfactory.

(SFi) A ∈ I and there exists a clause A← A1, . . . ,An ,¬B1, . . . ,¬Bm in ground(P)
with Ai ,Bj ∈ I , l(A) ≥ l(Ai), and l(A) > l(Bj) for all i and j .

If we replace condition (WFi) by condition (SFi), then it is not guaranteed that
for any given program there is a greatest model satisfying the desired properties:
Consider the program consisting of the two clauses p ← p and q ← ¬p, and the two
(total) models {p,¬q} and {¬p, q}, which are incomparable, and the level mapping
l with l(p) = 0 and l(q) = 1. A detailed analysis of condition (SFi) in the context
of our approach can be found in (Hitzler 2003).

So, in the light of Theorem 4.2, Definition 5.1 should provide a natural “stratified
version” of the Fitting semantics. And indeed it does, and furthermore, the resulting
semantics coincides with the well-founded semantics, which is a very satisfactory
result. The proof of the fact again follows our proof scheme, but is slightly more
involved due to the necessary treatment of unfounded sets.

Theorem 5.2
Let P be a normal logic program with well-founded model M . Then M is the
greatest model among all models I , for which there exists an I -partial level mapping
l for P such that P satisfies (WF) with respect to I and l .

Proof
Let MP be the well-founded model of P and define the MP -partial level mapping
lP as follows: lP (A) = α, where α is the least ordinal such that A is not undefined
in WP ↑(α+1). The proof will be established by showing the following facts: (1) P
satisfies (WF) with respect to MP and lP . (2) If I is a model of P and l an I -partial
level mapping such that P satisfies (WF) with respect to I and l , then I ⊆ MP .

(1) Let A ∈ dom(lP) and lP (A) = α. We consider two cases.
(Case i) If A ∈ MP , then A ∈ TP (WP ↑α), hence there exists a clause A← body

in ground(P) such that body is true in WP ↑α. Thus, for all Li ∈ body we have that
Li ∈ WP ↑α. Hence, lP (Li) < α and Li ∈ MP for all i . Consequently, A satisfies
(WFi) with respect to MP and lP .

(Case ii) If ¬A ∈ MP , then A ∈ UP (WP ↑α), i.e. A is contained in the greatest
unfounded set of P with respect to WP ↑ α. Hence for each clause A ← body in
ground(P), at least one of (Ui) or (Uii) holds for this clause with respect to WP ↑α
and the unfounded set UP (WP ↑ α). If (Ui) holds, then there exists some literal
L ∈ body with ¬L ∈WP ↑α. Hence lP (L) < α and condition (WFiib) holds relative
to MP and lP if L is an atom, or condition (WFiia) holds relative to MP and lP if L
is a negated atom. On the other hand, if (Uii) holds, then some (non-negated) atom
B in body occurs in UP (WP ↑ α). Hence lP (B) ≤ lP (A) and A satisfies (WFiia)
with respect to MP and lP . Thus we have established that fact (1) holds.

(2) We show via transfinite induction on α = l(A), that whenever A ∈ I (re-
spectively, ¬A ∈ I), then A ∈WP ↑ (α + 1) (respectively, ¬A ∈WP ↑ (α + 1)). For
the base case, note that if l(A) = 0, then A ∈ I implies that A occurs as the head

Uniform LP semantics 13

of a fact in ground(P). Hence, A ∈ WP ↑ 1. If ¬A ∈ I , then consider the set U of
all atoms B with l(B) = 0 and ¬B ∈ I . We show that U is an unfounded set of
P with respect to WP ↑ 0, and this suffices since it implies ¬A ∈ WP ↑ 1 by the
fact that A ∈ U . So let C ∈ U and let C ← body be a clause in ground(P). Since
¬C ∈ I , and l(C) = 0, we have that C satisfies (WFiia) with respect to I and l ,
and so condition (Uii) is satisfied showing that U is an unfounded set of P with
respect to I . Assume now that the induction hypothesis holds for all B ∈ BP with
l(B) < α. We consider two cases.

(Case i) If A ∈ I , then it satisfies (WFi) with respect to I and l . Hence there is a
clause A← body in ground(P) such that body ⊆ I and l(K) < α for all K ∈ body.
Hence body ⊆WP ↑α, and we obtain A ∈ TP (WP ↑α) as required.

(Case ii) If ¬A ∈ I , consider the set U of all atoms B with l(B) = α and ¬B ∈ I .
We show that U is an unfounded set of P with respect to WP ↑α, and this suffices
since it implies ¬A ∈ WP ↑ (α + 1) by the fact that A ∈ U . So let C ∈ U and
let C ← body be a clause in ground(P). Since ¬C ∈ I , we have that C satisfies
(WFii) with respect to I and l . If there is a literal L ∈ body with ¬L ∈ I and
l(L) < l(C), then by the induction hypothesis we obtain ¬L ∈WP ↑α, so condition
(Ui) is satisfied for the clause C ← body with respect to WP ↑ α and U . In the
remaining case we have that C satisfies condition (WFiia), and there exists an atom
B ∈ body with ¬B ∈ I and l(B) = l(C). Hence, B ∈ U showing that condition
(Uii) is satisfied for the clause C ← body with respect to WP ↑α and U . Hence U
is an unfounded set of P with respect to WP ↑α.

Example 5.3
Consider the program P from Example 2.2. With notation from the proof of The-
orem 5.2, we obtain l(p) = 0, l(q) = 1, and l(s) = 2.

As a special case, we consider programs with total well-founded model. The
following corollary follows without effort from Theorem 5.2.

Corollary 5.4
A normal logic program P has a total well-founded model if and only if there is a
total model I of P and a (total) level mapping l such that P satisfies (WF) with
respect to I and l .

As a further example for the application of our proof scheme, we use Theorem
5.2 in order to prove a result by van Gelder (van Gelder 1989) which we mentioned
in the introduction, concerning the alternating fixed-point characterization of the
well-founded semantics. Let us first introduce some temporary notation, where P
is an arbitrary program.

L0 = ∅
G0 = BP

Lα+1 = GLP (Gα) for any ordinal α

Gα+1 = GLP (Lα) for any ordinal α

Lα =
⋃

β<α Lβ for limit ordinal α

Gα =
⋂

β<α Gβ for limit ordinal α

14 P. Hitzler and M. Wendt

Since ∅ ⊆ BP , we obtain L0 ⊆ L1 ⊆ G1 ⊆ G0 and, by transfinite induction,
it can easily be shown that Lα ⊆ Lβ ⊆ Gβ ⊆ Gα whenever α ≤ β. In order to
apply our proof scheme, we need to detect a monotonic operator, or at least some
kind of monotonic construction, underlying the alternative fixed-point character-
ization. The assignment (Lα,Gα) 7→ (Lα+1,Gα+1), using the temporary notation
introduced above, will serve for this purpose. The proof of the following theorem is
based on it and our general proof scheme, with modifications where necessary, for
example for accomodating the fact that Gα+1 is not defined using Gα, but rather
Lα, and that we work with the complements BP \Gα instead of the sets Gα.

Theorem 5.5
Let P be a normal program. Then M = LP ∪¬(BP \GP) is the well-founded model
of P .

Proof
First, we define an M -partial level mapping l . For convenience, we will take as
image set of l , pairs (α,n) of ordinals, where n ≤ ω, with the lexicographic ordering.
This can be done without loss of generality because any set of pairs of ordinals,
lexicographically ordered, is certainly well-ordered and therefore order-isomorphic
to an ordinal. For A ∈ LP , let l(A) be the pair (α,n), where α is the least ordinal
such that A ∈ Lα+1, and n is the least ordinal such that A ∈ TP/Gα

↑ (n + 1). For
B 6∈ GP , let l(B) be the pair (β, ω), where β is the least ordinal such that B 6∈ Gβ+1.
We show next by transfinite induction that P satisfies (WF) with respect to M and
l .

Let A ∈ L1 = TP/BP
↑ ω. Since P/BP consists of exactly all clauses from

ground(P) which contain no negation, we have that A is contained in the least
two-valued model for a definite subprogram of P , namely P/BP , and (WFi) is sat-
isfied by Theorem 3.1. Now let ¬B ∈ ¬(BP \ GP) be such that B ∈ (BP \ G1) =
BP \ TP/∅ ↑ω. Since P/∅ contains all clauses from ground(P) with all negative lit-
erals removed, we obtain that each clause in ground(P) with head B must contain
a positive body literal C 6∈ G1, which, by definition of l , must have the same level
as B , hence (WFiia) is satisfied.

Assume now that, for some ordinal α, we have shown that A satisfies (WF) with
respect to M and l for all n ≤ ω and all A ∈ BP with l(A) ≤ (α,n).

Let A ∈ Lα+1 \ Lα = TP/Gα
↑ ω \ Lα. Then A ∈ TP/Gα

↑ n \ Lα for some
n ∈ N; note that all (negative) literals which were removed by the Gelfond-Lifschitz
transformation from clauses with head A have level less than (α, 0). Then the
assertion that A satisfies (WF) with respect to M and l follows again by Theorem
3.1.

Let A ∈ (BP \ Gα+1) ∩ Gα. Then A 6∈ TP/Lα
↑ ω. Now for any clause A ←

A1, . . . ,Ak ,¬B1, . . . ,¬Bm in ground(P), if Bj ∈ Lα for some j , then l(A) > l(Bj).
Otherwise, since A 6∈ TP/Lα

↑ω, we have that there exists Ai with Ai 6∈ TP/Lα
↑ω,

and hence l(A) ≥ l(Ai), and this suffices.
This finishes the proof that P satisfies (WF) with respect to M and l . It therefore

only remains to show that M is greatest with this property.

Uniform LP semantics 15

So assume that M1 6= M is the greatest model such that P satisfies (WF) with
respect to M1 and some M1-partial level mapping l1.

Assume L ∈ M1 \M and, without loss of generality, let the literal L be chosen
such that l1(L) is minimal. We consider the following two cases.

(Case i) If L = A is an atom, then there exists a clause A← body in ground(P)
such that l1(L) < l1(A) for all literals L in body, and such that body is true in M1.
Hence, body is true in M and A← body transforms to a clause A← A1, . . . ,An in
P/GP with A1, . . . ,An ∈ LP = TP/GP

↑ω. But this implies A ∈ M , contradicting
A ∈ M1 \M .

(Case ii) If L = ¬A ∈ M1 \M is a negated atom, then ¬A ∈ M1 and A ∈ GP =
TP/LP

↑ω, so A ∈ TP/LP
↑n for some n ∈ N. We show by induction on n that this

leads to a contradiction, to finish the proof.
If A ∈ TP/LP

↑1, then there is a unit clause A← in P/LP , and any corresponding
clause A ← ¬B1, . . . ,¬Bk in ground(P) satisfies B1, . . . ,Bk 6∈ LP . Since ¬A ∈ M1,
we also obtain by Theorem 5.2 that there is i ∈ {1, . . . , k} such that Bi ∈ M1 and
l1(Bi) < l1(A). By minimality of l1(A), we obtain Bi ∈ M , and hence Bi ∈ LP ,
which contradicts Bi 6∈ LP .

Now assume that there is no ¬B ∈ M1 \ M with B ∈ TP/LP
↑ k for any

k < n + 1, and let ¬A ∈ M1 \M with A ∈ TP/LP
↑ (n + 1). Then there is a clause

A← A1, . . . ,Am in P/LP with A1, . . . ,Am ∈ TP/LP
↑n ⊆ GP , and we note that we

cannot have ¬Ai ∈ M1\M for any i ∈ {1, . . . ,m}, by our current induction hypoth-
esis. Furthermore, it is also impossible for ¬Ai to belong to M for any i , otherwise
we would have Ai ∈ BP \GP . Thus, we conclude that we cannot have ¬Ai ∈ M1 for
any i . Moreover, there is a corresponding clause A ← A1, . . . ,Am ,¬B1, . . . ,¬Bm1

in ground(P) with B1, . . . ,Bm1 6∈ LP . Hence, by Theorem 5.2, we know that there
is i ∈ {1, . . . ,m1} such that Bi ∈ M1 and l1(Bi) < l1(A). By minimality of l1(A),
we conclude that Bi ∈ M , so that Bi ∈ LP , and this contradicts Bi 6∈ LP .

Example 5.6
Consider again the program P from Examples 2.2, 2.4, and 5.3. With notation from
the proof of Theorem 5.5 we get l(q) = (1, 0), l(s) = (1, 1), and l(p) = (0, ω).

6 Weakly Perfect Model Semantics

By applying our proof scheme, we have obtained new and uniform characteriza-
tions of the Fitting semantics and the well-founded semantics, and argued that
the well-founded semantics is a stratified version of the Fitting semantics. Our ar-
gumentation is based on the key intuition underlying the notion of stratification,
that recursion should be allowed through positive dependencies, but be forbidden
through negative dependencies. As we have seen in Theorem 5.2, the well-founded
semantics provides this for a setting in three-valued logic. Historically, a different se-
mantics, given by the so-called weakly perfect model associated with each program,
was proposed by Przymusinska and Przymusinski (Przymusinska and Przymusinski
1990) in order to carry over the intuition underlying the notion of stratification to
a three-valued setting. In the following, we will characterize weakly perfect models

16 P. Hitzler and M. Wendt

via level mappings, in the spirit of our approach. We will thus have obtained uni-
form characterizations of the Fitting semantics, the well-founded semantics, and the
weakly perfect model semantics, which makes it possible to easily compare them.

Definition 6.1
Let P be a normal logic program, I be a model of P and l be an I -partial level
mapping for P . We say that P satisfies (WS) with respect to I and l , if each
A ∈ dom(l) satisfies one of the following conditions.

(WSi) A ∈ I and there exists a clause A← L1, . . . ,Ln ∈ ground(P) such that Li ∈ I
and l(A) > l(Li) for all i = 1, . . . ,n.

(WSii) ¬A ∈ I and for each clause A ← A1, . . . ,An ,¬B1, . . . ,¬Bm ∈ ground(P) (at
least) one of the following three conditions holds.

(WSiia) There exists i such that ¬Ai ∈ I and l(A) > l(Ai).
(WSiib) For all k we have l(A) ≥ l(Ak), for all j we have l(A) > l(Bj), and

there exists i with ¬Ai ∈ I .
(WSiic) There exists j such that Bj ∈ I and l(A) > l(Bj).

We observe that the condition (WSii) in the above theorem is more general than
(Fii), and more restrictive than (WFii).

We will see below in Theorem 6.4, that Definition 6.1 captures the weakly perfect
model, in the same way in which Definitions 4.1 and 5.1 capture the Fitting model,
respectively the well-founded model.

In order to proceed with this, we first need to recall the definition of weakly
perfect models due to Przymusinska and Przymusinski (Przymusinska and Przy-
musinski 1990), and we will do this next. For ease of notation, it will be convenient
to consider (countably infinite) propositional programs instead of programs over
a first-order language. This is both common practice and no restriction, because
the ground instantiation ground(P) of a given program P can be understood as a
propositional program which may consist of a countably infinite number of clauses.
Let us remark that our definition below differs slightly from the original one, and
we will return to this point later. It nevertheless leads to exactly the same notion
of weakly stratified program.

Let P be a (countably infinite propositional) normal logic program. An atom
A ∈ BP refers to an atom B ∈ BP if B or ¬B occurs as a body literal in a clause
A ← body in P . A refers negatively to B if ¬B occurs as a body literal in such a
clause. We say that A depends on B if the pair (A,B) is in the transitive closure
of the relation refers to, and we write this as B ≤ A. We say that A depends

negatively on B if there are C ,D ∈ BP such that C refers negatively to D and the
following hold: (1) C ≤ A or C = A (the latter meaning identity). (2) B ≤ D or
B = D . We write B < A in this case. For A,B ∈ BP , we write A ∼ B if either
A = B , or A and B depend negatively on each other, i.e. if A < B and B < A
both hold. The relation ∼ is an equivalence relation and its equivalence classes are
called components of P . A component is trivial if it consists of a single element A
with A 6< A.

Uniform LP semantics 17

Let C1 and C2 be two components of a program P . We write C1 ≺ C2 if and
only if C1 6= C2 and for all A1 ∈ C1 there is A2 ∈ C2 with A1 < A2. A component
C1 is called minimal if there is no component C2 with C2 ≺ C1.

Given a normal logic program P , the bottom stratum S (P) of P is the union of
all minimal components of P . The bottom layer of P is the subprogram L(P) of P
which consists of all clauses from P with heads belonging to S (P).

Given a (partial) interpretation I of P , we define the reduct of P with respect

to I as the program P/I obtained from P by performing the following reductions.
(1) Remove from P all clauses which contain a body literal L such that ¬L ∈ I or
whose head belongs to I . (2) Remove from all remaining clauses all body literals
L with L ∈ I . (3) Remove from the resulting program all non-unit clauses, whose
heads appear also as unit clauses in the program.

Definition 6.2
The weakly perfect model MP of a program P is defined by transfinite induction
as follows. Let P0 = P and M0 = ∅. For each (countable) ordinal α > 0 such that
programs Pδ and partial interpretations Mδ have already been defined for all δ < α,
let

Nα =
⋃

0<δ<α Mδ,

Pα = P/Nα,

Rα is the set of all atoms which are undefined in Nα

and were eliminated from P by reducing it with respect to Nα,

Sα = S (Pα) , and
Lα = L (Pα) ·

The construction then proceeds with one of the following three cases. (1) If Pα

is empty, then the construction stops and MP = Nα ∪ ¬Rα is the (total) weakly

perfect model of P . (2) If the bottom stratum Sα is empty or if the bottom layer Lα

contains a negative literal, then the construction also stops and MP = Nα ∪¬Rα is
the (partial) weakly perfect model of P . (3) In the remaining case Lα is a definite
program, and we define Mα = H ∪¬Rα, where H is the definite (partial) model of
Lα, and the construction continues.

For every α, the set Sα ∪Rα is called the α-th stratum of P and the program Lα

is called the α-th layer of P .

A weakly stratified program is a program with a total weakly perfect model. The
set of its strata is then called its weak stratification.

Example 6.3
Consider the program P which consists of the following six clauses.

a ← ¬b
b ← c,¬a
b ← c,¬d
c ← b,¬e
d ← e
e ← d

18 P. Hitzler and M. Wendt

Then N1 = M1 = {¬d ,¬e} and P/N1 consists of the clauses

a ← ¬b
b ← c,¬a
b ← c
c ← b·

Its least component is {a, b, c}. The corresponding bottom layer, which is all
of P/N1, contains a negative literal, so the construction stops and M2 = N1 =
{¬d ,¬e} is the (partial) weakly perfect model of P .

Let us return to the remark made earlier that our definition of weakly perfect
model, as given in Definition 6.2, differs slightly from the version introduced by
Przymusinska and Przymusinski (Przymusinska and Przymusinski 1990). In order
to obtain the original definition, points (2) and (3) of Definition 6.2 have to be
replaced as follows: (2) If the bottom stratum Sα is empty or if the bottom layer
Lα has no least two-valued model, then the construction stops and MP = Nα∪¬Rα

is the (partial) weakly perfect model of P . (3) In the remaining case Lα has a least

two-valued model, and we define Mα = H ∪ ¬Rα, where H is the partial model of
Lα corresponding to its least two-valued model, and the construction continues.

The original definition is more general due to the fact that every definite program
has a least two-valued model. However, while the least two-valued model of a definite
program can be obtained as the least fixed point of the monotonic (and even Scott-
continuous) operator T+

P , we know of no similar result, or general operator, for
obtaining the least two-valued model, if existent, of progams which are not definite.
The original definition therefore seems to be rather awkward, and indeed, for the
definition of weakly stratified programs (Przymusinska and Przymusinski 1990), the
more general version was dropped in favour of requiring definite layers. So Definition
6.2 is an adaptation taking the original notion of weakly stratified program into
account, and appears to be more natural. In the following, the notion of weakly

perfect model will refer to Definition 6.2.
To be pedantic, there is another difference, namely that we have made explicit

the sets Rα of Definition 6.2, which were only implicitly treated in the original
definition. The result is the same.

We show next that Definition 6.1 indeed captures the weakly perfect model. The
proof basically follows our proof scheme, with some alterations, and the monotonic
construction which defines the weakly perfect model serves in place of a monotonic
operator. The technical details of the proof are very involved.

Theorem 6.4
Let P be a normal logic program with weakly perfect model MP . Then MP is the
greatest model among all models I , for which there exists an I -partial level mapping
l for P such that P satisfies (WS) with respect to I and l .

We prepare the proof of Theorem 6.4 by introducing some notation, which will
make the presentation much more transparent. As for the proof of Theorem 5.5, we
will consider level mappings which map into pairs (β,n) of ordinals, where n ≤ ω.

Uniform LP semantics 19

Let P be a normal logic program with (partial) weakly perfect model MP . Then
define the MP -partial level mapping lP as follows: lP (A) = (β,n), where A ∈ Sβ∪Rβ

and n is least with A ∈ T+
Lβ
↑ (n + 1), if such an n exists, and n = ω otherwise.

We observe that if lP (A) = lP (B) then there exists α with A,B ∈ Sα ∪ Rα, and if
A ∈ Sα ∪ Rα and B ∈ Sβ ∪ Rβ with α < β, then l(A) < l(B).

The following definition is again technical and will help to ease notation and
arguments.

Definition 6.5
Let P and Q be two programs and let I be an interpretation.

1. If C1 = (A← L1, . . . ,Lm) and C2 = (B ← K1, . . . ,Kn) are two clauses, then
we say that C1 subsumes C2, written C1 4 C2, if A = B and {L1, . . . ,Lm} ⊆
{K1, . . . ,Kn}.

2. We say that P subsumes Q , written P 4 Q , if for each clause C1 in P there
exists a clause C2 in Q with C1 4 C2.

3. We say that P subsumes Q model-consistently (with respect to I), written
P 4I Q , if the following conditions hold. (i) For each clause C1 = (A ←
L1, . . . ,Lm) in P there exists a clause C2 = (B ← K1, . . . ,Kn) in Q with
C1 4 C2 and ({K1, . . . ,Kn} \ {L1, . . . ,Lm}) ⊆ I . (ii) For each clause C2 =
(B ← K1, . . . ,Kn) in Q with {K1, . . . ,Kn} ∈ I and B 6∈ I there exists a
clause C1 in P such that C1 4 C2.

A clause C1 subsumes a clause C2 if both have the same head and the body
of C2 contains at least the body literals of C1, e.g. p ← q subsumes p ← q ,¬r .
A program P subsumes a program Q if every clause in P can be generated this
way from a clause in Q , e.g. the program consisting of the two clauses p ← q and
p ← r subsumes the program consisting of p ← q ,¬s and p ← r , p. This is also
an example of a model-consistent subsumption with respect to the interpretation
{¬s, p}. Concerning Example 6.3, note that P/N1 4N1 P , which is no coincidence.
Indeed, Definition 6.5 facilitates the proof of Theorem 6.4 by employing the follow-
ing lemma.

Lemma 1
With notation from Definiton 6.2, we have P/Nα 4Nα

P for all α.

Proof
Condition 3(i) of Definition 6.5 holds because every clause in P/Nα is obtained
from a clause in P by deleting body literals which are contained in Nα. Condition
3(ii) holds because for each clause in P with head A 6∈ Nα whose body is true under
Nα, we have that A← is a fact in P/Nα.

The next lemma establishes the induction step in part (2) of the proof of Theorem
6.4.

20 P. Hitzler and M. Wendt

Lemma 2
If I is a non-empty model of a (infinite propositional normal) logic program P ′ and
l an I -partial level mapping such that P ′ satisfies (WS) with respect to I and l ,
then the following hold for P = P ′/∅.

1. The bottom stratum S (P) of P is non-empty and consists of trivial components
only.

2. The bottom layer L(P) of P is definite.
3. The definite (partial) model N of L(P) is consistent with I in the following

sense: we have I ′ ⊆ N , where I ′ is the restriction of I to all atoms which are
not undefined in N .

4. P/N satisfies (WS) with respect to I \N and l/N , where l/N is the restriction
of l to the atoms in I \N .

Proof
(a) Assume there exists some component C ⊆ S (P) which is not trivial. Then
there must exist atoms A,B ∈ C with A < B , B < A, and A 6= B . Without loss
of generality, we can assume that A is chosen such that l(A) is minimal. Now let
A′ be any atom occuring in a clause with head A. Then A > B > A ≥ A′, hence
A > A′, and by minimality of the component we must also have A′ > A, and we
obtain that all atoms occuring in clauses with head A must be contained in C . We
consider two cases.

(Case i) If A ∈ I , then there must be a fact A ← in P , since otherwise by
(WSi) we had a clause A ← L1, . . . ,Ln (for some n ≥ 1) with L1, . . . ,Ln ∈ I and
l(A) > l(Li) for all i , contradicting the minimality of l(A). Since P = P ′/∅ we
obtain that A ← is the only clause in P with head A, contradicting the existence
of B 6= A with B < A.

(Case ii) If ¬A ∈ I , and since A was chosen minimal with respect to l , we obtain
that condition (WSiib) must hold for each clause A ← A1, . . . ,An ,¬B1, . . . ,¬Bm

with respect to I and l , and that m = 0. Furthermore, all Ai must be contained in
C , as already noted above, and l(A) ≥ l(Ai) for all i by (WSiib). Also from (Case
i) we obtain that no Ai can be contained in I . We have now established that for
all Ai in the body of any clause with head A, we have l(A) = l(Ai) and ¬Ai ∈ I .
The same argument holds for all clauses with head Ai , for all i , and the argument
repeats. Now from A > B we obtain that there are D ,E ∈ C with A ≥ E (or
A = E), D ≥ B (or D = B), and E refers negatively to D . As we have just seen,
we obtain ¬E ∈ I and l(E) = l(A). Since E refers negatively to D , there is a clause
with head E and ¬D contained in the body of this clause. Since (WSii) holds for
this clause, there must be a literal L in the body with level less than l(E), hence
l(L) < l(A) and L ∈ C which is a contradiction. We thus have established that all
components are trivial.

We show next that the bottom stratum is non-empty. Indeed, let A be an atom
such that l(A) is minimal. We will show that {A} is a component. So assume it is
not, i.e. that there is B with B < A. Then there exist D1, . . . ,Dk , for some k ∈ N,
such that D1 = A, Dj refers to Dj+1 for all j = 1, . . . , k−1, and Dk refers negatively
to some B ′ with B ′ ≥ B (or B ′ = B).

Uniform LP semantics 21

We show next by induction that for all j = 1, . . . , k the following statements hold:
¬Dj ∈ I , B < Dj , and l(Dj) = l(A). Indeed note that for j = 1, i.e. Dj = A, we have
that B < Dj = A and l(Dj) = l(A). Assuming A ∈ I , we obtain by minimality
of l(A) that A ← is the only clause in P = P ′/∅ with head A, contradicting
the existence of B < A. So ¬A ∈ I , and the assertion holds for j = 1. Now
assume the assertion holds some j < k . Then obviously Dj+1 > B . By ¬Dj ∈ I
and l(Dj) = l(A), we obtain that (WSii) must hold, and by the minimality of
l(A) we infer that (WSiib) must hold and that no clause with head Dj contains
negated atoms. So l(Dj+1) = l(Dj) = l(A) holds by (WSiib) and minimality of
l(A). Furthermore, the assumption Dj+1 ∈ I can be rejected by the same argument
as for A above, because then Dj+1 ← would be the only clause with head Dj+1,
by minimality of l(Dj+1) = l(A), contradicting B < Dj+1. This concludes the
inductive proof.

Summarizing, we obtain that Dk refers negatively to B ′, and that ¬Dk ∈ I .
But then there is a clause with head Dk and ¬B ′ in its body which satisfies (WSii),
contradicting the minimality of l(Dk) = l(A). This concludes the proof of statement
(a).

(b) According to (Przymusinska and Przymusinski 1990) we have that whenever
all components are trivial, then the bottom layer is definite. So the assertion follows
from (a).

(c) Let A ∈ I ′ be an atom with A 6∈ N , and assume without loss of generality
that A is chosen such that l(A) is minimal with these properties. Then there must
be a clause A← body in P such that all literals in body are true with respect to I ′,
hence with respect to N by minimality of l(A). Thus body is true in N , and since
N is a model of L(P) we obtain A ∈ N , which contradicts our assumption.

Now let A ∈ N be an atom with A 6∈ I ′, and assume without loss of generality
that A is chosen such that n is minimal with A ∈ T+

L(P) ↑ (n + 1). But then there
is a definite clause A ← body in L(P) such that all atoms in body are true with
respect to T+

L(P) ↑n, hence also with respect to I ′, and since I ′ is a model of L(P)
we obtain A ∈ I ′, which contradicts our assumption.

Finally, let ¬A ∈ I ′. Then we cannot have A ∈ N since this implies A ∈ I ′. So
¬A ∈ N since N is a total model of L(P).

(d) From Lemma 1, we know that P/N 4N P . We distinguish two cases.
(Case i) If A ∈ I \ N , then there must exist a clause A ← L1, . . . ,Lk in P such

that Li ∈ I and l(A) > l(Li) for all i . Since it is not possible that A ∈ N , there
must also be a clause in P/N which subsumes A← L1, . . . ,Lk , and which therefore
satisfies (WSi). So A satisfies (WSi).

(Case ii) If ¬A ∈ I \ N , then for each clause A ← body1 in P/N there must be
a clause A ← body in P which is subsumed by the former, and since ¬A ∈ I , we
obtain that condition (WSii) must be satisfied by A, and by the clause A← body.
Since reduction with respect to N removes only body literals which are true in N ,
condition (WSii) is still met.

We can now proceed with the proof.

22 P. Hitzler and M. Wendt

Proof of Theorem 6.4
The proof will be established by showing the following facts: (1) P satisfies (WS)
with respect to MP and lP . (2) If I is a model of P and l an I -partial level mapping
such that P satisfies (WS) with respect to I and l , then I ⊆ MP .

(1) Let A ∈ dom(lP) and lP (A) = (α,n). We consider two cases.
(Case i) If A ∈ MP , then A ∈ T+

Lα
↑ (n + 1). Hence there exists a definite

clause A← A1, . . . ,Ak in Lα with A1, . . . ,Ak ∈ T+
Lα
↑n, so A1, . . . ,Ak ∈ MP with

lP (A) > lP (Ai) for all i . Since P/Nα 4Nα
P by Lemma 1, there must exist a clause

A ← A1, . . . ,Ak ,L1, . . . ,Lm in P with literals L1, . . . ,Lm ∈ Nα ⊆ MP , and we
obtain lP (Lj) < lP (A) for all j = 1, . . . ,m. So (WSi) holds in this case.

(Case ii) If ¬A ∈ MP , then let A← A1, . . . ,Ak ,¬B1, . . . ,¬Bm be a clause in P ,
noting that (WSii) is trivially satisfied in case no such clause exists. We consider
the following two subcases.

(Subcase ii.a) Assume A is undefined in Nα and was eliminated from P by re-
ducing it with respect to Nα, i.e. A ∈ Rα. Then, in particular, there must be
some ¬Ai ∈ Nα or some Bj ∈ Nα, which yields lP (Ai) < lP (A), respectively
lP (Bj) < lP (A), and hence one of (WSiia), (WSiic) holds.

(Subcase ii.b) Assume ¬A ∈ H , where H is the definite (partial) model of Lα.
Since P/Nα subsumes P model-consistently with respect to Nα, we obtain that
there must be some Ai with ¬Ai ∈ H , and by definition of lP we obtain lP (A) =
lP (Ai) = (α, ω), and hence also lP (Ai′) ≤ lP (Ai) for all i ′ 6= i . Furthermore, since
P/Nα is definite, we obtain that ¬Bj ∈ Nα for all j , hence lP (Bj) < lP (A) for all
j . So condition (WSiib) is satisfied.

(2) First note that for all models M , N of P with M ⊆ N we have (P/M)/N =
P/(M ∪N) = P/N and (P/N)/∅ = P/N .

Let Iα denote I restricted to the atoms which are not undefined in Nα ∪ Rα. It
suffices to show the following: For all α > 0 we have Iα ⊆ Nα∪Rα, and I \MP = ∅.

We next show by induction that if α > 0 is an ordinal, then the following state-
ments hold. (a) The bottom stratum of P/Nα is non-empty and consists of trivial
components only. (b) The bottom layer of P/Nα is definite. (c) Iα ⊆ Nα ∪ Rα. (d)
P/Nα+1 satisfies (WS) with respect to I \Nα+1 and l/Nα+1.

Note first that P satisfies the hypothesis of Lemma 2, hence also its consequences.
So P/N1 = P/∅ satisfies (WS) with respect to I \N1 and l/N1, and by application
of Lemma 2 we obtain that statements (a) and (b) hold. For (c), note that no atom
in R1 can be true in I , because no atom in R1 can appear as head of a clause in P ,
and apply Lemma 2 (c). For (d), apply Lemma 2, noting that P/N2 4N2 P .

For α being a limit ordinal, we can show exactly as in the proof of Lemma 2 (d),
that P satisfies (WS) with respect to I \ Nα and l/Nα. So Lemma 2 is applicable
and statements (a) and (b) follow. For (c), let A ∈ Rα. Then every clause in P with
head A contains a body literal which is false in Nα. By induction hypothesis, this
implies that no clause with head A in P can have a body which is true in I . So
A 6∈ I . Together with Lemma 2 (c), this proves statement (c). For (d), apply again
Lemma 2 (d), noting that P/Nα+1 4Nα+1 P .

For α = β + 1 being a successor ordinal, we obtain by induction hypothesis that
P/Nβ satisfies the hypothesis of Lemma 2, so again statements (a) and (b) follow

Uniform LP semantics 23

immediately from this lemma, and (c), (d) follow as in the case for α being a limit
ordinal.

It remains to show that I \MP = ∅. Indeed by the transfinite induction argument
just given we obtain that P/MP satisfies (WS) with respect to I \MP and l/MP . If
I \MP is non-empty, then by Lemma 2 the bottom stratum S (P/MP) is non-empty
and the bottom layer L(P/MP) is definite with definite (partial) model M . Hence
by definition of the weakly perfect model MP of P we must have that M ⊆ MP

which contradicts the fact that M is the definite model of L(P/MP). Hence I \MP

must be empty which concludes the proof.

Of independent interest is again the case, where the model in question is total.
We see immediately, for example, in the light of Theorem 3.3, that the model is
then stable.

Corollary 6.6
A normal logic program P is weakly stratified, i.e. has a total weakly perfect model,
if and only if there is a total model I of P and a (total) level mapping l for P such
that P satisfies (WS) with respect to I and l .

We also obtain the following corollary as a trivial consequence of our uniform
characterizations by level mappings.

Corollary 6.7
Let P be a normal logic progam with Fitting model MF, weakly perfect model
MWP, and well-founded model MWF. Then MF ⊆ MWP ⊆ MWF.

Example 6.8
Consider the program P from Example 6.3. Then MF = ∅, MWP = {¬d ,¬e}, and
MWF = {a,¬b,¬c,¬d ,¬e}.

7 Related Work

As already mentioned in the introduction, level mappings have been used for study-
ing semantic aspects of logic programs in a number of different ways. Our presen-
tation suggests a novel application of level mappings, namely for providing uniform
characterizations of different fixed-point semantics for logic programs with nega-
tion. Although we believe our perspective to be new in this general form, there
nevertheless have been results in the literature which are very close in spirit to our
characterizations.

A first noteable example of this is Fages’ characterization of stable models (Fages
1994), which we have stated in Theorem 3.3. Another result which uses level map-
pings to characterize a semantics is by Lifschitz, Przymusinski, Stärk, and McCain
(Lifschitz et al. 1995, Lemma 3). We briefly compare their characterization of the
well-founded semantics and ours. In fact, this discussion can be based upon two dif-
ferent characterizations of the least fixed point of a monotonic operator F . On the
one hand, this least fixed point is of course the least of all fixed points of F , and on
the other hand, this least fixed point is the limit of the sequence of powers (F ↑ α)α,

24 P. Hitzler and M. Wendt

and in this latter sense is the least iterate of F which is also a fixed point. Our
characterizations of definite, Fitting, well-founded, and weakly stratified semantics
use the latter approach, which is reflected in our general proof scheme, which de-
fines level mappings according to powers, or iterates, of the respective operators.
The results by Fages (Fitting 1994) and Lifschitz et al. (Lifschitz et al. 1995) hinge
upon the former approach, i.e. they are based on the idea of characterizing the fixed
points of an operator — GLP , respectively ΨP (Przymusinski 1989; Bonnier et al.
1991) — and so the sought fixed point turns out to be the least of those. Conse-
quently, as can be seen in the proof of Theorem 3.3, the level mapping in Fages’
characterization, and likewise in the result by Lifschitz et al., arises only indirectly
from the operator — GLP , respectively ΨP — whose fixed point is sought. Indeed,
the level mapping by Fages is defined according to iterates of TP/I , which is the
operator for obtaining GLP (I), for any I . The result by Lifschitz et al. is obtained
similarly based on a three-valued operator ΨP .

Unforunately, these characterizations by Fages, in Theorem 3.3, respectively by
Lifschitz et al. (Lifschitz et al. 1995), seem to be applicable only to operators which
are defined by least fixed points of other operators, as is the case for GLP and
ΨP , and it seems that the approach by Lifschitz et al. is unlikely to scale to other
semantics. For example, we attempted a straightforward characterization of the
Fitting semantics in the spririt of Lifschitz et al. which failed.

On a more technical level, a difference between our result, Theorem 5.2, and
the characterization by Lifschitz et al. (Lifschitz et al. 1995) of the well-founded
semantics is this: In our characterization, the model is described using conditions on
atoms which are true or false (i.e. not undefined) in the well-founded model, whereas
in theirs the conditions are on those atoms which are true or undefined (i.e. not

false) in the well-founded model. The reason for this is that we consider iterates
of WP , where WP ↑ 0 = ∅, while they use the fact that each fixed point of ΨP

is a least fixed point of ΦP/I with respect to the truth ordering on interpretations
(note that in this case P/I denotes a three-valued generalization of the Gelfond-
Lifschitz transformation due to Przymusinski (Przymusinski 1989)). In this ordering
we have ΦP/I ↑ 0 = ¬BP . It is nevertheless nice to note that in the special case of
the well-founded semantics there exist two complementary characterizations using
level mappings.

Since our proposal emphasizes uniformity of characterizations, it is related to
the large body of work on uniform approaches to logic programming semantics, of
which we will discuss two in more detail: the algebraic approach via bilattices due
to Fitting, and the work of Dix.

Bilattice-based semantics has a long tradition in logic programming theory, start-
ing out from the four-valued logic of Belnap (Belnap 1977). The underlying set of
truth values, a four-element lattice, was recognized to admit two ordering rela-
tions which can be interpreted as truth- and knowledge-order. As such it has the
structure of a bilattice, a term due to Ginsberg (Ginsberg 1986), who was the first
to note the importance of bilattices for inference in artificial intelligence (Gins-
berg 1992). This general approach was imported into logic programming theory
by Fitting (Fitting 1991a). Although multi-valued logics had been used for logic

Uniform LP semantics 25

programming semantics before (Fitting 1985), bilattices provided an interesting
approach to semantics as they are capable of incorporating both reasoning about
truth and reasoning about knowledge, and, more technically, because they have
nice algebraic behaviour. Using this general framework Fitting was able to show
interesting relationships between the stable and the well-founded semantics (Fitting
1991b; Fitting 1993; Fitting 2002).

Without claiming completeness we note two current developments in the bilattice-
based approach to logic programming: Fitting’s framework has been extended
to an algebraic approach for approximating operators by Denecker, Marek, and
Truszczynski (Denecker et al. 2000). The inspiring starting point of this work was
the noted relationship between the stable model semantics and the well-founded
semantics, the latter approximating the former. The other line of research was pur-
sued mainly by Arieli and Avron (Arieli and Avron 1994; Arieli and Avron 1998;
Arieli 2002), who use bilattices for paraconsistent reasoning in logic programming.
The above outline of the historical development of bilattices in logic programming
theory suggests a similar kind of uniformity as we claim for our approach. The exact
relationship between both approaches, however, is still to be investigated. On the
one hand, bilattices can cope with paraconsistency — an issue of logic programming
and deductive databases, which is becoming more and more important — in a very
convenient way. On the other hand, our approach can deal with semantics based on
multi-valued logics, whose underlying truth structure is not a bilattice. A starting
point for investigations in this direction could be the obvious meeting point of both
theories: the well-founded semantics for which we can provide a characterization
and which is a special case of the general approximation theory of Denecker et al.
(Denecker et al. 2000).

Another very general, and uniform, approach to logic programming pursues a
different point of view, namely logic programming semantics as nonmonotonic in-
ference. The general theory of nonmonotonic inference and a classification of prop-
erties of nonmonotonic operators was developed by Kraus, Lehmann, and Magidor
(Kraus et al. 1990), leading to the notion KLM-axioms for these properties, and
developed further by Makinson (Makinson 1994). These axioms were adopted to
the terminology of logic programming and extended to a general theory of logic pro-
gramming semantics by Dix (Dix 1995a; Dix 1995b). In this framework, different
known semantics are classified according to strong properties — the KLM-axioms
which hold for the semantics – and weak properties — specific properties which
deal with the irregularities of negation-as-failure. As such Dix’ framework is indeed
a general and uniform approach to logic programming, its main focus being on
semantic properties of logic programs. Our approach in turn could be called semi-

syntactic in that definitions that employ level mappings naturally take the structure
of the logic program into account. As in the case of the bilattice-based approaches,
it is not yet completely clear whether these two approaches can be amalgamated
in the sense of a correspondence between properties of level mappings, e.g. strict
or semi-strict descent of the level, etc., on the one hand, and KLM-properties of
the logic program on the other. However, we believe that it is possible to develop
a proof scheme for nonmonotonic properties of logic programs in the style of the

26 P. Hitzler and M. Wendt

proof scheme presented in the paper, which can be used to cast semantics based on
monotonic operators into level mapping form.

We finally mention the work by Hitzler and Seda (Hitzler and Seda 1999), which
was the root and starting point for our investigations. This framework aims at
the characterization of program classes, such as (locally) stratified programs (Apt
et al. 1988; Przymusinski 1988), acceptable programs (Apt and Pedreschi 1993),
or Φ-accessible programs (Hitzler and Seda 1999). Such program classes appear
naturally whenever a semantics is not defined for all logic programs. In these cases
one tries to characterize those programs, for which the semantics is well-defined or
well-behaved. Their main tool were monotonic operators in three-valued logic, in
the spirit of Fitting’s ΦP , rather than level mappings. With each operator comes
a least fixed point, hence a semantics, and it is easily checked that these semantics
can be characterized using our approach, again by straightforward application of
our proof scheme. Indeed, preliminary steps in this direction already led to an
independent proof of a special case of Corollary 6.7 (Hitzler and Seda 2001).

8 Conclusions and Further Work

We have proposed a novel approach for obtaining uniform characterizations of dif-
ferent semantics for logic programs. We have exemplified this by giving new alterna-
tive characterizations of some of the major semantics from the literature. We have
developed and presented a methodology for obtaining characterizations from mono-
tonic semantic operators or related constructions, and a proof scheme for showing
correctness of the obtained characterizations. We consider our contribution to be
fundamental, with potential for extension in many directions.

Our approach employs level mappings as central tool. The uniformity with which
our characterizations were obtained and proven to be correct suggests that our
method should be of wider applicability. In fact, since it builds upon the well-
known Tarski fixed point theorem, it should scale well to most, if not all semantics,
which are defined by means of a monotonic operator. The main contribution of this
paper is thus, that we have developed a novel way of presenting logic programming
semantics in some kind of normal or standard form. This can be used for easy
comparison of semantics with respect to the syntactic structures that can be used
with a certain semantics, i.e. to what extent the semantics is able to ’break up’
positive or negative dependencies or loops between atoms in the program, as in
Corollary 6.7.

However, there are many more requirements which a general and uniform ap-
proach to logic program semantics should eventually be able to meet, including (i)
a better understanding of known semantics, (ii) proof schemes for deriving prop-
erties of semantics, (iii) extendability to new programming constructs, and (iv)
support for designing new semantics for special purposes.

Requirement (i) is met to some extent by our appoach, since it enables easy
comparison of semantics, as discussed earlier. However, in order to meet the other
requirements, i.e. to set up a meta-theory of level-mapping-based semantics, a lot
of further research is needed. We list some topics to be pursued in the future,

Uniform LP semantics 27

some of which are under current investigation by the authors. There are many
properties which are interesting to know about a certain semantics, depending on
one’s perspective. For the nonmonotonic reasoning aspect of logic programming
it would certainly be interesting to have a proof scheme as flexible and uniform
as the one presented in this paper. Results and proofs in the literature (Fages
1994; Dix 1995a; Turner 2001) suggest that there is a strong dependency between
notions of ordering on the Herbrand base, as expressed by level mappings, and
KLM-properties satisfied by a semantics, which constitutes some evidence that a
general proof scheme for proving KLM-properties from level mapping definitions can
be developed. Other interesting properties are e.g. the computational complexity of
a semantics, but also logical characterizations of the behaviour of negation in logic
programs, a line of research initiated by Pearce (Pearce 1997).

For (iii), it would be desirable to extend our characterizations also to disjunc-
tive programs, which could perhaps contribute to the discussion about appropriate
generalizations of semantics of normal logic programs to the disjunctive case.

We finally want to mention that the elegant mathematical framework of level
mapping definitions naturally gives rise to the design of new semantics. However,
at the time being this is only a partial fulfillment of (iv): As long as a meta-theory
for level-mapping-based semantics is missing, one still has to apply conventional
methods for extracting properties of the respective semantics from its definition.

References

Abramsky, S. and Jung, A. 1994. Domain theory. In Handbook of Logic in Computer
Science, S. Abramsky, D. Gabbay, and T. S. Maibaum, Eds. Vol. 3. Clarendon, Oxford,
1–168.

Apt, K. R., Blair, H. A., and Walker, A. 1988. Towards a theory of declarative
knowledge. In Foundations of Deductive Databases and Logic Programming, J. Minker,
Ed. Morgan Kaufmann, Los Altos, CA, 89–148.

Apt, K. R. and Pedreschi, D. 1993. Reasoning about termination of pure Prolog
programs. Information and Computation 106, 109–157.

Arieli, O. 2002. Paraconsistent declarative semantics for extended logic programs. Annals
of Mathematics and Artificial Intelligence 36(4), 381–417.

Arieli, O. and Avron, A. 1994. Logical bilattices and inconsistent data. In Proceedings
of the 9th Annual IEEE Symposium on Logic in Computer Science. IEEE Press, 468–
476.

Arieli, O. and Avron, A. 1998. The value of the four values. Artificial Intelligence 102, 1,
97–141.

Belnap, N. D. 1977. A useful four-valued logic. In Modern Uses of Multiple-Valued
Logic, J. M. Dunn and G. Epstein, Eds. Reidel, Dordrecht, 5–37.

Bezem, M. 1989. Characterizing termination of logic programs with level mappings. In
Proceedings of the North American Conference on Logic Programming, E. L. Lusk and
R. A. Overbeek, Eds. MIT Press, Cambridge, MA, 69–80.

Bonnier, S., Nilsson, U., and Näslund, T. 1991. A simple fixed point characterization
of three-valued stable model semantics. Information Processing Letters 40, 2, 73–78.

Cavedon, L. 1991. Acyclic programs and the completeness of SLDNF-resolution. Theo-
retical Computer Science 86, 81–92.

28 P. Hitzler and M. Wendt

Denecker, M., Marek, V. W., and Truszczynski, M. 2000. Approximating operators,
stable operators, well-founded fixpoints and applications in non-monotonic reasoning. In
Logic-based Artificial Intelligence, J. Minker, Ed. Kluwer Academic Publishers, Boston,
Chapter 6, 127–144.

Dix, J. 1995a. A classification theory of semantics of normal logic programs: I. Strong
properties. Fundamenta Informaticae 22, 3, 227–255.

Dix, J. 1995b. A classification theory of semantics of normal logic programs: II. Weak
properties. Fundamenta Informaticae 22, 3, 257–288.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G., and Scarcello, F. 1997. A deductive
system for nonmonotonic reasoning. In Proceedings of the 4th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’97), J. Dix, U. Furbach,
and A. Nerode, Eds. Lecture Notes in Artificial Intelligence, vol. 1265. Springer, Berlin,
364–375.

Fages, F. 1994. Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science 1, 51–60.

Fitting, M. 1985. A Kripke-Kleene-semantics for general logic programs. The Journal
of Logic Programming 2, 295–312.

Fitting, M. 1991a. Bilattices and the semantics of logic programming. The Journal of
Logic Programming 11, 91–116.

Fitting, M. 1991b. Well-founded semantics, generalized. In Logic Programming, Pro-
ceedings of the 1991 International Symposium. MIT Press, Cambridge, MA, 71–84.

Fitting, M. 1993. The family of stable models. Journal of Logic Programming 17,
197–225.

Fitting, M. 1994. Metric methods: Three examples and a theorem. The Journal of Logic
Programming 21, 3, 113–127.

Fitting, M. 2002. Fixpoint semantics for logic programming — A survey. Theoretical
Computer Science 278, 1–2, 25–51.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic program-
ming. In Logic Programming. Proceedings of the 5th International Conference and
Symposium on Logic Programming, R. A. Kowalski and K. A. Bowen, Eds. MIT Press,
1070–1080.

Ginsberg, M. L. 1986. Bilattices. Tech. Rep. 86-72, Stanford University, KSL.

Ginsberg, M. L. 1992. Multivalued logics: A uniform approach to inference in artificial
intelligence. Computational Intelligence 4, 3, 256–316.

Hitzler, P. 2001. Generalized metrics and topology in logic programming semantics.
Ph.D. thesis, Department of Mathematics, National University of Ireland, University
College Cork.

Hitzler, P. 2003. Towards a systematic account of different logic programming seman-
tics. In Proceedings of the 26th German Conference on Artificial Intelligence, KI2003,
Hamburg, September 2003, A. Günter, R. Krause, and B. Neumann, Eds. Lecture Notes
in Artificial Intelligence, vol. 2821. Springer, Berlin, 355–369.

Hitzler, P. and Seda, A. K. 1999. Characterizations of classes of programs by three-
valued operators. In Logic Programming and Nonmonotonic Reasoning, Proceedings of
the 5th International Conference on Logic Programming and Non-Monotonic Reasoning,
LPNMR’99, El Paso, Texas, USA, M. Gelfond, N. Leone, and G. Pfeifer, Eds. Lecture
Notes in Artificial Intelligence, vol. 1730. Springer, Berlin, 357–371.

Hitzler, P. and Seda, A. K. 2000. A note on relationships between logic programs
and neural networks. In Proceedings of the Fourth Irish Workshop on Formal Methods,
IWFM’00, P. Gibson and D. Sinclair, Eds. Electronic Workshops in Comupting (eWiC).
British Computer Society.

Uniform LP semantics 29

Hitzler, P. and Seda, A. K. 2001. Unique supported-model classes of logic programs.
Information 4, 3, 295–302.

Hitzler, P. and Seda, A. K. 2003a. Continuity of semantic operators in logic pro-
gramming and their approximation by artificial neural networks. In Proceedings of the
26th German Conference on Artificial Intelligence, KI2003, A. Günter, R. Krause, and
B. Neumann, Eds. Lecture Notes in Artificial Intelligence, vol. 2821. Springer, 105–119.

Hitzler, P. and Seda, A. K. 2003b. Generalized metrics and uniquely determined logic
programs. Theoretical Computer Science 305, 1–3, 187–219.

Hitzler, P. and Wendt, M. 2002. The well-founded semantics is a stratified Fitting
semantics. In Proceedings of the 25th Annual German Conference on Artificial Intelli-
gence, KI2002, Aachen, Germany, September 2002, M. Jarke, J. Koehler, and G. Lake-
meyer, Eds. Lecture Notes in Artificial Intelligence, vol. 2479. Springer, Berlin, 205–221.

Hölldobler, S., Kalinke, Y., and Störr, H.-P. 1999. Approximating the semantics
of logic programs by recurrent neural networks. Applied Intelligence 11, 45–58.

Kraus, S., Lehmann, D., and Magidor, M. 1990. Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial Intelligence 44, 1, 167–207.

Kunen, K. 1987. Negation in logic programming. The Journal of Logic Programming 4,
289–308.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelli-
gence 138, 39–54.

Lifschitz, V., McCain, N., Przymusinski, T. C., and Stärk, R. F. 1995. Loop
checking and the well-founded semantics. In Logic Programming and Non-monotonic
Reasoning, Proceedings of the 3rd International Conference, LPNMR’95, Lexington,
KY, USA, June 1995, V. W. Marek and A. Nerode, Eds. Lecture Notes in Computer
Science, vol. 928. Springer, 127–142.

Lloyd, J. W. 1988. Foundations of Logic Programming. Springer, Berlin.

Makinson, D. 1994. General patterns of nonmonotonic reasoning. In Handbook of Logic
in Artificial Intelligence and Logic Programming, Vol. 3, Nonmonotonic and Uncertain
Reasoning, D. M. Gabbay, C. J. Hogger, and J. A. Robinson, Eds. Oxford University
Press.

Marchiori, E. 1996. On termination of general logic programs with respect to construc-
tive negation. The Journal of Logic Programming 26, 1, 69–89.

Marek, V. W. and Truszczyński, M. 1999. Stable models and an alternative logic
programming paradigm. In The Logic Programming Paradigm: A 25-Year Persepective,
K. R. Apt, V. W. Marek, M. Truszczyński, and D. S. Warren, Eds. Springer, Berlin,
375–398.

Pearce, D. 1997. A new logical characterisation of stable models and answer sets. In
Non-Monotonic Extensions of Logic Programming, NMELP ’96, J. Dix, L. M. Pereira,
and T. C. Przymusinski, Eds. Lecture Notes in Computer Science, vol. 1216. Springer,
57–70.

Pedreschi, D., Ruggieri, S., and Smaus, J.-G. 2002. Classes of terminating logic
programs. Theory and Practice of Logic Programs 2, 3, 369–418.

Przymusinska, H. and Przymusinski, T. C. 1990. Weakly stratified logic programs.
Fundamenta Informaticae 13, 51–65.

Przymusinski, T. C. 1988. On the declarative semantics of deductive databases and logic
programs. In Foundations of Deductive Databases and Logic Programming, J. Minker,
Ed. Morgan Kaufmann, Los Altos, CA, 193–216.

Przymusinski, T. C. 1989. Well-founded semantics coincides with three-valued stable
semantics. Fundamenta Informaticae 13, 4, 445–464.

30 P. Hitzler and M. Wendt

Seda, A. K. 1995. Topology and the semantics of logic programs. Fundamenta Informat-
icae 24, 4, 359–386.

Seda, A. K. 1997. Quasi-metrics and the semantics of logic programs. Fundamenta
Informaticae 29, 1, 97–117.

Simons, P., Niemelä, I., and Soininen, T. 200x. Extending and implementing the stable
model semantics. Artificial Intelligence. To appear.

Stoltenberg-Hansen, V., Lindström, I., and Griffor, E. R. 1994. Mathematical
Theory of Domains. Cambridge University Press.

Turner, H. 2001. Order-consistent programs are cautiously monotonic. Journal of Theory
and Practice of Logic Programming 1, 4, 487–495.

van Gelder, A. 1988. Negation as failure using tight derivations for general logic pro-
grams. In Foundations of Deductive Databases and Logic Programming, J. Minker, Ed.
Morgan Kaufmann, Los Altos, CA, 149–176.

van Gelder, A. 1989. The alternating fixpoint of logic programs with negation. In
Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, Philadelphia, Pennsylvania. ACM Press, 1–10.

van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics for
general logic programs. Journal of the ACM 38, 3, 620–650.

Towards a Systematic Account of Different Logic
Programming Semantics

Pascal Hitzler

Department of Computer Science, Dresden University of Technology
www.wv.inf.tu-dresden.de/˜pascal/

phitzler@inf.tu-dresden.de

Abstract. In [1,2], a new methodology has been proposed which allows
to derive uniform characterizations of different declarative semantics for
logic programs with negation. One result from this work is that the well-
founded semantics can formally be understood as a stratified version
of the Fitting (or Kripke-Kleene) semantics. The constructions leading
to this result, however, show a certain asymmetry which is not readily
understood. We will study this situation here with the result that we will
obtain a coherent picture of relations between different semantics.

1 Introduction

Within the past twenty years, many different declarative semantics for logic pro-
grams with negation have been developed. Different perspectives on the question
what properties a semantics should foremost satisfy, have led to a variety of di-
verse proposals. From a knowledge representation and reasoning point of view it
appears to be important that a semantics captures established non-monotonic
reasoning frameworks, e.g. Reiters default logic [3], and that they allow intu-
itively appealing, i.e. “common sense”, encodings of AI problems. The seman-
tics which, due to common opinion by researchers in the field, satisfy these
requirements best, are the least model semantics for definite programs [4], and
for normal programs the stable [5] and the well-founded semantics [6]. Of lesser
importance, albeit still acknowledged in particular for their relation to resolution-
based logic programming, are the Fitting semantics [7] and approaches based on
stratification [8,9].

The semantics just mentioned are closely connnected by a number of well-
(and some lesser-) known relationships, and many authors have contributed to
this understanding. Fitting [10] provides a framework using Belnap’s four-valued
logic which encompasses supported, stable, Fitting, and well-founded semantics.
His work was recently extended by Denecker, Marek, and Truszczynski [11].
Przymusinsky [12] gives a version in three-valued logic of the stable semantics,
and shows that it coincides with the well-founded one. Van Gelder [13] constructs
the well-founded semantics unsing the Gelfond-Lifschitz operator originally asso-
ciated with the stable semantics. Dung and Kanchanasut [14] define the notion
of fixpoint completion of a program which provides connections between the

A. Günter et al. (Eds.): KI 2003, LNAI 2821, pp. 105–119, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

106 P. Hitzler

supported and the stable semantics, as well as between the Fitting and the well-
founded semantics, studied by Fages [15] and Wendt [16]. Hitzler and Wendt [1,
2] have recently provided a unifying framework using level mappings, and results
which amongst other things give further support to the point of view that the
stable semantics is a formal and natural extension to normal programs of the
least model semantics for definite programs. Furthermore, it was shown that the
well-founded semantics can be understood, formally, as a stratified version of the
Fitting semantics.

This latter result, however, exposes a certain asymmetry in the construc-
tion leading to it, and it is natural to ask the question as to what exactly is
underlying it. This is what we will study in the sequel. In a nutshell, we will
see that formally this asymmetry is due to the well-known preference of false-
hood in logic programming semantics. More importantly, we will also see that
a “dual” theory, obtained from prefering truth, can be stablished which is in
perfect analogy to the close and well-known relationships between the different
semantics mentioned above. We want to make it explicit from the start that we
do not intend to provide new semantics for practical purposes1. We rather want
to focus on the deepening of the theoretical insights into the relations between
different semantics, by painting a coherent and complete picture of the depen-
dencies and interconnections. We find the richness of the theory very appealing,
and strongly supportive of the opinion that the major semantics studied in the
field are founded on a sound theoretical base.

The plan of the paper is as follows. In Section 2 we will introduce notation
and terminology needed for proving the results in the main body of the paper. We
will also review in detail those results from [1,2] which triggered and motivated
our investigations. In Section 3 we will provide a variant of the stable semantics
which prefers truth, and in Section 4 we will do likewise for the well-founded
semantics. Throughout, our definitions will be accompanied by results which
complete the picture of relationships between different semantics.

2 Preliminaries and Notation

A (normal) logic program is a finite set of (universally quantified) clauses of
the form ∀(A ← A1 ∧ · · · ∧ An ∧ ¬B1 ∧ · · · ∧ ¬Bm), commonly written as
A ← A1, . . . , An,¬B1, . . . ,¬Bm, where A, Ai, and Bj , for i = 1, . . . , n and
j = 1, . . . , m, are atoms over some given first order language. A is called the
head of the clause, while the remaining atoms make up the body of the clause,
and depending on context, a body of a clause will be a set of literals (i.e. atoms
or negated atoms) or the conjunction of these literals. Care will be taken that
this identification does not cause confusion. We allow a body, i.e. a conjunction,
to be empty, in which case it always evaluates to true. A clause with empty
body is called a unit clause or a fact. A clause is called definite, if it contains
no negation symbol. A program is called definite if it consists only of definite

1 Although there may be some virtue to this perspective, see [17].

Towards a Systematic Account of Different Logic Programming Semantics 107

clauses. We will usually denote atoms with A or B, and literals, which may be
atoms or negated atoms, by L or K.

Given a logic program P , we can extract from it the components of a first
order language, and we always make the mild assumption that this language
contains at least one constant symbol. The corresponding set of ground atoms,
i.e. the Herbrand base of the program, will be denoted by BP . For a subset
I ⊆ BP , we set ¬I = {¬A | A ∈ BP }. The set of all ground instances of P with
respect to BP will be denoted by ground(P). For I ⊆ BP ∪ ¬BP , we say that A
is true with respect to (or in) I if A ∈ I, we say that A is false with respect to
(or in) I if ¬A ∈ I, and if neither is the case, we say that A is undefined with
respect to (or in) I. A (three-valued or partial) interpretation I for P is a subset
of BP ∪ ¬BP which is consistent, i.e. whenever A ∈ I then ¬A �∈ I. A body, i.e.
a conjunction of literals, is true in an interpretation I if every literal in the body
is true in I, it is false in I if one of its literals is false in I, and otherwise it is
undefined in I. For a negated literal L = ¬A we will find it convenient to write
¬L ∈ I if A ∈ I. By IP we denote the set of all (three-valued) interpretations of
P . Both IP and BP ∪ ¬BP are complete partial orders (cpos) via set-inclusion,
i.e. they contain the empty set as least element, and every ascending chain has
a supremum, namely its union. A model of P is an interpretation I ∈ IP such
that for each clause A ← body we have that body ⊆ I implies A ∈ I. A total
interpretation is an interpretation I such that no A ∈ BP is undefined in I.

For an interpretation I and a program P , an I-partial level mapping for P
is a partial mapping l : BP → α with domain dom(l) = {A | A ∈ I or ¬A ∈ I},
where α is some (countable) ordinal. We extend every level mapping to literals
by setting l(¬A) = l(A) for all A ∈ dom(l). A (total) level mapping is a total
mapping l : BP → α for some (countable) ordinal α.

Given a normal logic program P and some I ⊆ BP ∪ ¬BP , we say that
U ⊆ BP is an unfounded set (of P) with respect to I if each atom A ∈ U satisfies
the following condition: For each clause A ← body in ground(P) (at least) one
of the following holds.

(Ui) Some (positive or negative) literal in body is false in I.
(Uii) Some (non-negated) atom in body occurs in U .

Given a normal logic program P , we define the following operators on BP ∪
¬BP . TP (I) is the set of all A ∈ BP such that there exists a clause A ← body
in ground(P) such that body is true in I. FP (I) is the set of all A ∈ BP such
that for all clauses A ← body in ground(P) we have that body is false in I.
Both TP and FP map elements of IP to elements of IP . Now define the operator
ΦP : IP → IP by

ΦP (I) = TP (I) ∪ ¬FP (I).

This operator is due to [7] and is well-defined and monotonic on the cpo IP ,
hence has a least fixed point by the Knaster-Tarski2 fixed-point theorem, and
we can obtain this fixed point by defining, for each monotonic operator F , that
2 We follow the terminology from [18]. The Knaster-Tarski theorem is sometimes called

Tarski theorem and states that every monotonic function on a cpo has a least fixed

108 P. Hitzler

F ↑ 0 = ∅, F ↑ (α + 1) = F (F ↑ α) for any ordinal α, and F ↑ β =
⋃

γ<β F ↑ γ
for any limit ordinal β, and the least fixed point of F is obtained as F ↑ α for
some ordinal α. The least fixed point of ΦP is called the Kripke-Kleene model
or Fitting model of P , determining the Fitting semantics of P .

Now, for I ⊆ BP ∪¬BP , let UP (I) be the greatest unfounded set (of P) with
respect to I, which always exists due to [6]. Finally, define

WP (I) = TP (I) ∪ ¬UP (I)

for all I ⊆ BP ∪¬BP . The operator WP , which operates on the cpo BP ∪¬BP , is
due to [6] and is monotonic, hence has a least fixed point by the Knaster-Tarski2

fixed-point theorem, as above for ΦP . It turns out that WP ↑α is in IP for each
ordinal α, and so the least fixed point of WP is also in IP and is called the
well-founded model of P , giving the well-founded semantics of P .

In order to avoid confusion, we will use the following terminology: the no-
tion of interpretation, and IP will be the set of all those, will by default denote
consistent subsets of BP ∪ ¬BP , i.e. interpretations in three-valued logic. We
will sometimes emphasize this point by using the notion partial interpretation.
By two-valued interpretations we mean subsets of BP . Both interpretations and
two-valued interpretations are ordered by subset inclusion. Each two-valued in-
terpretation I can be identified with the partial interpretation I ′ = I∪¬(BP \I).
Note however, that in this case I ′ is always a maximal element in the ordering
for partial interpretations, while I is in general not maximal as a two-valued
interpretation3. Given a partial interpretation I, we set I+ = I ∩ BP and
I− = {A ∈ BP | ¬A ∈ I}.

Given a program P , we define the operator T+
P on subsets of BP by T+

P (I) =
TP (I∪¬(BP \I)). The pre-fixed points of T+

P , i.e. the two-valued interpretations
I ⊆ BP with T+

P (I) ⊆ I, are exactly the models, in the sense of classical logic,
of P . Post-fixed points of T+

P , i.e. I ⊆ BP with I ⊆ T+
P (I) are called supported

interpretations of P , and a supported model of P is a model P which is a
supported interpretation. The supported models of P thus coincide with the
fixed points of T+

P . It is well-known that for definite programs P the operator
T+

P is monotonic on the set of all subsets of BP , with respect to subset inclusion.
Indeed it is Scott-continuous [4,20] and, via the Tarski-Kantorovich2 fixed-point
theorem, achieves its least pre-fixed point M , which is also a fixed point, as
the supremum of the iterates T+

P ↑ n for n ∈ N. So M = lfp
(
T+

P

)
= T+

P ↑ ω is
the least two-valued model of P . Likewise, since the set of all subsets of BP is

point, which can be obtained by transfinitely iterating the bottom element of the
cpo. The Tarski-Kantorovitch theorem is sometimes refered to as the Kleene theorem
or the Scott theorem (or even as “the” fixed-point theorem) and states that if the
function is additionally Scott (or order-) continuous, then the least fixed point can
be obtained by an iteration which is not transfinite, i.e. closes off at ω, the least
infinite ordinal. In both cases, the least fixed point is also the least pre-fixed point
of the function.

3 These two orderings in fact correspond to the knowledge and truth orderings as
discussed in [19].

Towards a Systematic Account of Different Logic Programming Semantics 109

a complete lattice, and therefore has greatest element BP , we can also define
T+

P ↓ 0 = BP and inductively T+
P ↓ (α + 1) = T+

P (T+
P ↓ α) for each ordinal α

and T+
P ↓β =

⋂
γ<β T+

P ↓γ for each limit ordinal β. Again by the Knaster-Tarski
fixed-point theorem, applied to the superset inclusion ordering (i.e. reverse subset
inclusion) on subsets of BP , it turns out that T+

P has a greatest fixed point,
gfp

(
T+

P

)
.

The stable model semantics due to [5] is intimately related to the well-
founded semantics. Let P be a normal program, and let M ⊆ BP be a set of
atoms. Then we define P/M to be the (ground) program consisting of all clauses
A ← A1, . . . , An for which there is a clause A ← A1, . . . , An,¬B1, . . . ,¬Bm in
ground(P) with B1, . . . , Bm �∈ M . Since P/M does no longer contain negation,
it has a least two-valued model T+

P/M ↑ ω. For any two-valued interpretation I

we can therefore define the operator GLP (I) = T+
P/I ↑ ω, and call M a stable

model of the normal program P if it is a fixed point of the operator GLP , i.e.
if M = GLP (M) = T+

P/M ↑ ω. As it turns out, the operator GLP is in general
not monotonic for normal programs P . However it is antitonic, i.e. whenever
I ⊆ J ⊆ BP then GLP (J) ⊆ GLP (I). As a consequence, the operator GL2

P ,
obtained by applying GLP twice, is monotonic, and hence has a least fixed point
LP and a greatest fixed point GP . In [13] it was shown that GLP (LP) = GP ,
LP = GLP (GP), and that LP ∪ ¬(BP \ GP) coincides with the well-founded
model of P . This is called the alternating fixed point characterization of the
well-founded semantics.

Some Results

The following is a straightforward result which has, to the best of our knowledge,
not been noted before. It follows the general approach put forward in [1,2].

Theorem 1. Let P be a definite program. Then there is a unique two-valued
model M of P for which there exists a (total) level mapping l : BP → α such
that for each atom A ∈ M there exists a clause A ← A1, . . . , An in ground(P)
with Ai ∈ M and l(A) > l(Ai) for all i = 1, . . . , n. Furthermore, M is the least
two-valued model of P .

Proof. Let M be the least two-valued model T+
P ↑ω, choose α = ω, and define

l : BP → α by setting l(A) = min{n | A ∈ T+
P ↑ (n + 1)}, if A ∈ M , and by

setting l(A) = 0, if A �∈ M . From the fact that ∅ ⊆ T+
P ↑ 1 ⊆ . . . ⊆ T+

P ↑ n ⊆
. . . ⊆ T+

P ↑ω =
⋃

m T+
P ↑m, for each n, we see that l is well-defined and that the

least model T+
P ↑ω for P has the desired properties.

Conversely, if M is a two-valued model for P which satisfies the given con-
dition for some mapping l : BP → α, then it is easy to show, by induction on
l(A), that A ∈M implies A ∈ T+

P ↑(l(A)+1). This yields that M ⊆ T+
P ↑ω, and

hence that M = T+
P ↑ω by minimality of the model T+

P ↑ω.

The following result is due to [15], and is striking in its similarity to Theo-
rem 1.

110 P. Hitzler

Theorem 2. Let P be normal. Then a two-valued model M ⊆ BP of P is a
stable model of P if and only if there exists a (total) level mapping l : BP →
α such that for each A ∈ M there exists A ← A1, . . . , An¬B1, . . . ,¬Bm in
ground(P) with Ai ∈ M , Bj �∈ M , and l(A) > l(Ai) for all i = 1, . . . , n and
j = 1, . . . , m.

We next recall the following alternative characterization of the Fitting model,
due to [1,2].

Definition 1. Let P be a normal logic program, I be a model of P , and l be an
I-partial level mapping for P . We say that P satisfies (F) with respect to I and
l, if each A ∈ dom(l) satisfies one of the following conditions.

(Fi) A ∈ I and there exists a clause A ← L1, . . . , Ln in ground(P) such that
Li ∈ I and l(A) > l(Li) for all i.

(Fii) ¬A ∈ I and for each clause A ← L1, . . . , Ln in ground(P) there exists i
with ¬Li ∈ I and l(A) > l(Li).

Theorem 3. Let P be a normal logic program with Fitting model M . Then M
is the greatest model among all models I, for which there exists an I-partial level
mapping l for P such that P satisfies (F) with respect to I and l.

Let us recall next the definition of a (locally) stratified program, due to
[8,9]: A normal logic program is called locally stratified if there exists a (to-
tal) level mapping l : BP → α, for some ordinal α, such that for each clause
A ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(P) we have that l(A) ≥ l(Ai) and
l(A) > l(Bj) for all i = 1, . . . , n and j = 1, . . . , m. The notion of (locally) strat-
ifed program was developed with the idea of preventing recursion through nega-
tion, while allowing recursion through positive dependencies. (Locally) stratified
programs have total well-founded models.

There exist locally stratified programs which do not have a total Fitting
semantics and vice versa — just consider the programs consisting of the single
clauses p ← p, respectively, p ← ¬p, q. In fact, condition (Fii) requires a strict
decrease of level between the head and a literal in the rule, independent of this
literal being positive or negative. But, on the other hand, condition (Fii) imposes
no further restrictions on the remaining body literals, while the notion of local
stratification does. These considerations motivate the substitution of condition
(Fii) by the condition (Cii), as done for the following definition.

Definition 2. Let P be a normal logic program, I be a model of P , and l be an
I-partial level mapping for P . We say that P satisfies (WF) with respect to I
and l, if each A ∈ dom(l) satisfies (Fi) or the following condition.

(Cii) ¬A ∈ I and for each clause A← A1, . . . , An,¬B1, . . . ,¬Bm contained
in ground(P) (at least) one of the following conditions holds:
(Ciia) There exists i ∈ {1, . . . , n} with ¬Ai ∈ I and l(A) ≥ l(Ai).
(Ciib) There exists j ∈ {1, . . . , m} with Bj ∈ I and l(A) > l(Bj).

Towards a Systematic Account of Different Logic Programming Semantics 111

So, in the light of Theorem 3, Definition 2 should provide a natural “stratified
version” of the Fitting semantics. And indeed it does, and furthermore, the
resulting semantics coincides with the well-founded semantics, which is a very
satisfactory result from [1,2].

Theorem 4. Let P be a normal logic program with well-founded model M . Then
M is the greatest model among all models I, for which there exists an I-partial
level mapping l for P such that P satisfies (WF) with respect to I and l.

For completeness, we remark that an alternative characterization of the
weakly perfect model semantics [21] can also be found in [1,2].

The approach which led to the results just mentioned, originally put for-
ward in [1,2], provides a methodology for obtaining uniform characterizations of
different semantics for logic programs.

3 Maximally Circular Stable Semantics

We note that condition (Fi) has been reused in Definition 2. Thus, Definition 1
has been “stratified” only with respect to condition (Fii), yielding (Cii), but not
with respect to (Fi). Indeed, also replacing (Fi) by a stratified version such as
the following seems not satisfactory at first sight.

(Ci) A ∈ I and there exists a clause A ← A1, . . . , An,¬B1, . . . ,¬Bm in
ground(P) such that Ai,¬Bj ∈ I, l(A) ≥ l(Ai), and l(A) > l(Bj) for
all i and j.

If we replace condition (Fi) by condition (Ci) in Definition 2, then it is not
guaranteed that for any given program there is a greatest model satisfying the
desired properties, as the following example from [1,2] shows.

Example 1. Consider the program consisting of the two clauses p← p and q ←
¬p, and the two (total) models M1 = {p,¬q} and M2 = {¬p, q}, which are
incomparable, and the level mapping l with l(p) = 0 and l(q) = 1.

In order to arrive at an understanding of this asymmetry, we consider the
setting with conditions (Ci) and (Fii), which is somehow “dual” to the well-
founded semantics which is characterized by (Fi) and (Cii).

Definition 3. Let P be a normal logic program, I be a model of P , and l be an
I-partial level mapping for P . We say that P satisfies (CW) with respect to I
and l, if each A ∈ dom(l) satisfies (Ci) or (Fii).

By virtue of Definition 3 we will be able to develop a theory which comple-
ments the restults from Section 2. We will first characterize the greatest model
of a definite program analogously to Theorem 1.

112 P. Hitzler

Theorem 5. Let P be a definite program. Then there is a unique two-valued
supported interpretation M of P for which there exists a (total) level mapping
l : BP → α such that for each atom A �∈M and for all clauses A← A1, . . . , An

in ground(P) there is some Ai �∈ M with l(A) > l(Ai). Furthermore, M is the
greatest two-valued model of P .

Proof. Let M be the greatest two-valued model of P , and let α be the least
ordinal such that M = T+

P ↓ α. Define l : BP → α by setting l(A) = min{γ |
A �∈ T+

P ↓ (γ + 1)} for A �∈ M , and by setting l(A) = 0 if A ∈ M . The mapping
l is well-defined because A �∈ M with A �∈ T+

P ↓ γ =
⋂

β<γ T+
P ↓ β for some

limit ordinal γ implies A �∈ T+
P ↓β for some β < γ. So the least ordinal β with

A �∈ T+
P ↓β is always a successor ordinal. Now assume that there is A �∈M which

does not satisfy the stated condition. We can furthermore assume without loss
of generality that A is chosen with this property such that l(A) is minimal.
Let A ← A1, . . . , An be a clause in ground(P). Since A �∈ T+

P

(
T+

P ↓ l(A)
)

we
obtain Ai �∈ T+

P ↓ l(A) ⊇M for some i. But then l(Ai) < l(A) which contradicts
minimality of l(A).

Conversely, let M be a two-valued model for P which satisfies the given
condition for some mapping l : BP → α. We show by transfinite induction on
l(A) that A �∈ M implies A �∈ T+

P ↓ (l(A) + 1), which suffices because it implies
that for the greatest two-valued model T+

P ↓ β of P we have that T+
P ↓ β ⊆ M ,

and therefore T+
P ↓β = M . For the inductive proof consider first the case where

l(A) = 0. Then there is no clause in ground(P) with head A and consequently
A �∈ T+

P ↓ 1 = T+
P (BP). Now assume that the statement to be proven holds

for all B �∈ M with l(B) < α, where α is some ordinal, and let A �∈ M with
l(A) = α. Then each clause in ground(P) with head A contains an atom B
with l(B) = β < α and B �∈ M . Hence B �∈ T+

P ↓ (β + 1) and consequently
A �∈ T+

P ↓(α + 1).

The following definition and theorem are analogous to Theorem 2.

Definition 4. Let P be normal. Then M ⊆ BP is called a maximally circular
stable model (maxstable model) of P if it is a two-valued supported interpreta-
tion of P and there exists a (total) level mapping l : BP → α such that for each
atom A �∈ M and for all clauses A ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(P)
with B1, . . . , Bm �∈M there is some Ai �∈M with l(A) > l(Ai).

Theorem 6. M ⊆ BP is a maxstable model of P if and only if M =
gfp

(
T+

P/M

)
.

Proof. First note that every maxstable model is a a supported model. Indeed
supportedness follows immediately from the definition. Now assume that M
is maxstable but is not a model, i.e. there is A �∈ M but there is a clause
A ← A1, . . . , An in ground(P) with Ai ∈ M for all i. But by the definition of
maxstable model we must have that there is Ai �∈M , which contradicts Ai ∈M .

Towards a Systematic Account of Different Logic Programming Semantics 113

Now let M be a maxstable model of P . Let A �∈ M and let T+
P/M ↓ α =

gfp
(
T+

P/M

)
. We show by transfinite induction on l(A) that A �∈ T+

P/M ↓(l(A)+1)

and hence A �∈ T+
P/M ↓α. For l(A) = 0 there is no clause with head A in P/M ,

so A �∈ T+
P/M ↓1. Now let l(A) = β for some ordinal β. By assumption we have

that for all clauses A← A1, . . . , An,¬B1, . . . ,¬Bm with B1, . . . , Bm �∈ M there
exists Ai �∈M with l(A) > l(Ai), say l(Ai) = γ < β. Hence Ai �∈ T+

P/M ↓(γ + 1),

and consequently A �∈ T+
P/M ↓(β + 1), which shows that gfp

(
T+

P/M

)
⊆M .

So let again M be a maxstable model of P and let A �∈ gfp
(
T+

P/M

)
= T+

P/M ↓
α and l(A) = β. Then for each clause A← A1, . . . , An in P/M there is Ai with
Ai �∈ T+

P/M ↓α and l(A) > l(Ai). Now assume A ∈M . Without loss of generality
we can furthermore assume that A is chosen such that l(A) = β is minimal.
Hence Ai �∈ M , and we obtain that for each clause in P/M with head A one of
the corresponding body atoms is false in M . By supportedness of M this yields
A �∈M , which contradicts our assumption. Hence A �∈M as desired.

Conversely, let M = gfp
(
T+

P/M

)
. Then as an immediate consequence of

Theorem 5 we obtain that M is maxstable.

4 Maximally Circular Well-Founded Semantics

Maxstable models are formally analogous4 to stable models in that the former
are fixed points of the operator I �→ gfp

(
T+

P/I

)
, while the latter are fixed points

of the operator I �→ lfp
(
T+

P/I

)
. Further, in analogy to the alternating fixed

point characterization of the well-founded model, we can obtain a corresponding
variant of the well-founded semantics, which we will do next. Theorem 6 suggests
the defininition of the following operator.

Definition 5. Let P be a normal program and I be a two-valued interpretation.
Then define CGLP (I) = gfp

(
T+

P/I

)
.

Using the operator CGLP , we can define a “maximally circular” version of
the alternating fixed-point semantics.

Proposition 1. Let P be a normal program. Then the following hold.

(i) CGLP is antitonic and CGL2
P is monotonic.

(ii) CGLP

(
lfp

(
CGL2

P

))
=gfp

(
CGL2

P

)
and CGLP

(
gfp

(
CGL2

P

))
= lfp

(
CGL2

P

)
.

Proof. (i) If I ⊆ J ∈ BP , then P/J ⊆ P/I and consequently CGLP (J) =
gfp

(
T+

P/J

)
⊆ gfp

(
T+

P/I

)
= CGLP (I). Monotonicity of CGL2

P then follows triv-
ially.
4 The term dual seems not to be entirely adequate in this situation, although it is

intuitionally appealing.

114 P. Hitzler

(ii) Let LP = lfp
(
CGL2

P

)
and GP = gfp

(
CGL2

P

)
. Then we can calculate

CGL2
P (CGLP (LP)) = CGLP

(
CGL2

P (LP)
)

= CGLP (LP), so CGLP (LP) is a
fixed point of CGL2

P , and hence LP ⊆ CGLP (LP) ⊆ GP . Similarly, LP ⊆
CGLP (GP) ⊆ GP . Since LP ⊆ GP we get from the antitonicity of CGLP that
LP ⊆ CGLP (GP) ⊆ CGLP (LP) ⊆ GP . Similarly, since CGLP (LP) ⊆ GP , we
obtain CGLP (GP) ⊆ CGL2

P (LP) = LP ⊆ CGLP (GP), so CGLP (GP) = LP ,
and also GP = CGL2

P (GP) = CGLP (LP).

We will now define an operator for the maximally circular well-founded se-
mantics. Given a normal logic program P and some I ∈ IP , we say that S ⊆ BP

is a self-founded set (of P) with respect to I if S ∪ I ∈ IP and each atom A ∈ S
satisfies the following condition: There exists a clause A ← body in ground(P)
such that one of the following holds.

(Si) body is true in I.
(Sii) Some (non-negated) atoms in body occur in S and all other literals in

body are true in I.

Self-founded sets are analogous5 to unfounded sets, and the following propo-
sition holds.

Proposition 2. Let P be a normal program and let I ∈ IP . Then there exists
a greatest self-founded set of P with respect to I.

Proof. If (Si)i∈I is a family of sets each of which is a self-founded set of P with
respect to I, then it is easy to see that

⋃
i∈I Si is also a self-founded set of P

with respect to I.

Given a normal program P and I ∈ IP , let SP (I) be the greatest self-founded
set of P with respect to I, and define the operator CWP on IP by

CWP (I) = SP (I) ∪ ¬FP (I).

Proposition 3. The operator CWP is well-defined and monotonic.

Proof. For well-definedness, we have to show that SP (I) ∩ FP (I) = ∅ for all
I ∈ IP . So assume there is A ∈ SP (I) ∩ FP (I). From A ∈ FP (I) we obtain that
for each clause with head A there is a corresponding body literal L which is false
in I. From A ∈ SP (I), more precisely from (Sii), we can furthermore conclude
that L is an atom and L ∈ SP (I). But then ¬L ∈ I and L ∈ SP (I) which is
impossible by definition of self-founded set which requires that SP (I) ∪ I ∈ IP .
So SP (I) ∩ FP (I) = ∅ and CWP is well-defined.

For monotonicity, let I ⊆ J ∈ IP and let L ∈ CWP (I). If L = ¬A is a
negated atom, then A ∈ FP (I) and all clauses with head A contain a body
literal which is false in I, hence in J , and we obtain A ∈ FP (J). If L = A is an
atom, then A ∈ SP (I) and there exists a clause A ← body in ground(P) such
5 Again, it is not really a duality.

Towards a Systematic Account of Different Logic Programming Semantics 115

that (at least) one of (Si) or (Sii) holds. If (Si) holds, then body is true in I,
hence in J , and A ∈ SP (J). If (Sii) holds, then some non-negated atoms in body
occur in S and all other literals in body are true in I, hence in J , and we obtain
A ∈ SP (J).

The following theorem relates our previous observations to Definition 3, in
perfect analogy to the correspondence between the stable model semantics, The-
orem 1, Fages’s characterization from Theorem 2, the well-founded semantics,
and the alternating fixed point characterization.

Theorem 7. Let P be a normal program and MP = lfp(CWP). Then the fol-
lowing hold.

(i) MP is the greatest model among all models I of P such that there is an
I-partial level mapping l for P such that P satisfies (CW) with respect to
I and l.

(ii) MP = lfp
(
CGL2

P

) ∪ ¬ (
BP \ gfp

(
CGL2

P

))
.

Proof. (i) Let MP = lfp(CWP) and define the MP -partial level mapping lP as
follows: lP (A) = α, where α is the least ordinal such that A is not undefined in
CWP ↑(α + 1). The proof will be established by showing the following facts: (1)
P satisfies (CW) with respect to MP and lP . (2) If I is a model of P and l is an
I-partial level mapping such that P satisfies (CW) with respect to I and l, then
I ⊆MP .

(1) Let A ∈ dom(lP) and lP (A) = α. We consider two cases.
(Case i) If A ∈ MP , then A ∈ SP (CWP ↑ α), hence there exists a clause

A ← body in ground(P) such that (Si) or (Sii) holds with respect to CWP ↑α.
If (Si) holds, then all literals in body are true in CWP ↑α, hence have level less
than lP (A) and (Ci) is satisfied. If (Sii) holds, then some non-negated atoms
from body occur in SP (CWP ↑α), hence have level less than or equal to lP (A),
and all remaining literals in body are true in CWP ↑α, hence have level less than
lP (A). Consequently, A satisfies (Ci) with respect to MP and lP .

(Case ii) If ¬A ∈MP , then A ∈ FP (CWP ↑α), hence for all clauses A← body
in ground(P) there exists L ∈ body with ¬L ∈ CWP ↑α and lP (L) < α, hence
¬L ∈ MP . Consequently, A satisfies (Fii) with respect to MP and lP , and we
have established that fact (1) holds.

(2) We show via transfinite induction on α = l(A), that whenever A ∈ I
(respectively, ¬A ∈ I), then A ∈ CWP ↑ (α + 1) (respectively, ¬A ∈ CWP ↑
(α+1)). For the base case, note that if l(A) = 0, then ¬A ∈ I implies that there
is no clause with head A in ground(P), hence ¬A ∈ CWP ↑ 1. If A ∈ I then
consider the set S of all atoms B with l(B) = 0 and B ∈ I. We show that S is
a self-founded set of P with respect to CWP ↑ 0 = ∅, and this suffices since it
implies A ∈ CWP ↑1 by the fact that A ∈ S. So let C ∈ S. Then C ∈ I and C
satisfies condition (Ci) with respect to I and l, and since l(C) = 0, we have that
there is a definite clause with head C whose body atoms (if it has any) are all
of level 0 and contained in I. Hence condition (Sii) (or (Si)) is satisfied for this
clause and S is a self-founded set of P with respect to I. So assume now that

116 P. Hitzler

the induction hypothesis holds for all B ∈ BP with l(B) < α, and let A be such
that l(A) = α. We consider two cases.

(Case i) If A ∈ I, consider the set S of all atoms B with l(B) = α and B ∈ I.
We show that S is a self-founded set of P with respect to CWP ↑ α, and this
suffices since it implies A ∈ CWP ↑ (α + 1) by the fact that A ∈ S. First note
that S ⊆ I, so S ∪ I ∈ IP . Now let C ∈ S. Then C ∈ I and C satisfies condition
(Ci) with respect to I and l, so there is a clause A← A1, . . . , An,¬B1, . . . ,¬Bm

in ground(P) such that Ai,¬Bj ∈ I, l(A) ≥ l(Ai), and l(A) > l(Bj) for all i and
j. By induction hypothesis we obtain ¬Bj ∈ CWP ↑α. If l(Ai) < l(A) for some
Ai then we have Ai ∈ CWP ↑α, also by induction hypothesis. If there is no Ai

with l(Ai) = l(A), then (Si) holds, while l(Ai) = l(A) implies Ai ∈ S, so (Sii)
holds.

(Case ii) If ¬A ∈ I, then A satisfies (Fii) with respect to I and l. Hence for all
clauses A← body in ground(P) we have that there is L ∈ body with ¬L ∈ I and
l(L) < α. Hence for all these L we have ¬L ∈ CWP ↑α by induction hypothesis,
and consequently for all clauses A← body in ground(P) we obtain that body is
false in CWP ↑α which yields ¬A ∈ CWP ↑(α+1). This establishes fact (2) and
concludes the proof of (i).

(ii) We first introduce some notation. Let

L0 = ∅, G0 = BP ,

Lα+1 = CGLP (Gα), Gα+1 = CGLP (Lα) for any ordinal α,

Lα =
⋃

β<α

Lβ , Gα =
⋂

β<α

Gβ for limit ordinal α,

LP = lfp(CGL2
P), GP = gfp(CGL2

P).

By transfinite induction, it is easily checked that Lα ⊆ Lβ ⊆ Gβ ⊆ Gα whenever
α ≤ β. So LP =

⋃
Lα and GP =

⋂
Gα.

Let M = LP ∪ ¬(BP \ GP). We intend to apply (i) and first define an M -
partial level mapping l. We will take as image set of l, pairs (α, γ) of ordinals,
with the lexicographic ordering. This can be done without loss of generality
since any set of such pairs, under the lexicographic ordering, is well-ordered, and
therefore order-isomorphic to an ordinal. For A ∈ LP , let l(A) be the pair (α, 0),
where α is the least ordinal such that A ∈ Lα+1. For B �∈ GP , let l(B) be the
pair (β, γ), where β is the least ordinal such that B �∈ Gβ+1, and γ is least such
that B �∈ TP/Lβ

↓ γ. It is easily shown that l is well-defined, and we show next
by transfinite induction that P satisfies (CW) with respect to M and l.

Let A ∈ L1 = gfp
(
T+

P/BP

)
. Since P/BP contains exactly all clauses from

ground(P) which contain no negation, we have that A is contained in the greatest
two-valued model of a definite subprogram of P , namely P/BP . So there must
be a definite clause in ground(P) with head A whose corresponding body atoms
are also true in L1, which, by definition of l, must have the same level as A,
hence (Ci) is satisfied. Now let ¬B ∈ ¬(BP \ GP) such that B ∈ (BP \ G1) =
BP \gfp

(
T+

P/∅
)
. Since P/∅ contains all clauses from ground(P) with all negative

Towards a Systematic Account of Different Logic Programming Semantics 117

literals removed, we obtain that B is not contained in the greatest two-valued
model of the definite program P/∅, and (Fii) is satisfied by Theorem 5 using a
simple induction argument.

Assume now that, for some ordinal α, we have shown that A satisfies (CW)
with respect to M and l for all A ∈ BP with l(A) < (α, 0).

Let A ∈ Lα+1 \Lα = gfp
(
T+

P/Gα

)
\Lα. Then A ∈

(
T+

P/Gα
↓γ

)
\Lα for some

γ; note that all (negative) literals which were removed by the Gelfond-Lifschitz
transformation from clauses with head A have level less than (α, 0). Then A
satisfies (Ci) with respect to M and l by definition of l.

Let A ∈ (BP \ Gα+1) ∩ Gα. Then A �∈ gfp
(
T+

P/Lα

)
and we conclude again

from Theorem 5, using a simple induction argument, that A satisfies (CW) with
respect to M and l.

This finishes the proof that P satisfies (CW) with respect to M and l. It
remains to show that M is greatest with this property.

So assume that M1 ⊃ M is the greatest model such that P satisfies (CW)
with respect to M1 and some M1-partial level mapping l1. Assume L ∈M1 \M
and, without loss of generality, let the literal L be chosen such that l1(L) is
minimal. We consider two cases.

(Case i) If L = ¬A ∈M1 \M is a negated atom, then by (Fii) for each clause
A← L1, . . . , Ln in ground(P) there exists i with ¬Li ∈ M1 and l1(A) > l1(Li).
Hence, ¬Li ∈ M and consequently for each clause A ← body in P/LP we
have that some atom in body is false in M = LP ∪ ¬(BP \ GP). But then
A �∈ CGLP (LP) = GP , hence ¬A ∈M , contradicting ¬A ∈M1 \M .

(Case ii) If L = A ∈M1 \M is an atom, then A �∈M = LP ∪¬(BP \GP) and
in particular A �∈ LP = gfp

(
T+

P/GP

)
. Hence A �∈ T+

P/GP
↓ γ for some γ, which

can be chosen to be least with this property. We show by induction on γ that
this leads to a contradiction, to finish the proof.

If γ = 1, then there is no clause with head A in P/GP , i.e. for all clauses
A ← body in ground(P) we have that body is false in M , hence in M1, which
contradicts A ∈M1.

Now assume that there is no B ∈ M1 \ M with B �∈ T+
P/GP

↓ δ for
any δ < γ, and let A ∈ M1 \ M with A �∈ T+

P/GP
↓ γ, which implies

that γ is a successor ordinal. By A ∈ M1 and (Ci) there must be a clause
A ← A1, . . . , An¬B1, . . . ,¬Bm in ground(P) with Ai,¬Bj ∈ M1 for all i and
j. However, since A �∈ T+

P/GP
↓ γ we obtain that for each A ← A1, . . . , An

in P/GP , hence for each A ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(P) with
¬B1, . . . ,¬Bm ∈ ¬(BP \ GP) ⊆ M ⊆ M1 there is Ai with Ai �∈ T+

P/GP
↓

(γ − 1) ⊆M , and by induction hypothesis we obtain Ai �∈M1. So Ai ∈M1 and
Ai �∈M1, which is a contradiction and concludes the proof.

Definition 6. For a normal program P , we call lfp(CWP) the maximally cir-
cular well-founded model (maxwf model) of P .

118 P. Hitzler

5 Conclusions and Further Work

We have displayed a coherent picture of different semantics for normal logic
programs. We have added to well-known results new ones which complete the
formerly incomplete picture of relationships. The richness of theory and rela-
tionships turns out to be very appealing and satisfactory. From a mathematical
perspective one expects major notions in a field to be strongly and cleanly in-
terconnected, and it is fair to say that this is the case for declarative semantics
for normal logic programs.

The situation becomes much more difficult when discussing extensions of the
logic programming paradigm like disjunctive [22], quantitative [23], or dynamic
[24] logic programming. For many of these extensions it is as yet to be determined
what the best ways of providing declarative semantics for these frameworks are,
and the lack of interconnections between the different proposals in the literature
provides an argument for the case that no satisfactory answers have yet been
found.

We believe that successful proposals for extensions will have to exhibit similar
interrelationships as observed for normal programs. How, and if, this can be
achieved, however, is as yet rather uncertain. Formal studies like the one in this
paper may help in designing satisfactory semantics, but a discussion of this is
outside the scope of our exhibition, and will be pursued elsewhere.

References

1. Hitzler, P., Wendt, M.: The well-founded semantics is a stratified Fitting seman-
tics. In Jarke, M., Koehler, J., Lakemeyer, G., eds.: Proceedings of the 25th Annual
German Conference on Artificial Intelligence, KI2002, Aachen, Germany, Septem-
ber 2002. Volume 2479 of Lecture Notes in Artificial Intelligence., Springer, Berlin
(2002) 205–221

2. Hitzler, P., Wendt, M.: A uniform approach to logic rogramming semantics. Tech-
nical Report WV–02–14, Knowledge Representation and Reasoning Group, Arti-
ficial Intelligence Institute, Department of Computer Science, Dresden University
of Technology, Dresden, Germany (2002) Submitted.

3. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13 (1980) 81–132
4. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1988)
5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.

In Kowalski, R.A., Bowen, K.A., eds.: Logic Programming. Proceedings of the
5th International Conference and Symposium on Logic Programming, MIT Press
(1988) 1070–1080

6. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38 (1991) 620–650

7. Fitting, M.: A Kripke-Kleene-semantics for general logic programs. The Journal
of Logic Programming 2 (1985) 295–312

8. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge.
In Minker, J., ed.: Foundations of Deductive Databases and Logic Programming.
Morgan Kaufmann, Los Altos, CA (1988) 89–148

Towards a Systematic Account of Different Logic Programming Semantics 119

9. Przymusinski, T.C.: On the declarative semantics of deductive databases and
logic programs. In Minker, J., ed.: Foundations of Deductive Databases and Logic
Programming. Morgan Kaufmann, Los Altos, CA (1988) 193–216

10. Fitting, M.: Fixpoint semantics for logic programming — A survey. Theoretical
Computer Science 278 (2002) 25–51

11. Denecker, M., Marek, V.W., Truszczynski, M.: Approximating operators, stable
operators, well-founded fixpoints and applications in non-monotonic reasoning. In
Minker, J., ed.: Logic-based Artificial Intelligence. Kluwer Academic Publishers,
Boston (2000) 127–144

12. Przymusinski, T.C.: Well-founded semantics coincides with three-valued stable
semantics. Fundamenta Informaticae 13 (1989) 445–464

13. van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Pro-
ceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, Philadelphia, Pennsylvania, ACM Press (1989) 1–10

14. Dung, P.M., Kanchanasut, K.: A fixpoint approach to declarative semantics of logic
programs. In Lusk, E.L., Overbeek, R.A., eds.: Logic Programming, Proceedings
of the North American Conference 1989, NACLP’89, Cleveland, Ohio, MIT Press
(1989) 604–625

15. Fages, F.: Consistency of Clark’s completion and existence of stable models. Jour-
nal of Methods of Logic in Computer Science 1 (1994) 51–60

16. Wendt, M.: Unfolding the well-founded semantics. Journal of Electrical Engineer-
ing, Slovak Academy of Sciences 53 (2002) 56–59 (Proceedings of the 4th Slovakian
Student Conference in Applied Mathematics, Bratislava, April 2002).

17. Hitzler, P.: Circular belief in logic programming semantics. Technical Report WV–
02–13, Knowledge Representation and Reasoning Group, Artificial Intelligence In-
stitute, Department of Computer Science, Dresden University of Technology, Dres-
den, Germany (2002)

18. Jachymski, J.: Order-theoretic aspects of metric fixed-point theory. In Kirk, W.A.,
Sims, B., eds.: Handbook of Metric Fixed Point Theory. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands (2001) 613–641

19. Fitting, M.: Bilattices and the semantics of logic programming. The Journal of
Logic Programming 11 (1991) 91–116

20. Abramsky, S., Jung, A.: Domain theory. In Abramsky, S., Gabbay, D., Maibaum,
T.S., eds.: Handbook of Logic in Computer Science. Volume 3. Clarendon, Oxford
(1994)

21. Przymusinska, H., Przymusinski, T.C.: Weakly stratified logic programs. Funda-
menta Informaticae 13 (1990) 51–65

22. Wang, K.: A comparative study of well-founded semantics for disjunctive logic
programs. In Eiter, T., Faber, W., Truszczynski, M., eds.: Logic Programming and
Nonmonotonic Reasoning, 6th International Conference, LPNMR 2001, Vienna,
Austria, September 17–19, 2001, Proceedings. Volume 2173 of Lecture Notes in
Artificial Intelligence., Springer (2001) 133–146

23. Mateis, C.: Quantitative disjunctive logic programming: Semantics and computa-
tion. AI communications 13 (2000) 225–248

24. Leite, J.A.: Evolving Knowledge Bases. Volume 81 of Frontiers of Artificial Intel-
ligence and Applications. IOS Press (2003)

Level Mapping Characterizations of Selector
Generated Models for Logic Programs

Pascal Hitzler1? and Sibylle Schwarz2

1 Fakultät für Informatik, Technische Universität Dresden
email: phitzler@inf.tu-dresden.de

2 Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg
email: schwarzs@informatik.uni-halle.de

Technical Report WV–04–04
Wissensverarbeitung, Fakultät für Informatik, TU Dresden

Abstract. Assigning semantics to logic programs via selector generated
models (Schwarz 2002/2003) extends several semantics, like the stable,
the inflationary, and the stable generated semantics, to programs with
arbitrary formulae in rule heads and bodies. We study this approach by
means of a unifying framework for characterizing different logic program-
ming semantics using level mappings (Hitzler and Wendt 200x, Hitzler
2003), thereby supporting the claim that this framework is very flexible
and applicable to very diversely defined semantics.

1 Introduction

Hitzler and Wendt [8–10] have recently proposed a unifying framework for dif-
ferent logic programming semantics. This approach is very flexible and allows
to cast semantics of very different origin and style into uniform characteriza-
tions using level mappings, i.e. mappings from atoms to ordinals, in the spirit
of the definition of acceptable programs [2], the use of stratification [1, 13] and
a characterization of stable models by Fages [3]. These characterizations display
syntactic and semantic dependencies between language elements by means of
the preorders on ground atoms induced by the level mappings, and thus allow
inspection of and comparison between different semantics, as exhibited in [8–10].

For the syntactically restricted class of normal logic programs, the most im-
portant semantics — and some others — have already been characterized and
compared, and this was spelled out in [8–10]. Due to the inherent flexibility of the
framework, it is clear that studies of extended syntax are also possible, but have
so far not been carried out. In this paper, we will present a non-trivial technical
result which provides a first step towards a comprehensive comparative study of
different semantics for logic programs under extended syntax.
? This author acknowledges the hospitality of the Graduiertenkolleg Wissensverar-

beitung at the University of Leipzig, Germany, for their hospitality while working on
a first draft of this paper.

Eingereicht beim 19. Workshop on (Constraint) Logic Programming, Ulm, Februar 2005.

Table 1. Notions of specific types of rules.

rule is called set condition

definite LP body(r) ∈ Lg ({∧, t}, A) and head(r) ∈ A
normal NLP body(r) ∈ Lg ({∧, t}, Lit (A)) and head(r) ∈ A

head-atomic HALP body(r) ∈ Lg
`
Σcl \ {f}, A

´
and head(r) ∈ A

pos. head disj. DLP+ body(r) ∈ Lg ({∧, t}, Lit (A)) and head(r) ∈ Lg ({∨}, A)
disjunctive DLP body(r) ∈ Lg ({∧, t}, Lit (A)), head(r) ∈ Lg ({∨, f}, Lit (A))

head-disjunctive HDLP body(r) ∈ Lg
`
Σcl \ {f}, A

´
, head(r) ∈ Lg ({∨, f}, Lit (A))

generalized GLP no condition

More precisely, among the many proposals for semantics for logic programs
under extended syntax we will study a very general approach due to Schwarz
[14–16]. In this framework, arbitrary formulae are allowed in rule heads and
bodies, and it encompasses the inflationary semantics [11], the stable semantics
[5], the stable semantics for disjunctive programs [12], and the stable generated
semantics [7]. It can itself be understood as a unifying framework for different
semantics.

In this paper, we will provide a single theorem — and some corollaries thereof
— which gives a characterization of general selector generated models by means
of level mappings. It thus provides a link between these two frameworks, and
implicitly yields level mapping characterizations of the semantics encompassed
by the selector generated approach.

The plan of the paper is as follows. In Section 2 we will fix preliminaries and
notation. In Section 3 we will review selector generated models as introduced in
[14–16]. In Section 4, we will prove our main result, Theorem 4, which gives a
level-mapping characterization of general selector generated models in the style
of [8–10]. In Section 5 we study corollaries from Theorem 4 concerning specific
cases of interest encompassed by the result. We eventually conclude and discuss
further work in Section 6.

2 Preliminaries

Throughout the paper, we will consider a language L of propositional logic
over some set of propositional variables, or atoms, A, and connectives Σcl =
{¬,∨,∧, t, f}, as usual. A rule r is a pair of formulae from L denoted by ϕ⇒ ψ.
ϕ is called the body of the rule, denoted by body(r), and ψ is called the head of
the rule, denoted by head(r). A program is a set of rules. A literal is an atom
or a negated atom, and Lit (A) denotes the set of all literals in L. For a set of
connectives C ⊆ Σcl we denote by Lg (C,A) the set of all formulae over L in
which only connectives from C occur.

Further terminology is introduced in Table 1. The abbreviations in the second
column denote the sets of all rules with the corresponding property. A program
containing only definite (normal, etc.) rules is called definite (normal, etc.).

Programs not containing the negation symbol ¬ are called positive. Facts are
rules r where body(r) = t, denoted by ⇒ head(r). Any set B of atoms defines
the set of facts fact(B) = {⇒ a | a ∈ B}.

The base BP is the set of all atoms occurring in a program P . A two-valued
interpretation of a program P is represented by a subset of BP , as usual. By IP

we denote the set of all interpretations of P . It is a complete lattice with respect
to the subset ordering ⊆. For an interpretation I ∈ IP , we define ↑ I = {J ∈
IP | I ⊆ J} and ↓ I = {J ∈ IP | J ⊆ I}. [I, J] = ↑ I ∩ ↓ J is called an interval
of interpretations.

The model relation M |= ϕ for an interpretation M and a propositional
formula ϕ is defined as usual in propositional logic, and Mod(ϕ) denotes the set
of all models of ϕ. Two formulae ϕ and ψ are logically equivalent, written ϕ ≡ ψ,
iff Mod(ϕ) = Mod(ψ).

A formula ϕ is satisfied by a set J ⊆ IP of interpretations if each interpre-
tation J ∈ J is a model of ϕ. For a program P , a set J ⊆ IP of interpretations
determines the set of all rules which fire under J, formally fire(P,J) = {r ∈ P |
∀J ∈ J : J |= body(r)}. An interpretation M is called a model of a rule r (or
satisfies r) if M is a model of the formula ¬body(r)∨ head(r). An interpretation
M is a model of a program P if it satisfies each rule in P .

For conjunctions or disjunctions ϕ of literals, ϕ+ denotes the set of all atoms
occurring positively in ϕ, and ϕ− contains all atoms that occur negated in ϕ. For
instance, for the formula ϕ = (a ∧ ¬b ∧ ¬a) we have ϕ+ = {a} and ϕ− = {a, b}.
In heads ϕ consisting only of disjunctions of literals, we always assume without
loss of generality that ϕ+ ∩ ϕ− = ∅.

If ϕ is a conjunction of literals, we abbreviate M |=
∧

a∈ϕ+ a (i.e. ϕ+ ⊆ M)
by M |= ϕ+ and M |=

∧
a∈ϕ− ¬a (i.e. ϕ− ∩ M = ∅) by M |= ϕ−, abusing

notation. If ϕ is a disjunction of literals, we write M |= ϕ+ for M |=
∨

a∈ϕ+ a

(i.e. M ∩ ϕ+ 6= ∅) and M |= ϕ− for M |=
∨

a∈ϕ− ¬a (i.e. ϕ− 6⊆M).
By iterative application of rules from a program P ⊆ GLP starting in the

least interpretation ∅ ∈ IP , we can create monotonically increasing (transfinite)
sequences of interpretations of the program P , as follows.

Definition 1. A (transfinite) sequence C of length α of interpretations of a
program P ⊆ GLP is called a P -chain iff

(C0) C0 = ∅,
(Cβ) Cβ+1 ∈ Min(↑Cβ ∩Mod(head(Qβ))) for some set of rules Qβ ⊆ P and

for all β with β + 1 < α, and
(Cλ) Cλ =

⋃
{Cβ | β < λ} for all limit ordinals λ < α.

CP denotes the collection of all P -chains.

Note that all P -chains increase monotonically with respect to ⊆.
In the proof of Theorem 4, we will make use of the following straightforward

lemma from [16].

Lemma 1. For any set of interpretations J ⊆ IP and any interpretation K ∈ IP

we have Min(J ∩ ↓K) = Min(J) ∩ ↓K. ut

3 Selector generated models

In [14–16], a framework for defining declarative semantics of generalized logic
programs was introduced, which encompasses several other semantics, as already
mentioned in the introduction. Parametrization within this framework is done
via so-called selector functions, defined as follows.

Definition 2. A selector is a function Sel : CP × IP → 2IP , satisfying ∅ 6=
Sel(C, I) ⊆ [I, sup(C)] for all P -chains C and each interpretation I ∈ ↓ sup(C).

We use selectors Sel to define nondeterministic successor functions ΩP on
IP , as follows.

Definition 3. Given a selector Sel : CP × IP → 2IP and a program P , the
function ΩP is defined by

ΩP : (CP × IP → 2IP)×CP × IP → 2IP

ΩP (Sel, C, I) = Min ([I, sup (C)] ∩Mod (head (fire (P,Sel (C, I))))) .

Example 1. In this paper, we will have a closer look at the following selectors.

lower bound selector Sell(C, I) = {I}
lower and upper bound selector Sellu(C, I) = {I, sup(C)}
interval selector Seli(C, I) = [I, sup(C)]
chain selector Selc(C, I) = [I, sup(C)] ∩ C

With the first two arguments (the selector Sel and the chain C) fixed, the
function ΩP (Sel, C, I) can be understood as a nondeterministic consequence op-
erator. Iteration of the function ΩP (Sel, C, ·) from the least interpretation ∅
creates monotonic sequences of interpretations. This leads to the following defi-
nition of (P,M,Sel)-chains.

Definition 4. A (P,M,Sel)-chain is a P -chain satisfying

(C sup) M = sup(C) and
(CβSel) Cβ+1 ∈ ΩP (Sel, C, Cβ) for all β, where β+ 1 < κ and κ is the length of

the transfinite sequence C.

Thus, (P,M,Sel)-chains are monotonic sequences C of interpretations, that
reproduce themselves by iterating ΩP .

Definition 5. A model M of a program P ⊆ GLP is Sel-generated if and only
if there exists a (P,M,Sel)-chain C. The Sel-semantics of the program P is the
set ModSel(P) of all Sel-generated models of P .

Example 2. Let P be the program consisting of the following rules.

⇒ a (1)
a⇒ b (2)

(a ∨ ¬c) ∧ (c ∨ ¬a)⇒ c (3)

Then {a, b, c} is the only Sell-generated model for P , namely via the chain C1 =

(∅ (1),(3)→ {a, c} (2)→ {a, b, c})). {a, b} and {a, b, c} are Sellu-generated (and Selc-

generated) models, namlely via the chains C2 = (∅ (1)→ {a} (2)→ {a, b}) and C1).
{a, b} is the only Seli-generated model of P , namely via C2.

Some properties of semantics generated by the selectors in Example 1 were
studied in [14]. In Section 5, we will make use of the following results from [14].

Theorem 1. 1. For definite programs P ⊆ DLP, the unique element contained
in Modl(P) = Modlu(P) = Modc(P) = Modi(P) is the least model of P .

2. For normal programs P ⊆ NLP, the unique element of Modl(P) is the infla-
tionary model of P (as introduced in [11]).

3. For normal programs P ⊆ NLP, the set Modlu(P) = Modc(P) = Modi(P)
contains exactly all stable models of P (as defined in [5]).

4. For disjunctive programs P ⊆ DLP+, the minimal elements in Modlu(P) =
Modc(P) = Modi(P) are exactly all stable models of P (as defined in [12]),
but for generalized programs P ⊆ GLP, the sets Modlu(P), Modc(P), and
Modi(P) may differ.

5. For generalized programs P ⊆ GLP, Modi(P) is the set of stable generated
models of P (as defined in [7]). ut

This shows that the framework of selector semantics covers some of the most
important declarative semantics for normal logic programs. Selector generated
models provide a natural extension of these semantics to generalized logic pro-
grams and allow systematic comparisons of many new and well-known semantics.

For all selectors Sel, it was shown in [14] that the Sel-semantics of programs
in GLP is invariant with respect to the following transformations. (→eq) The
replacement of the body and the head of a rule by logically equivalent formulas.
(→hs) The splitting of conjunctive heads, more precisely the replacement P ∪
{ϕ⇒ ψ ∧ ψ′} →hs P ∪ {ϕ⇒ ψ,ϕ⇒ ψ′}. As every formula head(r) is logically
equivalent to a formula in conjunctive normal form, it suffices to study head
disjunctive programs.

4 Selector generated models via level mappings

In [8–10], a uniform approach to different semantics for logic programs was given,
using the notion of level mapping, as follows.

Definition 6. A level mapping for a logic program P ⊆ GLP is a function
l : BP → α, where α is an ordinal.

In order to display the style of level-mapping characterizations for semantics,
we give two examples from [10] which we will further discuss later on.

Theorem 2. Every definite program P ⊆ LP has exactly one model M , such
that there exists a level mapping l : BP → α satisfying

(Fd) for every atom a ∈ M there exists a rule
∧

b∈B b ⇒ a ∈ P such that
B ⊆M and max {l(b) | b ∈ B} < l(a).

Furthermore, M coincides with the least model of P . ut

The following is actually due to Fages [4].

Theorem 3. Let P be a normal program and M be an interpretation for P .
Then M is a stable model of P iff there exists a level mapping l : BP → α
satisfying

(Fs) for each atom a ∈M there exists a rule r ∈ P with head(r) = a, body(r)+ ⊆
M , body(r)− ∩M = ∅, and max {l(b) | b ∈ body(r)+} < l(a). ut

It is evident, that among the level mappings satisfying the respective condi-
tions in Theorems 2 and 3, there exist pointwise minimal ones.

We set out to prove a general theorem which characterizes selector generated
models by means of level mappings, in the style of the results displayed above.
The following notion will ease notation considerably.

Definition 7. For a level mapping l : BP → α for a program P ⊆ GLP and an
interpretation M ⊆ BP , the (transfinite) sequence Cl,M consisting of interpreta-
tions of P is defined by

Cl,M
β = {a ∈M | l(a) < β} = M ∩

⋃
γ<β

l−1(γ)

for all β < α.

Remark 1. Definition 7 implies the following properties of the (transfinite) se-
quence Cl,M . (1) Cl,M is monotonically increasing, (2) Cl,M

0 = ∅, and (3) M =⋃
β<α Cl,M

β = sup Cl,M .

The following is our main result.

Theorem 4. Let P ⊆ HDLP be a head disjunctive program and M ∈ IP . Then
M is a Sel-generated model of P iff there exists a level mapping l : BP → α
satisfying the following properties.

(L1) M = sup
(
Cl,M

)
∈ Mod (P).

(L2) For all β with β + 1 < α we have

Cl,M
β+1 \ Cl,M

β ∈ Min
{
J ∈ IP

∣∣∣∣J |= head
(
R

(
Cl,M

β , J
))+

}
, where

R
(
Cl,M

β , J
)

=

{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

)) ∣∣∣∣∣Cl,M
β 6|= head (r)+ and
J ∪ Cl,M

β 6|= head (r)−

}
.

(L3) For all limit ordinals λ < α we have Cl,M
λ =

⋃
β<λ Cl,M

β .

Remark 2. As P is a head disjunctive program, we have Cl,M
β 6|= head (r)+ iff

head (r)+ ∩ Cl,M
β = ∅, and J ∪ Cl,M

β 6|= head (r)− iff head (r)− ⊆ J ∪ Cl,M
β , thus

R
(
Cl,M

β , J
)

=

{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

)) ∣∣∣∣∣head (r)+ ∩ Cl,M
β = ∅ and

head (r)− ⊆ J ∪ Cl,M
β

}
.

Also note that for every rule r ∈ fire
(
P,Sel

(
Cl,M ,Cl,M

β

))
\ R

(
Cl,M

β , J
)
, we

have ↓
(
Cl,M

β ∪ J
)
⊆ Mod

(
head (r)−

)
or ↑Cl,M

β ⊆ Mod
(
head (r)+

)
. Thus all

of these rules are satisfied in the interval [Cl,M
β ,Cl,M

β ∪ J].

Proof. (of Theorem 4)
(=⇒) By Definition 5, an interpretation M is a Sel-generated model of P iff
there exists a (P,M,Sel)-chain. Let M be a model of P and M be Sel-generated
by the (P,M,Sel)-chain C of length α.

Define the level mapping l : BP → α by l(a) = min {β | a ∈ Cβ} − 1 for all
a ∈ BP . We show that this function l satisfies (L1),(L2) and (L3).

(1) We first show Cl,M = C for the sequence Cl,M determined by l and M

according to Definition 7. From Remark 1, we know Cl,M
0 = ∅ and sup

(
Cl,M

)
=

M . Moreover, for each β < α, we have

Cl,M
β = {a ∈M | l (a) < β}

= {a ∈M | min {γ | a ∈ Cγ} − 1 < β} (by Definition 7)
= {a ∈M | a ∈ Cγ , γ − 1 < β} (by definition of l)
= Cβ .

Therefore, we have Cl,M
λ =

⋃
β<λ Cl,M

β =
⋃

β<λ Cβ = Cλ for all limit ordinals
λ < α. This proves C = Cl,M .

(2) C is a (P,M,Sel)-chain, so it satisfies (L1) and (L3). It remains to show
that C satisfies (L2). For all β with β + 1 < α, we show

(a) Cβ+1 \ Cβ |= head (R (Cβ , Cβ+1 \ Cβ))+ for

R (Cβ , Cβ+1 \ Cβ)

=
{
r ∈ fire (P,Sel (C,Cβ))

∣∣∣∣ Cβ 6|= head (r)+ and
Cβ ∪ Cβ+1 \ Cβ 6|= head (r)−

}
=

{
r ∈ fire (P,Sel (C,Cβ)) | Cβ ∩ head (r)+ = ∅ and head (r)− ⊆ Cβ+1

}
and

(b) for all interpretations J ⊆ Cβ+1 \Cβ where J |= head (R (Cβ , J))+, we have
J = Cβ+1 \ Cβ .

(a) C is a (P,M,Sel)-chain, hence we have

Cβ+1 ∈ ΩP (Sel, C, Cβ) = Min ([Cβ ,M] ∩Mod (head (fire (P,Sel (C,Cβ))))) ,

and we obtain Cβ+1 |= head (fire (P,Sel (C,Cβ))).
For each rule r ∈ R (Cβ , Cβ+1 \ Cβ), we know

R (Cβ , Cβ+1 \ Cβ) ⊆ fire (P,Sel (C,Cβ))

and hence Cβ+1 |= head (r) .
By the definition of this set and Remark 2, the set R (Cβ , Cβ+1 \ Cβ) does

not contain any rule r ∈ fire (P,Sel (C,Cβ)), where Cβ+1 |= head (r) is satisfied
by Cβ+1 |= head (r)− or Cβ |= head (r)+, i.e. head (r)+ ∩ Cβ 6= ∅. Hence all
rules r from R (Cβ , Cβ+1 \ Cβ) ⊆ fire (P,Sel (C,Cβ)) satisfy Cβ |= head (r) by
Cβ+1 \ Cβ ∩ head (r)+ 6= ∅, i.e. Cβ+1 \ Cβ |= head (r)+. This shows (a).

(b) Assume J ⊆ Cβ+1 \ Cβ and J |= head (R (Cβ , J))+. We show J ∪ Cβ ⊇
Cβ+1 which implies J ⊇ Cβ+1 \ Cβ .

First note that J ∪ Cβ ⊆ [Cβ ,M] ∩Mod (head (fire (P,Sel (C,Cβ)))). Indeed
J ∪ Cβ ∈ ↑Cβ is obvious and J ∪ Cβ ∈ ↓M is implied by J ⊆ Cβ+1 \ Cβ , i.e.
J ∪ Cβ ⊆ Cβ+1, and Cβ+1 ⊆M by monotonicity of the chain C.

Now we show J ∪ Cβ |= head (fire (P,Sel (C,Cβ))). Note first that all rules r
in the set fire (P,Sel (C,Cβ)) satisfy one of the following conditions.

1. Cβ |= head (r)+ (i.e. Cβ ∩ head (r)+ 6= ∅) and therefore J ∪Cβ |= head (r) by
Cβ ⊆ J ∪ Cβ or

2. J ∪ Cβ |= head (r)− and therefore J ∪ Cβ |= head (r) or
3. none of 1. or 2. Then we have r ∈ R (Cβ , J) and due to the assumption

J ∈ Mod
(
head (R (Cβ , J))+

)
we have J ∪ Cβ |= head (r)+ and therefore

J ∪ Cβ |= head (r).

We can now conclude J ∪ Cβ ⊇ Cβ+1 because Cβ+1 is a minimal element of
[Cβ ,M] ∩Mod (head (fire (P,Sel (C,Cβ)))), which proves (b).

Together, we have shown that Cβ+1 \ Cβ is a minimal element in{
J ∈ IP | J |= head (R (Cβ , J))+

}
,

which shows that the level mapping l satisfies (L2). This finishes the first part
of the proof.
(⇐=) For the converse, we show that for every level mapping l for a program P
and an interpretation M satisfying (L1),(L2) and (L3) the sequence Cl,M is a
(P,M,Sel)-chain.

Let l : BP → α be a level mapping and M an interpretation for a program
P . According to Definition 4, we have to show the following properties of the
sequence Cl,M :

(C0) Cl,M
0 = ∅,

(Cλ) Cl,M
λ =

⋃ {
Cl,M

β | β < λ
}

for all limit ordinals λ < α,

(C sup) M =
⋃ {

Cl,M
β | β < α

}
= supCl,M and

(CβSel) Cl,M
β+1 ∈ ΩP

(
Sel,Cl,M ,Cl,M

β

)
for all β with β + 1 < α.

By Remark 1 we know that Cl,M increases monotonically and Cl,M
0 = ∅, i.e.

(C0), is satisfied. By condition (L1) we have M = sup
(
Cl,M

)
∈ Mod (P), i.e.

(C sup), and condition (L3) implies (Cλ).
For (CβSel) we have to show that for all β with β + 1 < α the equation

Cl,M
β+1 ∈ ΩP

(
Sel,Cl,M ,Cl,M

β

)
= Min

([
Cl,M

β ,M
]
∩Mod

(
head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

)))))
holds. For this, by Lemma 1, it suffices to show that

Cl,M
β+1 ∈ Min

(
↑Cl,M

β ∩Mod
(
head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

)))))
∩ ↓M.

Now by monotonicity of Cl,M we know Cl,M
β+1 ∈ ↓M . For

Cl,M
β+1 ∈ Min

(
↑Cl,M

β ∩Mod
(
head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

)))))
we will proceed by proving the steps (a) and (b), as follows.

(a) Cl,M
β+1 ∈ ↑Cl,M

β ∩Mod
(
head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

))))
.

(b) For all interpretations J ∈ ↑Cl,M
β ∩Mod

(
head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

))))
,

where J ⊆ Cl,M
β+1, we have J = Cl,M

β+1.

(a) By monotonicity of Cl,M it suffices to show that

Cl,M
β+1 ∈ Mod

(
head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

))))
.

First note that for every rule r ∈ fire
(
P,Sel

(
Cl,M ,Cl,M

β

))
one of the follow-

ing holds:

1. Cl,M
β |= head (r)+, i.e. head (r)+ ∩ Cl,M

β 6= ∅, and therefore Cl,M
β+1 |= head (r)

by Cl,M
β ⊆ Cl,M

β+1 or
2. Cl,M

β+1 |= head (r)− and therefore Cl,M
β+1 |= head (r) or

3. none of 1. or 2. Then r ∈ R
(
Cl,M

β ,Cl,M
β+1 \ Cl,M

β

)
and thus Cl,M

β+1 |= head (r)

by Cl,M
β+1 \ Cl,M

β |= head (r)+ and condition (L2).

Hence for each rule r ∈ fire
(
P,Sel

(
Cl,M ,Cl,M

β

))
we have Cl,M

β+1 |= head (r) and

thus Cl,M
β+1 ∈ ↑Cl,M

β ∩Mod
(
head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

))))
, which shows (a).

(b) Let J ∈ ↑Cl,M
β ∩Mod

(
head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

))))
for some J ⊆

Cl,M
β+1. Since J ∈ ↑Cl,M

β we obtain J ∈ ↑Cl,M
β+1 by showing J \Cl,M

β ⊇ Cl,M
β+1 \C

l,M
β .

Indeed J \ Cl,M
β ∈

{
K ∈ IP | K |= head

(
R

(
Cl,M

β ,K
))+

}
and therefore J \

Cl,M
β |= head

(
R

(
Cl,M

β , J \ Cl,M
β

))+

. Condition (L2), i.e. minimality of Cβ+1 \

Cl,M
β in this set, implies J \ Cl,M

β ⊇ Cl,M
β+1 \ Cl,M

β as desired.

By J ∈ Mod
(
head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

))))
we have J |= head (r) for

all rules r ∈ fire
(
P,Sel

(
Cl,M ,Cl,M

β

))
. For each of these rules r, J |= head (r) is

satisfied by J |= head (r)− or by Cl,M
β |= head (r)+ and in both cases we have

r 6∈ R
(
Cl,M

β , J
)
. For all remaining rules, we know that J |= head (r) is satisfied

by J \ Cl,M
β ∩ head (r)+ 6= ∅, i.e. J \ Cl,M

β |= head (r)+, and therefore we know

J \ Cl,M
β ∈

{
K ∈ IP | K |= head

(
R

(
Cl,M

β ,K
))+

}
.

By J \ Cl,M
β ⊆ Cl,M

β+1 \ Cl,M
β and minimality of Cl,M

β+1 \ Cl,M
β in the set{

K ∈ IP | K |= head
(
R

(
Cl,M

β ,K
))+

}
we have J \ Cl,M

β = Cl,M
β+1 \ Cl,M

β and therefore J = Cl,M
β+1, which shows (b).

This proves the minimality of Cl,M
β+1 in the set

[Cl,M
β ,M] ∩Mod

(
head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

))))
.

Thus, Cl,M
β+1 ∈ ΩP

(
Sel,Cl,M ,Cl,M

β

)
.

Hence Cl,M is a (P,M,Sel)-chain. This proves M ∈ ModSel (P) and concludes
the proof. ut

By the remarks made at the end of Section 3, we obtain the following imme-
diate corollary.

Corollary 1. Let P be a generalized program and M an interpretation of P .
Then M is a Sel-generated model of P iff for a head disjunctive program Q with
P →∗

eq,hs Q there exists a level mapping l : BQ → α satisfying (L1), (L2) and
(L3) of Theorem 4. ut

5 Corollaries

We can now apply Theorem 4 in order to obtain level mapping characterizations
for every semantics generated by a selector, in particular for those semantics
generated by the selectors defined in Example 1 and listed in Theorem 1. For
syntactically restricted programs, we can furthermore simplify the properties
(L1),(L2) and (L3) in Theorem 4. Alternative level mapping characterizations
for some of these semantics were already obtained directly in [10].

Programs with positive disjunctions in all heads

For rules r ∈ HDLP, where head(r) is a disjunction of atoms, we have head(r)− =
∅. Hence we have head(r)− ⊆ I, i.e. I 6|= head(r)−, for all interpretations I ∈ IP .
Thus the set R

(
Cl,M

β , J
)

from (L2) in Theorem 4 can be specified by

R
(
Cl,M

β , J
)

=
{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

))
| Cl,M

β 6|= head(r)+
}
.

We furthermore observe that the set R
(
Cl,M

β , J
)

does not depend on the inter-
pretation J , so we obtain

R′
(
Cl,M

β

)
=

{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

))
| Cl,M

β ∩ head(r)+ = ∅
}

and hence

Min
{
J ∈ IP

∣∣∣∣J |= head
(
R

(
Cl,M

β , J
))+

}
= Min

(
Mod

(
head

(
R′

(
Cl,M

β

))))
.

Thus for programs containing only rules whose heads are disjunctions of
atoms we can rewrite condition (L2) in Theorem 4, as follows.

(L2d) For every β with β + 1 < α we have

Cl,M
β+1 \ Cl,M

β ∈ Min
(
Mod

(
head

(
R′

(
Cl,M

β

))))
,where

R′
(
Cl,M

β

)
=

{
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

)) ∣∣∣Cl,M
β ∩ head(r)+ = ∅

}
.

Programs with atomic heads

Single atoms are a specific kind of disjunctions of atoms. Hence for programs
with atomic heads we can replace condition (L2) in Theorem 4 by (L2d), and
further simplify it as follows.

For rules with atomic heads we have head ({r ∈ P | head(r) 6∈ I}) = head(P)\
I and therefore

head
(
R′

(
Cl,M

β

))
= head

({
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

))
| head(r) ∩ Cl,M

β = ∅
})

= head
({
r ∈ fire

(
P,Sel

(
Cl,M ,Cl,M

β

))
| head(r) 6∈ Cl,M

β

})
= head

(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

)))
\ Cl,M

β .

Because all formulae in head(P) are atoms we obtain

Min
(
Mod

(
head

(
R′

(
Cl,M

β

))))
= Min

(
↑

(
head

(
R′

(
Cl,M

β

))))
=

{
head

(
R′

(
Cl,M

β

))}
and this allows us to simplify (L2) in Theorem 4 to the following.

(L2a) For each β with β + 1 < α we have

Cl,M
β+1 \ Cl,M

β = head
(
fire

(
P,Sel

(
Cl,M ,Cl,M

β

)))
\ Cl,M

β .

Inflationary models From Section 3 we know that for normal programs P
the selector Sell generates exactly the inflationary model of P as defined in [11].
The generalizations of the definition of inflationary models and this result to
head atomic programs are immediate. From [16] we also know that every Sell-
generated model is generated by a (P,M,Sell)-chain of length ω. Thus level
mappings l : BP → ω are sufficient to characterize inflationary models of head
atomic programs. In this case, condition (L3) applies only to the limit ordinal
0 < ω. But by remark 1, all level mappings satisfy this property. Therefore we
do not need condition (L3) in the characterization of inflationary models.

Using Theorem 4 and the considerations above, we obtain the following char-
acterization of inflationary models.

Corollary 2. Let P ⊆ HDLP be a head atomic program and M an interpretation
for P . Then M is the inflationary model of P iff there exists a level mapping
l : BP → ω with the following properties.

(L1) M = sup
(
Cl,M

)
∈ Mod(P).

(L2i)
Cl,M

n+1 \ Cl,M
n = head

(
fire

(
P,Cl,M

n

))
\ Cl,M

n

for all n < ω. ut

Normal programs

For normal programs, the heads of all rules are single atoms. Hence the simpli-
fication (L2a) of condition (L2) in Theorem 4 applies for all selector generated
semantics for normal programs.

The special structure of the bodies of all rules in normal programs allows an
alternative formulation of (L2a). In every normal rule, the body is a conjunc-
tion of literals. Thus for any set of interpretations J we have J |= body(r) iff
body(r)+ ⊆ J and body(r)− ∩ J = ∅ for all interpretations J ∈ J.

Stable models We develop next a characterization for stable models of normal
programs, as introduced in [5]. The selector Sellu generates exactly all stable
models for normal programs. In [16], it was also shown that all Sellu-generated
models M of a program P are generated by a (P,M,Sel)-chain of length ≤ ω. So
for the same reasons as discussed for inflationary models, level mappings with
range ω are sufficient to characterize stable models and condition (L3) can be
neglected.

For a normal rule r and two interpretations I,M ∈ IP with I ≤ M we
have {I,M} |= body(r), i.e. I |= body(r) and M |= body(r), iff body(r)+ ⊆ I
and body(r)− ∩ M = ∅. Combining this with (L2a) we obtain the following
characterization of stable models for normal programs.

Corollary 3. Let P ⊆ NLP be a normal program and M an interpretation for
P . Then M is a stable model of P iff there exists a level mapping l : BP → ω
satisfying the following properties:

(L1) M = sup
(
Cl,M

)
∈ Mod(P).

(L2s)

Cl,M
n+1 \ Cl,M

n = head
({
r ∈ P | body(r)+ ⊆ Cl,M

n , body(r)− ∩M = ∅
})
\ Cl,M

n

for all n < ω. ut

Comparing this with Theorem 3, we note that both theorems characterize
the same set of models. Thus for a model M of P there exists a level mapping
l : BP → α satisfying (L1) and (L2s) iff there exists a level mapping l : BP → ω
satisfying (Fs). The condition imposed on the level mapping in Theorem 3,
however, is weaker than the condition in Corollary 3, because levelmappings
defined by (P,M,Sel)-chains are always pointwise minimal.

Definite programs

In order to characterize the least model of definite programs, we can further
simplify condition (L2) in Theorem 4. Definite programs are a particular kind
of head atomic programs. Thus we can replace condition (L2) in Theorem 4 by
(L2i). Since the body of every definite rule is a conjunction of atoms we obtain

fire(P, I) =
{
r ∈ P | body(r)+ ⊆ I

}
for every interpretation I ∈ IP . Thus we get the following result.

Corollary 4. Let P ⊆ LP be a definite program and M an interpretation for
P . Then M is the least model of P iff there exists a level mapping l : BP → ω
satisfying the following conditions.

(L1) M = sup
(
Cl,M

)
∈ Mod(P).

(L2l)
Cl,M

n+1 \ Cl,M
n = head

({
r ∈ P | body(r)+ ⊆ Cl,M

n

})
\ Cl,M

n

for every n < ω. ut

Comparing this to Theorem 2, we note that the relation between the condi-
tions (L2l) and (Fd) are similar to those of the conditions (Fs) und (L2s).

6 Conclusions and Further Work

Our main result, Theorem 4, provides a characterization of selector generated
models — in general form — by means of level mappings in accordance with the
uniform approach proposed in [8–10]. As corollaries from this theorem, we have

also achieved level mapping characterizations of several semantics encompassed
by the selector generated approach due to [14–16].

Our contribution is technical, and provides a first step towards a comprehen-
sive comparative study of different semantics of logic programs under extended
syntax by means of level mapping characterizations. Indeed, a very large num-
ber of syntactic extensions for logic programs are currently being investigated in
the community, and even for some of the less fancy proposals there is often no
agreement on the preferable way of assigning semantics to these constructs.

A particularly interesting case in point is provided by disjunctive and ex-
tended disjunctive programs, as studied in [6]. While there is more or less gen-
eral agreement on an appropriate notion of stable model, as given by the notion
of answer set in [6], there exist various different proposals for a corresponding
well-founded semantics, see e.g. [17]. We expect that recasting them by means
of level-mappings will provide a clearer picture on the specific ways of modelling
knowledge underlying these semantics.

Eventually, we expect that the study of level mapping characterizations of
different semantics will lead to methods for extracting other, e.g. procedural,
semantic properties from the characterizations, like complexity or decidability
results.

References

1. Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of
declarative knowledge. In Jack Minker, editor, Foundations of deductive databases
and logic programs. Morgan Kaufmann, Los Altos, US, 1988.

2. Krzysztof R. Apt and Dino Pedreschi. Reasoning about termination of pure Prolog
programs. Information and Computation, 106(1), September 1993.

3. François Fages. Consistency of Clark’s completion and existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

4. François Fages. A new fixpoint semantics for general logic programs compared with
the well-founded and the stable model semantics. In Peter Szeredi and David H.D.
Warren, editors, Proceedings of the 7th International Conference on Logic Pro-
gramming (ICLP ’90), Jerusalem, June 1990. MIT Press.

5. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In Robert A. Kowalski and Kenneth Bowen, editors, Proceedings of the
Fifth International Conference on Logic Programming, Cambridge, Massachusetts,
1988. The MIT Press.

6. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9(3/4), 1991.

7. Heinrich Herre and Gerd Wagner. Stable models are generated by a stable chain.
Journal of Logic Programming, 30(2), February 1997.

8. Pascal Hitzler. Towards a systematic account of different logic programming se-
mantics. In Andreas Günter, Rudolf Kruse, and Bernd Neumann, editors, KI2003:
Advances in Artificial Intelligence. Proceedings of the 26th Annual German Con-
ference on Artificial Intelligence, KI2003, Hamburg, Germany, September 2003,
volume 2821 of Lecture Notes in Artificial Intelligence, pages 355–369. Springer,
Berlin, 2003.

9. Pascal Hitzler and Matthias Wendt. The well-founded semantics is a stratified
Fitting semantics. In Matthias Jarke, Jana Koehler, and Gerhard Lakemeyer,
editors, Proceedings of the 25th Annual German Conference on Artificial Intelli-
gence, KI2002, Aachen, Germany, September 2002, volume 2479 of Lecture Notes
in Artificial Intelligence, pages 205–221. Springer, Berlin, 2002.

10. Pascal Hitzler and Matthias Wendt. A uniform approach to logic programming
semantics. Theory and Practice of Logic Programming, 200x. To appear.

11. Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation by fixpoint?
In PODS ’88. Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems: March 21–23, 1988, Austin, Texas, New
York, NY 10036, USA, 1988. ACM Press.

12. Teodor Przymusinski. Stable Semantics for Disjunctive Programs. New Generation
Computing Journal, 9, 1991.

13. Teodor C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193–216. Morgan Kaufmann, Los Altos, CA, 1988.

14. Sibylle Schwarz. Answer sets generated by selector functions. In Proceedings of
the Workshop on Nonmonotonic Reasoning’2002, pages 247–253, Toulouse, 2002.
http://www.tcs.hut.fi/∼ini/nmr2002/schwarz.ps.

15. Sibylle Schwarz. Answer sets generated by selector functions. In Bertram Fronhöfer
and Steffen Hölldobler, editors, 17. WLP: Workshop Logische Programmierung, TU
Dresden, December 11–13, 2002, number TUD–FI03–03 in Technische Berichte der
Fakultät Informatik, pages 5–13. TU Dresden, 01062 Dresden, April 2002.

16. Sibylle Schwarz. Selektor-erzeugte Modelle verallgemeinerter logischer Pro-
gramme. PhD thesis, Universität Leipzig, 2004. http://www.informatik.uni-
leipzig.de/∼schwarz/ps/thes.ps.gz.

17. Kewen Wang. A comparative study of well-founded semantics for disjunctive logic
programs. In Thomas Eiter, Wolfgang Faber, and Miroslaw Truszczynski, editors,
Logic Programming and Nonmonotonic Reasoning, 6th International Conference,
LPNMR 2001, Vienna, Austria, September 17-19, 2001, Proceedings, volume 2173
of Lecture Notes in Artificial Intelligence, pages 133–146. Springer, 2001.

Journal of Applied Logic 2 (2004) 245–272

www.elsevier.com/locate/jal

Logic programs and connectionist networks✩

Pascal Hitzlera, Steffen Hölldoblera,∗, Anthony Karel Sedab

a Technische Universität Dresden, International Center for Computational Logic, 01062 Dresden, Germany
b Department of Mathematics, University College Cork, Cork, Ireland

Available online 10 June 2004

Abstract

One facet of the question of integration of Logic and Connectionist Systems, and how these can
complement each other, concerns the points of contact, in terms of semantics, between neural net-
works and logic programs. In this paper, we showthat certain semantic operators for propositional
logic programs can be computed by feedforward connectionist networks, and that the same semantic
operators for first-order normal logic programs can be approximated by feedforward connectionist
networks. Turning the networks into recurrent ones allows one also to approximate the models asso-
ciated with the semantic operators. Our methods depend on a well-known theorem of Funahashi, and
necessitate the study of when Funahashi’s theorem can be applied, and also the study of what means
of approximation are appropriate and significant.
 2004 Elsevier B.V. All rights reserved.

Keywords:Logic programming; Metric spaces; Connectionist networks

1. Introduction

It is widely recognized that Logic and Neural Networks are two rather distinct yet ma-
jor areas within Computing Science, and that each of them has proved to be especially
important in relation to Artificial Intelligence, both in the context of its implementation
and in the context of providing it with theoretical foundations. However, in many ways
Logic, manifested through Computational Logic or Logic Programming, and Neural Net-

✩ This is a revised and extended treatment of resultswhich to date have appeared only in [Proc. ECAI94
Workshop on Combining Symbolic and Connectionist Processing, ECCAI, 1994, pp. 68–77] and [Proc. Fourth
Irish Workshop on Formal Methods, IWFM’00, Electronic Workshops in Computing (eWiC), British Computer
Society, 2000; Proc. 26th German Conference on Artificial Intelligence, KI2003, Lecture Notes in Artificial
Intelligence, vol. 2821, Springer, Berlin, 2003, pp. 105–119].

* Corresponding author.
E-mail address:sh@iccl.tu-dresden.de (S. Hölldobler).

1570-8683/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2004.03.002

246 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

works are quite complementary. For example, there is a widespread belief that the ability
to represent and reason about structured objects and structure-sensitive processes is crucial
for rational agents (see, for example,[20,42]), and Computational Logic is well-suited to
doing this. On the other hand,rational agents should have additional properties which are
not easily found in logic based systems such as,for example, the abilityto learn, the ability
to adapt to new environments, and the ability todegrade gracefully; these latter properties
are typically met by Connectionist Systems or Neural Networks.

For such reasons, there is considerable interest in integrating the Logic based and Neural
Network based approaches to Artificial Intelligence with a view to bringing together the
advantages to be gained from connectionism and from symbolic AI. However, in attempt-
ing to do this, there are considerable obstacles to be overcome. For example, from the
computational point of view, most connectionist systems developed so far are proposi-
tional in nature. John McCarthycalled this a propositional fixation[39] in 1988, and not
much has changed since then. Although it is known that connectionist systems are Turing-
equivalent, we are unaware of any connectionist reasoning system which fully incorporates
the power of symbolic computation. Systems like SHRUTI[47] or the BUR-calculus[27]
allow n-place predicate symbols and a finite set of constants and, thus, are propositional
in nature. Systems like CHCL[28] allow a fixed number of first-order clauses, but can-
not copy clauses on demand and, thus, the entailment relation is decidable. Connectionist
mechanisms for representing terms like holographic reduced representations[43] or re-
cursive auto-associative memories[44] and variations thereof can handle some recursive
structures, but as soon as the depth of the represented terms increases, the performance
of these methods degrades quickly[40]. Furthermore, whilst logic programs have a rather
well-developed theory of their semantics, it is not so clear how Neural Networks can be
assigned any well-defined meaning which plays an important role comparable with that
played by the supported models, the stable model or the well-founded model typically
assigned to a logic program to capture its meaning.

It is an important fact that the models just mentioned are fixed points of various op-
erators determined by programs. In particular, the supported models, or Clark completion
semantics[9], of a normal logic programP coincide with the fixed points of the immediate
consequence operatorTP . Furthermore, the fixed points themselves are frequently found
by iterating the corresponding operators.

The previous observation establishes a clear semantical connection between logic pro-
grams and neural networks which is the main focus of study in this paper, and it arises
because neural networks can be used tocompute semantic operators such asTP . Specifi-
cally, in this paper we develop this link between propositional (as well as first-order) logic
programs and recursive networks. Our first main observation is that for any given propo-
sitional logic programP , one can construct a feedforward connectionist network which
can compute the immediate consequence operatorTP . Unfortunately, the methods used in
the propositional case do not extend immediately to the first-order case, and our second
main observation is that approximation techniques can be used instead to approximate, ar-
bitrarily well, both the semantic operators themselves and also their fixed points, at least if
the feedforward networks are turned into recurrent ones. Our methods here are based on a
well-known theorem of Funahashi[21] which shows that every continuous function on the
reals can be uniformly approximated by a 3-layer feedforward neural network. However,

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 247

application of Funahashi’s theorem depends onTP itself being continuous in a precise
sense to be defined later. This in turn leads us to study conditions under whichTP meets
this criterion, and in doing this we find it convenient to work with quite general seman-
tic operators employing many valued logics. Furthermore, it also raises rather technical
questions concerning what are the appropriate approximations to use.

Thus, the overall structure of the paper is as follows. InSection 2, we collect together
the basic notions we need concerning logic programs, neural networks, and metric spaces.
In Section 3, we establish our claim above thatTP can be computed, for propositional
programsP , by feedforward connectionist networks. InSection 4, we take up the issue
of extending the results ofSection 3to the first-order case by means of approximation.
This involves a fairly detailed study of the (topological) continuity of semantic operators,
extending results to be found in[49], before we can ultimately take up the question of
applying results such as Funahashi’s theorem and discussing measures of approximation
appropriate to the study of neural networks. Finally, inSection 5, we present our conclu-
sions and discuss future work. In essence, our techniques and thinking are somewhat in the
spirit of dynamical systems, and provide a link between the areas of logic programming,
topology and connectionist systems.

2. Basic notions

In this section, we collect together the basic concepts and notation we need from logic
programming, metric spaces and connectionistnetworks, as can be found, for example,
in [25,38,54]. A reader familiar with these notions may skip this section.

2.1. Logic programs

A (normal) logic programis a finite set ofclausesof the form

∀(A ← L1 ∧ · · · ∧ Ln),

wheren ∈ N may differ for each clause,A is an atom in some first-order languageL and
L1, . . . ,Ln are literals, that is, atoms or negated atoms inL. As is customary in logic
programming, we will write such a clause in the form

A ← L1 ∧ · · · ∧ Ln,

in which the universal quantifier is understood. ThenA is called theheadof the clause,
eachLi is called abody literalof the clause and their conjunctionL1 ∧ · · · ∧ Ln is called
thebodyof the clause. We allown = 0, by an abuse of notation, which indicates that the
body is empty; in this case, the clause is called aunit clauseor afact. We will occasionally
use the notationA ← body for clauses, so thatbody stands for the conjunction of the
body literals of the clause. If no negation symbol occurs in a logic program, the program
is called adefinitelogic program.

The Herbrand base underlying a given programP will be denoted byBP , and the set of
all Herbrand interpretations byIP , and we note that the latter can be identified simultane-
ously with the power set ofBP and with the set2BP of all functions mappingBP into the

248 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

set2 consisting of two distinct elements. The set2 is usually considered to be the set{t, f}
of truth values. Any interpretation can be extended to literals, clauses and programs in the
usual way. Amodelfor P is an interpretation which mapsP to t. The immediate conse-
quence operator(or single-step operator) TP , mapping interpretations to interpretations,
is defined as follows. LetI be an interpretation and letA be an atom. ThenTP (I)(A) = t
if and only if there exists a ground instanceA ← L1 ∧ · · · ∧ Ln of a clause inP such
thatI (L1 ∧ · · · ∧ Ln) = t. By ground(P), we will denote the set of all ground instances of
clauses inP .

The immediate consequence operator is a convenient tool for capturing the logical
meaning, or semantics, of logic programs: an interpretationI is a model for a program
P if and only if TP (I) � I , that is, if and only ifI is a pre-fixed point ofTP , where2BP

is endowed with the pointwise ordering induced by the unique partial order defined on2
in which f < t. Fixed points ofTP are calledsupported modelsfor P . They coincide with
the models for the so-calledClark completionof a program[9] and are considered to be
particularly well-suited to capturing the intended meaning of logic programs.

2.2. Metric spaces and contraction mappings

Let X be a non-empty set. A functiond :X × X → R is called ametric(onX), and the
pair (X,d) is called ametric space, if the following properties are satisfied.

1. For allx, y ∈ X, we haved(x, y) � 0 andd(x, y) = 0 iff x = y.
2. For allx, y ∈ X, we haved(x, y) = d(y, x).
3. For allx, y, z ∈ X, we haved(x, z) � d(x, y) + d(y, z).

Let d be a metric defined on a setX. Then a sequence(xn) in X is said toconverge to
x ∈ X, andx is called thelimit of (xn), if, for eachε > 0, there is a natural numbern0
such that for alln � n0 we haved(xn, x) < ε. Note that the limit of any sequence is unique
if it exists. Furthermore, a sequence(xn) is said to be aCauchy sequenceif, for each
ε > 0, there is a natural numbern0 such that wheneverm,n � n0 we haved(xm,xn) < ε.
It is clear that any sequence which converges is a Cauchy sequence. On the other hand, a
metric space(X,d) is calledcompleteif every Cauchy sequence inX converges.

Let (X,d) be a metric space. Then a functionf :X → X is called acontraction mapping
or simply acontractionif there exists a real numberλ ∈ [0,1) satisfyingd(f (x), f (y)) �
λd(x, y) for all x, y ∈ X. Finally, an elementx0 (of a setX) is called afixed pointof a
functionf :X → X if, as usual, we havef (x0) = x0.

One of the main results concerning contraction mappings defined on complete metric
spaces is the following well-known theorem.

Theorem 2.1 (Banach Contraction Mapping Theorem[54]). Let f be a contraction map-
ping defined on a complete metric space(X,d). Thenf has a unique fixed pointx0 ∈ X.
Furthermore, the sequencex,f (x), f (f (x)), . . . converges tox0 for anyx ∈ X.

If a programP is such that there exists a metric which rendersTP a contraction, then
Theorem 2.1shows thatP has a unique supported model. Semantic analysis of logic pro-

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 249

grams along these general lines was initiated in[18], and has subsequently been studied
and generalized by a number of authors. The recent publication[34] contains both a state-
of-the-art treatment using this approach and a comprehensive list of references on this
topic.

The following definition will be very convenient for our purposes.

Definition 2.2. A normal logic programP is calledstrongly determinedif there exists a
complete metricd on IP such thatTP is a contraction with respect tod .

It follows from Theorem 2.1that every strongly determined program has a unique sup-
ported model, that is, isuniquely determined. Certain well-known classes of programs turn
out to contain only strongly determined programs, amongst these are the classes of acyclic
and acceptable programs[3,5,8,18], which are fundamental in termination analysis under
Prolog. More generally, all programs calledΦω-accessible in[34] are strongly determined.
Indeed, we will take the trouble to define acyclic programs next since we will need this
notion in subsequent discussions. To do this, we need first to recall the notion of level
mapping, familiar in the context of studies of termination, see[3] for example.

A level mappingfor a programP is a mappingl :BP → α for some ordinalα. As usual,
we always assume thatl has been extended to all literals by settingl(¬A) = l(A) for each
A ∈ BP . An ω-level mappingfor P is a level mappingl :BP → N.

Definition 2.3. A logic programP is calledacyclic if there exists anω-level mapping for
P such that for each clauseA ← L1 ∧ · · · ∧ Ln in ground(P) we havel(A) > l(Li) for all
i = 1, . . . , n.

2.3. Connectionist networks

A connectionist networkis a directed graph. Aunit k in this graph is characterized, at
time t , by its input vector(ik1(t), . . . , iknk (t)), its potentialpk(t) ∈ R, its thresholdθk ∈ R,
and itsvaluevk(t). Units are connected via a set of directed and weighted connections. If
there is a connection from unitj to unitk, thenwkj ∈ R denotes theweightassociated with
this connection, andikj (t) = wkj vj (t) is the input received byk from j at time t . Fig. 1
shows a typical unit. The units are updated synchronously. In each update, the potential
and value of a unit are computed with respect to anactivation and anoutput function
respectively. All units considered in this paper compute their potential as the weighted sum
of their inputs minus their threshold:

pk(t) =
(

nk∑
j=1

wkj vj (t)

)
− θk.

Having fixed the activation function, we consider three types of units mainly distin-
guished by their output function. A unit is said to be abinary threshold unitif its output
function is a threshold function:

vk(t + �t) =
{

1 if pk(t) � 0,

0 otherwise.

250 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

Fig. 1. Unitk in a connectionist network.

A unit is said to be alinear unit if its output function is the identity and its thresholdθ is 0.
A unit is said to be asigmoidalor squashing unitif its output functionφ is non-decreasing
and is such that limt→∞(φ(pk(t))) = 1 and limt→−∞(φ(pk(t))) = 0. Such functions are
calledsquashing functions.

In this paper, we will only consider connectionist networks where the units can be or-
ganized in layers. Alayer is a vector of units. Ann-layer feedforward networkF consists
of the input layer,n − 2 hiddenlayers, and theoutputlayer, wheren � 2. Each unit occur-
ring in theith layer is connected to each unit occurring in the(i + 1)st layer, 1� i < n.
Let r ands be the number of units occurring in the input and output layers, respectively.
A connectionist networkF is called amultilayer feedforward networkif it is an n-layer
feedforward network for somen. A multilayer feedforward networkF computes a func-
tion fF :Rr → R

s as follows. The input vector (the argument offF) is presented to the
input layer at timet0 and propagated through the hidden layers to the output layer. At each
time point, all units update their potential and value. At timet0 + (n − 1)�t , the output
vector (the image underfF of the input vector) is read off the output layer.

For a 3-layer network withr linear units in the input layer, squashing units in the hidden
layer, and a single linear unit in the output layer, the input-output function of the network
as described above can thus be obtained as a mappingf :Rr → R with

f (x1, . . . , xr) =
∑
j

cjφ

(∑
i

wjixi − θj

)
,

wherecj is the weight associated with the connection from thej th unit of the hidden layer
to the single unit in the output layer,φ is the squashing output function of the units in the
hidden layer,wji is the weight associated with the connection from theith unit of the input
layer to thej th unit of the hidden layer andθj is the threshold of thej th unit of the hidden
layer.

It is our aim to obtain results on the representation or approximation of consequence
operators by input-output functions of 3-layer feedforward networks. Some of our results
rest on the following theorem, which is due to Funahashi, see[21].

Theorem 2.4. Suppose thatφ :R → R is a non-constant, bounded, monotone increasing
and continuous function. LetK ⊆ R

n be compact, letf :K → R be a continuous mapping
and letε > 0. Then there exists a3-layer feedforward network with squashing functionφ

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 251

Fig. 2. Sketch of a 3-layered recurrent network.

whose input-output mappinḡf :K → R satisfiesmaxx∈K d(f (x), f̄ (x)) < ε, whered is a
metric which induces the natural topology1 on R.

In other words, each continuous functionf :K → R can be uniformly approximated
by input-output functions of 3-layer networks. For our purposes, it will suffice to assume
thatK is a compact subset of the set of real numbers, so thatn = 1 in the statement of the
theorem.

An n-layer recurrent networkN consists of ann-layer feedforward network such that
the number of units in the input and output layer are identical. Furthermore, each unit in
thekth position of the output layer is connected with weight 1 to the unit in thekth position
of the input layer, where 1� k � N andN is the number of units in the output (or input)
layer. Fig. 2 shows a 3-layer recurrent network. The subnetwork consisting of the three
layers and the connections between the input and the hidden as well as between the hidden
and the output layer is a 3-layer feedforward network called thekernelof N .

3. Propositional logic programs

In this section, we consider the propositional case following[24] and show that for each
logic programP we can construct a 3-layer feedforward network of binary threshold
units computingTP . Turning such a network into a recurrent one allows one to compute
the unique fixed point ofTP provided thatP is strongly determined.

The main question addressed in this section is: can we specify a connectionist network
of binary threshold units for a propositional logic programP such that it computesTP

1 For example,d(x, y) = |x − y|.

252 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

and, if it exists, the least fixed point ofTP ? It is well-known that 3-layer feedforward
connectionist networks with sigmoidal hidden layer are universal approximators[21,35].
Hence, we expect that recurrent networks witha 3-layer feedforward kernel will do, where
the kernel computesTP and, by the recurrent connections,TP is iterated.

The question addressed in the following subsection is whether or not even simpler net-
works, viz. recurrent networks with a 2-layerfeedforward kernel of binary threshold units
will do. Such networks are calledperceptrons[46]. It is well-known that their computing
capabilities are limited to computing solutions for linearly separable problems[41].

3.1. Hidden layers are needed

Usually, the need for a hidden layer is shown by demonstrating that the exclusive-or
cannot be modelled by a feedforward network without hidden layers (see[41], for exam-
ple). A straightforward program to compute the exclusive-or of two propositional atomsA

andB such as the program

P1 = {C ← A ∧ ¬B, C ← ¬A ∧ B}
is not definite and from this we can only conclude that 2-layer feedforward networks cannot
computeTP for normalP . An even stronger result is the following.

Proposition 3.1. 2-layer connectionist networks of binary threshold units cannot compute
TP for definiteP .

Proof. Consider the following program

P2 = {A ← B, A ← C ∧ D, A ← E ∧ F }.
Let F be the 2-layer feedforward network of binary threshold units shown inFig. 3 and
assume that the weights inF are selected in such a way that it computesTP2. Let wij = 0

Fig. 3. A 2-layer feedforward network of binary threshold units forP2. The numbers occurring within the units
are thresholds. Connections which are not shown have weight 0.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 253

andθi = 0.5 if i ∈ [8,12], so that no unit encoding the atomsB to F in the output layer will
ever become active and this property is, moreover, independent of the activation pattern of
the input layer. Thus, as far as these units are concerned, the network behaves correctly as
no atomB to F is evaluated tot by TP2(I) for any interpretationI. For unit 7 to behave
correctly, we have to find a thresholdθ7 and weightsw7j , 1� j � 6, such that

TP2(I)(A) = t iff

(1)w71v1 + w72v2 + w73v3 + w74v4 + w75v5 + w76v6 − θ7 � 0,

whereI = (v1, . . . , v6) is the current interpretation, that is, the activation or output pattern
of the input layer. Obviously, the output of unit 1 should not influence the potential of unit
7 and hencew71 = 0. Thus,(1) reduces to

(2)TP2(I)(A) = t iff w72v2 + w73v3 + w74v4 + w75v5 + w76v6 − θ7 � 0.

As the conjunction in the conditions of clauses is commutative,(2) can be transformed to

TP2(I)(A) = t iff w72v2 + w74v3 + w73v4 + w75v5 + w76v6 − θ7 � 0

and

TP2(I)(A) = t iff w72v2 + w73v3 + w74v4 + w76v5 + w75v6 − θ7 � 0.

Hence, withw1 = 1
2(w73 + w74) andw2 = 1

2(w75 + w76) Eq. (2)becomes

(3)TP2(I)(A) = t iff w72v2 + w1(v3 + v4) + w2(v5 + v6) − θ7 � 0.

As the disjunction between clauses is commutative, using an argument similar to that used
before we findw = 1

3(w72 + w1 + w2) such that(3) becomes

(4)TP2(I)(A) = t iff w(v2 + v3 + v4 + v5 + v6) − θ7 � 0.

Thus, withx = ∑6
j=2 vj we obtain the polynomialwx − θ7. Now, forF to computeTP2

the following must hold.

wx − θ7 < 0 if x = 0 (v2 = · · · = v6 = 0).

wx − θ7 � 0 if x = 1 (v2 = 1, v3 = · · · = v6 = 0).

wx − θ7 < 0 if x = 2 (v2 = v4 = v6 = 0, v3 = v5 = 1).

However, the first derivative of the polynomialwx − θ7 cannot change its sign and, conse-
quently, there cannot be weights and thresholds such that the 2-layer feedforward network
computesTP2. �

This result shows the need for hidden layers and it is easy to verify that the 3-layer
feedforward network of binary threshold units shown inFig. 4 computesTP2 for the pro-
gramP2.

One should observe that each ruleR in P2 is mapped from the input to the output layer
through exactly one unit in the hidden layer. The potential of this unit is greater than 0 at
t0 + �t and, thus, the unit becomes active att0 + �t if and only if each unit in the input
layer representing a condition ofR is active att0, that is, if and only if each condition ofR

254 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

Fig. 4. A 3-layer feedforward network of binary threshold units computingTP2. Only connections with non-zero
weights are shown, and these connections have weight 1. The numbers occurring within units denote thresholds.

is assignedt. The potential of the output unit representingA is greater than 0 att0 + 2�t

and, thus, the unit becomes active att0 + 2�t if and only if at least one hidden unit that is
connected toA is active att0 + �t .

Consequently, the number of units in the hidden layer as well as the number of connec-
tions between the hidden and the output layer with non-zero weight is equal to the number
of clauses inP . Furthermore, the number of connections between the input and the hidden
layer with non-zero weight is equal to the number of literals occurring in the conditions
of program clauses, and the number of units in the input and output layers is equal to the
number of propositional variables occurring inthe program. Hence, the size of the network
is bounded by the size of the program, and the operatorTP is computed in constant time,
viz. in 2 steps.

These construction principles are extended to normal programs in the following subsec-
tion.

3.2. Relating propositional programs to networks

Theorem 3.2. For each programP , there exists a3-layer feedforward network computing
TP .

Proof. Let m andn be the number of propositional variables and the number of clauses
occurring inP , respectively. Without loss of generality, we may assume that the variables
are ordered. The network associated withP can now be constructed by the followingtrans-
lation algorithm:

1. The input and output layer is a vector of binary threshold units of lengthm, where
the ith unit in the input and output layer represents theith variable, 1� i � m. The
threshold of each unit occurring inthe input or output layer is set to 0.5.

2. For each clause of the formA ← L1∧· · ·∧Lk , k � 0, occurring inP , do the following.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 255

2.1. Add a binary threshold unitc to the hidden layer.
2.2. Connectc to the unit representingA in the output layer with weight 1.
2.3. For each literalLj , 1� j � k, connect the unit representingLj in the input layer

to c and, if Lj is an atom, then set the weight to 1; otherwise set the weight to
−1.

2.4. Set the thresholdθc of c to l − 0.5, wherel is the number of positive literals
occurring inL1 ∧ · · · ∧ Lk .

Each interpretationI for P can be represented by a binary vector(v1, . . . , vm). Such an
interpretation is given as input to the network by externally activating corresponding units
of the input layer at timet0. It remains to show thatTP (I)(A) = t if and only if the unit
representingA in the output layer becomes active at timet0 + 2�t .

If TP (I)(A) = t, then there is a clauseA ← L1 ∧ · · · ∧ Lk in P such that for all 1�
j � k we haveI (Lj) = t. Let c be the unit in the hidden layer associated with this clause
according to item 2.1 of the construction. From 2.3 and 2.4 we conclude thatc becomes
active at timet0 + �t . Consequently, 2.2 and the fact that units occurring in the output
layer have a threshold of 0.5 (see item 1) ensure that the unit representingA in the output
layer becomes active at timet0 + 2�t .

Conversely, suppose that the unit representing the atomA in the output layer becomes
active at timet0 +2�t . From the construction of the network, we find a unitc in the hidden
layer which must have become active at timet0 + �t . This unit is associated with a clause
A ← L1 ∧ · · · ∧ Lk . If k = 0, that is, if the body of the clause is empty, then, according to
item 2.4,c has a threshold of−0.5. Furthermore, according to item 2.3,c does not receive
any input, that is,pc = 0 + 0.5 and consequentlyc will always be active. Otherwise, if
k � 1, thenc becomes active only if each unit in theinput layer representing a positive
literal and no unit representing a negative literal in the body of the clause is active at time
t0 (see items 2.3 and 2.4). Hence, we have found a clauseA ← L1 ∧ · · · ∧ Lk such that for
all 1� j � k we haveI (Lj) = t and consequentlyTP (I)(A) = t. �

As an example, reconsider

P1 = {C ← A ∧ ¬B, C ← ¬A ∧ B}
and extend it to

P3 = {A, C ← A ∧ ¬B, C ← ¬A ∧ B}.
Their corresponding connectionist networks are shown inFig. 5. One should observe that
P3 exemplifies the representation of unit clauses in 3-layer feedforward networks.2

As already mentioned at the end ofSection 3.1, the number of units and the number
of connections in a networkF corresponding to a programP are bounded by O(m + n)

and O(m × n), respectively, wheren is the number of clauses andm is the number of
propositional variables occurring inP . Furthermore,TP (I) is computed in 2 steps. As

2 We can save the unit in the hidden layer corresponding tothe unit clause, if we change the threshold of the
unit representingA in the output layer to−0.5.

256 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

Fig. 5. Two 3-layer feedforward networks of binary threshold units computingTP1 andTP3, respectively. Only
connections with non-zero weight are shown. The number occurring within units denote thresholds.

the sequential time to computeTP (I) is bounded by O(n × m) (assuming that no literal
occurs more than once in the conditions of a clause), the parallel computational model is
optimal.3

We can now apply the Banach contraction mapping theorem,Theorem 2.1, to obtain the
following result.

Corollary 3.3. LetP be a strongly determined(propositional) program. Then there exists
a 3-layer recurrent network such that each computation starting with an arbitrary initial
input converges and yields the unique fixed point ofTP, that is, the unique supported model
for P .

Let us mention in passing that a kind of converse ofCorollary 3.3also holds, as follows.
Let P be a (propositional) program such that the corresponding network has the property
that each computation starting with an arbitrary initial inputconverges, and in all cases
converges to the same state. Then this means that iteration of theTP -operator exhibits the
same behaviour, that is, for each initial interpretation it yields one and the same constant
value after a finite number of iterations. By[31, Theorem 2], this suffices to guarantee
the existence of a complete metric which rendersTP a contraction. A direct proof of this
observation is given in[24].

Returning to the programsP1 andP3 again, we observe that both programs are strongly
determined.4 Hence,Fig. 5 shows the kernels of corresponding recurrent networks which

3 A parallel computational model requiringp(n) processors andt (n) time to solve a problem of sizen is
optimal if p(n) × t (n) = O(T (n)), whereT (n) is the sequential time to solve this problem (see for example
[37]).

4 They are even acceptable, as can be seen by mappingC to 2, andA as well asB to 1 and considering the
modelI (A) = I (C) = t andI (B) = f.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 257

compute the least fixed point ofTP1 (the interpretation represented by the vector(0,0,0))
and ofTP3 (the interpretation represented by the vector(1,0,1)).

The time needed by the network to settle down into the unique stable state is equal to
the time needed by a sequential machine to compute the least fixed point ofTP in the worst
case. As an example, consider the definite program

P4 = {A1} ∪ {Ai+1 ← Ai | 1 � i < n}.
The least fixed point ofTP is the interpretation which evaluates eachAi , 1 � i � n, to
t. Using the technique described in[10] and [48], it can be computed in O(n) steps.5

Obviously, the parallel computational model needs as many steps. More generally, letP

be a definite program containingn clauses. The time needed by the network to settle down
into the unique stable state is 3n in the worst case and, thus, the time is linear with respect
to the number of clauses occurring in the program. This comes as no surprise as it follows
from [36] that satisfiability of propositional Horn formulae isP-complete and, thus, is
unlikely to be in the classNC (see for example[37]). On the other hand, consider the
program

P5 = {Ai | 1� i � n andi even} ∪ {Ai+1 ← Ai | 1 � i � n andi even}.
The least model mapping each atom tot is computed in five steps by the recurrent network
corresponding toP5.

3.3. Extensions

In this subsection, various extensions of the basic model developed inSection 3.2are
briefly discussed. In particular, we focuson learning, rule extraction and propositional
modal logics.

Learning. The networks corresponding to logic programs and constructed by the trans-
lation algorithm presented in the proof ofTheorem 3.2cannot be trained by the usual
learning methods applied to connectionist systems. It was observed in[15] (see also[12,
14]) that results similar toTheorem 3.2andCorollary 3.3can be achieved if the binary
threshold units occurring in the hidden layer of the feedforward kernels are replaced by
sigmoidal units. We omit the technical details here and refer to the abovementioned lit-
erature. Such a move renders the kernels accessible to the backpropagation algorithm, a
standard technique for training feedforward networks[45].

Rule extraction. After training a feedforward network with sigmoidal units in the hidden
layer, the knowledge encoded in the network is mostly inaccessible to a human without
postprocessing. Numerous techniques have been proposed to extract rules from trained
feedforward networks (see for example[1] and [11]). We can now envision a cycle in
which a given (preliminary) logic program istranslated into a feedforward network, this

5 To be precise, the algorithm described in[10] needs O(n) time, wheren denotes the total number of occur-
rences of propositional variables in the formula.

258 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

network is trained by examples using backpropagation, and a new (refined) logic program
is extracted from the network after training (see[51]). The reference[12] contains several
examples of such cyclic knowledge processing.

Propositional modal logics. The approach discussed so far has been extended to (propo-
sitional) modal programs, where literals occurring in a clause may be prefixed by the
modalities� and�, clauses are labelled by the world in which they hold, and a finite set
of relations between worlds is given[13]. It was shown thatTheorem 3.2can be extended
to such modal programs in that for each such program there exists a 3-layer connectionist
network computing the modal fixed point operator of the given program. The main idea is
to construct for each world a 3-layer feedforward network using a variation of the transla-
tion algorithm specified in the proof ofTheorem 3.2and then to connect the worlds with
respect to the given set of relations betweenworlds and the usual Kripke semantics of the
modalities. It is an interesting open problem to show how to model the temporal aspects of
reasoning with respect to modal programs within a connectionist setting other than by just
copying the complete network from one point in time to the next one.

4. First-order logic programs

In this section, we extend the approach presented inSection 3to the first-order case. In
particular, we consider conditions under which semantic operators for first-order logic
programs as well as their fixed points can be approximated by connectionist networks.

In the first-order case, (Herbrand) interpretations usually consist of countably many
ground atoms. Hence, the simple solution for the propositional case, where each ground
atom is represented by a binary threshold unit in the input and the output layer, is no longer
feasible. To extend the representational capability of the networks used, binary threshold
units are replaced by sigmoidal ones. The values generated by sigmoidal units are real
numbers, and we will use real numbers to represent interpretations. InFig. 6, the recurrent
nets considered in this section are sketched. This section extends results published in[26]
and therefore we review the previous work in the following subsection.

4.1. Previous work

The reference[26] was concerned with the following problem. Suppose we are given a
first-order logic programP together with a continuous consequence operatorTP : 2BP →
2BP , whereBP is the Herbrand base ofP . We want to know whether or not there exists a
class of logic programs such that for each program in this class we can find an invertible
mappingι : 2BP → R and a functionfP :R → R satisfying the following conditions:

1. TP (I) = I ′ impliesfP (ι(I)) = ι(I ′) andfP (r) = r ′ impliesTP (ι−1(r)) = ι−1(r ′),
2. TP is a contraction on 2BP iff fP is a contraction onR, and
3. fP is continuous onR.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 259

Fig. 6. Sketch of a recurrent network for a first-order logic program.

The first condition ensures thatfP is a sound and complete encoding ofTP . The second
condition ensures that the contraction property, and thus fixed points, are preserved. The
third condition ensures that we can applyTheorem 2.4which then yields a 3-layer feedfor-
ward network with sigmoidal units in the hidden layer approximatingfP arbitrarily well.
Moreover, the corresponding recurrent network approximates the least fixed point ofTP

arbitrarily well also.
It was shown in[26] that this problem can be solved for the class of acyclic logic

programs with injective level mapping. In the following, we will lift some of these obser-
vations to a much more general level, see[30,33]. In particular, we will show that acyclic
programs with injective level mappings represent only a small fraction of the programs for
which fP can be approximated satisfactorily. We will also abstract from the single-step
operator and generalize the approach to more general types of semantic operators.

Throughout the rest of the paper, we will make substantial use of elementary notions
and results from topology, and our standard background reference to this subject is[54].
Indeed, the results presented subsequently are based on the observation that acyclicity with
respect to an injective level mapping is a sufficient, but not necessary, condition for conti-
nuity of the single-step operator with respect to a topology which is homeomorphic to the
Cantor topology on the real line, namely, thequeryor atomic topologystudied in[7,49]and
elsewhere in logic programming. We will therefore start by studying the basic topological
facts relevant to our task before turning to the applications we ultimately want to make of
these ideas and methods.

4.2. Continuity of semantic operators

From now on, we will impose the standing condition on the languageL that it contains
at least one constant symbol and at least one function symbol with arity greater than 0. If
this is not done, then ground(P) may be a finite set of ground instances of clauses, and can

260 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

be treated essentially as a propositional program, for which appropriate methods were laid
out inSection 3.

In logic programming semantics, it has turned out to be both useful and convenient
to use many-valued logics. Our investigations will therefore begin by studying suitable
topologies on spaces of many-valued interpretations. We assume we have given a finite set
T = {t1, . . . , tn} of truth values containing at least the two distinguished valuest1 andtn,
which are interpreted as being the truth valuesfor “false”, and “true”, respectively. We also
assume that we have truth tables for the usual connectives∨, ∧, ←, and¬. Given a logic
programP , we denote the set of all (Herbrand)interpretationsor valuationsin this logic
by IP,n; thusIP,n is the setT BP of all functionsI :BP → T . If n is clear from the context,
we will use the notationIP instead ofIP,n and we note that this usage is consistent with
the one given above forn = 2. As usual, any interpretationI can be extended, using the
truth tables, to give a truth value inT to any variable-free formula inL.

Definition 4.1. Given any logic programP , thegeneralized atomic topologyQ on IP =
IP,n is defined to be the product topology onT BP , whereT = {t1, . . . , tn} is endowed with
the discrete topology.

We note that this topology can be defined analogously for the non-Herbrand case. For
n = 2, the generalized atomic topologyQ specializes to the query topology of[7] (in the
Herbrand case) and to the atomic topologyQ of [49] (in the non-Herbrand case). The
following results follow immediately sinceQ is a product of the discrete topology on a
finite set, and hence is a topology of pointwise convergence.

Proposition 4.2. For A ∈ BP and ti a truth value, letG(A, ti) = {I ∈ IP,n | I (A) = ti}.
Then the following hold.

(a) Q is the topology generated by the subbaseG = {G(A, ti) | A ∈ BP , i ∈ {1, . . . , n}}.
(b) A net(Iλ) in IP converges inQ to I in IP if and only if for everyA ∈ BP there exists

someλ0 such thatIλ(A) is constant and equal toI (A) for all λ � λ0.
(c) Q is a second countable totally disconnected compact Hausdorff topology which is

dense in itself. Hence,Q is metrizable and homeomorphic to the Cantor topology on
the unit interval in the real line.

We note that the second countability ofQ rests on the fact thatBP is countable, so that
this property does not in general carry over to the non-Herbrand case.

The study of topologies such asQ comes from our desire to be able to control the
iterative behaviour of semantic operators. Topologies which are closely related to order
structures, as common in denotational semantics[2], are of limited applicability since non-
monotonic operators frequently arise naturallyin the logic programming context. See also
[23] for a study of these issues.

We proceed next with studying a rather general notion of semantic operator, akin to
Fitting’s approach in[19], which generalizes standard notions occurring in the literature.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 261

Definition 4.3. An operatorT on IP is called aconsequence operatorfor P if for every
I ∈ IP the following condition holds: for every ground clauseA ← body in P , where
T (I)(A) = ti , say, andI (body) = tj , say, we have that the truth table forti ← tj yields
the truth valuetn, that is, “true”.

It turns out that this notion of consequence operator relates nicely toQ, yielding the
following result which was reported in[23,32]. If T is a consequence operator forP and
if for any I ∈ IP we have that the sequence of iteratesT m(I) converges inQ to some
M ∈ IP , thenM is a model, in a natural sense, forP . Furthermore, continuity ofT yields
the desirable property thatM is a fixed point ofT .

Intuitively, consequence operators should propagate “truth” along the implication sym-
bols occurring in the program. From this point of view, we would like the outcome of the
truth value of such a propagation to be dependent only on the relevant clause bodies. The
next definition captures this intuition.

Definition 4.4. Let A ∈ BP and denote byBA the set of all body atoms of clauses with
headA that occur in ground(P). A consequence operatorT is called (P -)local if for every
A ∈ BP and any two interpretationsI,K ∈ IP which agree on all atoms inBA, we have
T (I)(A) = T (K)(A).

It is our desire to study continuity inQ of local consequence operators. SinceQ is a
product topology, it is reasonable to expect thatfiniteness conditions will be involved, and
indeed conditions which ensure finiteness in the sense ofDefinition 4.5below, due to[49],
have made their appearance in this context.

Definition 4.5. Let C be a clause inP and letA ∈ BP be such thatA coincides with the
head ofC. The clauseC is said to be offinite type relative toA if C has only finitely
many different ground instances with headA. The programP will be said to be offinite
type relative toA if each clause inP is of finite type relative toA, that is, if the set of all
clauses in ground(P) with headA is finite. Finally,P will be said to be offinite typeif P

is of finite type relative toA for everyA ∈ BP .

A local variableis a variable which appears in a clause body but not in the correspond-
ing head. Local variables appearnaturally in practical logic programs, but their occurrence
is awkward from the point of view of denotational semantics, especially if they occur in
negated body literals since this leads to the so-called floundering problem, see[38].

It is easy to see that, in the context of Herbrand-interpretations, and if function symbols
are present, then the absence of local variables is equivalent to a program being of finite
type.

Proposition 4.6. Let P be a logic program of finite type and letT be a local consequence
operator forP . ThenT is continuous inQ.

Proof. Let I ∈ IP be an interpretation and letG2 = G(A, ti) be a subbasic neighbourhood
of T (I) in Q, and note thatG2 is the set of allK ∈ IP such thatK(A) = ti . We need to

262 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

find a neighbourhoodG1 of I such thatT (G1) ⊆ G2. SinceP is of finite type, the set
BA is finite. Hence, the setG1 = ⋂

B∈BA
G(B, I (B)) is a finite intersection of open sets

and is therefore open. Since eachK ∈ G1 agrees withI on BA, we obtainT (K)(A) =
T (I)(A) = ti for eachK ∈ G1 by locality ofT . Hence,T (G1) ⊆ G2. �

Now, if P is not of finite type, but we can ensure by some other property ofP that the
possibly infinite intersection

⋂
B∈BA

G(B, I (B)) is open, then the above proof will carry
over to programs which are not of finite type. Alternatively, we would like to be able to
disregard the infinite intersection entirely under conditions which ensure that we have to
consider finite intersections only, as in the case of a program of finite type. The following
definition is, therefore, quite a natural one to make.

Definition 4.7. Let P be a logic program and letT be a consequence operator onIP .
We say thatT is (P -)locally finite for A ∈ BP and I ∈ IP if there exists a finite subset
S = S(A, I) ⊆ BA such that we haveT (J)(A) = T (I)(A) for all J ∈ IP which agree with
I onS. We say thatT is (P -)locally finiteif it is locally finite for all A ∈ BP and allI ∈ IP .

It is easy to see that a locally finite consequence operator is local. Conversely, a local
consequence operator for a program of finitetype is locally finite. This follows from the
observation that, for a program of finite type, the setsBA, for anyA ∈ BP , are finite. But a
much stronger result holds.

Theorem 4.8. A local consequence operator is locally finite if and only if it is continuous
in Q.

Proof. Let T be a locally finite consequence operator, letI ∈ IP , let A ∈ BP , and let
G2 = G(A,T (I)(A)) be a subbasic neighbourhood ofT (I) in Q. SinceT is locally finite,
there is a finite setS ⊆ BA such thatT (J)(A) = T (I)(A) for all J ∈ ⋂

B∈S G(B, I (B)).
By finiteness ofS, the set

⋂
B∈S G(B, I (B)) is open, and this suffices for continuity ofT .

For the converse, assume thatT is continuous inQ and letA ∈ BP andI ∈ IP be chosen
arbitrarily. ThenG2 = G(A,T (I)(A)) is a subbasic open set, so that, by continuity ofT ,
there exists a basic open setG1 = G(B1, I (B1)) ∩ · · · ∩ G(Bk, I (Bk)) with T (G1) ⊆ G2.
In other words, we haveT (J)(A) = T (I)(A) for eachJ ∈ ⋂

B∈S ′ G(B, I (B)), whereS′ =
{B1, . . . ,Bk} is a finite set. SinceT is local, the value ofT (J)(A) depends only on the
valuesJ (A) of atomsA ∈ BA. So, if we setS = S′ ∩BA, thenT (J)(A) = T (I)(A) for all
J ∈ ⋂

B∈S G(B, I (B)) which is to say thatT is locally finite forA andI . SinceA andI

were chosen arbitrarily, we obtain thatT is locally finite. �
The following corollary was communicated to us by Howard A. Blair in the two-valued

case.

Corollary 4.9. LetP be a program, letT be a local consequence operator and letl be an
injectiveω-level mapping forP with the following property: for eachA ∈ BP there exists
annA ∈ N such thatl(B) < nA for all B ∈ BA. ThenT is continuous inQ.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 263

Proof. It follows easily from the given conditions thatBA is finite for all A ∈ BP , which
implies thatT is locally finite. �

We next take a short detour from our discussion of continuity to study the weaker notion
of measurability[4] for consequence operators. For a collectionM of subsets of a setX,
we denote byσ(M) the smallestσ -algebra containingM, called theσ -algebragenerated
byM. Recall that a functionf :X → X is measurable with respect toσ(M) if and only if
f −1(A) ∈ σ(M) for eachA ∈ M. If β is the subbase of a topologyτ andβ is countable,
thenσ(β) = σ(τ). It turns out that local consequence operators are always measurable
with respect to theσ -algebra generated by a generalized atomic topology.

Theorem 4.10. Local consequence operators are measurable with respect toσ(G) =
σ(Q).

Proof. Let T be a local consequence operator. We need to show that, for each subbasic set
G(A, ti), we haveT −1(G(A, ti)) ∈ σ(G).

Let A ∈ BP and lett ∈ T both be chosen arbitrarily. LetF be the set of all functions
from BA to T , and note thatF is countable sinceBA is countable andT is finite. LetF ′
be the subset ofF which contains all functionsf with the following property: whenever
an interpretationI agrees withf onBA, thenT (I)(A) = t . Then,

⋂
B∈BA

G(B,f (B)) ∈
T −1(G(A, t)) for eachf ∈ F ′.

We obtain by locality ofT that, wheneverI is an interpretation for whichT (I)(A) =
t , there exists a functionfI ∈ F ′ such thatfI and I agree onBA, and this yields
T −1(G(A, t)) = ⋃

fI∈F ′
⋂

B∈BA
G(B, I (B)). SinceF ′ andBA are countable, the set on

the right hand side of this last equality is measurable, as required.�
We turn now to the study of the continuity of a particular operator introduced by Fitting

[19] to logic programming semantics. To this end, we associate a setP ∗ with each logic
programP by the following construction. LetA ∈ BP . If A occurs as the head of some
unit clauseA ← in ground(P), then replace it by the clauseA ← tn, where by a slight
abuse of notation we interprettn to be an additional atom which we adjoin to the language
L and always evaluate totn ∈ T , that is, it evaluates to “true”. IfA does not occur in the
head of any clause in ground(P), then add the clauseA ← t0, wheret0 is interpreted as
an additional atom which again we adjoin toL and always evaluate tot0 ∈ T , that is, it
evaluates to “false”. The resulting (ground) program, which results from ground(P) by the
changes just given with respect to everyA ∈ BP , will be denoted byP ′. Now let P ∗ be
the set of allpseudo clausesdetermined byP ′, that is, the set of all formulae of the form
A ← C1 ∨ C2 ∨ · · · , where theCi are exactly the bodies of the clauses inP ′ with head
A. We call A the headandBA = C1 ∨ C2 ∨ · · · the bodyof such a pseudo clause, and
we note that eachA ∈ BP occurs in the head of exactly one pseudo clause inP ∗. Bodies
of pseudo clauses are possibly infinite disjunctions, but this will not pose any particular
difficulty with respect to the logics which we are going to discuss. We note that a program
P is of finite type if and only if all bodies of all pseudo clauses inP ∗ are finite.

264 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

Now, if we are given (suitable) truth tables for negation, conjunction and disjunction,
we are able to evaluate the truth values of bodies of pseudo clauses relative to given inter-
pretations.

Definition 4.11. Let P be a logic program. Define the mappingFP : IP,n → IP,n relative to
a given (suitable) logic withn truth values byFP (I) = J , whereJ assigns to eachA ∈ BP

the truth valueI (BA).

We call operators which satisfyDefinition 4.11Fitting operators. If we impose the mild
assumption thattj ← tj evaluates to “true” for everyj with respect to the underlying logic,
then we easily obtain that every Fitting operator is a local consequence operator. This will
always be the case in what follows in this paper.

The virtue ofDefinition 4.11, due to Fitting[19], lies in the fact that several operators
known from the theory of logic programming can be derived from it in a very concise
way, and we refer to[16,19] for a discussion of these matters, see also[32]. We will now
investigate some of these operators in the light ofTheorem 4.8. In the following, we will
denote the “true” truth value byt and the “false” truth value byf.

If the chosen logic is classical two-valued logic, then the corresponding Fitting operator
is thesingle-stepor immediate consequence operatorTP (for a given programP). Now,
if TP (I)(A) = t, then there exists a clauseA ← body in ground(P) such thatI (body) is
true, and we obtainTP (J)(A) = t wheneverJ (body) = t. The observation that bodies of
clauses are finite conjunctions leads us to conclude the following lemma.

Lemma 4.12. If TP (I)(A) is true, thenTP is locally finite forA andI . Furthermore,TP

is continuous if and only if it is locally finite for allA andI with TP (I)(A) = f.

A body
∨

Ci of a pseudo clause is false if and only if allCi are false. SinceTP is a
Fitting operator, we obtainTP (I)(A) = f if and only if all Ci are false. If we requireTP to
be locally finite forA andI , then there must be a finite setS ⊆ BA such that anyJ ∈ IP

which agrees withI on S renders allCi false. These observations now easily yield the
following theorem from[49].

Theorem 4.13. Let P be a normal logic program. ThenTP is continuous if and only if,
for eachI ∈ IP and for eachA ∈ BP with TP (I)(A) = f, either there is no clause inP
with headA or there exists a finite setS(I,A) = {A1, . . . ,Ak,B1, . . . ,Bk′ } ⊆ BA with the
following properties:

(i) A1, . . . ,Ak are true inI andB1, . . . ,Bk′ are false inI .
(ii) Given any clauseC with headA, at least one¬Ai or at least oneBj occurs in the

body ofC.

In the case of Kleene’s strong three-valued logic, with set of truth valuesT = {t, u, f }
and logical connectives as inTable 1, the associated Fitting operator was introduced in[17]
and is denoted byΦP , for a given programP . As in the case of classical two-valued logic,
we obtain the following lemma.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 265

Table 1
Connectives for Kleene’s strong three-valued logic

p q p ∧ q p ∨ q ¬p

t t t t f

t u u t f

t f f t f

u t u t u

u u u u u

u f f u u

f t f t t

f u f u t

f f f f t

Lemma 4.14. If ΦP (I)(A) = t , thenΦP is locally finite forA andI . Furthermore,ΦP is
continuous if and only if it is locally finite for allA andI with ΦP (I)(A) ∈ {u,f }.

Obtaining a theorem analogous toTheorem 4.13is now straightforward, but tedious,
and we omit the details. Similar considerations apply to the operatorΨ on Belnap’s four-
valued logic[19] and to the operators from[29].

We mention in passing the non-monotonic Gelfond–Lifschitz operator[22] in classical
two-valued logic, whose fixed points yield the stable models of the program in question.
It turns out that this operator is not a consequence operator in the sense discussed in this
paper, and attempts to characterize continuity of it will involve different methods (by means
of the results from[53], for example).

4.3. Approximation by artificial neural networks

We have now finished our general preparations and continue next with our main task,
namely, the study of the representability of logic programs by means of connectionist net-
works. We recall that the Cantor setC is a compact subset of the real line, and the topology
which C inherits as a subspace ofR coincides with the Cantor topology onC. Also, the
Cantor spaceC is homeomorphic toIP,n when the latter is endowed with a generalized
atomic topologyQ. Hence, if a consequence operatorT is continuous inQ, we can iden-
tify it with a mappingι(T) :x
→ ι(T (ι−1(x))) on C which is continuous in the subspace
topology ofC in R, as follows.

Theorem 4.15. LetP be a program, letT be a consequence operator which is locally finite
and letι be a homeomorphism from(IP,n,Q) to C. ThenT (more preciselyι(T)) can be
uniformly approximated by input-output mappings of3-layer feedforward networks.

Proof. Under the conditions stated in the theorem, the operatorT is continuous inQ. Us-
ing the homeomorphismι, the resulting functionι(T) is continuous on the Cantor setC,
which is a compact subset ofR. Applying Theorem 2.4, ι(T) can be uniformly approxi-
mated by input-output functions of 3-layer feedforward networks.�

266 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

The restriction to programs with continuous consequence operator is not entirely satis-
factory. There is another approximation theorem, due to[35], which requires only measur-
ability of the functions in question.

Theorem 4.16. Suppose thatφ is a monotone increasing function fromR onto (0,1). Let
f :Rr → R be a Borel-measurable function and letµ be a probability Borel-measure on
R

r . Then, given anyε > 0, there exists a3-layer feedforward network with squashing
functionφ whose input-output function̄f :Rr → R satisfies

�µ(f, f̄) = inf
{
δ > 0: µ

{
x:

∣∣f (x) − f̄ (x)
∣∣ > δ

}
< δ

}
< ε.

In other words, the class of functions computed by 3-layer feedforward neural nets is
dense in the set of all Borel measurable functionsf :Rr → R relative to the metric�µ

defined inTheorem 4.16.
By means ofTheorem 4.10, we can now view a local consequence operatorT as a

measurable functionι(T) on C by identifyingIP,n with C via a homeomorphismι. Since
C is measurable as a subset of the realline, this operator can be extended6 to a measurable
function onR and we obtain the following result.

Theorem 4.17. Given any programP with local consequence operatorT , the operatorT
(more preciselyι(T)) can be approximated in the manner ofTheorem4.16by input-output
mappings of3-layer feedforward networks.

This result is somewhat unsatisfactory since the approximation stated inTheorem 4.16
is only almost everywhere, that is, pointwise with the exception of a set of measure
zero. The Cantor set is, however, a set of measure zero. We can strengthen the result
a bit by giving an explicit construction for the two-valued case. We define a sequence
(Tn) of measurable functions onR as follows, wherel(x) = max{y ∈ C: y � x} and
u(x) = min{y ∈ C: y � x} for eachx ∈ [0,1] \ C:

T0(x) =




ι(TP)(x) if x ∈ C,

ι(TP)(0) if x < 0,

ι(TP)(1) if x > 1,

0 otherwise,

T1(x) =
{

ι(TP)(l(x)) + ι(TP)(u(x))−ι(TP)(l(x))
u(x)−l(x)

if x ∈ [3−1,2 · 3−1],
0 otherwise,

Ti(x) =




ι(TP)(l(x))

+ ι(TP)(u(x))−ι(TP)(l(x))
u(x)−l(x)

(x − l(x)) if x ∈ ⋃2·3i−2

k=1 [(2k − 1)3−i ,

2k · 3−i],
0 otherwise

for i � 2.

6 For example, as a functionT :R → R with T (x) = ι(TP (ι−1(x))) if x ∈ C andT (x) = 0 otherwise.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 267

We define the functionT :R → R by T (x) = supi Ti(x) and obtainT (x) = ι(TP (x)) for
all x ∈ C andT (ι(I)) = ι(TP (I)) for all I ∈ IP . Since all the functionsTi , for i � 1, are
piecewise linear and therefore measurable, the functionT is also measurable. Intuitively,
T is obtained by a kind of linear interpolation.

If i :BP → N is a bijective mapping, then we can obtain a homeomorphismι : IP → C
from i as follows: we identifyI ∈ IP with x ∈ C wherex written in ternary form has 2
as itsi(A)th digit (after the decimal point) ifA ∈ I , and 0 as itsi(A)th digit if A /∈ I . If
I ∈ IP is finite or cofinite7, then the sequence of digits ofι(I) in ternary form is eventually
constant 0 (ifI finite) or eventually constant 2 (ifI cofinite). Thus, each such interpretation
is the endpoint of a linear piece of one of the functionsTi , and therefore ofT .

Corollary 4.18. Given any normal logic programP , its single-step operatorTP (more
preciselyι(TP)) can be approximated by input-output mappings of3-layer feedforward
networks in the following sense: for everyε > 0 and for everyI ∈ IP which is either finite
or cofinite, there exist a3-layer feedforward network with input-output functionf and
x ∈ [0,1] with |x − ι(I)| < ε such that|ι(TP (I)) − f (x)| < ε.

Proof. We use a homeomorphismι which is obtained from a bijective mappingi :BP →
N as in the paragraph preceding the corollary. We can assume that the measureµ from
Theorem 4.16has the property thatµ{[x, x + ε]} � ε for eachx ∈ R. Let ε > 0 andI ∈
IP be finite or cofinite. Then by construction ofT , there exists an interval[ι(I), ι(I) +
δ] with δ < ε

2 (or analogously[ι(I) − δ, ι(I)]) such thatT is linear on[ι(I), ι(I) + δ]
and|T (ι(I)) − T (x)| < ε

2 for all x ∈ [ι(I), ι(I) + δ]. By Theorem 4.16and the previous
paragraph, there exists a 3-layer feedforward network with input-output functionf such
that�µ(T ,f) < δ, that is,µ{x: |T (x) − f (x)| > δ} < δ. By our condition onµ, there is
x ∈ [ι(I), ι(I) + δ] with |T (x) − f (x)| � δ < ε

2. We can conclude that∣∣ι(TP (I)
) − f (x)

∣∣ = ∣∣T (
ι(I)

) − f (x)
∣∣ �

∣∣T (
ι(I)

) − T (x)
∣∣ + ∣∣T (x) − f (x)

∣∣ < ε,

as required. �
It would be of interest to strengthen this approximation for sets other than the finite

and cofinite elements ofIP , although it is interesting to note that the finite interpretations
correspond to compact elements in the sense of domain theory, see[2].

We want to return now to the case discussed earlier inTheorem 4.15. In Section 3,
and also in[26], the following recurrent neural network architecture was considered: we
assume that the number of output and input units is equal and that, after each propagation
through the network, the output values are fed back without changes into input values.
For the case which we consider, it will again be sufficient to suppose that the input layer
consists of one unit only, so that the architecture can be depicted as inFig. 6.

We will show in the following that iterates of locally finite local consequence operators
can be approximated arbitrarily closely by iterates of suitably chosen networks. This is
in fact a consequence of the uniform approximation obtained fromTheorem 2.4and the
compactness of the unit interval.

7 I ∈ IP is cofinite if BP \ I is finite.

268 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

Let P be a logic program, letT be a locally finite local consequence operator forP

and letι : IP → C be a homeomorphism. LetF be a continuous extension ofι(T) onto the
unit interval[0,1] in the reals, letd be the natural metric onR, and letε > 0. By The-
orem 4.15, there exists a 3-layer feedforward network with input-output mappingf such
that maxx∈[0,1] d(f (x),F (x)) < ε. Let us further assume thatF is Lipschitz-continuous,
that is, there existsλ � 0 such that for allx, y ∈ [0,1] we haved(F (x),F (y)) � λd(x, y).
Forx, y ∈ [0,1] we therefore obtain

(5)d
(
f (x),F (y)

)
� d

(
f (x),F (x)

) + d
(
F(x),F (y)

)
� ε + λd(x, y).

Now letx ∈ [0,1] be arbitrarily chosen. ByEq. (5)we obtain

(6)d
(
f 2(x),F 2(x)

)
� ε + λd

(
f (x),F (x)

)
� ε + λε.

Inductively, we can prove that for alln ∈ N we have

(7)d
(
f n(x),F n(x)

)
� ε + λε + · · · + λn−1ε = ε

(
n−1∑
i=0

λi

)
= ε

1− λn

1− λ
.

Thus, we obtain the following bound on the error produced by the recurrent network after
n iterations.

Theorem 4.19. With the notation and hypotheses above, for anyI ∈ IP and anyn ∈ N we
have ∣∣f n

(
ι(I)

) − ι
(
T n(I)

)∣∣ � ε
1− λn

1− λ
.

Proof. Note thatι(T n(I)) = Fn(ι(I)), and the assertion follows fromEq. (7)sinced is
the natural metric onR. �

We derive a few corollaries from this result.

Corollary 4.20. If F is a contraction on[0,1], so thatλ < 1, then(F k(ι(I))) converges
for everyI to the unique fixed pointx of F and there existsm ∈ N such that for alln � m

we have∣∣f n
(
ι(I)

) − x
∣∣ � ε

1

1− λ
.

Proof. The convergence follows from the Banach contraction mapping theorem. The in-
equality follows immediately fromTheorem 4.19using the well-known expression for
limits of geometric series. �

If F is a contraction on[0,1], thenT is a contraction on the complete subspaceC,
and also has a fixed pointM with ι(M) = x. However, it seems difficult to guarantee the
hypothesis ofCorollary 4.20, although in[26] a similar result for acyclic programs with
injective level mappings in classical logic wasachieved. The following result may be more
promising.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 269

Corollary 4.21. If, for someI ∈ IP , T n(I) converges inQ to a fixed pointM of T , and
ι(T) is Lipschitz-continuous, then, for everyδ > 0, there exists a network with input-output
functionf and somen ∈ N such that|f n(ι(I)) − ι(M)| < δ.

Proof. The hypothesis implies thatFn(ι(I)) converges toι(M) in the natural metric on
R. Givenδ > 0, there existsn ∈ N such that|Fm(ι(I)) − ι(M)| < δ

2 for all m � n. Since
F is fixed, we know the value ofλ. Now, by the approximation results above, we choose a
network with input-output functionf such thatε 1−λn

1−λ
< δ

2. Then usingTheorem 4.19and
the triangle inequality we obtain

∣∣f n
(
ι(I)

) − ι(M)
∣∣ �

∣∣f n
(
ι(I)

) − Fn
(
ι(I)

)∣∣ + ∣∣Fn
(
ι(I)

) − ι(M)
∣∣

< 2 · δ

2
� δ. �

We close by describing a class of programs for which the additional hypothesis from
Corollary 4.21is satisfied. The result is well-known for the case of classical two-valued
logic and the immediate consequence operator. So, letP be acyclic with level mappingl,
and letT be a local consequence operator forP . We define a mappingd : IP × IP → R by
d(I, J) = 2−n, wheren is least such thatI andJ differ on some atomA with l(A) = n. It
is easily verified thatd is a complete metric onIP , see[18].

Proposition 4.22. With the stated hypotheses,T is a contraction with respect tod .

Proof. Supposed(I, J) = 2−n. Then I and J coincide on all atoms of level less than
n. Now let A ∈ BP with l(A) = n. Then by acyclicity ofP we have that all atoms in
BA are of level less thann, and by locality ofT we have thatT (I)(A) = T (J)(A). So
d(T (I), T (J)) � 2−(n+1). �

We obtain finally the following theorem.

Theorem 4.23. Let P be an acyclic program and letT be a local consequence operator
for P . Then, for anyI ∈ IP , we have thatT n(I) converges inQ to the unique fixed point
M of T .

Proof. By Proposition 4.22and the fact thatd is a complete metric, we can apply the
Banach contraction mapping theorem to obtain the convergence ofT n(I) in d to a unique
fixed pointM of T . By definition ofd , the convergence of the sequence of interpretations
T n(I) to M must be pointwise, hence is also convergence inQ. �

Theorem 4.23is remarkable since the existence of a fixed point of the semantic operator
can be guaranteed without any particular knowledge about the underlying multi-valued
logic.

270 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

5. Conclusions and further work

In considering the integration of Logic and Connectionist Systems, we have taken the
natural point of contact between them provided by the immediate consequence operator
TP , associated with a normal logic programP , and the issue of its computation by means of
neural networks. In so far as one may identify two logic programs with the same immediate
consequence operator (subsumption equivalence), this provides a sort of semantics for a
neural network which computesTP , namely, the supported model semantics ofP .

A number of questions arise out of these considerations, and we close by briefly men-
tioning a few of them, as follows. First, there is the question of giving explicit constructions
of networks for approximatingTP in case thatTP is continuous, and this point is consid-
ered in[6]. A question which is also related to the results given in[6] is that of providing
good bounds on Lipschitz constants forfP , and this issue appears to be central to actually
giving constructions of approximating networks. Another natural question concerns carry-
ing over the programme given here for the supported model semantics of a normal logic
program to the stable model semantics[22] and the well-founded semantics[52], and one
possible means of doing this is provided by the results of[53]. From the connectionist point
of view, the main open question is how to build a connectionist network given a first-order
logic program. Ideally, assuming that this is done, we would then like to apply known con-
nectionist learning techniques, in particularbackpropagation, to such networks and, after
training, extract a refined set of first-order clauses from the network. Finally, there is the
purely mathematical question of what mathematical notions of approximation are useful
and appropriate. Here we have discussed two well-known ones: uniform approximation
on compacta, and a notion of approximation closely related to convergence in measure.
However, others may prove to be significant, and this is a problem still to be investigated.

Acknowledgements

The authors wish to thank two anonymous referees for comments which helped to im-
prove the presentation of this paper. The last named author wishes to thank the following
people and institutions for their support of work related to the results contained in this
paper: (i) the members of Professor Steffen Hölldobler’s Knowledge Representation and
Reasoning Group at TU Dresden, (ii) Deutscher Akademischer Austausch Dienst (DAAD),
and (iii) the Boole Centre for Research in Informatics at University College Cork.

References

[1] R. Andrews, J. Diederich, A.B. Tickle, A survey and critique of techniques for extracting rules from trained
artificial neural networks, Knowledge-Based Systems 8 (6) (1995) 373–389.

[2] S. Abramsky, A. Jung, Domain theory, in: S. Abramsky, D. Gabbay, T.S.E. Maibaum (Eds.), Handbook of
Logic in Computer Science, vol. 3, Clarendon, Oxford, 1994.

[3] K.R. Apt, D. Pedreschi, Reasoning about termination of pure Prolog programs, Inform. and Comput. 106
(1993) 109–157.

[4] R.G. Bartle, The Elements of Integration, Wiley, New York, 1966.
[5] M. Bezem, Characterizing termination of logic programs with level mappings, in: E.L. Lusk, R.A. Overbeek

(Eds.), Proceedings of the North American Conference on Logic Programming, MIT Press, Cambridge, MA,
1989, pp. 69–80.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272 271

[6] S. Bader, P. Hitzler, Logic programs, iterated function systems, and recurrent radial basis function networks,
in this issue.

[7] A. Batarekh, V.S. Subrahmanian, Topological model set deformations in logic programming, Fund. In-
form. 12 (1989) 357–400.

[8] L. Cavedon, Acyclic programs and the completeness of SLDNF-resolution, Theoret. Comput. Sci. 86 (1991)
81–92.

[9] K.L. Clark, Negation as failure, in: H. Gallaire, J. Minker (Eds.), Logic and Data Bases, Plenum Press, New
York, 1978, pp. 293–322.

[10] W.F. Dowling, J.H. Gallier, Linear-time algorithmsfor testing the satisfiability of propositional Horn formu-
lae, J. Logic Programming 1 (3) (1984) 267–284.

[11] A.S. d’Avila Garcez, K. Broda, D.M. Gabbay, Symbolic knowledge extraction from trained neural networks:
A sound approach, Artificial Intelligence 125 (2001) 155–207.

[12] A.S. d’Avila Garcez, K.B. Broda, D.M. Gabbay, Neural-Symbolic Learning Systems—Foundations and
Applications, in: Perspectives in Neural Computing, Springer, Berlin, 2002.

[13] A.S. d’Avila Garcez, L.C. Lamb, D.M. Gabbay, A connectionist inductive learning system for modal logic
programming, in: Proceedings of the IEEE International Conference on Neural Information Processing
ICONIP’02, Singapore, 2002.

[14] A.S. d’Avila Garcez, G. Zaverucha, The connectionist inductive learning and logic programming system,
Appl. Intelligence (Special Issue on Neural Networks and Structured Knowledge) 11 (1) (1999) 59–77.

[15] A.S. d’Avila Garcez, G. Zaverucha, L.A.V. de Carvalho, Logical inference and inductive learning in artificial
neural networks, in: C. Hermann, F. Reine, A. Strohmaier (Eds.), Knowledge Representation in Neural
Networks, Logos Verlag, Berlin, 1997, pp. 33–46.

[16] M. Denecker, V. Wiktor Marek, M. Truszczynski, Approximating operators, stable operators, well-founded
fixpoints and applications in non-monotonic reasoning, in: J. Minker (Ed.), Logic-based Artificial Intelli-
gence, Kluwer Academic, Boston, 2000, pp. 127–144.

[17] M. Fitting, A Kripke–Kleene semantics for general logic programs, J. Logic Programming 2 (1985) 295–
312.

[18] M. Fitting, Metric methods: Three examples and a theorem, J. Logic Programming 21 (3) (1994) 113–127.
[19] M. Fitting, Fixpoint semantics for logic programming—A survey, Theoret. Comput. Sci. 278 (1–2) (2002)

25–51.
[20] J.A. Fodor, Z.W. Pylyshyn, Connectionism and cognitive architecture: A critical analysis, in: S. Pinker,

J. Mehler (Eds.), Connections and Symbols, MIT Press, Cambridge, MA, 1988, pp. 3–71.
[21] K.-I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Net-

works 2 (1989) 183–192.
[22] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R.A. Kowalski, K.A.

Bowen (Eds.), Logic Programming. Proceedings of the 5th International Conference and Symposium on
Logic Programming, MIT Press, Cambridge, MA, 1988, pp. 1070–1080.

[23] P. Hitzler, Generalized metrics and topology in logic programming semantics, PhD Thesis, Department of
Mathematics, National University ofIreland, University College Cork, 2001.

[24] S. Hölldobler, Y. Kalinke, Towards a massively parallel computational model for logic programming, in:
Proceedings ECAI94 Workshop on Combining Symbolic and Connectionist Processing, ECCAI, 1994,
pp. 68–77.

[25] J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, Read-
ing, MA, 1991.

[26] S. Hölldobler, Y. Kalinke, H.-P. Störr, Approximating the semantics of logic programs by recurrent neural
networks, Appl. Intelligence 11 (1999) 45–58.

[27] S. Hölldobler, Y. Kalinke, J. Wunderlich, A recursive neural network for reflexive reasoning, in: S. Wermter,
R. Sun (Eds.), Hybrid Neural Symbolic Integration, in: Lecture Notes in Artificial Intelligence, vol. 1778,
Springer, Berlin, 2000, pp. 46–62.

[28] S. Hölldobler, Automated inferencing and connectionist models, Technical Report AIDA-93-06, Intellektik,
Informatik, TH Darmstadt,1993 (Postdoctoral Thesis).

[29] P. Hitzler, A.K. Seda, Characterizations of classes of programs by three-valued operators, in: M. Gelfond,
N. Leone, G. Pfeifer (Eds.), Logic Programmingand Non-Monotonic Reasoning, Proceedings of the 5th

272 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245–272

International Conference on Logic Programmingand Non-Monotonic Reasoning, LPNMR’99, El Paso, TX,
in: Lecture Notes in Artificial Intelligence, vol. 1730, Springer, Berlin, 1999, pp. 357–371.

[30] P. Hitzler, A.K. Seda, A note on relationships between logic programs and neural networks, in: P. Gibson,
D. Sinclair (Eds.), Proceedings of the Fourth IrishWorkshop on Formal Methods, IWFM’00, Electronic
Workshops in Computing (eWiC), British Computer Society, 2000.

[31] P. Hitzler, A.K. Seda, A “converse” of the Banach contraction mapping theorem, J. Electrical En-
grg. 52 (10/s) (2001) 3–6. Proceedings of the 3rd Slovakian Student Conference in Applied Mathematics,
SCAM2001, Bratislava, Slovak Academy of Sciences.

[32] P. Hitzler, A.K. Seda, Semantic operators and fixed-point theory in logic programming, in: Proceedings of
the Joint IIIS & IEEE Meeting of the 5th World Multiconference on Systemics, Cybernetics and Informatics,
SCI2001 and the 7th International Conference on Information Systems Analysis and Synthesis, ISAS2001,
Orlando, FL, International Institute ofInformatics and Systemics: IIIS, 2001.

[33] P. Hitzler, A.K. Seda, Continuity of semantic operators in logic programming and their approximation by
artificial neural networks, in: A. Günter, R. Krause, B. Neumann (Eds.), Proceedings of the 26th Ger-
man Conference on Artificial Intelligence, KI2003, in: Lecture Notes in Artificial Intelligence, vol. 2821,
Springer, Berlin, 2003, pp. 105–119.

[34] P. Hitzler, A.K. Seda, Generalized metrics and uniquely determined logic programs, Theoret. Comput.
Sci. 305 (1–3) (2003) 187–219.

[35] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators,
Neural Networks 2 (1989) 359–366.

[36] N.D. Jones, W.T. Laaser, Complete problems for deterministic sequential time, Theoret. Comput. Sci. 3
(1977) 105–117.

[37] R.M. Karp, V. Ramachandran, Parallel algorithms for shared-memory machines, in: J. van Leeuwen (Ed.),
Handbook of Theoretical Computer Science,Elsevier Science, New York, 1990, pp. 869–941.

[38] J.W. Lloyd, Foundations of Logic Programming, Springer, Berlin, 1988.
[39] J. McCarthy, Epistomological challenges for connectionism, Behavioral and Brain Sciences 11 (1988) 44.

(Commentary on[50]).
[40] Y. McIntyre, Modellgenerierung mit konnektionistischen Systemen, PhD Thesis, TU Dresden, Fakultät In-

formatik, 2000.
[41] M.L. Minsky, S. Papert, Perceptrons, MIT Press, Cambridge, MA, 1972.
[42] A. Newell, Physical symbol systems, Cognitive Sci. 4 (1980) 135–183.
[43] T.A. Plate, Holographic reduced representations, in: Proceedings of the International Joint Conference on

Artificial Intelligence, 1991, pp. 30–35.
[44] J.B. Pollack, Recursive auto-associative memory: Devising compositional distributed representations, in:

Proceedings of the 10th Annual Conference of the Cognitive Science Society, 1988, pp. 33–39.
[45] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagation, in:

Parallel Distributed Processing, MIT Press, Cambridge, MA, 1986.
[46] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Machines, Spartan Books,

Washington, 1962.
[47] L. Shastri, V. Ajjanagadde, From associations to systematic reasoning: A connectionist representation of

rules, variables and dynamic bindings using temporalsynchrony, Behavioral and Brain Sciences 16 (3)
(1993) 417–494.

[48] M.G. Scutellà, A note on Dowling and Gallier’s top-down algorithm for propositional Horn satisfiability,
J. Logic Programming 8 (1990) 265–273.

[49] A.K. Seda, Topology and the semantics of logic programs, Fund. Inform. 24 (4) (1995) 359–386.
[50] P. Smolensky, On the proper treatment of connectionism, Behavioral and Brain Sciences 11 (1988) 1–74.
[51] G.G. Towell, J.W. Shavlik, Knowledge-based artificial neural networks, Artificial Intelligence 70 (1–2)

(1994) 119–165.
[52] A. van Gelder, K.A. Ross, J.S. Schlipf, The well-founded semantics for general logic programs,

J. ACM 38 (3) (1991) 620–650.
[53] M. Wendt, Unfolding the well-founded semantics,J. Electrical Engineering, Slovak Academy of Sci-

ences 53 (12/s) (2002) 56–59, Proceedings of the 4th Slovakian Student Conference in Applied Mathematics,
Bratislava, April 2002.

[54] S. Willard, General Topology, Addison-Wesley, Reading, MA, 1970.

Journal of Applied Logic 2 (2004) 273–300

www.elsevier.com/locate/jal

Logic programs, iterated function systems,
and recurrent radial basis function networks

Sebastian Bader, Pascal Hitzler∗

Artificial Intelligence Institute, Department of Computer Science, Dresden University of Technology, Germany

Available online 23 April 2004

Abstract

Graphs of the single-step operator for first-order logic programs—displayed in the real plane—
exhibit self-similar structures known from topological dynamics, i.e., they appear to befractals, or
more precisely, attractors of iterated function systems. We show that this observation can be made
mathematically precise. In particular, we give conditions which ensure that those graphs coincide
with attractors of suitably chosen iterated function systems, and conditions which allow the approxi-
mation of such graphs by iterated function systems or by fractal interpolation. Since iterated function
systems can easily be encoded using recurrent radial basis function networks, we eventually obtain
connectionist systems which approximate logic programs in the presence of function symbols.
 2004 Elsevier B.V. All rights reserved.

Keywords: Neural-symbolic integration; Logic program; Iterated function system; Radial basis function
network; Recurrent neural network

1. Introduction

Intelligent systems based on logic programming on the one hand, and on artificial neural
networks (sometimes called connectionist systems) on the other, differ substantially. Logic
programs are highly recursive and well understood from the perspective of knowledge
representation: The underlying language is that of first-order logic, which is symbolic in
nature and makes it easy to encode problem specifications directly as programs. The suc-
cess of artificial neural networks lies in the fact that they can be trained using raw data,
and in some problem domains the generalization from the raw data made during the learn-

* Corresponding author.
E-mail addresses: s.bader@gmx.net (S. Bader), phitzler@inf.tu-dresden.de (P. Hitzler).
URLs: http://www.wv.inf.tu-dresden.de/~borstel(S. Bader),http://www.wv.inf.tu-dresden.de/~pascal

(P. Hitzler).

1570-8683/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2004.03.003

274 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

ing process turns out to be highly adequate for the problem at hand, even if the training
data contains some noise. Successful architectures, however, often do not use recursive (or
recurrent) structures. Furthermore, the knowledge encoded by a trained neural network is
only very implicitly represented, and no satisfactory methods for extracting this knowledge
in symbolic form are currently known.

It would be very desirable to combine the robust neural networking machinery with
symbolic knowledge representation and reasoning paradigms like logic programming in
such a way that the strengths of either paradigm will be retained. Current state-of-the-art
research, however, fails by far to achieve this ultimate goal. As one of the main obstacles to
be overcome we perceive the question how symbolic knowledge can be encoded by artifi-
cial neural networks: Satisfactory answers to this will naturally lead the way to knowledge
extraction algorithms and to hybrid neural-symbolic systems.

Earlier attempts to integrate logic and connectionist systems have mainly been restricted
to propositional logic, or to first-order logic without function symbols. They go back to the
pioneering work by McCulloch and Pitts[34], and have led to a number of systems devel-
oped in the 80s and 90s, including Towell and Shavlik’s KBANN[44], Shastri’s SHRUTI
[43], the work by Pinkas[36], Hölldobler[26], and d’Avila Garcez et al.[12,14], to men-
tion a few, and we refer to[10,13,17]for comprehensive literature overviews.

Without the restriction to the finite case (including propositional logic and first-order
logic without function symbols), the task becomes much harder due to the fact that the
underlying language is infinite but shall be encoded using networks with a finite number of
nodes. The sole approach known to us for overcoming this problem (apart from work on
recursive auto-associative memory, RAAM, initiated by Pollack[37], which concerns the
learning of recursive terms over a first-order language) is based on a proposal by Hölldobler
et al. [29], spelled out first for the propositional case in[28], and reported also in[20]. It
is based on the idea that logic programs can be represented—at least up to subsumption
equivalence[32]—by their associated single-step or immediate consequence operators.
Such an operator can then be mapped to a function on the real numbers, which can under
certain conditions in turn be encoded or approximated, e.g., by feedforward networks with
sigmoidal activation functions using an approximation theorem due to Funahashi[16].

While contemplating this approach, we plotted graphs of resulting real-valued functions
and found that inall cases these plots showed self-similar structures as known from topo-
logical dynamics. To be more precise, they looked likefractals in the sense of attractors of
iterated function systems[3], seeFigs. 1 and 7for examples. While the general observation
that logic programming is linked to topological dynamics and chaos theory is not new (see
the work by Blair et al.[8,9]), the strikingly self-similar representation in the Euclidean
plane offers a setting for developing real-valued iterated function systems for representing
logic programs, with the concrete goal of in turn converting these into recurrent neural
networks, thus obtaining connectionist representations of logic programs.

In this paper we substantiate formally the fact that these plots can indeed be obtained
as attractors of iterated function systems, and give concrete representations of such sys-
tems. More generally, we give necessary and sufficient conditions under which graphs of
single-step operators in the Euclidean plane arise as attractors of certain iterated function
systems. We will give algorithms for constructing iterated function systems and fractal in-
terpolation systems for approximating graphs of single-step operators. We will finally use

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 275

Fig. 1. The graph of a real-valued single-step operator.

our results for constructing recurrent radial basis function networks which approximate
graphs of single-step operators.

The paper is structured as follows. InSection 2, we will introduce basic notions con-
cerning logic programs and iterated function systems which we will need throughout the
paper.

In Section 3, we show that graphs of logic programs can be obtained as attractors of it-
erated function systems. In particular, inTheorem 3.2we will give necessary and sufficient
conditions under which this is possible. Building on this, inTheorem 3.4we will show
that these conditions are satisfied whenever the embedded single-step operator is Lipschitz
continuous with respect to the natural metric on the real numbers. The section closes with
a concrete construction of an iterated function system and two detailed examples.

In Section 4we shift our attention to the task of approximating logic programs—via
their single-step operators—by means of fractal interpolation. More precisely, inTheo-
rem 4.6we show that programs with Lipschitz continuous single-step operator can be
approximated uniformly by this method.

In Section 5we will use our insights in order to show how logic programs can be repre-
sented or approximated by recurrent radial basis function networks.

The paper closes with a discussion of related and further work.
Most of the new results in this paper are discussed in more detail in[2].

2. Preliminaries

We will now shortly review and introduce terminology and notation from logic pro-
gramming and iterated function systems, which we will use throughout. It will be helpful
if the reader is familiar with these areas, but we will make an attempt to keep the paper self-
contained in this respect, with terminology essentially following[31] respectively[3]. In
some places we will have to assume basic knowledge of set-theoretic topology, our general
reference being[45]. For Section 5, some familiarity with radial basis function networks
(e.g.,[7, Chapter 5]) will be helpful.

2.1. Logic programs

A (normal) logic program is a finite set of universally quantifiedclauses of the form

∀(A ← L1 ∧ · · · ∧ Ln),

276 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

Fig. 2. A logic program, the corresponding Herbrand base, and a level mapping.

wheren ∈ N may differ for each clause,A is an atom in a first-order languageL and
L1, . . . ,Ln are literals, that is, atoms or negated atoms, inL. As is customary in logic
programming, we will write such a clause in the form

A ← L1, . . . ,Ln,

in which the universal quantifier is understood, or even as

A: − L1, . . . ,Ln

following Prolog notation. ThenA is called thehead of the clause, eachLi is called abody
literal of the clause and their conjunctionL1, . . . ,Ln is called thebody of the clause. We
allow n = 0, by an abuse of notation, which indicates that the body is empty; in this case
the clause is called aunit clause or afact. TheHerbrand base underlying a given program
P is defined as the set of all ground instances of atoms overL and will be denoted byBP .
Fig. 2shows an example of a logic program and the corresponding Herbrand base. Subsets
of the Herbrand base are called (Herbrand) interpretations of P , and we can think of such
a set as containing those atoms which are “true” under the interpretation. The setIP of all
interpretations of a programP can be identified with the power set ofBP .

In this paper, we will not make use of any procedural aspects concerning logic programs.
Indeed, logic programs are being used for many different purposes in computer science,
e.g., as the language underlying Prolog[31], as languages for non-monotonic reason-
ing [30,33], for machine learning[35], etc., and the respective computational mechanisms
differ substantially. Common to all these paradigms, however, is that logic programs are ac-
cepted as a convenient tool for knowledge representation in logical form. The knowledge
represented by a logic programP can essentially be captured by theimmediate conse-
quence or single-step operator TP , which is defined as a mapping onIP where for any
I ∈ IP we have thatTP (I) is the set of allA ∈ BP for which there exists a ground instance
A ← A1, . . . ,Am,¬B1, . . . ,¬Bn of a clause inP such that for alli we haveAi ∈ I and
for all j we haveBj /∈ I .

A level mapping for a programP is a mapping| · | :BP → N, and with a slight abuse
of notation we set|¬A| = |A| for eachA ∈ BP . Fig. 2shows a simple logic program, the
corresponding Herbrand baseBP , and a possible level mapping. Level mappings can be
used for describing dependencies between atoms in a program, and they have been stud-
ied in logic programming for many different purposes, e.g., for termination analysis under
Prolog[1,6], or for giving uniform descriptions of different non-monotonic semantics[19,
24,25]. For our investigations, we can restrict our attention toinjective level mappings,
which can simply be understood as enumerations of the Herbrand base. The latter perspec-
tive was employed, e.g., in[8]. It makes no essential difference, and we choose to stick
with the more general notion of level mapping, and will explicitly require injectivity when
needed.

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 277

Fitting [15] has used level mappings in order to define metrics on spaces of interpreta-
tions, an approach which was further extended in[18,23]. Recall that ametric over a setX
is a mappingd :X × X → R satisfying (i)d(x, y) = 0 iff x = y, (ii) d(x, y) = d(y, x),
and (iii) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X. The pair(X,d) is then called
a metric space. A metric is called anultrametric if it satisfies the stronger requirement
(iii ′) d(x, z) � max{d(x, y), d(y, z)} for all x, y, z ∈ X. On the real numbers, the function
d(x, y) = |x − y| is a metric and is called thenatural metric onR. A sequence(xn)n∈N in
some metric space(X,d) converges to (or has limit) x, written limxn = x, if for all ε > 0
there is somen0 ∈ N such thatd(xn, x) < ε for all n � n0. A Cauchy sequence in a metric
space(X,d) is a sequence(xn) such that for eachε > 0 there existsn0 ∈ N such that for
all m,n � n0 we haved(xm,xn) < ε. Converging sequences are always Cauchy sequences.
A metric space in which every Cauchy sequence converges is calledcomplete.

The following definition is a slight generalization of one given in[15].

Definition 2.1. LetP be a logic program, 2� B ∈ N, and let| · | be a level mapping forP .
For I, J ∈ IP define

dB(I, J) =



0 if I = J,

B−n if I andJ differ on some atomA with |A| = n,

but agree on all atoms with a level smaller thann.

It is easily verified that(IP , dB) is a complete metric space, indeed an ultrametric space.
If | · | is injective—or more generally, if for eachn ∈ N the set of all atoms with leveln
is finite—then the metricdB , for anyB, induces a topology onIP which is known as the
query [5] or atomic [40] topologyQ. If furthermore the language underlyingP contains
at least one function symbol of arity at least 1, then(IP ,Q) is homeomorphic, i.e., topo-
logically equivalent, to the Cantor space in the unit interval on the real line[40], which we
will discuss further inExample 2.5.

A logic programP is acyclic [6,11] if there exists a level mapping| · | for P such that
for each ground instanceA ← L1, . . . ,Ln of a clause inP we have that|A| > |Li | for all
i = 1, . . . , n. In this case the operatorTP is a contraction on(IP , dB) with contractivity
factorB−1, i.e., it satisfiesdB(TP (I), TP (J)) � B−1dB(I, J) for all I, J ∈ IP [15,23].

2.2. Iterated function systems

Iterated function systems originate from the study of chaos theory and self-similar
structures and they have found applications, e.g., in image compression. An excellent in-
troduction to the field is[3], and we follow its notation, as already mentioned. We will later
make use of the fact that real-valued iterated function systems can easily be encoded using
recurrent neural networks, a point to which we will return inSection 5.

Recall that a functionf :X → X on a metric space(X,d) is continuous if for all ε > 0
there existsδ > 0 such thatd(f (x), f (y)) < ε wheneverd(x, y) < δ. A Lipschitz continu-
ous function is a mappingf :X → X for which there exists a real numberλ � 0, called a
Lipschitz constant for f , such thatd(f (x), f (y)) � λd(x, y) for all x, y ∈ X. Contraction
mappings are exactly those Lipschitz continuous functions which have a Lipschitz con-
stant (calledcontractivity factor) less than 1. Every contraction is Lipschitz continuous,

278 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

and every Lipschitz continuous function is continuous. The importance of contractions lies
in the fact that every contractionf on a complete metric space(X,d) has a unique fixed
pointx, which can be obtained as limf n(y), for all y ∈ X, wheref n(y) denotes thenth it-
eration of the functionf on the pointy. This fact is well known as theBanach contraction
mapping theorem.

Definition 2.2. A (hyperbolic)iterated function system (IFS) ((X,d),Ω) is a pair consist-
ing of a complete metric space(X,d) and a finite setΩ = {ω1, . . . ,ωn} of contraction
mappingsωi :X → X.

The idea behind iterated function systems is to lift the setΩ to be a contraction mapping
on a space of certain subsets ofX. More precisely, we considercompact subsets ofX,
which can be characterized as follows:A ⊆ X is compact if for every (possibly infinite)
collection of setsBεi (xi) = {y | d(xi, y) < εi} with A ⊆ ⋃

i∈I Bεi (xi) there exists a finite
selection{i1, . . . , in} ⊆ I with A ⊆ ⋃n

k=1 Bεik
(xik).

Given(X,d), we defineH(X) to be the set of all non-empty compact subsets ofX, and
define theHausdorff distance onH(X) as follows.

Definition 2.3. Let (X,d) be a complete metric space,x ∈ X andA,B ∈ H(X). Then
d(x,B) = min{d(x, y) | y ∈ B} is called the distance between the pointx and the setB.
The distance fromA to B is then defined asd(A,B) = max{d(a,B) | a ∈ A}. Finally, the
Hausdorff distance hd betweenA andB is defined ashd(A,B) = max{d(A,B), d(B,A)}.

The resultingHausdorff space (H(X),hd) is a complete metric space. A continuous
mappingf :X → X can be extended to a function onH(X) in the usual way, i.e., by
settingf (A) = {f (a) | a ∈ A} (recalling that any continuous image of a compact set is
compact). Given an IFS consisting of a metric space(X,d) and a setΩ of contractions,
we identifyΩ with a function onH(X) defined byΩ(A) = ⋃

i wi(A). The functionΩ

thus defined is a contractive mapping onH(X), and by the Banach contraction mapping
theorem we can conclude thatΩ has a unique fixed pointA ∈ H(X), which hence obeys
A = Ω(A) and can be obtained from anyB ∈ H(X) asA = limn→∞ Ωn(B), the limit
being taken with respect tohd . The fixed pointA ∈ H(X) is called theattractor of the IFS
((X,d),Ω).

Example 2.4. Fig. 3 depicts part of the iterative process leading to an attractor (starting
from a square), in this case the so-calledSierpinski triangle. It is produced by an IFS
consisting of the following three mappings on the space(R2, d2), whered2 denotes the

Fig. 3. The first iterations for the production of the Sierpinski triangle.

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 279

Fig. 4. The first iterations for the production of the Cantor set.

Fig. 5. Some attractors of iterated function systems.

Euclidean metric onR2 andω = {ω1,ω2,ω3} with:

ω1

(
x

y

)
=

(
0.5 0
0 0.5

)(
x

y

)
+

(
0
0

)
,

ω2

(
x

y

)
=

(
0.5 0
0 0.5

)(
x

y

)
+

(
0.5
0

)
,

ω3

(
x

y

)
=

(
0.5 0
0 0.5

)(
x

y

)
+

(
0

0.5

)
.

Example 2.5. As a second example we give representations of Cantor space as compact
subsets of the real numbers. The underlying space thus consists of the real numbers with
the natural metric. As contractions, we choose

ω1 :R → R :x
→ 1

B
x,

ω2 :R → R :x
→ 1

B
x + a,

whereB > 2 is a positive integer anda is chosen such that the images of the unit interval
underω1 andω2 do not have more than a single point in common, but are both contained
in the unit interval. The corresponding iterates of the unit interval are depicted inFig. 4
for the valuesB = 3 anda = 2

3. The subsets of the unit interval which can occur as at-
tractors for different parameters are all homeomorphic, i.e., topologically equivalent, and
also homeomorphic to the Cantor space and to(IP ,Q), if the Herbrand baseBP of the
programP is countably infinite.

Some further examples of attractors of iterated function systems are depicted inFig. 5,
defined on the real plane. The projections of the attractors to thex-coordinate are homeo-
morphic to the Cantor space.

280 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

3. Logic programs as iterated function systems

In this section we show how logic programs can be represented by iterated function
systems. We will review an embedding introduced by Hölldobler et al. in[29], which can be
used to embed the graph of the single-step operator into the real plane. Plots of these graphs
exhibit self-similar structures, i.e., they look like attractors of iterated function systems. We
will provide a way to transform logic programs into iterated function systems such that the
graph of the program coincides with the attractor of the IFS, or can at least be approximated
by it.

Definition 3.1. Let P be a logic program,| · | :BP → N be an injective level mapping and
let B ∈ N, with B > 2. Then the mappingR assigns a unique real numberR(I) to every
interpretationI ∈ IP by

R : IP → R : I
→
∑
A∈I

B−|A|.

The range{R(I) | I ∈ BP } ⊆ R of the mappingR will be denoted byDf and the maximal
value, which always exists, byRm = R(BP) = limn→∞

∑n
i=1(B

−i) = 1
B−1. Without loss

of generality we will treatR as a (bijective) function fromIP to Df.

The probably most obvious baseB = 2 does not create a valid embedding: LetB = 2,
andP and| · | be defined as inFig. 2. Let I = {n(0)} andJ = BP \ {n(0)}. It follows that
R(I) = B−1 = 1

2 andR(J) = Rm − B−1 = 1
B−1 − B−1 = 1

2, so the resulting functionR is
not injective. This is due to the fact that the numbers 0.111. . . and 0.0111. . . coincide in
the number system with base 2. But for allB > 2 the mappingR is injective, if the level
mapping is injective. Furthermore, it can be shown thatR is a homeomorphism (a bijective
mapping which preserves topological structure in both directions) from(IP ,Q) to Df and
thatDf is compact.

By means of the mappingR we can now embedTP into R as shown inFig. 6, i.e., for
a given logic programP the functionR(TP) = fP is defined by

fP :Df → Df : r
→ R
(
TP

(
R−1(r)

))
,

and its graphFP is

FP = {(
R(I),R

(
TP (I)

)) | I ∈ IP
} = {(

x,fP (x)
) | x ∈ Df

}
.

Fig. 7shows some (embedded) graphs of logic programs. Note the similarity to the plots
shown inFig. 5. Indeed we have noticed that all plots of graphs obtained by the method
described above showed self-similar structures, thus appearing to be attractors of iterated
function systems on the real plane.

I ∈ IP
TP−→ I ′ ∈ IP

R↓↑R−1 R↓↑R−1

i ∈ Df
fP−→ i′ ∈ Df

Fig. 6. The relation betweenTP andfP .

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 281

Fig. 7. Some graphs of logic programs.

3.1. Representation of logic programs by iterated function systems

We have just discussed that logic programs and iterated function systems create similar
graphs. In this section we will link both by giving necessary and sufficient conditions under
which the graph of a logic program is the attractor of a hyperbolic iterated function system.
Since the iterated function systems shall approximate graphs inR

2, they must be defined
on that space. Therefore, we will focus on the space(R2, d2), whered2 denotes the usual
2-dimensional Euclidean metric, i.e.,d2((x1, y1), (x2, y2)) = √|x1 − x2|2 + |y1 − y2|2,
which is complete. For any functionf onR

2 we denote its coordinate functions byf x and
f y, i.e., we havef (a) = (f x(a), f y(a)) for all a ∈ R

2. Furthermore, letπx(·) denote the
projection to thex-axis. The natural metric onR is denoted byd1, i.e.,d1(x, y) = |x − y|
for all x, y ∈ R.

The following theorem gives necessary and sufficient conditions for exact representabil-
ity by an iterated function system.

Theorem 3.2 (First Representation Theorem).Let P be a logic program, let fP be the
embedded TP -operator with graph FP , and let Df be the range of the mapping R, as
introduced earlier. Let ((R2, d2),Ω) be a (hyperbolic) iterated function system and let A

be its uniquely determined attractor. Then the graph FP coincides with the attractor A,
i.e., FP = A, if and only if πx(A) = Df and fP (ωx

i (a)) = ω
y
i (a) hold for all a ∈ FP and

all ωi ∈ Ω .

Proof. The proof is divided into two parts. First, we will show thatFP = A if
fP (ωx

i (a)) = ω
y
i (a) andπx(A) = Df, and then the converse.

(i) To show the equivalence ofFP andA, we need to show thatFP ⊆ A andA ⊆ FP .
(i.a) FromΩ(A) = A andπx(A) = πx(FP) = Df we know that for eacha ∈ FP there

must be ana′ ∈ A and anωi ∈ Ω such thatπx(a) = ωx
i (a

′). UsingfP (ωx
i (a

′)) = ω
y
i (a

′)
and the definition offP we know thatωy

i (a
′) = fP (πx(a)) = πy(a). So we can conclude

that(πx(a),πy(a)) = (ωx
i (a

′),ωy
i (a

′)), i.e.,a = ωi(a
′). Sincea′ ∈ A, henceωi(a

′) ∈ A, it
follows thata ∈ A and finallyFP ⊆ A.

282 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

(i.b) FromfP (ωx
i (a)) = ω

y
i (a) we can conclude that(ωx

i (a),ω
y
i (a)) ∈ FP , i.e.,ωi(a) ∈

FP . Knowing that this equation holds for alla ∈ FP and allωi ∈ Ω we obtainωi(FP) ⊆
FP and finallyΩ(FP) ⊆ FP . HenceFP = A.

(ii) SinceFP = A andπx(FP) = Df we immediately obtainπx(A) = Df. Furthermore,
we know thatFP = Ω(FP) and hence thatΩ(a) ⊆ FP holds for alla ∈ FP . So we can
conclude that for alla ∈ FP and allωi ∈ Ω there is ana′ ∈ FP such that(ωx

i (a),ω
y
i (a)) =

a′ holds. By the definition ofFP we know thata′ = (x ′, fP (x ′)), henceωx
i (a) = x ′ and

ω
y
i (a) = fP (x ′). If follows thatfP (ωx

i (a)) = ω
y
i (a) holds for alla ∈ FP and allωi ∈ Ω if

FP = A. �
The proof ofTheorem 3.2does not make use of the fact that the functionfP (the graph

of which is represented by an IFS) comes from the single-step operator of a logic program.
Indeed it holds for all functions defined onDf and is easily generalized to functions on
other compact subsets of the reals. In particular, we note that it does not restrict the class
of programs covered. We will useTheorem 3.2for establishing a stronger result for logic
programs whose embedded single-step operatorR(TP) is Lipschitz continuous. Before we
do so, however, we need to have a closer look at the setDf. So assume that a baseB is
fixed, thus the mappingR is determined and in turn alsoDf as the range ofR. It is our
desire to characterizeDf as the attractor of an IFS. Now define

Ωx
1 =

{
x
→ 1

B
x + 0; x
→ 1

B
x + 1

B

}
.

For alln > 1 we define recursively

Ωx
n = {

f ◦ g | f ∈ Ωx
1 andg ∈ Ωx

n−1

}
=

{
x
→ 1

B
ω(x) + 0 | ω ∈ Ωx

n−1

}
∪

{
x
→ 1

B
ω(x) + 1

B
| ω ∈ Ωx

n−1

}
.

Note that every mappingωx
i ∈ Ωx

P is of the formωx
i = 1

BP x + dx
i , wheredx

i depends
on the application of either the first or second mapping fromΩx

1 during the construction,

i.e.,dx
i can be written as

∑P
j=1 aj · B−j , whereaj ∈ {0,1}. In particular we have that for

eachdx
i there exists an interpretationIi with R(Ii) = dx

i . More precisely,Ii consists of
all those atomsA with |A| � P such thatdx

i = ∑
A∈Ii

B−|A|, and by injectivity of| · | the
interpretationIi is indeed uniquely determined by this equation.

The proof of the following lemma is straightforward.

Lemma 3.3. For any P � 1 we have that Df is the attractor of the IFS ((R, d),Ωx
P).

We are now ready to establish the promised second representation result. Even though
it does not define a convenient way to construct an IFS, it explains why the plotted graphs
of the programs are self-similar.

Theorem 3.4 (Second Representation Theorem).Let P be a logic program. Let fP be the
embedded TP -operator using base B > 2, and let FP be its graph. Furthermore assume
that fP is Lipschitz continuous. Then there exists an IFS on (R2, d2) with attractor FP .

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 283

Proof. We prove this theorem by applyingTheorem 3.2, i.e., we will show that under
the stated hypotheses there is a hyperbolic IFS((R2, d2),Ω) such thatπx(A) = Df and
fP (ωx

i (a)) = ω
y
i (a) hold for alla ∈ FP and allωi ∈ Ω .

By Lemma 3.3we know that for eachP � 1 there is a setΩx
P consisting of contractive

mappingsωx
i :R → R with contractivity factor 1

BP and such thatDf is the attractor of the

IFS ((R, d1),Ω
x
P). For everyωx

i ∈ Ωx
P we now define a mappingωy

i :R → R by ω
y
i (x) =

fP (ωx
i (x)). It remains to show that((R2, d2),Ω) with Ω = {(ωx

i ◦ πx,ω
y
i ◦ πx) | ωx

i ∈ Ωx
P }

is a hyperbolic IFS for some suitably chosenP � 1, and for this it suffices to show that
everyωi = (ωx

i ,ω
y
i) ∈ Ω is a contraction on(R2, d2).

Since fP is Lipschitz continuous, there is a constantL with d1(fP (x), fP (y)) �
Ld1(x, y) for all x, y ∈ Df. Taking this and the contractivity ofωx

i into account we ob-
tain for alla, b ∈ R

2

d2
(
ωi(a),ωi(b)

)2 = d1
(
ωx

i

(
πx(a)

)
,ωx

i

(
πx(b)

))2 + d1
(
ω

y
i

(
πx(a)

)
,ω

y
i

(
πx(b)

))2

� B−2P
∣∣πx(a) − πx(b)

∣∣2 + L2B−2P
∣∣πx(a) − πx(b)

∣∣2
� L2 + 1

B2P

∣∣πx(a) − πx(b)
∣∣2.

Sinceπx is continuous with Lipschitz constant 1 we obtain

d2
(
ωi(a),ωi(b)

)
�

√
L2 + 1

B2P
d2(a, b).

We see now that it is possible to chooseP such thatωi is a contraction, andTheorem 3.2
is applicable. �

Before we move on, let us dwell a bit on the implications ofTheorem 3.4and also on
some questions it raises. We requirefP to be Lipschitz continuous, which implies thatfP
is continuous on the Cantor set as a subspace ofR, and hence thatTP is continuous with
respect to the Cantor topologyQ onIP . The latter notion is well-understood (see[20,40]).
For example, it turns out that programs without local variables (calledcovered programs
in [8]) have continuous single-step operators, where a local variable is a variable which
occurs in some body literal of a program clause but not in its corresponding head.

The exact relationships between covered programs, continuity of the single-step op-
erator inQ, Lipschitz continuity with respect to a metric generatingQ, and Lipschitz
continuity of the embedded single-step operator with respect to the natural metric onR

remain to be studied, and these matters appear to be not straightforward. What we can say
at this stage is that ifTP is continuous inQ thenfP is continuous on the Cantor space
(because the latter is homeomorphic to(IP ,Q)), and since the Cantor space is compact,
we obtain thatfP must be uniformly continuous, which is stronger than continuity, but
strictly weaker than Lipschitz continuity. The interested reader will also be able to verify
that the single-step operator of the covered program

p(X) :- p(f(X,X))

284 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

is not Lipschitz continuous with respect to any metric based on an injective level mapping
as inDefinition 2.1. We owe this example to Howard Blair.

Programs which are acyclic with respect to an injective level mapping also have con-
tinuous single-step operators, which is easily seen by observing that such programs cannot
contain any local variables—or by considering the remark made earlier that for such pro-
grams the single-step operator is a contraction with respect to a metric which generatesQ.
Furthermore, it was shown in[29] that for baseB = 4 (and hence for all larger bases) for
the embeddingR, the resulting embedded functionfP = R(TP) is a contraction on a sub-
set ofR, hence is Lipschitz continuous. IfP is a program for which ground(P) is finite
(and henceBP is finite), thenDf is a finite subset ofR, and hencefP is trivially Lipschitz
continuous as a function on a subset ofR. We can thus state the following corollary.

Corollary 3.5. For programs which are acyclic with respect to an injective level mapping,
and for programs for which ground(P) is finite, there exists an IFS in the form given in the
proof of Theorem 3.4with attractor FP .

Corollary 3.5gives a formal, albeit not satisfactory, explanation for the observation
which started our investigations: In order to obtain approximate plots of the graph of some
fP , we restricted ourselves to plotting the graph corresponding to afinite, though large,
subprogram of ground(P).

As yet, we know of no general method for obtaining Lipschitz constants offP , or even
for showing whether it is Lipschitz continuous at all. In the light ofTheorem 3.4and other
results which we will discuss in the sequel, and also by considering our remarks made
earlier on the unclear relations between different notions of continuity for single-step op-
erators, we feel that investigations into these matter will have to be made in order to obtain
satisfactory constructions of iterated function systems—or of connectionist systems—for
representing logic programs in our approach.

3.2. Worked examples

Although Theorem 3.4covers a wide range of programs, it is unsatisfactory since it
does not provide a convenient way of constructing the iterated function system. Indeed,
the IFS obtained in the proof of the theorem does involve the single-step operator for the
calculation of the functionsωy

i . In this section, we provide a simple but reasonable form of
iterated function system which avoids this drawback, and show in detail that it covers some
example programs. The same form of IFS willalso be used in later parts of the paper.

Definition 3.6. Let the natural numbersB > 2 (hence also the mappingR) andP � 1 be
fixed, and letP be a program. Then we associate withP the IFS((R2, d2),Ω), where the
ωi ∈ Ω are defined asωi :R2 → R

2 : (x, y)
→ (ωx
i (x),ω

y
i (y)) with ωx

i andω
y
i being

ωx
i :R → R :x
→ 1

BP
x + dx

i , and

ω
y
i :R → R :y
→ 1

BP
y + fP (dx

i) − fP (0)

BP
.

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 285

Algorithm 3.7 (Construction of IFSl
P for a given program P). Let P be a logic program and

fP be its embeddedTP -operator.

1. Choose a natural number (theperiodicity) P > 0.
2. ComputeΩx

P as explained in Section 3.1.

3. Construct for eachωx
i ∈ Ωx

P the correspondingωy
i :y
→ 1

BP y + fP (dx
i) − fP (0)

BP .

4. Return the setΩ = {ωi = (ωx
i
,ω

y
i
)} as mappings for the IFSlP = {(R2, d2),Ω}.

Fig. 8. Constructing linear iterated function systems.

The parameteri, in this case, ranges from 1 to 2P , and theωx
i anddx

i ∈ Df are exactly as
in the IFS((R, d),Ωx

P) from Lemma 3.3. For convenience, we call such a resulting IFS
linear and use the notation IFSl

P when we are referring toit. Note that wheneverB, P ,
andP are fixed, then the corresponding IFSl

P is uniquely determined, so that our notation
is sound.

We consider the baseB fixed in the sequel. The parameterP , which we callperiodicity,
will usually depend on the programP . How to construct an IFSlP from a fixedB is also
depicted inFig. 8.

Before we explain the intuition behindDefinition 3.6we need to introduce a new op-

erator denoted·→· , which takes as arguments an interpretation and a natural number, and

returns an interpretation. This operator defines a kind of shift operation on interpretations.

Definition 3.8. Let P be a logic program,I ∈ IP , P ∈ N, and | · | be an injective level
mapping forP . Then define

I→
P

= {
A | there existsA′ ∈ I with |A′| + P = |A|}.

We call ·→· theright-shift operator.

Proposition 3.9. I→
P

= R−1(R(I)

BP) holds for all I ∈ IP and all P ∈ N.

Proof. The equation follows immediately from the definition ofR since

I→
P

= R−1
(∑

A∈I

B−(|A|+P)

)
= R−1

(∑
A∈I B−|A|

BP

)
= R−1

(
R(I)

BP

)
. �

We have already observed inSection 3.1that for eachdx
i occurring inDefinition 3.6

there exists someIi ∈ IP with R(Ii) = dx
i . UsingProposition 3.9we can therefore carry

over the functionsωx
i to IP , as follows:

ωx
i :R → R :x
→ x

BP
+ dx

i ,

286 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

R−1(ωx
i) = wx

i : IP → IP : I
→ I→
P

∪ Ii .

For the mappingsωy
i the resulting function is a bit more involved, and can be represented

as

ω
y
i :R → R :y
→ y

BP
− fP (0)

BP
+ fP (dx

i),

R−1(ω
y
i) = wy

i : IP → IP : I
→
(

I→
P

\ I−
i

)
∪ I+

i ,

whereI+
i = R−1(fP (dx

i)) = TP (Ii) andI−
i = R−1(

fP (0)

BP) = TP (∅)−−−→
P

.

Let us now explain the intuition behind the definitions of the mappingsωx
i andω

y
i . The

choice of theωx
i is obvious for the same reasons as inSection 3.1and in the proof ofThe-

orem 3.4: It appears to be the most natural way to obtainDf as projection of the resulting
attractor to thex-axis, as required byTheorem 3.2. The corresponding mappingwx

i un-
masks this as a right-shift with addition of a base pointIi . A first approximate candidate

for wy
i (I) would therefore be

I→
P

∪ TP (Ii)—note thatI in this case should be understood

as being some image underTP . The occurrence ofI−
i is necessary as a correction in case

of an overlap (i.e., a non-empty intersection) between
I→
P

andTP (Ii). This would not be

necessary, strictly speaking, forwy
i , where such an overlap would have no effect since it is

ignored by the set-union operation. When carried over to the reals, however, this correc-
tion becomes necessary in order to avoid the situation that the resulting number would not
correspond to an interpretation.

Linear iterated function systems are constructed such thatπx(A) = Df, which is one of
the conditions imposed byTheorem 3.2. The other condition,fP (ωx

i (a)) = ω
y
i (a) for all a,

will be shown on a case base in the following examples. We fixB = 4 for the examples,
in order to have a concrete setting. This choice was also made in[29], and the reason for
this was to guarantee thatfP is a contraction for acyclic programs with injective level
mappings, as already mentioned.

Consider first the program fromFig. 1. Fig. 9 shows an associated graph with corre-
sponding level mapping—we use the notationsx(0) to denote the terms(. . . (0) . . .) in
which the symbols occursx times. We now use Algorithm 3.7 for constructing an IFSl

P

Fig. 9. The natural numbers program and their embeddedTP -operator.

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 287

Fig. 10. The first three iterations of the mappings.

Table 1
TP (wx

i
(I)) = w

y
i
(TP (I)) holds for the natural numbers program

ωx
1(x) = x

4 + 0 ω
y
1(x) = x

4 + 3
16

wx
1(I) = I→

1 w
y
1(I) = (I→

1 \ {n(s(0))}) ∪ {n(0)}
TP (wx

1(I)) = TP
(I→

1

) = (TP (I)−−−→1 \ {n(s(0))}) ∪ {n(0)} = w
y
1(TP (I))

ωx
2(x) = x

4 + 1
4 ω

y
2(x) = x

4 + 1
4

wx
2(I) = I→

1 ∪ {n(0)} w
y
2(I) = I→

1 ∪ {n(0)}
TP (wx

2(I)) = TP
(I→

1 ∪ {n(0)}) = TP (I)−−−→1 ∪ {n(0)} = w
y
2(TP (I))

for the program. We choose periodicityP = 1 and obtain

Ω =
{(

1
4 0

0 1
4

)(
x

y

)
+

(
0
3
16

)
,

(
1
4 0

0 1
4

)(
x

y

)
+

(
1
4
1
4

)}
.

The first three iterations of this IFSl
P are depicted inFig. 10.

In order to show that the resulting attractor coincides withFP , we need to verify the
hypotheses ofTheorem 3.2, i.e., in particular, we need to show thatfP (ωx

i (a)) = ω
y
i (a)

for all a ∈ FP . By the discussion followingProposition 3.9it therefore suffices to show
thatTP (wx

i (I)) = wy
i (TP (I)) holds for allI ∈ IP . The necessary calculations are shown in

Table 1, some details are straightforward and have been omitted.
As another example we discuss the program fromFig. 11. We work with periodicity

P = 2 and obtain the following IFSlP by Algorithm 3.7:

Ω =
{(

1
16 0

0 1
16

)(
x

y

)
+

(
0
5
16

)
,

(
1
16 0

0 1
16

)(
x

y

)
+

(
1
16
5
16

)
,

(
1
16 0

0 1
16

)(
x

y

)
+

(
1
4
15
64

)
,

(
1
16 0

0 1
16

)(
x

y

)
+

(
5
16
15
64

)}
.

The first few iterations of the resulting IFSl
P are depicted inFig. 12. Verification of

correctness is performed similarly as for the natural numbers program and details are given
in Table 2.

288 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

Fig. 11. The even and odd numbers program.

Fig. 12. The first three iterations of the mappings.

Table 2
TP (wx

i (I)) = w
y
i (TP (I)) holds for the even and odd numbers program

ωx
1(x) = x

16 + 0 ω
y
1(x) = x

16 + 5
16

wx
1(I) = I→

2 w
y
1(I) = I→

2 ∪ {e(0), o(0)}
TP (wx

1(I)) = TP
(I→

2

) = TP (I)−−−→2 ∪ {e(0), o(0)} = w
y
1(TP (I))

ωx
2(x) = x

16 + 1
16 ω

y
2(x) = x

16 + 5
16

wx
2(I) = I→

2 ∪ {o(0)} w
y
2(I) = I→

2 ∪ {e(0), o(0)}
TP (wx

2(I)) = TP
(I→

2 ∪ {o(0)}) = TP (I)−−−→2 ∪ {e(0), o(0)} = w
y
2(TP (I))

ωx
3(x) = x

16 + 1
4 ω

y
3(x) = x

16 + 15
64

wx
3(I) = I→

2 ∪ {e(0)} w
y
3(I) = (I→

2 \ {e(s(0))}) ∪ {e(0)}
TP (wx

3(I)) = TP
(I→

2 ∪ {e(0)}) = (TP (I)−−−→2 \ {e(s(0))}) ∪ {e(0)} = w
y
3(TP (I))

ωx
4(x) = x

16 + 5
16 ω

y
4(x) = x

16 + 15
64

wx
4(I) = I→

2 ∪ {e(0), o(0)} w
y
4(I) = (I→

2 \ {e(s(0))}) ∪ {e(0)}
TP (wx

4(I)) = TP
(I→

2 ∪ {e(0), o(0)}) = (TP (I)−−−→2 \ {e(s(0))}) ∪ {e(0)} = w
y
4(TP (I))

4. Logic programs by fractal interpolation

In Section 3we have focused on the problem of exact representation of logic programs
by iterated function systems. In this section we will provide a result for approximating logic
programs by iterated function systems. Our approach is motivated by fractal interpolation

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 289

Algorithm 4.1 (Interpolation Data). This algorithm computes a set of interpolation data for a
given programP .

1. Choose a natural number (theaccuracy) P > 0.
2. Compute the setD = {A | |A| � P andA ∈ BP } and its powersetD =P(D).
3. For any setXi ∈D computeYi = TP (Xi) with respect to the programP .
4. Return the sequence of pairs(R(Xi),R(Yi)), with R(Xi) < R(Xj) for all i < j .

Fig. 13. Construction of interpolation data.

as described in[3, Chapter 6], but our setting differs in that we reuse the linear iterated
function systems introduced inDefinition 3.6.

We will again assume the parameterB > 2 and some injective level mapping to be fixed.
The parameterP is going to be reinterpreted asaccuracy. Given a logic programP , for
whichfP is Lipschitz continuous, and given some accuracyP , we consider the associated
iterated function system as given byDefinition 3.6. It will be shown that the attractor of
each of these systems is the graph of a continuous function defined onDf, and that the
sequence of attractors associated with an increasing sequence of accuracies converges to
the graph offP , with respect to the maximum metric on the space of continuous functions.

We begin by describing in detail the fractal interpolation systems which we will be
using. Given a programP we need to extract a set of interpolation data which we can
use for the interpolation process.This procedure—for each accuracyP—is described in
Fig. 13. Note that the data pairs(R(Xi),R(Yi)) obtained in this way coincide with the
values(dx

i , fP (dx
i)) used inSection 3.1.

Definition 4.2 (IIFSP). Let {(dx
i , d

y
i) | 1 � i � 2P } be a sequence of interpolation data

constructed via Algorithm 4.1 from the programP using accuracyP . Let fP be the em-
beddedTP -operator associated with the programP using the mappingR with baseB.
Then((R2, d2),Ω) is called aninterpolating iterated function system (IIFSP), with Ω =
{ωi | 1 � i � 2P } andωi :R2 → R

2 : (x, y)
→ (ωx
i (x),ω

y
i (y)), whereωx

i andω
y
i are de-

fined by

ωx
i (x) = 1

BP
x + dx

i , and

ω
y
i (y) = 1

BP
y + fP (dx

i) − fP (0)

BP
.

Fig. 14shows a logic program and schematically two corresponding interpolating iter-
ated function systems forB = 4.

Each IIFSP constructed for the programP and accuracyP corresponds to a linear
iterated function system constructed for the periodicityP as in Algorithm 3.7. Therefore
it is obvious that the resulting mappings indeed constitute hyperbolic iterated function
systems which satisfyπx(A) = Df for their attractorsA.

For the remainder of this section we denote byF the set of all continuous functions
from Df to R, and bydf the maximum metricdf(f, g) = maxx∈Df{|f (x) − g(x)|} on this
set. Thus(F , df) is a complete metric space, and convergence with respect to it is uniform
convergence.

290 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

Fig. 14. A logic program and two corresponding IIFSPs.

Lemma 4.3. The function TP :F → F defined by TP (f)(x) = ω
y
i ◦ f ◦ ωx−1

i (x), where
i is chosen appropriately depending on x , is a contraction on (F , df) with contractivity
factor 1

BP .

Proof. The functionTP f can be characterized by cases depending on the inputx, by
setting

TP f (x) = TP,if (x) for x ∈
[
dx
i , d

x
i + Rm

BP

]
∩ Df

with eachTP,if defined as

(TP,if)(x) = ω
y
i

(
f

(
ωx−1

i (x)
)) = 1

BP
· f (

(x − dx
i) · BP

) + fP (dx
i) − fP (0)

BP
.

In the sequel we will simply writeTP f :Df → R :x
→ ω
y
i (f (ωx−1

i (x))) sinceTP f is a
well-defined function fromDf to R.

To show thatTP mapsF to itself, we need to show thatTP f :Df → R is a continuous
function for allf ∈ F . The continuity of eachTP,if is obvious, since it is a composition
of continuous functions. Sincedx

i + Rm
BP < dx

i+1 for eachi < 2P this observation suffices.
Contractivity ofTP follows immediately from the definition since

df(TP f,TP g) = max
{∣∣TP f (x) − TP g(x)

∣∣ | x ∈ Df
}

= 1

BP
· max

{∣∣f (
(x − dx

i) · BP
) − g

(
(x − dx

i) · BP
)∣∣ | x ∈ Df

}
� 1

BP
· df(f, g),

and we can conclude thatTP is a contraction with contractivity factor1
BP . �

Lemma 4.4. Let D = {(dx
i , d

y
i)} be a sequence of interpolation data and ((R2, d2),Ω) be

an interpolating iterated function system with attractor A, as constructed in Definition 4.2
from the program P using accuracy P . Let fP be the embedded TP -operator associated
with the program P using the mapping R. Then there is a unique continuous function

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 291

f :Df → R with TP f = f . Furthermore, f interpolates the data and its graph coincides
with the attractor A.

Proof. The proof is divided in two steps. First, we will show that the functionf is uniquely
determined and interpolates the data. Afterwards, we will show that the graph of this func-
tion coincides with the attractorA.

(i) From Lemma 4.3we know that the contractionTP mapsF to itself. By the Banach
contraction mapping theorem we can conclude that there is exactly one functionf with
TP f = f . This function is continuous since it is an element ofF . To show thatf inter-
polates the data we need to show thatf (dx

i) = d
y
i = fP (dx

i) for all (dx
i , d

y
i) ∈ D. Since we

know thatTP f = f we obtain

f (dx
i) = 1

BP
· f (

(dx
i − dx

i) · BP
) + fP (dx

i) − fP (0)

BP

= fP (dx
i) + f (0)

BP
− fP (0)

BP
.

As there is adx
i which is equal to 0 we get

f (0) − f (0)

BP
= fP (0) − fP (0)

BP
,

which gives us the equalityf (0) = fP (0) and hencef (dx
i) = fP (dx

i) holds for alldx
i .

(ii) In order to show that the graphF = {(x, f (x)) | x ∈ Df} of the functionf coincides
with the attractor, it suffices to show thatF = Ω(F)—since there is only one fixed point
of Ω , it then follows thatF = A. So it suffices to show that (ii.a)Ω(F) ⊆ F and (ii.b)F ⊆
Ω(F). In order to prove (ii.a) we show thatωi((x, f (x))) ∈ F for all (x, f (x)) ∈ F and all
ωi ∈ Ω , i.e.,(ωx

i (x),ω
y
i (f (x))) ∈ F . This follows immediately fromf = TP f = ω

y
i ◦ f ◦

ωx−1

i , since this impliesf ◦ ωx
i = ω

y
i ◦ f and hence(ωx

i (x),ω
y
i (f (x))) ∈ F . Consequently,

Ω(F) ⊆ F . Sinceπx(A) = Df it follows that for all x ∈ Df there is anx ′ ∈ Df and an
ωi ∈ Ω such thatx = ωx

i (x
′). From(x ′, f (x ′)) ∈ F andf ◦ ωx

i = ω
y
i ◦ f we can conclude

thatf (x) = ω
y
i (f (x ′)) and hence(x, f (x)) = (ωx

i (x
′),ωy

i (f (x ′))). So (ii.b) holds which
completes the proof. �

We call the functionf from Lemma 4.4a fractal interpolation function for the pro-
gram P with respect to accuracyP : It is an interpolation function for a set of points which
belong to the graph of the embeddedTP -operatorfP . Both fP and the fractal interpo-
lation function coincide at least on the given data points, the number of which depends
on the chosen accuracyP . In the remainder of this section we will study the sequence of
fractal interpolation functionsobtained by increasing the accuracy. We show first that this
sequence is a Cauchy sequence, and then that its limit converges tofP for programs with
Lipschitz continuousfP .

We next need to obtain upper and lower bounds on the values of fractal interpolation
functions. Fixing an accuracyP , recall that the corresponding fractal interpolation function
f is the unique fixed point of the functionTP , i.e., f = TP (f) = ω

y
i ◦ f ◦ ωi

x−1
. Since

292 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

ω
y
i (y) = y

BP + fP (dx
i) − fP (0)

BP it is easily verified that a lower bound forf is given by

fmin = −
∞∑
i=1

Rm

(BP)i
= − Rm

BP − 1
.

Analogously, an upper boundfmax can be obtained as

fmax = Rm + Rm

BP − 1
.

Lemma 4.5. Let P be a program with Lipschitz continuous fP . For each accuracy i let fi

be the corresponding fractal interpolation function. Then the sequence (fi)i∈N is a Cauchy
sequence in (F , df).

Proof. The proof is divided into two steps. We first compute the distance betweenfi and
fi+1, and then use this to show that the sequence is Cauchy.

(i) Let i be fixed. We compute the distance between the two fractal interpolation func-
tions fi andfi+1. For convenience we usef for fi and f̂ for fi+1. For both functions
we know thatTf = f andT̂ f̂ = f̂ hold, whereT andT̂ denote the operators introduced
in Lemma 4.3, constructed for the accuraciesP = i andP̂ = i + 1 respectively. We use
the notationdx

j for the interpolation values forf andd̂x
k for the interpolation values for̂f .

FromTf = f andT̂ f̂ = f̂ we can conclude that

f (x) = f ((x − dx
j) · Bi)

Bi
+ fP (dx

j) − fP (0)

Bi
for x ∈

[
dx
j , d

x
j + Rm

Bi

]
∩ Df,

f̂ (x) = f̂ ((x − d̂x
k) · Bi+1)

Bi+1 + fP (d̂x
k) − fP (0)

Bi+1 for x ∈
[
d̂x
k , d̂

x
k + Rm

Bi+1

]
∩ Df.

Therefore, we get for the distancedf(f, f̂):

df(f, f̂) = max
x

{∣∣∣∣
(

f ((x − dx
j) · Bi)

Bi
+ fP (dx

j) − fP (0)

Bi

)

−
(

f̂ ((x − d̂x
k) · Bi+1)

Bi+1 + fP (d̂x
k) − fP (0)

Bi+1

)∣∣∣∣
}

� max
x

{∣∣∣∣B · f ((x − dx
j) · Bi) − f̂ ((x − d̂x

k) · Bi+1)

Bi+1

∣∣∣∣
+ ∣∣fP (dx

j) − fP (d̂x
k)

∣∣ +
∣∣∣∣−B · fP (0) + fP (0)

Bi+1

∣∣∣∣
}

� max
x

{
B · (Rm + Rm

Bi−1
) + Rm

Bi+1−1

Bi+1
+ L · |dx

j − d̂x
k | +

(B − 1) · Rm

Bi+1

}
.

The last step uses the fact thatfP is continuous on(Df, d1) with some Lipschitz constantL,
and the results concerning minima and maxima offi .

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 293

Sincedx
j and d̂x

k are chosen with respect to the samex we know that the distance be-

tweendx
j andd̂x

k is bounded byRm
Bi . Hence

df(f, f̂) �
B · (Rm + Rm

Bi−1
) + Rm

Bi+1−1

Bi+1
+ L · Rm

Bi
+ (B − 1) · Rm

Bi+1

�
B · (Rm + Rm

Bi−1
) + Rm

Bi+1−1
+ L · Rm + (B − 1) · Rm

Bi+1

� Rm · B · (1+ 1
Bi−1

) + 1
Bi+1−1

+ L + (B − 1)

Bi+1

<
Rm

Bi+1 · (4B + L) � Rm(4+ L)

Bi
.

(ii) From part (i) we can conclude that forj � k we have

df(fj , fk) <

k∑
i=j

Rm(4+ L)

Bi
= Rm(4+ L)

B − 1

(
1

Bj
− 1

Bk

)
.

So for fixedj the value ofdf(fj , fk) is bounded bydf(fj , fk) � Rm(4+L)
B−1 · 1

Bj , and we
obtain that(fi)i∈N is a Cauchy sequence, since for anyε > 0 there is somen such that for
all j, k > n we havedf(fj , fk) < ε. �
Theorem 4.6 (Approximation Theorem).Let P be a program with Lipschitz continu-
ous fP . Then the sequence (fi)i∈N of fractal interpolation functions with accuracies i

converges uniformly to fP in the complete metric space (F , df).

Proof. First note that for eachx ∈ Df there is a sequence of interpolation data points
(dx

i , d
y
i) such that each(dx

i , d
y
i) belongs to the interpolation data for accuracyi, eachdx

i is
the offset of the appropriately chosen mappingωx

i for x, and limi→∞ dx
i = x.

From the continuity offi and the uniform convergence offi to somef by Lemma 4.5
we can conclude that the sequence(fi(d

x
i))i∈N converges tof (x). Knowing that thefi are

interpolation functions, hencefi(d
x
i) = fP (dx

i), we obtain that the sequence(fP (dx
i))i∈N

converges tof (x). But fP is continuous by assumption, so limi fP (dx
i) = fP (limi d

x
i) =

fP (x) and hencef (x) = fP (x) for all x ∈ Df. �
Theorem 4.6shows that we can approximate the graph of any logic program for which

fP is Lipschitz continuous arbitrarily well. Unfortunately, the necessary number of map-
pings grows exponentially with the accuracy. Fromdf(fj , fk) < Rm(4+L)

B−1 (1
Bj − 1

Bk) it

follows thatdf(fj , fP) � Rm(4+L)

Bj (B−1)
, i.e., for any givenε > 0 we can construct an IIFSP, such

that the corresponding fractal interpolation functionfP lies within anε-neighbourhood
of fP . This IFS needs to be constructed using accuracyP such thatRm(4+L)

BP (B−1)
< ε, i.e.,

P > lnB
Rm(4+ L)

ε(B − 1)
.

294 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

5. Logic programs as recurrent RBF-networks

We will now proceed to the task which motivated our investigations, namely the approx-
imation of logic programs by artificial neural networks. Such networks consist of a number
of simple computational units, which are connected in the sense that they can propagate
simple information—usually in the form of real numbers—along these connections. We
want to construct a network which computes an approximation offP (x) for a givenx. To
this end, we will employ the results of the previous sections. More precisely, we will show
how the fractal interpolation systems fromSection 4can be encoded.

The basic idea underlying our encoding is to exploit the self-similarity of the fractal
interpolation functionsf , and the “recursive” nature of the corresponding iterated function
systems. In order to obtain the function valuef (x) for some givenx ∈ Df, we first need to
find the correct mappingωi = (ωx

i ,ω
y
i), i.e., the one for whichx ∈ ωx

i (Df), and compute
ω

y
i (y) (where initiallyy = 0). Then we zoom in on the image ofRm × Rm underωi and

repeat the process.
For our implementation of this idea we use radial basis function networks (RBF-

networks). These consist of simple units which perform “radial basis functions” as input-
output-mappings. These are functionsf for which the valuesf (x) are distributed sym-
metrically around a center. Two examples and a very simple schematic RBF-network are
shown inFig. 15.

RBF-networks are known to be universal approximators, i.e., with networks as shown
in Fig. 15 it is possible to approximate any continuous function to any given accuracy,
provided sufficiently many units are being used in the middle layer.

To simplify our exhibition and the construction of the network we introduce a new type
of unit, which we call an RBFx,y

s,x -unit. It computes two distinct output-valuesx ′ andy ′.
Furthermore, it computes a parametrised radial basis function, where an additional scal-
ing s is applied toy ′. These units can be understood as abbreviations, since they can be
converted into a network consisting of simple units, i.e., although we are using RBFx,y

s,x -
units it is possible to encode the entire resulting network using standard RBF-units.Fig. 16
shows the dynamics and a schematic plot of an RBFx,y

s,x -unit. The static parameters of each
RBFx,y

s,x -unit are the centerµ, the widthσ and the heighth.
Using RBFx,y

s,x -units we can construct the network as shown inFig. 18 using the al-
gorithm shown inFig. 17. The example program for the construction is taken fromSec-

Fig. 15. Two examples of radial basis functions and a simple RBF-network.

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 295

Fig. 16. Dynamics and scheme of an RBFx,y
s,x -unit.

Algorithm 5.1 (Construction of recurrent RBFNP). Let P be a logic program andB the base
of the embeddingR.

1. Choose a periodicityP � 1.
2. Create an empty 3-layered RBF-network. Add three input units (s, x, y) to the first layer and

three output units (s′, x′, y′) to the third. The input units compute the identity function and
the output units return a weighted sum of their inputs.

3. The hidden layer consists of 2P RBFx,y
s,x -units initialised as follows:

a) Compute the IFSlP ((R2, d2),Ω) for P using the periodicityP , with

Ω = {(ωx
i
,ω

y
i
) | 1� i � 2P }, ωx

i
(x) = 1

BP ·x +dx
i

andω
y
i
(y) = 1

BP ·y +d
y
i
, as described

in Algorithm 3.7.
b) For all i the RBFx,y

s,x , i-unit is initialised withσi = 1
2·BP , µi = dx

i
+ σi andhi = d

y
i
.

4. Connect the units as shown in Fig. 18, where all weights are set to 1, but the connection from
s to s′ is set toB−P .

Fig. 17. Algorithm constructing RBF-network.

Fig. 18. A logic program, level mapping, interpolating IFS forP = 2 and corresponding recurrent
RBFx,y

s,x -network. The example program and its IFSl
P are taken from the end ofSection 3.2.

296 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

tion 3.2, where the corresponding IFSl
P was already computed. The three initial inputs

s0, y0 andx0 need to be initialised withs0 = 1,y0 = 0, andx0 = x. The network computes
an approximation offP for a given inputx. Each iteration through the network performs
the following computations:

• The scaling factors is multiplied with 1
BP .

• Each RBFx,y
s,x -unit computes the corresponding outputsx ′ andy ′, where for exactly one

unit x ′, y ′ �= 0. Sincex0 was initialised withR(I), the output of the “active” RBFx,y
s,x -

units after the first iteration isx ′ = (x −µ+σ) ·BP , i.e., we havex ′ = (x −dx
i) ·BP =

R(R−1(x) \ R−1(dx
i)) · BP . This is the “zooming into the interpretation” mentioned

earlier, i.e.,x ′ is a left-shifted version ofx.
• The currenty ′-output of the “active” unit is added to the previousy.

The outputy of the network converges to the value of the fractal interpolation func-
tion f defined by the IFS, which was used to construct the network. More precisely, we
haved1(y, f (x)) = (1

BP)i , wherei denotes the number of iterations performed andP is

the accuracy used for the construction. Furthermore, we know thatdf(f,fP) � Rm(4+L)

BP (B−1)
,

which yieldsd1(y, fP (x)) � Rm(4+L)

BP (B−1)
+ (1

BP)i . We conclude that we can approximate the
single-step operator of any logic program for which the embedding is Lipschitz continuous
up to any desired degree of accuracy.

6. Related work

One of the key ideas on which our work on neural-symbolic integration is based, is to
represent logic programs by representing their associated immediate consequence opera-
tors. This approach was put forward by Hölldobler and Kalinke[28], and reported also
in [20], in order to encode propositional logic programs by feedforward neural networks
with threshold activation functions. They also observe that these networks can be cast into
a recurrent architecture in order to mimic the iterative behaviour of the operator.

Two major lines of investigation were spawned by this work. D’Avila Garcez, Broda,
Gabbay, and Zaverucha[12,14]extend the work by Hölldobler and Kalinke to cover net-
works with sigmoidal activation functions, and study machine learning and knowledge
extraction aspects of the resulting frameworks.

The second line of investigation was initiated by Hölldobler, Kalinke, and Störr[29],
who study first-order logic programs and how to approximate their single-step operators
by feedforward neural networks. A general approximation theorem due to Funahashi[16]
is of central importance for their approach, which is restricted to the study of acyclic pro-
grams with injective level mappings. They show that these programs can be approximated
arbitrarily well by feedforward networks, but do not specify any means for actually con-
structing them.

Generalizations of this approach to programs with continuous single-step operators, and
also to other semantic operators, are obtained by Hitzler and Seda[18,21,22], reported also
in [20]. At this stage, topological and metric studies of declarative semantics, originally

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 297

developed for entirely different purposes[4,5,15,23,38,39,41,42], come into play. From
this perspective, our work is in the spirit of the general programme of research laid out by
Blair et al.[9].

Work by Blair et al. on continualizations of discrete systems[8] relates very closely to
the particular tool we have chosen for our approach, namely iterated function systems. In
their paper, Blair et al. study covered programs and show, amongst other things, that their
single-step operators can be obtained by means of attractors of affine hyperbolic finite
automata, which in turn can be understood as iterated function systems. Their work also
shows the intimate relationship between logic programming and dynamical systems related
to self-similarity and chaos theory, which we have been able to put to use in this paper.

7. Conclusions and further work

We have presented results for exact and approximate representation of single-step op-
erators associated with logic programs by iterated function systems, fractal interpolation
systems, and recurrent radial basis function networks. Our results cover first-order logic
programs with function symbols under the provision that the embedded associated single-
step operator is Lipschitz continuous. We have given algorithms for constructing approx-
imating iterated function systems and recurrent radial basis function networks for given
logic programs.

As to the relation with the work by Blair et al.[8], we note that the exact relationship be-
tween the class of programs covered by their results, namely covered programs, and ours,
namely those whose embedded single-step operator is Lipschitz continuous, remains to be
determined and will require further research, as already mentioned. While the general ob-
servation in[8] that covered logic programs can be represented by iterated function systems
breaks the ground for deep investigations into these matters, our results provide explicit ap-
proximations in the Euclidean plane, which can be converted to a standard neural network
architecture in a straightforward way. The concrete results and constructions which we pro-
vide, however, come at the price of the stronger hypothesis of Lipschitz continuity required
for our results. We believe that this requirement can be weakened, but different mathemat-
ical approaches than the one employed here may be needed in order to obtain satisfactory
results.

There is also one caveat: If one would like to construct an approximating system or net-
work which approximates a given logic program within some a priori given error bound,
then we can only guarantee this if a Lipschitz constantL of the functionfP—which is
the embedding of the single-step operatorTP in the reals—is not only existent but also
known. This can be seen from the calculations of upper error bounds at the ends ofSec-
tions 4 and 5. We do not know of any general method for obtaining Lipschitz constants,
and ways of doing this will be subject to further research. For certain well-behaved pro-
grams, Lipschitz constants are easily calculated. For acyclic programs with injective level
mappings as covered in[29], for example, a Lipschitz constant is1

B−2, whereB > 2 is
the base used for the embeddingR. In these cases our results yield exact algorithms for
obtaining approximating networks given an a priori error bound.

298 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

Our results surpass those of[29] in at least two ways. Firstly, for the programs covered
in [29], namely acyclic ones with injective level mappings, we are now able to give an
algorithm for constructing approximating networks. Secondly, we show that a larger class
of programs than covered in[29] can be approximated in principle, namely those with
Lipschitz continuous embedded single-step operator, and furthermore, we have shown that
for these we can provide explicit parameters for approximating recurrent neural networks,
provided a suitable Lipschitz constant can be determined. This latter point is related to
the results in[20–22], where a larger class of programs—those with continuous single-
step operator—were treated, but without providing explicit constructions of approximating
networks. So our conclusions are stronger, but so are our assumptions.

Let us also note that we use a different network architecture than in[20–22,29], namely
recurrent RBF-networks instead of three-layer feedforward networks with sigmoidal ac-
tivation functions. Indeed, we believe that RBF-networks constitute a much more natural
choice for representing logic programs at least under the general approach inspired by[28].
This is due to the intuition that points or interpretations which are “close” to each other
(topologically or metrically speaking) are supposed to represent similar meaning. The spe-
cific shape of the activation functions in RBF-networks thus can be understood in such a
way that a unit becomes active only for a cluster of values, i.e., interpretations, which have
similar meaning. The binary nature of sigmoidal activation functions seems to be much
more difficult to explain from an intuitive perspective. Certainly, our recurrent network can
be unfolded to a feedforward architecture with several layers if this is desired, and on the
mathematical level it should not make much of a difference which architecture is being
used. The question of how to obtain algorithms for constructing approximating networks
with sigmoidal activation functions, however, is probably rather hard, but may be solvable
by first understanding Lipschitz constants of embedded single-step operators.

Investigating Lipschitz constants as mentioned provides a natural next step in our inves-
tigations. It has to be said, however, that it is not yet clear how our results can be used for
designing useful hybrid systems. Nevertheless, certain questions are natural to be asked
at this stage. Can we use our approach for extracting symbolic knowledge from trained
neural networks? Can network learning then be understood from a symbolic perspective
by observing changes in the (extracted) symbolic knowledge during the learning process?
Even in the finite (propositional) case research has not yet led to satisfactory answers to
these questions, and the case of first-order logic which we address here is naturally much
more difficult to work with, but should be investigated. Entirely new methods may have to
be developed for this purpose, as argued by Hölldobler in[27].

Acknowledgements

We benefited substantially from discussions with Steffen Hölldobler and his support of
the project. The comments of three anonymous referees were highly appreciated and led
to improvements of the presentation of our results. We are very grateful that Howard Blair
spotted a mistake in an earlier version of this paper, which we were now able to remove.

S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300 299

References

[1] K.R. Apt, D. Pedreschi, Reasoning about termination of pure Prolog programs, Inform. and Comput. 106
(1993) 109–157.

[2] S. Bader, From logic programs to iterated function systems, Master’s Thesis, Department of Computer Sci-
ence, Dresden University of Technology, 2003.

[3] M. Barnsley, Fractals Everywhere, Academic Press, San Diego, CA, 1993.
[4] A. Batarekh, V.S. Subrahmanian, The query topology in logic programming, in: Proceedings of the 1989

Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 349,
Springer, Berlin, 1989, pp. 375–387.

[5] A. Batarekh, V.S. Subrahmanian, Topological model set deformations in logic programming, Fund. In-
form. 12 (1989) 357–400.

[6] M. Bezem, Characterizing termination of logic programs with level mappings, in: E.L. Lusk, R.A. Overbeek
(Eds.), Proceedings of the North American Conference on Logic Programming, MIT Press, Cambridge, MA,
1989, pp. 69–80.

[7] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.
[8] H.A. Blair, J. Chidella, F. Dushin, A. Ferry, P. Humenn, A continuum of discrete systems, Ann. Math.

Artificial Intelligence 21 (2–4) (1997) 155–185.
[9] H.A. Blair, F. Dushin, D.W. Jakel, A.J. Rivera, M. Sezgin, Continuous models of computation for logic pro-

grams, in: K.R. Apt, V.W. Marek, M. Truszczyński, D.S. Warren (Eds.), The Logic Programming Paradigm:
A 25-Year Perspective, Springer, Berlin, 1999, pp. 231–255.

[10] A. Browne, R. Sun, Connectionist inference models, Neural Networks 14 (10) (2001) 1331–1355.
[11] L. Cavedon, Acyclic programs and the completeness of SLDNF-resolution, Theoret. Comput. Sci. 86 (1991)

81–92.
[12] A.S. d’Avila Garcez, K. Broda, D.M. Gabbay, Symbolic knowledge extraction from trained neural networks:

A sound approach, Artificial Intelligence 125 (2001) 155–207.
[13] A.S. d’Avila Garcez, K.B. Broda, D.M. Gabbay, Neural-Symbolic Learning Systems—Foundations and

Applications, in: Perspectives in Neural Computing, Springer, Berlin, 2002.
[14] A.S. d’Avila Garcez, G. Zaverucha, The connectionist inductive learning and logic programming system,

Applied Intelligence (Special Issue on Neural Networks and Structured Knowledge) 11 (1) (1999) 59–77.
[15] M. Fitting, Metric methods: Three examples and a theorem, J. Logic Programming 21 (3) (1994) 113–127.
[16] K.-I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Net-

works 2 (1989) 183–192.
[17] H.W. Güsgen, S. Hölldobler, Connectionist inference systems, in: B.Fronhöfer, G. Wrightson (Eds.), Paral-

lelization in Inference Systems, in: Lecture Notes in Artificial Intelligence, vol. 590, Springer, Berlin, 1992,
pp. 82–120.

[18] P. Hitzler, Generalized metrics and topology in logic programming semantics, PhD Thesis, Department of
Mathematics, National University ofIreland, University College Cork, 2001.

[19] P. Hitzler, Towards a systematic account of different logic programming semantics, in: A. Günter, R. Kruse,
B. Neumann (Eds.), KI2003: Advances in Artificial Intelligence. Proceedings of the 26th Annual German
Conference on Artificial Intelligence, KI2003, Hamburg, Germany, September 2003, in: Lecture Notes in
Artificial Intelligence, vol. 2821, Springer, Berlin, 2003, pp. 355–369.

[20] P. Hitzler, S. Hölldobler, A.K. Seda, Logic programs and connectionist networks, J. Appl. Logic (2004). In
this volume.

[21] P. Hitzler, A.K. Seda, A note on relationships between logic programs and neural networks, in: P. Gibson,
D. Sinclair (Eds.), Proceedings of the Fourth IrishWorkshop on Formal Methods, IWFM’00, Electronic
Workshops in Computing (eWiC), British Computer Society, 2000.

[22] P. Hitzler, A.K. Seda, Continuity of semantic operators in logic programming and their approximation by
artificial neural networks, in: A. Günter, R. Kruse, B. Neumann (Eds.), KI2003: Advances in Artificial Intel-
ligence. Proceedings of the 26th Annual German Conference on Artificial Intelligence, KI2003, Hamburg,
Germany, September 2003, in: Lecture Notes in Artificial Intelligence, vol. 2821, Springer, Berlin, 2003,
pp. 105–119.

[23] P. Hitzler, A.K. Seda, Generalized metrics and uniquely determined logic programs, Theoret. Comput.
Sci. 305 (1–3) (2003) 187–219.

300 S. Bader, P. Hitzler / Journal of Applied Logic 2 (2004) 273–300

[24] P. Hitzler, M. Wendt, The well-founded semantics is a stratified Fitting semantics, in: M. Jarke, J. Koehler, G.
Lakemeyer (Eds.), Proceedings of the 25th Annual German Conference on Artificial Intelligence, KI2002,
Aachen, Germany, September 2002, in: Lecture Notes inArtificial Intelligence, vol. 2479, Springer, Berlin,
2002, pp. 205–221.

[25] P. Hitzler, M. Wendt, A uniform approach to logic programming semantics, Theory and Practice of Logic
Programming, in press.

[26] S. Hölldobler, Automated inferencing and connectionist models, Fakultät Informatik, Technische
Hochschule Darmstadt, Habilitationsschrift, 1993.

[27] S. Hölldobler, Challenge problems for the integration of logic and connectionist systems, in: F. Bry, U.
Geske, D. Seipel (Eds.), Proceedings 14. Workshop Logische Programmierung, in: GMD Report, vol. 90,
GMD, 2000, pp. 161–171.

[28] S. Hölldobler, Y. Kalinke, Towards a massively parallel computational model for logic programming, in:
Proceedings ECAI94 Workshop on Combining Symbolic and Connectionist Processing, ECCAI, 1994,
pp. 68–77.

[29] S. Hölldobler, Y. Kalinke, H.-P. Störr, Approximating the semantics of logic programs by recurrent neural
networks, Appl. Intelligence 11 (1999) 45–58.

[30] V. Lifschitz, Answer set planning, in: D. De Schreye (Ed.), Logic Programming. Proceedings of the 1999
International Conference on Logic Programming, MIT Press, Cambridge, MA, 1999, pp. 23–37.

[31] J.W. Lloyd, Foundations of Logic Programming, Springer, Berlin, 1988.
[32] M.J. Maher, Equivalences of logic programs, in: J. Minker (Ed.), Foundations of Deductive Databases and

Logic Programming, Morgan Kaufmann, Los Altos, CA, 1988, pp. 627–658.
[33] V.W. Marek, M. Truszczýnski, Stable models and an alternative logic programming paradigm, in: K.R.

Apt, V.W. Marek, M. Truszczýnski, D.S. Warren (Eds.), The Logic Programming Paradigm: A 25-Year
Perspective, Springer, Berlin, 1999, pp. 375–398.

[34] W.S. McCulloch, W. Pitts, A logical calculus of theideas immanent in nervous activity, Bull. Math. Bio-
phys. 5 (1943) 115–133.

[35] S. Muggleton, L. de Raedt, Inductive logic programming: Theory and applications, J. Logic Program-
ming 19–20 (1994) 629–679.

[36] G. Pinkas, Propositional non-monotonic reasoning and inconsistency in symmetric neural networks, in: J.
Mylopoulos, R. Reiter (Eds.), Proceedings of the 12th International Joint Conference on Artificial Intelli-
gence, Morgan Kaufmann, 1991, pp. 525–530.

[37] J.B. Pollack, Recursive distributed representations, Artificial Intelligence 46 (1) (1990) 77–105.
[38] S. Prieß-Crampe, P. Ribenboim, Logic programmingand ultrametric spaces, Rendiconti di Mathematica VII

(2000) 1–13.
[39] S. Prieß-Crampe, P. Ribenboim, Ultrametric spaces and logic programming, J. Logic Programming 42

(2000) 59–70.
[40] A.K. Seda, Topology and the semantics of logic programs, Fund. Inform. 24 (4) (1995) 359–386.
[41] A.K. Seda, R. Heinze, P. Hitzler, Convergence classes and spaces of partial functions, in: G.-Q. Zhang,

J. Lawson, Y.M. Liu, M.K. Luo (Eds.), Domain Theory, Logic and Computation, in: Semantic Structures in
Computation, vol. 3, Kluwer, 2003, pp. 75–115.

[42] A.K. Seda, M. Lane, On continuous models of computation: Towards computing the distance between (logic)
programs, in: Proceedings of the Sixth International Workshop in Formal Methods (IWFM’03), Dublin
City University, Dublin, Ireland, July 2003, Electronic Workshops in Computing (eWiC), British Computer
Science, 2003.

[43] L. Shastri, Advances in Shruti—A neurally motivated model of relational knowledge representation and
rapid inference using temporal synchrony, Appl. Intelligence 11 (1999) 78–108.

[44] G.G. Towell, J.W. Shavlik, Knowledge-based artificial neural networks, Artificial Intelligence 70 (1–2)
(1994) 119–165.

[45] S. Willard, General Topology, Addison-Wesley, Reading, MA, 1970.

Corollaries on the fixpoint completion: studying
the stable semantics by means of the Clark

completion

Pascal Hitzler??

Department of Computer Science, Dresden University of Technology
www.wv.inf.tu-dresden.de/∼pascal/

phitzler@inf.tu-dresden.de

Abstract. The fixpoint completion fix(P) of a normal logic program P
is a program transformation such that the stable models of P are ex-
actly the models of the Clark completion of fix(P). This is well-known
and was studied by Dung and Kanchanasut [15]. The correspondence,
however, goes much further: The Gelfond-Lifschitz operator of P coin-
cides with the immediate consequence operator of fix(P), as shown by
Wendt [51], and even carries over to standard operators used for char-
acterizing the well-founded and the Kripke-Kleene semantics. We will
apply this knowledge to the study of the stable semantics, and this will
allow us to almost effortlessly derive new results concerning fixed-point
and metric-based semantics, and neural-symbolic integration.

1 Introduction

The fixpoint completion of normal logic programs was introduced in [15], and
independently under the notion of residual program in [9]. In essence, the fixpoint
completion fix(P) of a given program P is obtained by performing a complete
unfolding through all positive body literals in the program, and by disregarding
all clauses with remaining positive body literals. Its importance lies in the fact
that the stable models [20] of P are exactly the supported models of fix(P), i.e.
the models of the Clark completion [11] of fix(P). Also, the well-founded model
[50] of P is exactly the Fitting or Kripke-Kleene model [16] of fix(P). These
correspondences are well-known and have been employed by many authors for
investigating the stable and the well-founded semantics, see e.g. [7].

The relation between a program and its fixpoint completion, however, is not
exhausted by the correspondences between the different semantics just men-
tioned: It also concerns the semantic operators underlying these semantics, as
shown in [51]. The virtue of this observation lies in the fact that it allows to carry
over operator-based results on the supported, respectively, Fitting semantics, to
?? This work was supported by a fellowship within the Postdoc-Programme of the

German Academic Exchange Service (DAAD) and carried out while the author was
visiting the Department of Electrical Engineering and Computer Science at Case
Western Reserve University, Cleveland, Ohio.

In: D. Seipel, M. Hanus, U. Geske, and O. Bartenstein, Proceedings of the 15th International Conference on

Applications of Declarative Programming and Knowledge Management and the 18th Workshop on Logic

Programming, Potsdam, Germany, March 4-6, 2004, 13-27. Technical Report 327, Bayerische

Julius-Maximilians-Universität Würzburg, Institut für Informatik, March 2004.

the stable, respectively, well-founded semantics. To the best of our knowledge,
this has not been noted before.

In this paper, we display the strength of the operator-based correspondence
by drawing a number of corollaries on the stable semantics from it. While these
results are of interest in their own right, they do not constitute the main point
we want to make here. Some of them are not even new, although we give new
proofs. The goal of this paper is to provide a new technical tool for studying
the stable and the well-founded semantics, namely the correspondences via the
fixpoint completion between the semantic operators mentioned. To display this,
we draw several corollaries from results in the literature, which are all valid for
logic programs over a first-order language.

The structure of the paper is as follows. In Section 2 we recall the fixpoint
completion and the results due to [51] which provide the starting points for our
report. In Section 3 we study continuity of the Gelfond-Lifschitz operator in the
Cantor topology, thereby providing technical results which will be of use later.
In Section 4 we study methods for obtaining stable models by means of limits of
iterates of the Gelfond-Lifschitz operator, and in Section 5 we will discuss results
on the representation of logic programs by artificial neural networks. We briefly
conclude in Section 6.

Acknowledgement. Thanks go to Matthias Wendt for helpful discussions and
comments.

2 The Fixpoint Completion

A (normal) logic program is a finite set of universally quantified clauses of the
form

∀(A← L1 ∧ · · · ∧ Ln),

where n ∈ N may differ for each clause, A is an atom in a first order language L
and L1, . . . , Ln are literals, that is, atoms or negated atoms, in L. As is customary
in logic programming, we will write such a clause in the form

A← L1, . . . , Ln,

in which the universal quantifier is understood, or even as

A:-L1, . . . , Ln

following Prolog notation. Then A is called the head of the clause, each Li is
called a body literal of the clause and their conjunction L1, . . . , Ln is called the
body of the clause. We allow n = 0, by an abuse of notation, which indicates
that the body is empty; in this case the clause is called a unit clause or a fact.
If no negation symbol occurs in a logic program, the program is called a definite
logic program. The Herbrand base underlying a given program P , i.e. the set of
all ground instances of atoms over L, will be denoted by BP , and the set of all

Herbrand interpretations by IP , and we note that the latter can be identified
simultaneously with the power set of BP and with the set 2BP of all functions
mapping BP into the set 2 consisting of two distinct elements. Since the set IP
is the power set of BP , it carries set-inclusion as natural ordering, which makes
it a complete lattice. By ground(P) we denote the (possibly infinite) set of all
ground instances of clauses in P .

The single-step or immediate consequence operator [37] of P is defined as a
function TP : IP → IP , where TI(I) is the set of all A ∈ BP for which there
exists a clause A ← L1, . . . , Ln with I |= Li for all i = 1, . . . , n. A supported
model of P is a fixed point of TP . Supported models correspond to models
of the Clark completion of P , as noted in [1]. The pre-fixed points of TP , i.e.
interpretations I ∈ IP with I ⊆ TP (I), are exactly the Herbrand models of P ,
in the sense of first-order logic. If P is definite, then TP is in fact a Scott- (or
order-) continuous operator on IP [37], and its least fixed point fix(TP) coincides
with the least Herbrand model of P . The least fixed point, in this case, can be
obtained as fix(TP) = TP ↑ω := supn(TP ↑n) =

⋃
n TP ↑n, where TP ↑0 = ∅ and

recursively TP ↑(n+ 1) = TP (TP ↑n).
The Gelfond-Lifschitz transformation [20] of a program P with respect to

an interpretation I is denoted by P/I, and consists of exactly those clauses
A ← A1, . . . , An, where A1, . . . , An ∈ BP , for which there exists a clause A ←
A1, . . . , An,¬B1, . . . ,¬Bm in ground(P) with B1, . . . , Bm ∈ I. Thus P/I is a
definite program, and fix(TP/I) is well-defined. The Gelfond-Lifschitz operator
[20] of P is now defined by GLP : IP → IP : I 7→ fix(TP/I). We call I ∈ IP a
stable model of P if it is a fixed point of GLP .

Definition 1. A quasi-interpretation1 is a set of clauses of the form A ←
¬B1, . . . ,¬Bm, where A and Bi are ground atoms for all i = 1, . . . ,m. Given a
normal logic program P and a quasi-interpretation Q, we define T ′

P (Q) to be the
quasi-interpretation consisting of the set of all clauses

A← body1, . . . , bodyn,¬B1, . . . ,¬Bm

for which there exists a clause

A← A1, . . . , An,¬B1, . . . ,¬Bm

in ground(P) and clauses Ai ← bodyi in Q for all i = 1, . . . , n. We explicitly
allow the cases n = 0 or m = 0 in this definition.

Note that the set of all quasi-interpretations is a complete partial order (cpo)
with respect to set-inclusion. It was shown in [15], that for normal programs P ,
the operator T ′

P is Scott-continuous on the set of all quasi-interpretations. So
we can define the fixpoint completion fix(P) of P by fix(P) = T ′

P ↑ω, i.e. fix(P)
is the least fixed point of the operator T ′

P .
The following was reported in [51].

1 This notion is due to [15]. We stick to the old terminology, although quasi-
interpretations should really be thought of as, and indeed are, programs with nega-
tive body literals only.

Theorem 1. For any normal program P and (two-valued) interpretation I, we
have

GLP (I) = Tfix(P)(I).

Proof. We show first that for every A ∈ GLP (I) there exists a clause in fix(P)
with head A whose body is true in I, which implies A ∈ Tfix(P)(I). We show this
by induction on the powers of TP/I ; recall that GLP (I) = TP/I ↑ω.

For the base case TP/I ↑0 = ∅ there is nothing to show.
So assume now that for all A ∈ TP/I ↑n there exists a clause in fix(P) with

head A, whose body is true in I. For A ∈ TP/I ↑(n+1) there exists a clause A←
A1, . . . , An in P/I such that A1, . . . , An ∈ TP/I ↑n, hence by construction of P/I
there is a clause A← A1, . . . , An,¬B1, . . . ,¬Bm in ground(P) with B1, . . . , Bm 6∈
I. By induction hypothesis we obain that for each i = 1, . . . , n there exists
a clause Ai ← bodyi in fix(P) with I |= bodyi, hence Ai ∈ Tfix(P)(I). So by
definition of T ′

P the clause A ← body1, . . . bodyn,¬B1, . . . ,¬Bm is contained in
fix(P). From I |= bodyi and B1, . . . , Bm 6∈ I we obtain A ∈ Tfix(P)(I) as desired.

This closes the induction argument and we obtain GLP (I) ⊆ Tfix(P)(I).
Now conversly, assume that A ∈ Tfix(P)(I). We show that A ∈ GLP (I) by

proving inductively on k that TT ′
P↑k(I) ⊆ GLP (I) for all k ∈ N.

For the base case, we have TT ′
P↑0(I) = ∅ so there is nothing to show.

So assume now that TT ′
P↑k(I) ⊆ GLP (I), and let A ∈ TT ′

P↑(k+1)(I) \ TT ′
P↑k(I).

Then there exists a clause A ← body1, . . . , bodyn,¬B1, . . . ,¬Bm in T ′
P ↑ (k +

1) whose body is true in I. Thus B1, . . . , Bm 6∈ I and for each i = 1, . . . , n
there exists a clause Ai ← bodyi in T ′

P ↑ k with bodyi true in I. So Ai ∈
TT ′

P↑k(I) ⊆ GLP (I). Furthermore, by definition of T ′
P there exists a clause A←

A1, . . . , An,¬B1, . . . ,¬Bm in ground(P), and since B1, . . . , Bm 6∈ I we obtain
A← A1, . . . , An ∈ P/I. Since we know that A1, . . . , An ∈ GLP (I) we obtain A ∈
GLP (I), and hence TT ′

P↑(k+1)(I) ⊆ GLP (I). This closes the induction argument
and we obtain Tfix(P)(I) ⊆ GLP (I). ut

The proof of Theorem 1 is taken directly from [52], which appeared in com-
pressed form as [51]. We have included it here for completeness of the exhibition
and because the result is central for the rest of this paper. This correspondence
can also be carried over to the Fitting/well-founded semantics. More precisely,
the following was shown in [51], from which Theorem 1 is an easy Corollary.

Theorem 2. For any normal program P and any three-valued interpretation
I we have ΨP (I) = Φfix(P)(I), where ΨP is the operator due to [6] used for
characterizing three-valued stable models of P , and Φfix(P) is the operator from
[16] used for characterizing the Fitting or Kripke-Kleene semantics of fix(P).

We do not include details on this result here since we will need it only in
passing in the sequel. The interested reader should consult [51]. A corollary from
the result just mentioned is that the well-founded model of some given program
P coincides with the Fitting model of fix(P).

3 Continuity

Theorem 1 enables us to carry over results on the single-step operator, respec-
tively on the supported-model semantics, to the Gelfond-Lifschitz operator re-
spectively the stable-model semantics. The following observation is of technical
importance.

Proposition 1. Let P be a definite program, A ∈ BP , and n ∈ N. Then A ∈
TP ↑n if and only if A← is a clause in T ′

P ↑n.

Proof. Let A ∈ TP ↑ n for some n ∈ N. We proceed by induction on n. If
n = 1, then there is nothing to show. So assume that n > 1. Then there is a
clause A ← body in ground(P) such that all atoms Bi in body are contained in
TP ↑(n− 1), and by induction hypothesis there are claues Bi ← in T ′

P ↑(n− 1).
Unfolding these clauses with A ← body shows that A ← is also contained in
T ′

P ↑n.
Conversely, assume there is a clause A ← in T ′

P ↑ n. We proceed again by
induction. If n = 1, there is nothing to show. So let n > 1. Then there exists
a clause A ← A1, . . . , Ak in ground(P) and clauses Ai ← in T ′

P ↑ (n − 1). By
induction hypothesis, we obtain Ai ∈ TP ↑(n−1) for all i, and hence A ∈ TP ↑n.

ut

Since the single-step operator is not monotonic in general, several authors
have made use of metric-based [17, 18, 22, 25–27, 29, 46] or even topological [3, 4,
22, 24, 43, 45, 47] methods for obtaining fixed-points and hence supported models
of the programs in question. Central to these investigations is the Cantor topol-
ogy Q on IP , which was studied as the query topology in [4] and in more general
terms as the atomic topology in [45]. It is the product topology on {t, f}BP ,
where the set of truth values {t, f} is endowed with the discrete topology, and
we refer to [53] for basic notions of topology. A subbase of the Cantor topology
can be given as

{{I ∈ IP | I |= L} | L is a ground literal},

which was noted in [45]. We can now employ Theorem 1 to carry over some of
these results to the treatment of the Gelfond-Lifschitz operator and the stable
semantics.

Given a program P , we know by Theorem 1 that GLP is continuous at some
I ∈ IP in Q if and only if Tfix(P) is continuous at I. This gives rise to the following
theorem.

Theorem 3. Let P be a normal logic program and let I ∈ IP . Then GLP is
continuous at I in Q if and only if whenever GLP (I)(A) = f , then either there
is no clause with head A in ground(P) or there exists a finite set S(I,A) =
{A1, . . . , Ak} ⊆ BP such that I(Ai) = t for all i and for every clause A← body
in ground(P) at least one ¬Ai or some B with GLP (I)(B) = f occurs in body.

Proof. The proof is based on the characterization of continuity of the TP -operator
given in [45], in the formulation which can be found in [29, Theorem 45], which
reads as follows.

The single-step operator TP is continuous in Q if and only if, for
each I ∈ IP and for each A ∈ BP with A 6∈ TP (I), either there
is no clause in P with head A or there is a finite set S(I, A) =
{A1, . . . , Ak, B1, . . . , Bk′} of elements of BP with the following prop-
erties:
(i) A1, . . . , Ak ∈ I and B1, . . . , Bk′ 6∈ I.
(ii) Given any clause C with head A, at least one ¬Ai or at least one

Bj occurs in the body of C.

Using this and Theorem 1, and by observing that there are no positive body
atoms occuring in fix(P), we obtain the following:

GLP is continuous at I if and only if whenever GLP (I)(A) = f , then
either there exists no clause with head A in fix(P) or there exists a
finite set S(I,A) = {A1, . . . , Ak} ⊆ BP such that I(Ai) = t for all i
and for every clause A ← body in fix(P) at least one ¬Ai occurs in
body.

So let P be such that GLP is continuous at I. If there is no clause with
head A in ground(P), then there is nothing to show. So assume that there is
a clause with head A in ground(P). We already know that then there exists
a finite set S(I,A) = {A1, . . . , Ak} ⊆ BP such that I(Ai) = t for all i and
for every clause A ← body in fix(P) at least one ¬Ai occurs in body. Now let
A ← B1, . . . , Bk,¬C1, . . . ,¬Cm be a clause in ground(P) and assume that no
¬Ai occurs in its body. We show that there is some Bi with GLP (I)(Bi) = f .
Assume the contrary, i.e. that GLP (I)(Bi) = t for all i. Then for each Bi we
have Bi ∈ GLP (I) = TP/I ↑ω. As in the proof of Proposition 1 we derive that
there is a clause A← ¬D1, . . . ,¬Dn,¬C1, . . . ,¬Cm in fix(P) with Dj 6∈ I for all
j = 1, . . . , n. Since the clause A← ¬D1, . . . ,¬Dn,¬C1, . . . ,¬Cm is contained in
fix(P), we know that some atom from the set S(I,A) must occur in its body. It
cannot occur as any Di because I(Dj) = f for all i. It also cannot occur as any
Ci by assumption. So we obtain a contradiction, which finishes the argument.

Conversely, let P be such that the condition on GLP in the statement of
the theorem holds. We will again make use of the observation made at the
beginning of this proof. So let A ∈ BP with GLP (I)(A) = f . If there is no
clause with head A in fix(P), then there is nothing to show. So assume there is
a clause with head A in fix(P). Then there is a clause with head A in P , and by
assumption we know that there exists a finite set S(I,A) = {A1, . . . , Ak} ⊆ BP

such that I(Ai) = t for all i and for every clause A ← body in ground(P)
at least one ¬Ai or some B with GLP (I)(B) = f occurs in body. Now let
A ← ¬B1, . . . ,¬Bn be a clause in fix(P) = T ′

P ↑ ω, i.e. there is k ∈ N with
A← ¬B1, . . . ,¬Bn contained in T ′

P ↑k. Note that n = 0 is impossible since this
would imply GLP (I)(A) = t contradicting the assumption on A. We proceed by

induction on k. If k = 1, then A ← ¬B1, . . . ,¬Bn is contained in ground(P),
hence one of the Bj is contained in S(I,A) which suffices. For k > 1, there is
a clause A← C1, . . . , Cm,¬D1, . . . ,¬Dm′ in ground(P) and clauses Ci ← bodyi

in T ′
P ↑ (k − 1) which unfold to A ← ¬B1, . . . ,¬Bn. By assumption we either

have Dj ∈ S(I,A) for some j, in which case there remains nothing to show, or
we have that GLP (I)(Ci) = f for some i. In the latter case we obtain that bodyi

is non-empty by an argument similar to that of the proof of Proposition 1, so
by assumption there is a (negated) atom in bodyi, and hence in {B1, . . . , Bn},
which is also in S(I,A), which finishes the proof. ut

We can also observe the following special instance. A local variable is a vari-
able occuring in some clause body but not in the corresponding head.

Corollary 1. Let P be a normal program without local variables. Then GLP is
continuous in Q.

Proof. We employ Theorem 3. Let I ∈ IP and A ∈ BP with GLP (I)(A) = f .
Since P has no local variables, it is of finite type. So the set B of all negated
body atoms in clauses with head A is finite. Let S(I,A) = {B ∈ B | I(B) = f},
which is also finite. If each clause with head A contains some negated atom
from S(I,A), then there is nothing to show. So assume there is a clause A ←
A1, . . . , An,¬B1, . . . ,¬Bm in ground(P) with Bj 6∈ S(I,A) for all j, i.e. I(Bj) =
t for all j. But then A← A1, . . . , An is a clause in P/I and A 6∈ TP/I ↑ω, which
implies that there is some i with Ai 6∈ TP/I ↑ ω = GLP (I), which finishes the
argument by Theorem 3. ut

Measurability is much simpler to deal with.

Theorem 4. Let P be a normal program. Then GLP is measurable with respect
to the σ-algebra σ(Q) generated by Q.

Proof. By [28, Theorem 2], which states that TP is measurable with respect to
σ(Q) for all P , we obtain that Tfix(P) is measurable with respect to σ(Q), and
by Theorem 1 we know that Tfix(P) ≡ GLP . ut

4 Obtaining models

As already mentioned above, topological methods in logic programming can
for example be used for obtaining models of programs iteratively, although the
underlying operator is not monotonic. The following variant of [29, Theorem 44]
can be proven directly.

Theorem 5. Let P be a normal program and let GLP be continuous and such
that the sequence of iterates GLm

P (I) converges in Q to some M ∈ IP . Then M
is a stable model of P .

Proof. By continuity we obtain

M = lim GLm
P (I) = GLP (lim GLm

P (I)) = GLP (M).

ut

We can also employ knowledge about relationships between the single-step
operator and the Fitting operator [16]. The latter is defined on three-valued
interpretations, which consist of sets of ground literals (instead of ground atoms)
which do not contain complementary literals. As such, they carry set-inclusion
as an ordering, which renders the space IP,3 of all three-valued interpretations a
complete partial order (cpo). It is in fact exactly the Plotkin domain Tω due to
[41]. Alternatively, we can understand three-valued interpretations as mappings
from atoms to the set {f ,u, t} of truth values, where u stands for undefined or
undetermined. The Fitting operator ΦP , for given program P , is now defined as
a function ΦP : IP,3 → IP,3 : I 7→ tP (I)∪fP (I), where tP (I) contains all A ∈ BP

for which there exists a clause A← L1, . . . , Ln in ground(P) with L1, . . . , Ln ∈ I,
and fP (I) contains all ¬A such that for all clauses A← L1, . . . , Ln in ground(P)
there is at least one Li 6∈ I. It was shown in [16] that ΦP is a monotonic operator
on IP,3.

If I is a three-valued interpretation, then I+ denotes the two-valued inter-
pretation assigning truth value t to exactly those atoms which are true in I.

Proposition 2. Let P be a normal program and assume that the well-founded
model M of P is total (i.e. every atom is true or false in it). Then GLn

P (∅)
converges in Q to M+, and M+ is the unique stable model of P .

Proof. This follows immeditately from Theorem 1 and [24, Theorem 4.4], which
shows the following.

If M = ΦR ↑ω is total, then Tn
R(∅) converges in Q to M+, and M+

is the unique supported model of R.
ut

Metric-based approaches also carry over. A level mapping is a mapping from
BP to some ordinal α. A program P is locally stratified [44] if there exists a level
mapping l : BP → α, where α is some ordinal, such that for each clause A ←
A1, . . . , Am,¬B1, . . . ,¬Bn in ground(P) we have l(A) ≥ l(Ai) and l(A) > l(Bj)
for all i and j. It is called locally hierarchical [10], if additionally l(A) > l(Ai) for
all i. Given a level mapping l : BP → α, we denote by Γl the set of all symbols
2−β for β ≤ α, ordered by 2−β < 2−γ iff γ < β. Γl can be understood as a
subset of the reals if α = ω, i.e. if l maps into the natural numbers. For two
(two-valued) interpretations I and J , we define dl(I, J) = 2−β , where β is the
least ordinal such that there is an atom of level β on which I and J disagree. If
α = ω, then dl is an ultrametric on IP , and this construction was put to use e.g.
in [17]. In the general case, dl is a generalized ultrametric on IP , as used in logic
programming e.g. in [25, 29, 43]. A mapping f is called strictly contracting with
respect to a generalized ultrametric d if d(f(x), f(y)) < d(x, y) for all x, y with

x 6= y. Strictly contracting mappings have unique fixed points if the underlying
generalized ultrametric space satisfies a completeness condition called spherical
completeness [43].

Theorem 6. Let P be locally stratified with corresponding level mapping l. Then
GLP is strictly contracting with respect to dl, which is spherically complete. If l
maps to ω, then GLP is a contraction with respect to dl. Furthermore, in both
cases, GLP has a unique fixed point and P has a unique stable model.

Proof. If P is locally stratified with respect to l, then fix(P) is locally hierar-
chical with respect to l. It thus suffices to apply Theorem 1 in conjunction with
Theorem [47, Theorem 3.8], which shows the following.

Let R be a normal logic program which is locally hierarchical with
respect to a level mapping l : BR → γ. Then TR is strictly contracting
with respect to the generalized ultrametric dl induced by l. Therefore,
TR has a unique fixed point and hence R has a unique supported
model.

ut

With the remarks already made on the fact that the well-founded model of
some given program P coincides with the Fitting model of fix(P), for any nor-
mal program P , we can also derive the following result. Dislocated generalized
ultrametric spaces are defined by relaxing one of the defining conditions on gen-
eralized ultrametrics, for details see [29]. Strictly contracting mappings can be
defined analogously, and have similar properties.

Theorem 7. Let P be a program with total well-founded model I ∪ ¬(BP \
I), with I ⊆ BP . Then GLP is strictly contracting on the spherically com-
plete dislocated generalized ultrametric space (IP , %), where we have %(J,K) =
max{dl(J, I), dl(I,K)} for all J,K ∈ IP , and l is defined by l(A) to be the min-
imal α such that Φfix(P) ↑(α+ 1)(A) = I(A).

Proof. The program P has a total well-founded model, which implies that fix(P)
has a total Fitting model. So l as given by the statement is well-defined, and
fix(P) is Φ-accessible in the sense of [29]. Now apply [29, Proposition 41], which
shows that TP is strictly contracting for every Φ-accessible program. ut

5 Neural-symbolic integration

Intelligent systems based on logic programming on the one hand, and on artificial
neural networks (sometimes called connectionist sytems) on the other, differ
substantially. Logic programs are highly recursive and well understood from the
perspective of knowledge representation: The underlying language is that of first-
order logic, which is symbolic in nature and makes it easy to encode problem
specifications directly as programs. The success of artificial neural networks lies
in the fact that they can be trained using raw data, and in some problem domains

the generalization from the raw data made during the learning process turns out
to be highly adequate for the problem at hand, even if the training data contains
some noise. Successful architectures, however, often do not use recursive (or
recurrent) structures. Furthermore, the knowledge encoded by a trained neural
network is only very implicitly represented, and no satisfactory methods for
extracting this knowledge in symbolic form are currently known.

It would be very desirable to combine the robust neural networking machin-
ery with symbolic knowledge representation and reasoning paradigms like logic
programming in such a way that the strenghts of either paradigm will be re-
tained. Current state-of-the-art research, however, fails by far to achieve this
ultimate goal. As one of the main obstacles to be overcome we perceive the
question how symbolic knowledge can be encoded by artificial neural networks:
Satisfactory answers to this will naturally lead the way to knowledge extraction
algorithms and to hybrid neural-symbolic systems.

Earlier attempts to integrate logic and connectionist systems have mainly
been restricted to propositional logic, or to first-order logic without function
symbols. They go back to the pioneering work by McCulloch and Pitts [39], and
have led to a number of systems developed in the 80s and 90s, including Towell
and Shavlik’s KBANN [49], Shastri’s SHRUTI [48], the work by Pinkas [40],
Hölldobler [30], and d’Avila Garcez et al. [12, 14], to mention a few, and we refer
to [8, 13, 21] for comprehensive literature overviews.

Without the restriction to the finite case (including propositional logic and
first-order logic without function symbols), the task becomes much harder due
to the fact that the underlying language is infinite but shall be encoded using
networks with a finite number of nodes. The sole approach known to us for
overcoming this problem (apart from work on recursive autoassociative memory,
RAAM, initiated by Pollack [42], which concerns the learning of recursive terms
over a first-order language) is based on a proposal by Hölldobler et al. [32],
spelled out first for the propositional case in [31], and reported also in [23]. It
is based on the idea that logic programs can be represented — at least up to
subsumption equivalence [38] — by their associated single-step operators. Such
an operator can then be mapped to a function on the real numbers, which can
under certain conditions in turn be encoded or approximated e.g. by feedforward
networks with sigmoidal activation functions using an approximation theorem
due to Funahashi [19].

We will carry over this result to the Gelfond-Lifschitz operator and the stable
model semantics. Since the topologyQ introduced earlier is homeomorphic to the
Cantor topology on the real line [45], there exists a homeomorphism ι : IP → C,
where C is the Cantor set within the unit interval, endowed with the subspace
topology inherited from the reals. We can thus embed any function f : IP → IP
which is continuous in Q as a continuous function ι(f) : C → C : ι(f)(x) =
ι(f(ι−1(x))). By well-known results, e.g. [19] as mentioned earlier, such functions
can be approximated uniformly by artificial neural networks in many different
network architectures.

Theorem 8. Let P be a normal logic program. Then GLP can be approximated
almost everywhere up to an arbitrarily chosen error bound by input-output func-
tions of three-layer feedforward neural networks with sigmoidal activation func-
tions. If GLP is furthermore continuous in Q, then uniform approximation is
possible on all of C.
Proof. We use Theorem 1. The first statement then follows from Theorem 4
together with a result from [33] saying that each measurable function can be
approximated almost everywhere by three-layer feedforward networks in the in-
dicated way — see also [28, Theorem 7]. The second statement follows from [19]
or from [28, Theorem 5]. ut

The references mentioned in the proof of Theorem 8 provide further results, in
particular on error bounds, and they can also be carried over straightforwardly.

Another improvement on the basic results by Hölldobler et al [32] employed
an alternative network architecture. In [2], results were provided for encoding
and approximating ι(TP) by iterated function systems, which in turn could be
encoded using a recurrent neural networks structure. The advantage of this ap-
proach is that algorithms for constructing approximating networks can be given
explicitly, in contrast to the results in [23, 28, 32]. These results also hinge on
continuity or Lipschitz-continuity of ι(TP) with respect to the Cantor topology
only, and can be carried over to the Gelfond-Lifschitz operator in a straightfor-
ward way. The paper [5] provides related results using cellular automata, treating
logic programs without local variables — a property which also carries over to
the fixpoint completion. Hence these results carry over mutatis mutandis to the
Gelfond-Lifschitz operator.

6 Conclusions

We have displayed the usefulness of the results reported in [51] to the operator-
based analysis of knowledge representation under the stable semantics. We have
shown that many results from the study of the supported-model semantics by
means of the single-step operator can be carried over to the stable semantics
almost without effort.

Our results are of a theoretical nature, and we do not propose to study
them for implementation purposes. The idea to use the fixpoint completion for
obtaining stable models (or similar constructions for obtaining answer sets or
well-founded models etc.) of programs is already folklore knowledge in the com-
munity, and need not be further mentioned. The emphasis of our exhibition is on
the observation that not only models, but also corresponding semantic operators
are related by means of the fixpoint completion, and on the aspects which this
new insight allows to study.

Our observations are valid for first-order languages including function sym-
bols, a syntax whose study is often neglected in the non-monotonic reasoning
community. It is not at all surprising, that for finite languages alternative meth-
ods of program transformation can be found, which allow for efficient computa-
tion of stable models [34–36].

References

1. Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of
declarative knowledge. In Jack Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89–148. Morgan Kaufmann, Los Altos, CA, 1988.

2. Sebastian Bader and Pascal Hitzler. Logic programs, iterated function systems,
and recurrent radial basis function networks. Journal of Applied Logic, 200x. To
appear.

3. Aida Batarekh and V.S. Subrahmanian. The query topology in logic programming.
In Proceedings of the 1989 Symposium on Theoretical Aspects of Computer Science,
volume 349 of Lecture Notes in Computer Science, pages 375–387. Springer, Berlin,
1989.

4. Aida Batarekh and V.S. Subrahmanian. Topological model set deformations in
logic programming. Fundamenta Informaticae, 12:357–400, 1989.

5. Howard A. Blair, Jagan Chidella, Fred Dushin, Audrey Ferry, and Polar Humenn.
A continuum of discrete systems. Annals of Mathematics and Artificial Intelligence,
pages 153–186, 1997.

6. Stefan Bonnier, Ulf Nilsson, and Torbjörn Näslund. A simple fixed point charac-
terization of three-valued stable model semantics. Information Processing Letters,
40(2):73–78, 1991.

7. Stefan Brass, Jürgen Dix, Burkhardt Freitag, and Ulrich Zukowski.
Transformation-based bottom-up computation of the well-founded model.
Theory and Practice of Logic Programming, 1(5):497–538, 2001.

8. Anthony Browne and Ron Sun. Connectionist inference models. Neural Networks,
14(10):1331–1355, 2001.

9. François Bry. Negation in logic programming: A formalization in constructive logic.
In Dimitris Karagiannis, editor, Information Systems and Artificial Intelligence:
Integration Aspects, First Workshop, Ulm, FRG, March 19-21, 1990, Proceedings,
volume 474 of Lecture Notes in Computer Science, pages 30–46. Springer, 1991.

10. Lawrence Cavedon. Acyclic programs and the completeness of SLDNF-resolution.
Theoretical Computer Science, 86:81–92, 1991.

11. Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack Minker, editors,
Logic and Data Bases, pages 293–322. Plenum Press, New York, 1978.

12. Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Symbolic knowledge
extraction from trained neural networks: A sound approach. Artificial Intelligence,
125:155–207, 2001.

13. Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M. Gabbay. Neural-Symbolic
Learning Systems — Foundations and Applications. Perspectives in Neural Com-
puting. Springer, Berlin, 2002.

14. Artur S. d’Avila Garcez and Gerson Zaverucha. The connectionist inductive lerarn-
ing and logic programming system. Applied Intelligence, Special Issue on Neural
networks and Structured Knowledge, 11(1):59–77, 1999.

15. Phan Minh Dung and Kanchana Kanchanasut. A fixpoint approach to declarative
semantics of logic programs. In Ewing L. Lusk and Ross A. Overbeek, editors, Logic
Programming, Proceedings of the North American Conference 1989, NACLP’89,
Cleveland, Ohio, pages 604–625. MIT Press, 1989.

16. Melvin Fitting. A Kripke-Kleene-semantics for general logic programs. The Journal
of Logic Programming, 2:295–312, 1985.

17. Melvin Fitting. Metric methods: Three examples and a theorem. The Journal of
Logic Programming, 21(3):113–127, 1994.

18. Melvin Fitting. Fixpoint semantics for logic programming — A survey. Theoretical
Computer Science, 278(1–2):25–51, 2002.

19. Ken-Ichi Funahashi. On the approximate realization of continuous mappings by
neural networks. Neural Networks, 2:183–192, 1989.

20. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Pro-
gramming. Proceedings of the 5th International Conference and Symposium on
Logic Programming, pages 1070–1080. MIT Press, 1988.

21. Hans W. Güsgen and Steffen Hölldobler. Connectionist inference systems. In
Bertram Fronhöfer and Graham Wrightson, editors, Parallelization in Inference
Systems, volume 590 of Lecture Notes in Artificial Intelligence, pages 82–120.
Springer, Berlin, 1992.

22. Pascal Hitzler. Generalized Metrics and Topology in Logic Programming Semantics.
PhD thesis, Department of Mathematics, National University of Ireland, University
College Cork, 2001.

23. Pascal Hitzler, Steffen Hölldobler, and Anthony K. Seda. Logic programs and
connectionist networks. Journal of Applied Logic, 200x. To appear.

24. Pascal Hitzler and Anthony K. Seda. Acceptable programs revisited. In Proceedings
of the Workshop on Verification in Logic Programming, 16th Int. Conf. on Logic
Programming, ICLP’99, Las Cruces, New Mexico, volume 30 of Electronic Notes
in Theoretical Computer Science, pages 1–18. Elsevier, 1999.

25. Pascal Hitzler and Anthony K. Seda. The fixed-point theorems of Priess-Crampe
and Ribenboim in logic programming. In Valuation Theory and its Applications,
Proceedings of the 1999 Valuation Theory Conference, University of Saskatchewan
in Saskatoon, Canada, volume 32 of Fields Institute Communications Series, pages
219–235. American Mathematical Society, 1999.

26. Pascal Hitzler and Anthony K. Seda. Some issues concerning fixed points in com-
putational logic: Quasi-metrics, multivalued mappings and the Knaster-Tarski the-
orem. In Proceedings of the 14th Summer Conference on Topology and its Appli-
cations: Special Session on Topology in Computer Science, New York, volume 24
of Topology Proceedings, pages 223–250, 1999.

27. Pascal Hitzler and Anthony K. Seda. A new fixed-point theorem for logic pro-
gramming semantics. In Proceedings of the joint IIIS & IEEE meeting of the 4th
World Multiconference on Systemics, Cybernetics and Informatics, SCI2000, and
the 6th International Conference on Information Systems Analysis and Synthesis,
ISAS2000, Orlando, Florida, USA, volume VII, Computer Science and Engineer-
ing Part 1, pages 418–423. International Institute of Informatics and Systemics:
IIIS, 2000.

28. Pascal Hitzler and Anthony K. Seda. Continuity of semantic operators in logic
programming and their approximation by artificial neural networks. In Andreas
Günter, Rudolf Krause, and Bernd Neumann, editors, Proceedings of the 26th Ger-
man Conference on Artificial Intelligence, KI2003, volume 2821 of Lecture Notes
in Artificial Intelligence, pages 105–119. Springer, 2003.

29. Pascal Hitzler and Anthony K. Seda. Generalized metrics and uniquely determined
logic programs. Theoretical Computer Science, 305(1–3):187–219, 2003.

30. Steffen Hölldobler. Automated Inferencing and Connectionist Models. Fakultät
Informatik, Technische Hochschule Darmstadt, 1993. Habilitationsschrift.

31. Steffen Hölldobler and Yvonne Kalinke. Towards a massively parallel computa-
tional model for logic programming. In Proceedings ECAI94 Workshop on Com-
bining Symbolic and Connectionist Processing, pages 68–77. ECCAI, 1994.

32. Steffen Hölldobler, Yvonne Kalinke, and Hans-Peter Störr. Approximating the
semantics of logic programs by recurrent neural networks. Applied Intelligence,
11:45–58, 1999.

33. Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2:359–366, 1989.

34. Joohyung Lee and Vladimir Lifschitz. Loop formulas for disjunctive logic pro-
grams. In Catuscia Palamidessi, editor, Logic Programming, 19th International
Conference, ICLP 2003, Mumbai, India, December 2003, Proceedings, volume 2916
of Lecture Notes in Computer Science, pages 451–465. Springer, 2003.

35. Fangzhen Lin and Jicheng Zhao. On tight logic programs and yet another transla-
tion from normal logic programs to propositional logic. In Georg Gottlob and Toby
Walsh, editors, Proceedings of the 18th International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, August 2003, pages 853–858. Morgan Kaufmann
Publishers, 2003.

36. Fangzhen Lin and Yiting Zhao. ASSAT: Computing answer sets of a logic program
by SAT solvers. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence and Fourteenth Conference on Innovative Applications of Artificial In-
telligence, July/August, 2002, Edmonton, Alberta, Canada, pages 112–118. AAAI
Press, 2002.

37. John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1988.
38. Michael J. Maher. Equivalences of logic programs. In Jack Minker, editor, Foun-

dations of Deductive Databases and Logic Programming, pages 627–658. Morgan
Kaufmann, Los Altos, CA, 1988.

39. Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

40. Gadi Pinkas. Propositional non-monotonic reasoning and inconsistency in symmet-
ric neural networks. In John Mylopoulos and Raymond Reiter, editors, Proceedings
of the 12th International Joint Conference on Artificial Intelligence, pages 525–530.
Morgan Kaufmann, 1991.

41. Gordon Plotkin. T ω as a universal domain. Journal of Computer and System
Sciences, 17:209–236, 1978.

42. Jordan B. Pollack. Recursive distributed representations. Artificial Intelligence,
46(1):77–105, 1990.

43. Sibylla Prieß-Crampe and Paolo Ribenboim. Ultrametric spaces and logic pro-
gramming. The Journal of Logic Programming, 42:59–70, 2000.

44. Teodor C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193–216. Morgan Kaufmann, Los Altos, CA, 1988.

45. Anthony K. Seda. Topology and the semantics of logic programs. Fundamenta
Informaticae, 24(4):359–386, 1995.

46. Anthony K. Seda. Quasi-metrics and the semantics of logic programs. Fundamenta
Informaticae, 29(1):97–117, 1997.

47. Anthony K. Seda and Pascal Hitzler. Topology and iterates in computational logic.
In Proceedings of the 12th Summer Conference on Topology and its Applications:
Special Session on Topology in Computer Science, Ontario, August 1997, volume 22
of Topology Proceedings, pages 427–469, 1997.

48. Lokenda Shastri. Advances in Shruti — A neurally motivated model of relational
knowledge representation and rapid inference using temporal synchrony. Applied
Intelligence, 11:78–108, 1999.

49. Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial neural net-
works. Artificial Intelligence, 70(1–2):119–165, 1994.

50. Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded seman-
tics for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

51. Matthias Wendt. Unfolding the well-founded semantics. Journal of Electrical
Engineering, Slovak Academy of Sciences, 53(12/s):56–59, 2002. (Proceedings of
the 4th Slovakian Student Conference in Applied Mathematics, Bratislava, April
2002)2.

52. Matthias Wendt. Unfolding the well-founded semantics. Technical Report WV–
02–08, Knowledge Representation and Reasoning Group, Department of Com-
puter Science, Dresden University of Technology, 2002. http://www.wv.inf.tu-
dresden.de/Publications/2002/.

53. Stephen Willard. General Topology. Addison-Wesley, Reading, MA, 1970.

2 Available online as [52].

The Integration of Connectionism and First-Order

Knowledge Representation and Reasoning as a

Challenge for Artificial Intelligence

Sebastian Bader1, Pascal Hitzler2, Steffen Hölldobler1

1International Center for Computational Logic
Technische Universität Dresden, Germany
2AIFB, Universität Karlsruhe, Germany

Abstract

Intelligent systems based on first-order logic on the one hand, and
on artificial neural networks (also called connectionist systems) on the
other, differ substantially. It would be very desirable to combine the ro-
bust neural networking machinery with symbolic knowledge representa-
tion and reasoning paradigms like logic programming in such a way that
the strengths of either paradigm will be retained. Current state-of-the-art
research, however, fails by far to achieve this ultimate goal. As one of
the main obstacles to be overcome we perceive the question how symbolic
knowledge can be encoded by means of connectionist systems: Satisfac-
tory answers to this will naturally lead the way to knowledge extraction
algorithms and to integrated neural-symbolic systems.

1 Introduction

Artificial neural networks — also called connectionist systems — exhibit many
desirable properties of intelligent systems like, for example, being massively par-
allel, context-sensitive, adaptable and robust (see eg. [14]). It is strongly believed
that intelligent systems must also be able to represent and reason about struc-
tured objects and structure-sensitive processes (see eg. [16, 35]). Unfortunately,
we are unaware of any connectionist system which can handle structured ob-
jects and structure-sensitive processes in a satisfying way. Logic systems were
designed to cope with such objects and processes and, consequently, it is a long-
standing research goal to combine the advantages of connectionist and logic
systems in a single system.

Earlier attempts to integrate logic and connectionist systems have mainly
been restricted to propositional logic, or to first-order logic without function
symbols. They go back to the pioneering work by McCulloch and Pitts [34],
and have led to a number of systems developed in the 80s and 90s, including
Towell and Shavlik’s Kbann [45], Shastri and Ajjanagadde’s Shruti [43], Lange
and Dryer’s Robin [32] the work by Pinkas [37], Hölldobler [22], and d’Avila
Garcez et al. [10, 13], to mention a few, and we refer to [9, 11] for comprehensive
literature overviews.

Without the restriction to the finite case (including propositional logic and
first-order logic without function symbols), the task becomes much harder due

1

In: L. Li and K.K. Yen, Proceedings of the Third International Conference on Information, Tokyo, Japan,

November/December 2004. ISBN 4-901329-02-2, International Information Institute, pp. 22-33.

to the fact that the underlying language is infinite but shall be encoded using
networks with a finite number of nodes. One of the few approaches for over-
coming this problem (apart from work on recursive autoassociative memory,
RAAM, initiated by Pollack [40], which concerns the learning of recursive terms
over a first-order language) is based on a proposal by Hölldobler et al. [27], and
reported also in [18]. It is based on the idea that logic programs can be repre-
sented by their associated single-step or immediate consequence operators. Such
an operator can then be mapped to a function on the real numbers, which can
under certain conditions in turn be encoded or approximated e.g. by feedforward
networks with sigmoidal activation functions.

The purpose of this paper is twofold. First, we will give an overview of recent
progress made in the representation of first-order logic programs by connection-
ist systems (Section 2). We will then discuss in detail some questions which we
find of central importance in order to advance towards an integration of logic
and connectionism (Section 3). Our selections are certainly very subjective, so
we also provide ample references to related work and literature for further read-
ing. Our discussions will be in very general terms, and we will make most of our
general exhibition accessible to the general reader. Some familiarity with basic
notions from logic and artificial neural networks, and also from set-theoretic
topology and iterated function systems will however be helpful for understand-
ing some of the details. As general references we recommend [33, 7, 47, 4].

Acknowledgements. The first author is supported by the GK334 of the Ger-
man Research Foundation. The second author is supported by the German
Federal Ministry of Education and Research under the SmartWeb project and
the EU Network of Excellence KnowledgeWeb. The second and third author ac-
knowledge substantial support by the Boole Centre for Research in Informatics
at the National University of Ireland, Cork, for presenting this paper.

2 Recent Progress

Integrating first-order logical knowledge representation and connectionism ne-
cessitates to find a common framework in which both kinds of systems can be
expressed and somehow unified.

Logical knowledge representation is symbolic in nature, i.e. the data struc-
tures under consideration basically consist of words over some language or of
collections of finite trees, for example, depending on the perspective taken or
on the problem at hand. Logic programs, more specifically, consist of sets of
first-order formulae under a restricted syntax, more precisely, a logic program
is a set of (universally quantified) disjunctions, called clauses or rules, which in
turn consist of atoms and negated atoms only. Equivalently, one can say that
logic programs are basically formulae in conjunctive normal form — although
their meaning, i.e. the way they are evaluated, is not identical to their mean-
ing in first-order logic. Input (queries) and output (answers) of a logic program
essentially consist of certain logical formulae or of models of the program.

Successful connectionist architectures, however, can be understood as net-
works (essentially, directed graphs) of simple computational units, in which ac-
tivation is propagated and combined in certain ways adhering to connectionist
principles. In many cases like, for example, in multilayer perceptrons, the acti-
vation is encoded as a real number; input and output of such networks consist

2

of tuples (vectors) of real numbers. So, while logic is symbolic and thus discrete,
standard connectionist systems are continuous, i.e. they deal with real values in
Euclidean space.

In order to integrate logic and connectionism we thus need to bridge the gap
between the discrete, symbolic setting of logic, and the continuous, real-valued
setting of artificial neural networks. The method of our choice — motivated by
several reasons which will become clear below — is to employ Cantor space for
this purpose.

Cantor space C is — up to homeomorphism — a subset of the unit interval
of the real numbers endowed with the topological structure inherited from the
reals. The set is best described as the set of all real numbers in the unit interval
which can be expressed in the ternary number system using the digits 0 and 2
only. More precisely, C is the set of all real numbers of the form

∑∞
i=1 ai3−i,

where ai ∈ {0, 2} for all i. We remark that topologically, we obtain homeomor-
phic subsets of the reals by considering all real numbers of the form

∑∞
i=1 aiB

−i,
where ai ∈ {0, 1} and B is fixed to some natural number greater than or equal
to 3. This lies in the fact that Cantor space can be uniquely described — up
to homeomorphism — as the topological space which is totally disconnected,
compact, Hausdorff, second countable, and dense in itself.

How do we relate Cantor space to first-order logic? The topological charac-
terization of C just given already shows that it can be described independently
of the real numbers. Now consider some first-order language L. Interpretations
(or valuations) over L can be understood as mappings from the countable set of
ground atoms over L — which we call the Herbrand base BL over L — to the
set of truth values {t, f}. Identifying t with 2 (or 1) and f with 0, the set of all
interpretations over L can be identified with the set of all mappings from BL to
{0, 2}. Since BL is countable, we can also choose an enumeration of BL, which is
essentially an identification of BL with N, the set of natural numbers excluding
zero, or, in other words, a bijective mapping l : BL → N. We can thus identify
the set of all interpretations over L, which are of the form I : BL → {t, f}, with
the set of all mappings f : N→ {0, 2}.

Now, formally, let l : BL → N be an (arbitrarily chosen) bijection and let IL
be the set of all interpretations over L, i.e. the set of all mappings from BL to
{0, 2}. We define a mapping ι from IL to C by

ι(I) =
∞∑

i=1

I(l−1(i))3−i.

It is easily verified that ι is a bijection.
The mapping ι allows to understand the set of interpretations as the Cantor

set in the real line. But does it also preserve meaningful structure, i.e. does it
relate meaningful structure for logic programs on the one side with meaningful
structure for connectionist sytems on the other side? We will see that it does,
and in order to proceed, we reproduce next a theorem due to Funahashi [17].

Theorem 1 Suppose that φ : R → R is non-constant, bounded, monotone in-
creasing and continuous. Let K ⊆ Rn be compact, let f : K → R be a contin-
uous mapping and let ε > 0. Then there exists a 3-layer feedforward network
with squashing function φ whose input-output mapping f̄ : K → R satisfies
maxx∈K d(f(x), f̄(x)) < ε, where d is a metric which induces the natural topol-
ogy on R.

3

For the reader who is not familiar with the terminology of the theorem, we
state its intuitive meaning: Every continuous real-valued function defined on
a compact subset of the reals can be uniformly approximated by input-output
mappings of artificial neural networks of a certain architecture. The details of
this architecture will not concern us for our general discussion.

Funahashi’s theorem provides an existence result for approximating conti-
nous functions on the reals. So if we manage to interpret logic programs as such
functions in a meaningful way, then we know that approximation of logic pro-
grams by neural networks is possible in a reasonable way. We need two more
steps in order to realize this idea.

Firstly, we note that it is very common in logic programming to associate
operators to logic programs in such a way that the behaviour of the operator
reflects the meaning of the program. One of the most popular — and arguably
the most natural — operator is the so-called immediate consequence operator
TP associated with a given program P . Details of the definition of TP will be
of no concern for our general discussion, so we will not spell them out. For
the same reason, we also omit a formal definition of a logic program, and just
remark that logic programs are certain sets of first-order logical formulae, as
already mentioned. The operator TP is an operator which acts on IL, i.e. on the
space of all interpretations of the underlying first-order language. Since ι maps
IL bijectively onto C, we can carry over the operator TP via ι to the reals, by
defining

ι(TP) : C → C : x 7→ ι(TP (ι−1(x))).

Hence, ι(TP) is a mapping on Cantor set which carries the meaning of P .
Secondly, we need to ensure that the embedded mapping ι(TP) just defined

is continuous on Cantor space, such that Funahashi’s theorem can be applied.
This, for example, is the case if TP is continuous with respect to the initial
topology induced by ι on IL — let us denote this topology by Q. Since ι is a
bijection, it follows that it is a homeomorphism from (IL, Q) to Cantor space C
— i.e. (IL, Q) is Cantor space up to homeomorphism, and ι(TP) is continuous
as a function on C if and only if TP is continuous as a function on (IL, Q).
Together, we obtain the following result, which was reported in [18] in a more
general form.

Theorem 2 Let P be a logic program such that TP is continuous in Q, and
let ι be a homeomorphism from (IL, Q) to C. Then ι(TP) can be approximated
uniformly by input-output functions of artificial neural networks of the kind used
in Theorem 1.

The importance of Theorem 2 lies in the fact that the topology Q on IL
is well-known in logic programming. Indeed, it is the most important topol-
ogy for the study of fixed-point semantics for programs with negation. It dates
back to the work by Batarekh and Subrahmanian [5] where it was called the
query topology. Seda [42] studies a generalization of it under the name atomic
topology, and in the same paper it was also shown that continuity in Q can
naturally be characterized without making reference to topological notions. It is
also strongly related to the studies of fixed-point semantics of logic programs by
means of generalized metrics, as e.g. undertaken by Fitting [15], Prieß-Crampe
& Ribenboim [41] and Seda & Hitzler [20].

4

Due to its very general nature, Theorem 2 carries a lot of inherent flexibility.
The particular instance of ι given earlier is only one very specific example of a
homeomorphism which can be used. Indeed, the number of automorphisms of
Cantor space is uncountable. The specific representations of Cantor space as a
subspace of the reals given earlier are also just very particular examples of such
representations. Results analogous to that by Funahashi furthermore hold for
many popular neural network architectures, such that our investigations are not
a priori restricted to certain types of connectionist systems.

But the flexibility gained by the general nature of Theorem 2 does not come
for free. In particular, it provides no means of actually obtaining an approx-
imating network from a concretely given program. At best, we would like to
be able to read off parameters for an approximating network directly from a
given program. To date, it is an open problem how to do this along the lines of
Theorem 2.

A different approach towards obtaining concrete approximations was under-
taken by us in [2]. It was based on the observation that graphs of embedded
operators ι(TP), displayed in the Euclidean plane, exhibit self-similar structures
known from chaos theory. More precisely, the graphs appeared to be attractors
of iterated function systems as studied, for example, in the well-known book by
Barnsley [4]. This led to the following theorem, which is stated in slightly more
general form in [2].

Theorem 3 Let P be a logic program such that ι(TP) is Lipschitz-continuous.
Then there exists an iterated function system on the Euclidean plane whose
attractor is the graph of ι(TP).

The importance of Theorem 3 lies in the fact that iterated function systems
can be encoded very easily as some standard type of recurrent neural networks,
and we have spelled this out in [2]. The very general Theorem 3 also leads to
concrete instances of iterated function systems — and thus of corresponding
networks — for approximating ι(TP): Given a program P and an arbitrarily
chosen accuracy of the approximation i ∈ N, we need only determine a finite
number of explicitly determined function values of ι(TP), in order to arrive at
an iterated function system Si whose attractor fi is the graph of a continuous
function — details of the construction can be found in [2]. Our result now reads
as follows.

Theorem 4 Let P be a program with Lipschitz-continuous ι(TP). Then the se-
quence (fi)i∈N of attractors, as mentioned above, converges uniformly to ι(TP).

A concrete open problem remaining with Theorem 4 is that the determina-
tion of a suitable iterated function system Si from a given program P hinges
on the explicit knowledge about an upper bound for the Lipschitz-constant for
ι(TP) — if it exists at all.

We close our brief survey with a number of further remarks.
(1) The idea to represent a logic program via its semantic operator traces

back to Hölldobler & Kalinke [23], surveyed in [18], where this idea was employed
for the propositional case. D’Avila Garcez et al. [10, 13] have molded this into
an integrated learning system which uses backpropagation.

(2) A very restricted version of Theorem 2 was shown in [27] using different
methods. There, and in [18], the network architecture was also extended in order

5

to mimic iterations of the immediate consequence operator, and corresponding
results on the convergence behaviour and speed of these iterations were provided.

(3) It was shown in [18] that many semantic operators in logic programming,
including the immediate consequence operator, are measurable. While there
exist approximation results relating measurability to artificial neural networks,
e.g. by Hornik et al. [29], it is an open issue whether this fact can be exploited
for neural-symbolic integration.

(4) A recent result by Wendt [46] relates semantic operators used in answer
set programming [44] to the immediate consequence operator, and thus allows
to use our results for studying non-monotonic reasoning with logic programs
in a connectionist setting. This remains to be spelled out. Some preliminary
investigations can be found in [19].

(5) We are recently investigating the use of weighted automata and fibring
neural networks for our purposes [3, 12].

After this survey on the current state of the art of relating logic programs
and connectionist networks we will identify a number of open research problems
in the following section.

3 Challenges

3.1 How can first-order terms be represented and manipulated
in a connectionist system?

This is the main question that needs to be answered, and our recent results
presented in the previous section are along this line. We consider this question
to be of central importance because the development of a satisfactory and us-
able representation of first-order formulae is the first necessary step towards
neural-symbolic integration. The proposals made so far do not give a satisfying
answer to this question: Structured connectionist networks as used e.g. in [21]
are completely local. The unification and matching operations can directly be
implemented in these networks. However, the number of units is quadratic and
the number of connections even cubic wrt the size of the terms. It is not obvious
at all how such networks can be learned.

Vectors of fixed length are used to represent terms in the recursive auto-
associative memory and its derivatives [39, 1]. Unfortunately, in extensive tests
none of these proposals has led to satisfying results: The systems could not
safely store and recall terms of depth larger than five [30].

In hybrid systems terms are represented and manipulated in a conventional
way. But this is not a kind of integration we are hoping for because in this case
results from connectionist systems cannot be applied to the conventional part.

The phase-coding mechanism suggested in Shruti [43] and used in the Bur
system [25] restricts the first-order language to contain only constants and multi-
place relation symbols.

We definitely need new ideas to solve this challenge problem! Connectionist
encodings for conventional data structures like counters and stacks [24, 31] have
been proposed and may be of use, and the study of relationships between logic
programs, neural networks, and other paradigms in computing and mathemat-
ics like cellular and weighted automata, dynamical systems, and the like, may
provide new ideas.

6

3.2 How can first-order rules be extracted from a connectionist
network?

To the best of our knowledge all rule extraction techniques for connectionist
networks are propositional in the sense that they only generate propositional
rules. For example, the propositional networks in [23] were slightly modified in
[13, 10] such that backpropagation could be applied and standard rule extraction
techniques could be used to extract new revised — but propositional — rules.

The results from [18] guarantee the existence of recurrent networks with
a feed forward kernel to approximate the meaning of a first-order program.
Backpropagation can again in principle be used to train these kernels. But it is
by no means obvious how the rule extraction techniques known so far can be
generalized such that first-order rules are extracted from these kernels.

3.3 How can distributed knowledge representation in connection-
ist networks be understood from a symbolic perspective?

Although this question is being subsumed by the previous two, we want to
emphasize the difficulties underlying distributed representations explicitly. The
representation of propositional logic in connectionist networks most often is very
local, while standard network training normally leads to distributed represen-
tation, which is very difficult to interpret in a symbolic manner.

The situation becomes worse for first-order logic, where due to the infinitary
nature of the underlying language there seems to be no way at all to avoid
distributed representation. We understand that this issue provides the main
obstacle in developing constructive methods for the representation of first-order
logic programs by means of Funahashi’s theorem, and we also expect this to be
a major issue in order to make advances in first-order rule extraction.

3.4 How can established learning algorithms like backpropaga-
tion be combined with symbolic knowledge representation?

For the propositional system developed by d’Avila Garcez et al. [10, 13], sym-
bolic knowledge is being represented by a network, which is then trained using
backpropagation. Afterwards, the learned knowledge may be extracted. A sim-
iliar approach underlies the Kbann system due to Towell and Shavlik [45].

While this is a good idea, we see the risk that the initial knowledge may be
lost in the course of the training process, although it should rather influence
it. We envision an integration via continuous interaction of standard learning
techniques with background and dynamically acquired knowledge. How this can
be achieved, however, is as yet entirely unclear.

Another problem is posed by the fact that the representation of first-order
knowledge easily leads to non-standard network architectures, like in the Shruti
system [43], which cannot be trained easily, or at least cannot be trained with
established methods without loosing the specific logically meaningful architec-
ture. The latter would be the case e.g. with the recurrent networks obtained
from iterated function systems as mentioned in Section 2. Modified learning
algorithms will have to be established and studied for these purposes.

7

3.5 How can multiple instances of first-order rules be represented
in a connectionist system?

One of the properties of first-order reasoning is that it cannot be determined
in advance how many copies of a rule are needed to answer a given query or,
equivalently, to prove a theorem. In local connectionist systems like Chcl [26]
this problem is defined away by simply assuming that each rule is used only
once. A similar assumption is made in Shruti, where each relation may be
instantiated only a fixed number of times in one reasoning episode. This is
not a general solution since even for datalogic programs — which do not need
function symbols in the underlying language — exponentially many copies may
be needed. The Bur system from [25] does not provide multiple copies, which
is the reason for the fact that the system may be unsound if multiplace relation
symbols are involved.

The results from [18] suggest that the problem of generating new instances
of a rule can be mapped on the problem of obtaining a better approximation
of the least model of a logic problem in the following sense: The level assigned
to ground atoms occurring in the n-th iteration of the meaning function for the
first time should be higher than the level assigned to ground atoms which occur
at earlier stages. If the accuracy of an approximation can then be correlated to
the available hardware resources as in [24], we might obtain a solution for this
challenge problem.

3.6 How can insights from neuroscience be used to design inte-
grated systems which are biologically feasible?

Artificial neural networks are very coarse abstractions of biological networks.
Connectionist networks used for the study of neural-symbolic integration, how-
ever, are often biologically much less feasible than standard architectures like
multilayer perceptrons. While it is important to study the formal relationships
between first-order logic and connectionist systems, we believe that it is also
important to study biological networks from the perspective of symbolic knowl-
edge processing. Can the accumulation of electric potential within a dendritic
tree be understood from a logial perspective? Can we develop methods to un-
derstand the temporal aspects of different transmission times between different
neurons? Can we assign logical meaning to firing patterns of collections of neu-
rons? Interdisciplinary efforts are required to answer these questions!

3.7 What is the exact relationship between neural-symbolic in-
tegration and chaos theory? Can this be exploited?

This question is prompted not only by our results reported in Section 2, but
also by work by Blair et al. on the relationship between cellular automata,
topological dynamics, logic programming, and other paradigms related to chaos
theory [8]. The structural coincidences are striking, but research in this direction
is difficult due to the fact that the related paradigms all turn out to be equally
hard to study, and advances will most likely necessitate entirely new ideas for
approaching these issues.

8

3.8 What does a theory for the integration of logic and connec-
tionist systems look like?

The results achieved so far on connectionist inference systems are more or less
unrelated to each other. Different logics are mapped onto different connectionist
systems and very often not much effort has been spent on (i) formally showing
properties of the system, (ii) formally relating the logic to the system and (iii)
formally relating the various systems to each other. There are some exceptions
though, eg. in [21] it was proven that the presented connectionist system really
solves the unification and matching problem or in [6] we have given a rigorous
logical reconstruction of the backward reasoning version of Shruti.

We would like to see a theory where in various layers of increased expres-
siveness logics, their corresponding connectionist models, their time and space
complexities, their properties concerning learning and rule extraction as well as
learning and rule extraction algorithms are specified. Such a theory could be
developed along the lines proposed in [23], the Bur system, [10, 13], and [2, 18]:
In each layer the logic would be defined by a certain class of logic programs and
the corresponding connectionist systems would be recurrent neural networks.

For example, if the logic programs are propositional, then interpretations
are represented locally. The units in the corresponding recurrent neural net-
work are logical threshold units. If learning shall be applied, then the threshold
units in the hidden layer must be replaced by sigmoidal ones. If the programs
are datalogic programs, then the corresponding recurrent neural network must
be able to bind variables to constants which can be done by using phase coding
as in Shruti and Bur. If the logic programs are full first order, then inter-
pretations shall be represented by vectors of real numbers and models are only
approximated, etc.

The logics in such a theory shall not only be the standard monotonic ones,
but we should also consider nonmonotonic ones. By the way, nonmonotonic
reasoning was originally proposed as a technique for “jumping to a conclusion”.
Nowadays conventional nonmonotonic reasoning systems have time and space
complexities which are not at all in accordance with the original goal. It may well
be that connectionist techniques may help to put the research in nonmonotonic
reasoning techniques back on track.

A general theory for the integration of logic and connectionist systems could
also be developed for symmetric networks [28]. Pinkas has shown that the prob-
lem of finding a model for a propositional logic formula is equivalent to finding a
global minimum in an energy function [38]. He has extended his results to some
nonmonotonic [37] and first-order logics [36]. Again, the picture is far from being
complete.

3.9 Can such a theory be applied in a real domain outperforming
conventional approaches?

All applications of connectionist inference systems that we have seen so far are
toy examples. We have to come up with applications in real domains which
outperform conventional approaches. This can only be done if we use hardware
which exploits the massive parallelism of connectionist networks. If we are rea-
soning in a logic whose entailment problem is in NC and an efficient or optimal
parallel algorithm for deciding this problem is known, then it does not suffice

9

to simulate this algorithm on a computer with just a few processors.
Because a general theory for integrating logic and connectionist systems may

be layered, applications we are looking for should have a similar structure. It
may be worth while to look for such an application in the area of integrating
the low-level control of a real robot with the high-level control developed in the
area of cognitive robotics. Such an application would also be a good showcase
for learning and rule extraction: Even if such a robot is initialized with some
knowledge, it must learn to behave in its environment, and this learning never
stops. Consequently, the knowledge is constantly updated.

4 Summary

In this paper we have given an overview on how first-order logic programs can
be represented in a connectionist setting and outlined various challenges for de-
veloping a truly connectionist system capable of representing structured objects
and performing structure-sensitive processes.

References

[1] M. J. Adamson and R. I. Damper. B-RAAM: A connectionist model which
develops holistic internal representations of symbolic structures. Connec-
tion Science, 11(1):41–71, 1999.

[2] S. Bader and P. Hitzler. Logic programs, iterated function systems, and re-
current radial basis function networks. Journal of Applied Logic, 2(3):273–
300, 2004.

[3] S. Bader, S. Hölldobler, and A. Scalzitti. Semiring artificial neural networks
and weighted automata – and an application to digital image encoding –.
In Proceedings of the 27th German Conference on Artificial Intelligence,
Ulm, Germany, September 2004, LNAI. Springer, 2004. To appear.

[4] M. Barnsley. Fractals Everywhere. Academic Press, San Diego, 1993.
[5] A. Batarekh and V. S. Subrahmanian. Topological model set deformations

in logic programming. Fundamenta Informaticae, 12:357–400, 1989.
[6] A. Beringer and S. Hölldobler. On the adequateness of the connection

method. In Proceedings of the AAAI National Conference on Artificial
Intelligence, pages 9–14, 1993.

[7] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[8] H. A. Blair, F. Dushin, D. W. Jakel, A. J. Rivera, and M. Sezgin. Con-
tinuous models of computation for logic programs. In K. R. Apt, V. W.
Marek, M. Truszczyński, and D. S. Warren, editors, The Logic Program-
ming Paradigm: A 25-Year Persepective, pages 231–255. Springer, 1999.

[9] A. Browne and R. Sun. Connectionist inference models. Neural Networks,
14(10):1331–1355, 2001.

[10] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Symbolic knowledge
extraction from trained neural networks: A sound approach. Artificial In-
telligence, 125:155–207, 2001.

[11] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Neural-Symbolic Learn-
ing Systems — Foundations and Applications. Perspectives in Neural Com-
puting. Springer, 2002.

10

[12] A. S. d’Avila Garcez and D. M. Gabbay. Fibring neural networks. In
Proceedings of the 19th National Conference on Artificial Intelligence. San
Jose, California, USA, July 2004, pages 342–347. AAAI Press, 2004.

[13] A. S. d’Avila Garcez and G. Zaverucha. The connectionist inductive ler-
arning and logic programming system. Applied Intelligence, Special Issue
on Neural networks and Structured Knowledge, 11(1):59–77, 1999.

[14] J. A. Feldman and D. H. Ballard. Connectionist models and their proper-
ties. Cognitive Science, 6(3):205–254, 1982.

[15] M. Fitting. Fixpoint semantics for logic programming — A survey. Theo-
retical Computer Science, 278(1–2):25–51, 2002.

[16] J. A. Fodor and Z. W. Pylyshyn. Connectionism and cognitive architecture:
A critical analysis. In Pinker and Mehler, editors, Connections and Symbols,
pages 3–71. MIT Press, 1988.

[17] K.-I. Funahashi. On the approximate realization of continuous mappings
by neural networks. Neural Networks, 2:183–192, 1989.

[18] P. Hitzler, S. Hölldobler, and A.K. Seda. Logic programs and connectionist
networks. Journal of Applied Logic, 2(3):245–272, 2004.

[19] P. Hitzler. Corollaries on the fixpoint completion: studying the stable se-
mantics by means of the clark completion. In D. Seipel, M. Hanus, U. Geske,
and O. Bartenstein, editors, Proceedings of the INAP’04 and WLP’04,
Potsdam, Germany, March 2004, volume 327 of Technichal Report, pages
13–27. Universität Würzburg, Institut für Informatik, 2004.

[20] P. Hitzler and A. K. Seda. Generalized metrics and uniquely determined
logic programs. Theoretical Computer Science, 305(1–3):187–219, 2003.

[21] S. Hölldobler. A structured connectionist unification algorithm. In Pro-
ceedings of the AAAI National Conference on Artificial Intelligence, pages
587–593, 1990.

[22] S. Hölldobler. Automated inferencing and connectionist models. Technical
Report AIDA–93–06, Intellektik, Informatik, TH Darmstadt, 1993. (Post-
doctoral Thesis).

[23] S. Hölldobler and Y. Kalinke. Towards a massively parallel computational
model for logic programming. In Proc. of the ECAI94 Workshop on Com-
bining Symbolic and Connectionist Processing, pages 68–77. ECCAI, 1994.

[24] S. Hölldobler, Y. Kalinke, and H. Lehmann. Designing a counter: Another
case study of dynamics and activation landscapes in recurrent networks. In
Proceedings of the KI97: Advances in Artificial Intelligence, volume 1303
of LNAI, pages 313–324. Springer, 1997.

[25] S. Hölldobler, Y. Kalinke, and J. Wunderlich. A recursive neural network
for reflexive reasoning. In S. Wermter and R. Sun, editors, Hybrid Neural
Symbolic Integration, number 1778 in LNAI, pages 46–62. Springer, 2000.

[26] S. Hölldobler and F. Kurfess. CHCL – A connectionist inference system. In
B. Fronhöfer and G. Wrightson, editors, Parallelization in Inference Sys-
tems, pages 318 – 342. Springer, LNAI 590, 1992.

[27] S. Hölldobler, Y. Kalinke, and H.-P. Störr. Approximating the semantics of
logic programs by recurrent neural networks. Applied Intelligence, 11:45–58,
1999.

[28] J. J. Hopfield. Neural networks and physical systems with emergent col-
lective computational abilities. In Proceedings of the National Academy of
Sciences USA, pages 2554 – 2558, 1982.

11

[29] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2:359–366, 1989.

[30] Y. Kalinke. Using connectionist term representation for first–order deduc-
tion – a critical view. In F. Maire, R. Hayward, and J. Diederich, editors,
Connectionist Systems for Knowledge Representation Deduction. Queens-
land University of Technology, 1997. Proc. CADE–14 Workshop.

[31] Y. Kalinke and H. Lehmann. Computations in recurrent neural networks:
From counters to iterated function systems. In G. Antoniou and J. Slaney,
editors, Advanced Topics in Artificial Intelligence, volume 1502 of LNAI,
Springer, 1998. Proceedings of the 11th Australian Joint Conference on
Artificial Intelligence (AI’98).

[32] T. E. Lange and M. G. Dyer. Frame selection in a connectionist model
of high-level inferencing. In Proceedings of the Annual Conference of the
Cognitive Science Society, pages 706–713, 1989.

[33] J. W. Lloyd. Foundations of Logic Programming. Springer, 1988.
[34] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent

in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.
[35] A. Newell. Physical symbol systems. Cognitive Science, 4:135–183, 1980.
[36] G. Pinkas. Expressing first-order logic in symmetric connectionist net-

works. In L. N. Kanal and C. B. Suttner, editors, Informal Proceedings of
the International Workshop on Parallel Processing for AI, pages 155–160,
Sydney, Australia, August 1991.

[37] G. Pinkas. Propositional non-monotonic reasoning and inconsistency in
symmetrical neural networks. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 525–530, 1991.

[38] G. Pinkas. Symmetric neural networks and logic satisfiability. Neural Com-
putation, 3:282–291, 1991.

[39] J. B. Pollack. Recursive auto-associative memory: Devising compositional
distributed representations. In Proceedings of the Annual Conference of the
Cognitive Science Society, pages 33–39, 1988.

[40] J. B. Pollack. Recursive distributed representations. Artificial Intelligence,
46:77–105, 1990.

[41] S. Prieß-Crampe and P. Ribenboim. Ultrametric spaces and logic program-
ming. The Journal of Logic Programming, 42:59–70, 2000.

[42] A. K. Seda. Topology and the semantics of logic programs. Fundamenta
Informaticae, 24(4):359–386, 1995.

[43] L. Shastri and V. Ajjanagadde. From associations to systematic reasoning:
A connectionist representation of rules, variables and dynamic bindings
using temporal synchrony. Behavioural and Brain Sciences, 16(3):417–494,
1993.

[44] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence. To appear.

[45] G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks.
Artificial Intelligence, 70(1–2):119–165, 1994.

[46] M. Wendt. Unfolding the well-founded semantics. Journal of Electrical
Engineering, Slovak Academy of Sciences, 53(12/s):56–59, 2002.

[47] S. Willard. General Topology. Addison-Wesley, Reading, MA, 1970.

12

Computing First-Order Logic Programs
by Fibring Artificial Neural Networks

Sebastian Bader∗
Department of Computer Science
Technische Universität Dresden

Germany

Artur S. d’Avila Garcez†
Department of Computing

City University London
UK

Pascal Hitzler‡
Institute AIFB

University of Karlsruhe
Germany

Abstract

The integration of symbolic and neural-network-based
artificial intelligence paradigms constitutes a very chal-
lenging area of research. The overall aim is to merge
these two very different major approaches to intelli-
gent systems engineering while retaining their respec-
tive strengths. For symbolic paradigms that use the syn-
tax of some first-order language this appears to be par-
ticularly difficult. In this paper, we will extend on an
idea proposed by Garcez and Gabbay (2004) and show
how first-order logic programs can be represented by
fibred neural networks. The idea is to use a neural net-
work to iterate a global counter n. For each clause Ci

in the logic program, this counter is combined (fibred)
with another neural network, which determines whether
Ci outputs an atom of level n for a given interpretation
I . As a result, the fibred network computes the single-
step operator TP of the logic program, thus capturing
the semantics of the program.

Introduction
Intelligent systems based on artificial neural networks dif-
fer substantially from those based on symbolic knowledge
processing like logic programming. Neural networks are
trainable from raw data and are robust, but practically im-
possible to read declaratively. Logic programs can be imple-
mented from problem specifications and can be highly recur-
sive, while lacking good training methods and robustness,
particularly when data are noisy (Thrun & others 1991). It
is obvious that an integration of both paradigms into single
systems would be very beneficiary if the respective strengths
could be retained.

There exists a notable body of work investigating the in-
tegration of neural networks with propositional — or simi-
larly finitistic — logic. We refer to (Browne & Sun 2001;
d’Avila Garcez, Broda, & Gabbay 2002) for overviews. For

∗Sebastian Bader is supported by the GK334 of the German
Research Foundation.

†Artur Garcez is partly supported by The Nuffield Foundation.
‡Pascal Hitzler is supported by the German Federal Ministry

of Education and Research under the SmartWeb project and by the
European Union under the KnowledgeWeb Network of Excellence.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

first-order logic, however, it is much less clear how a rea-
sonable integration can be achieved, and there are system-
atic difficulties which slow down recent research efforts, as
spelled out in (Bader, Hitzler, & Hölldobler 2004). Dif-
ferent techniques for overcoming these obstacles are cur-
rently under investigation, including the use of metric spaces
and topology, and of iterated function systems (Hitzler,
Hölldobler, & Seda 2004; Bader & Hitzler 2004).

At the heart of these integration efforts is the question
of how first-order knowledge can be represented by neural
network architectures. In this paper, we present a novel
approach using fibring neural networks as proposed by
(d’Avila Garcez & Gabbay 2004). For each clause Ci of
a logic program, a neural network that iterates a counter n
is combined (fibred) with another neural network, which de-
termines whether Ci outputs an atom of level n for a given
interpretation I . Fibring offers a modular way of perform-
ing complex functions by using relatively simple networks
(modules) in an ensemble.

The paper is organized as follows. In the next section we
briefly review fibring neural networks and logic programs.
We then present the fundamental ideas underlying our rep-
resentation results, before giving the details of our imple-
mentation and a worked example. We conclude with some
discussions.

Preliminaries
We introduce standard terminology for artificial neural net-
works, fibring neural networks, and logic programs. We re-
fer the reader to (Bishop 1995; d’Avila Garcez & Gabbay
2004; Lloyd 1988), respectively, for further background.

Artificial Neural Networks
Artificial neural networks consist of simple computational
units (neurons), which receive real numbers as inputs via
weighted connections and perform simple operations: the
weighted inputs are added and simple functions like thresh-
old, sigmoidal, identity or truncate are applied to the sum.

The neurons are usually organized in layers. Neurons
which do not receive input from other neurons are called
input neurons, and those without outgoing connections to
other neurons are output neurons. So a network computes
a function from R

n to R
m, where n and m are the number

of input, respectively, output units. A key to the success of

Eingereicht zur FLAIRS 2005, Clearwater Beach, Florida, Mai 2005,

Special Track on Integrated Intelligent Systems.

x3[t]

x2[t]

xn[t]

x1[t]

x[t+1]w3

wn

w2

w1

θ w1

w4

w3

w2

Φ

Figure 1: An artificial neuron (left) and a simple fibring net-
work (right)

neural network architectures rests on the fact that they can
be trained effectively using training samples in the form of
input-output pairs.

For convenience, we make the following assumptions for
the networks depicted in this paper: The layers are updated
sequentially from left to right and within a layer the neurons
are updated from top to bottom.

Recently, (d’Avila Garcez & Gabbay 2004) introduced a
new model of neural networks, namely fibring neural net-
works. Briefly, the activation of a certain unit may influence
the behaviour of other units by changing their weights. Our
particular architecture is a slight variant of the original pro-
posal, which appears to be more natural for our purposes.

Definition 1 A fibring function Φi associated with neuron i
maps some weights w of the network to new values, depend-
ing on w and the input x of neuron i.

Fibring functions can be understood as modeling presy-
naptic weights, which play an important role in biological
neural networks. Certainly, a necessary requirement for bi-
ological plausibility is that fibring functions compute either
simple functions or tasks which can in turn be performed by
neural networks. We will return to this point later.

Throughout this paper we will use dashed lines, as in Fig-
ure 1, to indicate the weights which may be changed by
some fibring function. As described above, we will use an
update dynamics from left to right, and top to bottom. And,
as soon as the activation of a fibring neuron is (re)calculated,
the corresponding fibring function is applied and the respec-
tive weights are modified.

Example 2 A simple fibring network for squaring numbers.
Each node computes the weighted sum of its inputs and per-
forms the operation identity on it. The fibring function takes
input x and multiplies it by W . If W = 1, the output will be
y = x2:

w

Φ

x y
= = Φ : (w, x) 7→ x

Example 3 A simple fibring network implementing a gate-
like behaviour. Nodes behave as in Example 2:

w

Φ

x

z y

=

= =

Φ : (w, x) 7→

{
1 if x > 0

0 otherwise

The question of plausible types of fibring functions, as
well as the computational power of those networks, will be
studied separately and are touched here only slightly. We
will start with very general fibring functions, but later we
restrict ourselves to simple ones only, e.g. the fibred weight
is simply multiplied by the activation.

Sometimes we will use the output of a neuron instead of
the activation, or apply linear transformations to it, and it
is clear that such modifications could also be achieved by
adding another neuron to the network and use this for the
fibring. Therefore these modifications can be understood as
abbreviations to keep the networks simple.

Logic Programs

A logic program is a finite set of clauses H ← L1∧· · ·∧Ln,
where n ∈ N may differ for each clause, H is an atom in a
first order language L and L1, . . . , Ln are literals, that is,
atoms or negated atoms, in L. The clauses of a program are
understood as being universally quantified. H is called the
head of the clause, each Li is called a body literal and their
conjunction L1 ∧ · · · ∧ Ln is called the body of the clause.
We allow n = 0, by an abuse of notation, which indicates
that the body is empty; in this case the clause is called a unit
clause or a fact.

An atom is said to be ground if it does not contain vari-
ables, and the Herbrand base underlying a given program P
is defined as the set of all ground instances of atoms, denoted
BP . Example 4 shows a logic program and its correspond-
ing Herbrand base. Subsets of the Herbrand base are called
(Herbrand) interpretations of P , and we can think of such a
set as containing those atoms which are true under the inter-
pretation. The set IP of all interpretations of a program P
can thus be identified with the power set of BP .

Example 4 The natural numbers program P , the underly-
ing language L and the corresponding Herbrand base BP .
The intended meaning of s is the successor function:

P : nat(0).
nat(s(X))← nat(X).

L : constants: C = {0}
functions: F= {s/1}
relations: R= {nat/1}

BP : nat(0), nat(s(0)), nat(s(s(0))), . . .

Logic programs are accepted as a convenient tool for
knowledge representation in logical form. Furthermore, the
knowledge represented by a logic program P can essen-
tially be captured by the immediate consequence or single-
step operator TP , which is defined as a mapping on IP
where for any I ∈ IP we have that TP(I) is the set of
all H ∈ BP for which there exists a ground instance
H ← A1 ∧ · · · ∧ Am ∧ ¬B1 ∧ · · · ∧ ¬Bn of a clause in
P such that for all i we have Ai ∈ I and for all j we have
Bj 6∈ I . Fixed points of TP are called supported models

of P , which can be understood to represent the declarative
semantics of P .

In the sequel of this paper we will often need to enumerate
the Herbrand base, which is done via level mappings:

Definition 5 Given a logic program P , a level mapping is
a function | · | : BP → N

+, where N
+ denotes the set of

positive integers excluding zero.

Level mappings — in slightly more general form — are
commonly used for controlling recursive dependencies be-
tween atoms, and the most prominent notion is probably the
following.

Definition 6 Let P be a logic program and | · | be a level
mapping. If for all clauses A ← L1 ∧ L2 ∧ . . . ∧ Ln ∈
ground(P) and all 1 ≤ i ≤ n we have that |A| > |Li|, then
P is called acyclic with respect to | · |. A program is called
acyclic, if there exists such a level mapping.

Acyclic programs are known to have unique supported
models (Cavedon 1991). The programs from Examples 4
and 7 below are acyclic.

Example 7 The “even and odd numbers” program and a
level mapping:

P : even(0).
even(s(X))← ¬even(X).
odd(s(X))← even(X).

| · | :
|A| =

{
2 · n + 1 if A = even(sn(0))

2 · n + 2 if A = odd(sn(0))

Throughout this paper we will assume that level mappings
are bijective, i.e. for each n ∈ N

+ there is exactly one A ∈
BP , such that |A| = n. Thus, for the purposes of our paper,
a level mapping is simply an enumeration of the Herbrand
base. Since level mappings induce an order on the atoms, we
can use them to define a prefix-function on interpretations,
returning only the first n atoms:

Definition 8 The prefix of length n of a given interpretation
I is defined as

pref : IP × N
+ → IP

(I, n) 7→ {A|A ∈ I and |A| ≤ n}.

We will write prefn(I) for pref(I, n).

For acyclic programs, it follows that in order to decide
whether the atom with level n+1 must be included in TP(I),
it is sufficient to consider prefn(I) only.

From Logic Programs to Fibring Networks
We will show how to represent acyclic logic programs by
means of fibring neural networks. We follow up on the basic
idea from (Hölldobler & Kalinke 1994; Hölldobler, Kalinke,
& Störr 1999), and further developed in (Hitzler, Hölldobler,
& Seda 2004; Bader & Hitzler 2004), to represent the single-
step operator TP by a network, instead of the program P
itself. This is a reasonable thing to do since the single-step
operator essentially captures the semantics of the program it
is associated with, as mentioned before.

In order to represent TP by the input-output mapping of a
network, we also need an encoding of IP as a suitable subset
of the real numbers. We also use an idea from (Hölldobler,
Kalinke, & Störr 1999) for this purpose. Let B > 2 be some
integer, and let | · | be a bijective level mapping. Define

R : IP → R : I 7→
∑

A∈I

B−|A|.

We exclude B = 2, because in this case R would not be
injective. It will be convenient to assume B = 3 throughout
the paper, but our results do not depend on this. We denote
the range of R by range(R).

There are systematic reasons why this way of embedding
IP into the reals is reasonable, and they can be found in
(Hitzler, Hölldobler, & Seda 2004; Bader & Hitzler 2004),
but will not concern us here. Using R, the prefix operation
can be expressed naturally on the reals.

Proposition 9 For I ∈ IP and x ∈ range(R) we have

pref(I, n) = R−1

(
trunc(R(I) ·Bn)

Bn

)

and

R(pref(R−1(x), n)) =
trunc(x ·Bn)

Bn
.

For convenience, we overload pref and set pref(x, n) =
R(pref(R−1(x), n)) and prefn(x) = pref(x, n).

We will now turn to the construction of fibring networks
which approximate given programs. We will first describe
our approach in general terms, and spell it out in a more
formal and detailed way later on. The goal is to con-
struct a neural network, which will compute R(TP)(x) =
R(TP(R−1(x))) for a given x ∈ range(R). The network
is designed in such a way that it successively approximates
R (TP) (x) while running.

There will be a main loop iterating a global counter n.
This counter fibres the kernel, which will evaluate whether
the atom of level n is contained in TP(I) or not, i.e. the
kernel will output B−n if the atom is contained, and 0 oth-
erwise. Furthermore, there will be an input subnetwork pro-
viding R(I) all the time, and the output subnetwork which
will accumulate the outputs of the kernel, and hence con-
verge to R(TP(I)).

For each clause Ci there is a subnetwork, which deter-
mines whether Ci outputs the atom of level n for the given
interpretation I , or not. This is done by fibring the sub-
network such that it computes the corresponding ground in-
stance C

(n)
i , with head of level n, if existent. If there is no

such ground instance, this subnetwork will output 0, other-
wise it will determine whether the body is true under the
interpretation I . A detailed description of these clause net-
works will be given in the next section. Note that this con-
struction is only possible for programs which are covered.
This means that they do not have any local variables, i.e. ev-
ery variable occuring in some body also occurs in the corre-
sponding head. Obviously, programs which are acyclic with
respect to a bijective level mapping are always covered.

Clause1

Clause2

Clausex

TP(I)

Φ

+1

n

I

Figure 2: General architecture

If P is acyclic we can compute the unique supported
model of the program directly, by connecting the output and
the input region of the network as shown in Figure 3. This is
simply due to the above mentioned fact: If we want to decide
whether the atom of level n should be included in TP(I), it
is sufficient to look at the atoms A ∈ I with level < n. We
also have the following result.

Proposition 10 Let P be a program which is acyclic with
respect to a bijective level mapping | · |, let A ∈ BP with
|A| = n. Then for each I ∈ IP we have that A ∈ T n

P (I) iff
A is true with respect to the unique supported model of P .

Proof This is an immediate result from the application of
the Banach contraction mapping principle to the semantic
analysis of acyclic programs, see (Hitzler & Seda 2003). �

So, for acyclic programs, we can start with the empty (or
any other) interpretation and let the (recurrent) network run.

Implementing Clauses
In order to complete the construction from the previous sec-
tion, we give an implementation of the clauses. For a clause
C of the form H ← L1 ∧ L2 ∧ . . . ∧ Lk, let C(n) denote
the ground instance of C for which the head has level n, as-
suming it exists. The idea of the following construction is
to create a network which implements C, and will be fibred
by the counter n such that it implements C(n). In case that
there is no ground instance of C with head of level n, the
network will output 0, otherwise it will output 1 if the body
is true with respect to the interpretation I , and 0 if it is not.

Clause1

Clause2

Clausex

Φ

+1

TP(I)I

n

Figure 3: Recurrent architecture for acyclic programs

Filter for L1

Filter for L2

Filter for Lk

I

I

I

Gate

n

Φ

Figure 4: Implementing clauses

The idea, as shown in Figure 4, is that each subnetwork
implementing a clause C : H ← L1 ∧ . . .∧Lk with k body
literals, consists of k + 1 parts — one gate and k filters.
The gate will output 1, if the clause C has a ground instance
C(n) where the level of the head is n. Furthermore there
is a filter for each body literal Li, which outputs 1, if the
corresponding ground literal Li is true under I . If all condi-
tions are satisfied the final conjunction-neuron will become
active, i.e. the subnetwork outputs 1.

Note that this construction again is sufficient only for pro-
grams which are covered. If we allowed local variables, then
more than one (in fact infinitely many) ground instances of
C with a head of level n could exist.

Let us have a closer look at the type of fibring function
needed for our construction. For the gate, it implicitly per-
forms a very simple pattern matching operation, checking
whether the atom with level n unifies with the head of the
clause. For the filters, it checks whether corresponding in-
stances of body literals are true in the given interpretation,
i.e. it implicitly performs a variable binding and an elemen-
tary check of set-inclusion.

We argue that the operations performed by the fibring
function are indeed biologically feasible. The perspective
which we take in this paper is that they should be understood
as functions performed by a separate network, which we do
not give explicitly, although we will substantiate this point
to a certain extent in the next section. And pattern matching

is indeed a task that connectionist networks perform well.
The variable binding task will also be addressed in the next
section when we give examples for implementing the filters.

Neural Gates
As specified above, the gate for a clause C : H ← L1∧ . . .∧
Lk fires if there is a ground instance C(n) of C with head is
of level n, as depicted in Figure 5. The decision based on

n

w
1

o

Φ
Φ(w, n) =






1 if ground instance with
head of level n exists

0 otherwise

Figure 5: A neural gate

simple pattern matching is embedded into the fibring func-
tion. In what follows, we will discuss a number of different
cases of how to unfold this fibring function into a network,
in order to give plausible network topologies and yet simpler
fibring functions. Other implementations are possible, and
the cases presented here shall serve as examples only.

Ground-headed clauses. Let us first consider a clause for
which the head does not contain variables, i.e. a ground
clause, like for example the first clause given in Example
7 above. Since the level of the head in this case is fixed
to some value, say m, the corresponding gate subnetwork
should fire if and only if the general counter n is equal to m.
This can be done using the network shown in Figure 6 (left):
The neuron “1!” will always output 1 and the neuron “= 0”
will output 1 if and only if the weighted inputs sum up to 0.
This can easily be implemented using e.g. threshold units.

1!

n

=0

1

-m

0’

1’

2’

0

1

2

Figure 6: Simple gates for ground-headed clauses (left) and
remainder classes (right)

Remainder classes. If the levels li of ground instantiated
heads for a certain clause can be expressed as multiples of a
certain fixed number m, i.e. li = i ·m for all i (like clauses
number 2 and 3 of Example 7), we can construct a simple
subnetwork, as depicted in Figure 6 (right). The neurons
symbolize the equivalence classes for the remainders of the
devision by 3. The network will be initialized by activat-
ing “1”. Every time it is reevaluated the activation simply
proceeds to the next row.

Powers. If the level li of ground instantiated heads for a
certain clause can be expressed as powers of a certain fixed

number m, i.e. li = mi for all i, we can construct a simple
subnetwork as shown in Figure 7.

1

n

=0

-1

w
l

Φ

winit = −1

Φ(w, x) = w ·m

Figure 7: A simple gate for powers

Filtering Interpretations
For a network to implement the ground instance C(n) :

Hn ← L
(n)
1 ∧ . . . ∧ L

(n)
k of a clause C with head of level

n, we need to know the distance between the head and the
body literals — in terms of levels — as a function in n, i.e.
we need a set of functions {bi : N → N | i = 1, . . . , k}—
one for each body literal — where bi computes the level of
the literal Li, taking as input the level of the head, as illus-
trated in Example 11.

Example 11 For the “even and odd numbers” program from
Example 7, we can use the following bi-functions:

even(0). {}
even(s(X))← ¬even(X). {b1 : n 7→ n− 2}
odd(s(X))← even(X). {b1 : n 7→ n− 1}

For each body literal we will now construct a filter sub-
network, that fires if the corresponding ground body literal
L

(n)
i of C(n) is included in I . Given an interpretation I ,

we need to decide whether a certain atom A is included or
not. The underlying idea is the following. In order to de-
cide whether the atom A of level n is included in the in-
terpretation I , we construct an interpretation J containing
all atoms of I with level smaller than n, and the atom A,
i.e. J = prefn−1(I) ∪ {A}, or, expressed on the reals,
R(J) = prefn−1(R(I))+B−n. If we evaluate R(I)−R(J)
the result will be non-negative if and only if A is included in
I . This can be done using the network shown in Figure 8.

Φ

O

n

1

trunc

=

w1

w2

w3

1 1

I

Φ(w1, n) = Bn

Φ(w2, n) = −B−n

Φ(w3, n) = B−n

Figure 8: Schematic plot and fibring function of a filter for
the atom of level n

It is clear that we can construct networks to filter an atom
of level bi(n), if the function bi can itself be implemented in
a neural network. Since fibring networks can implement any
polynomial function, as shown in (d’Avila Garcez & Gabbay

2004) and indicated in Example 2, our approach is flexible
and very general.

A Worked Example
Let us now give a complete example by extending on the
logic program and the level mapping from Example 7 above.
For the first clause we need a ground-headed gate only. To
implement the second clause a remainder-class gate for the
devision by 2 is needed, which returns 1 for all odd numbers.
Furthermore, we need a filter which returns 1 if the atom of
level n − 2 is not included in I . For the last clause of the
example, we need a gate returning 1 for all even numbers
and a similar filter as for clause number 2. Combining all
three parts and taking into account that P is acyclic, we get
the network shown in Figure 9. If run on any initial value,

n

1

0

=

=

1

trunc

1! =0

=

=

1

trunc

I

I

Φ

+1

1’

0’

Figure 9: Neural implementation of the whole example

its outputs converge to the unique supported model of P ,
i.e. the sequence of outputs of the right-most neuron is a
sequence of real numbers which converges to R(M), where
M is the unique supported model of P .

Conclusions
This paper contributes to advance the state of the art
on neural-symbolic integration by showing how first-order
logic programs can be implemented in fibring neural net-
works. Generic ways for representing the needed fibring
functions in a biologically plausible fashion remain to be
investigated in detail, as well as the task of extending our
proposal towards a fully functional neural-symbolic learn-
ing and reasoning system.

Fibring offers a modular way of performing complex
functions, such as logical reasoning, by combining relatively
simple modules (networks) in an ensemble. If each module
is kept simple enough, we should be able to apply standard
neural learning algorithms to them. Ultimately, this may

provide an integrated system with robust learning and ex-
pressive reasoning capability.

References
Bader, S., and Hitzler, P. 2004. Logic programs, iterated
function systems, and recurrent radial basis function net-
works. Journal of Applied Logic 2(3):273–300.
Bader, S.; Hitzler, P.; and Hölldobler, S. 2004. The inte-
gration of connectionism and first-order knowledge repre-
sentation and reasoning as a challenge for artificial intelli-
gence. In Proceedings of the Third International Confer-
ence on Information, Tokyo, Japan. To appear.
Bishop, C. M. 1995. Neural Networks for Pattern Recog-
nition. Oxford University Press.
Browne, A., and Sun, R. 2001. Connectionist inference
models. Neural Networks 14(10):1331–1355.
Cavedon, L. 1991. Acyclic programs and the complete-
ness of SLDNF-resolution. Theoretical Computer Science
86:81–92.
d’Avila Garcez, A. S., and Gabbay, D. M. 2004. Fibring
neural networks. In McGuinness, D. L., and Ferguson, G.,
eds., Proceedings of the Nineteenth National Conference
on Artificial Intelligence, Sixteenth Conference on Inno-
vative Applications of Artificial Intelligence, July 25-29,
2004, San Jose, California, USA, 342–347. AAAI Press
/ The MIT Press.
d’Avila Garcez, A. S.; Broda, K. B.; and Gabbay, D. M.
2002. Neural-Symbolic Learning Systems — Founda-
tions and Applications. Perspectives in Neural Computing.
Springer, Berlin.
Hitzler, P., and Seda, A. K. 2003. Generalized metrics and
uniquely determined logic programs. Theoretical Com-
puter Science 305(1–3):187–219.
Hitzler, P.; Hölldobler, S.; and Seda, A. K. 2004. Logic
programs and connectionist networks. Journal of Applied
Logic 2(3):245–272.
Hölldobler, S., and Kalinke, Y. 1994. Towards a massively
parallel computational model for logic programming. In
Proceedings ECAI94 Workshop on Combining Symbolic
and Connectionist Processing, 68–77. ECCAI.
Hölldobler, S.; Kalinke, Y.; and Störr, H.-P. 1999. Ap-
proximating the semantics of logic programs by recurrent
neural networks. Applied Intelligence 11:45–58.
Lloyd, J. W. 1988. Foundations of Logic Programming.
Springer, Berlin.
Thrun, S. B., et al. 1991. The MONK’s problems: A
performance comparison of different learning algorithms.
Technical Report CMU-CS-91-197, Carnegie Mellon Uni-
versity.

In: S. Biundo, T. Frühwirth, and G. Palm (eds.), Proceedings of the 27th German conference on Artificial

Intelligence, KI'2004, Ulm, Germany, September 2004, Lecture Notes in Artificial Intelligence 3238,

Springer, Berlin, 2004, pp. 351-365. (mit zusätzlichem Appendix)

A Categorical View on Algebraic Lattices in
Formal Concept Analysis

Pascal Hitzler1

Markus Krötzsch2

Guo-Qiang Zhang3

1 Institut AIFB, Universität Karlsruhe, Germany.
2 Fakultät für Informatik, Technische Universität Dresden, Germany.

3 Department of Electrical Engineering and Computer Science, Case Western
Reserve University, Cleveland, Ohio, U.S.A.

Abstract

Formal concept analysis has grown from a new branch of the mathemat-
ical field of lattice theory to a widely recognized tool in Computer Science
and elsewhere. In order to fully benefit from this theory, we believe that it
can be enriched with notions such as approximation by computation or rep-
resentability. The latter are commonly studied in denotational semantics and
domain theory and captured most prominently by the notion of algebraicity,
e.g. of lattices. In this paper, we explore the notion of algebraicity in for-
mal concept analysis from a category-theoretical perspective. To this end,
we build on the the notion of approximable concept with a suitable category
and show that the latter is equivalent to the category of algebraic lattices. At
the same time, the paper provides a relatively comprehensive account of the
representation theory of algebraic lattices in the framework of Stone dual-
ity, relating well-known structures such as Scott information systems with
further formalisms from logic, topology, domains and lattice theory.

1 Introduction
Algebraic lattices conveniently represent computationally relevant properties. As
partial orders they allow for the expression of amounts of information con-
tent. Distinguished elements — called compact or finite — stand for compu-
tationally representable information. Every element or information item not di-
rectly representable can be approximated by representable, i.e. compact, items.

1

Eingereicht bei Theoretical Computer Science

So algebraic lattices can be identified as computationally relevant structures,
and as such have found applications in Computer Science, most prominently in
the theory of denotational semantics, domain theory (see, e.g. [AJ94]), but re-
cently also in aspects regarding knowledge representation and reasoning (see e.g.
[RZ01, ZR04, Hit04]).

As can be expected from rich mathematical structures such as algebraic lat-
tices, a multitude of possible characterizations have been established, ranging
from the classical correspondence between algebraic lattices and their semilat-
tices of compacts [GHK+03], over logical characterizations such as Scott infor-
mation systems [Sco82a], to topological investigations via the Scott topology
[Joh82, Abr91]. Following Abramsky’s programme of domain theory in logical
form, each of these representations is associated with either the spacial or the lo-
calic side of Stone duality: the former includes syntactical, logical, and axiomatic
formalisms, while the latter typically incorporates semantical, observational, and
denotational aspects. The equivalence of both worlds leads to rather pleasant re-
sults of soundness and completeness of corresponding proof systems and model
theories.

We add to this collection by a representation of algebraic lattices based on
the framework of formal concept analysis (FCA, [GW99]). Originally, FCA was
conceived as an alternative formulation of the theory of complete lattices, moti-
vated by philosophical considerations [Wil82]. In the meantime, FCA has grown
from a new branch of lattice theory to a widely recognized tool in Computer Sci-
ence (see, e.g., [Stu02]). Prominent applications concern areas such as Data- and
Textmining, Knowledge Representation and Reasoning, Semantic Web, Compu-
tational Linguistics. FCA starts from formal contexts, syntactical descriptions of
object-attribute relations, and lifts them to closure operators and complete lat-
tices. While this suggests a logical viewpoint based on the given (deductive) clo-
sure, the derived logical entailment lacks the important property of compactness:
some conclusions can only be drawn from infinite sets of premises [Zha03a]. This
motivates a deviation from the classical definition of closures in FCA to ensure
Scott continuity of the derived closure operators (the so called algebraic ones),
thus recovering compactness and switching to complete lattices that are algebraic.
We achieve this by introducing the (complete algebraic) lattice of approximable
concepts [ZS0x], obtained from given object-attribute relations analogous to the
classical construction used in FCA, but at the same time conforming to the insights
concerning computationally relevant structures as studied in domain theory.

The strong interest in algebraic lattices indeed stems only in part from the
appealing way in which these structures capture the possibility of approximating
infinite computation by finite elements. The full strength of the theory only be-
comes apparent when Scott continuous functions are employed as morphisms of
a category Alg of algebraic lattices. The interplay between the lattices and these

2

morphisms is highly satisfactory: the set of all Scott continuous functions between
two algebraic lattices can again be viewed as an algebraic lattice, and Alg is in fact
cartesian closed. Consequently, we augment the above characterizations of alge-
braic lattices by suitable notions of morphisms, inducing in each case a category
that is equivalent to Alg. We thus obtain a cartesian closed category of formal
contexts corresponding to the new notion of approximable concepts.

At the same time, this article gives a relatively comprehensive account of the
numerous representations of algebraic lattices by offering a fresh, unified, and
largely self-contained treatment of the theory. The new approach via FCA pro-
vides additional insights into the nature of the well-known formalisms. In par-
ticular, we give a direct proof of the cartesian closedness of the new category
of formal contexts, hence obtaining novel categorical product and function space
constructions based on formal contexts. Particularly, the formulation of function
spaceenhances our understanding of approximable mappings, the class of mor-
phisms Scott conceived for his information systems [Sco82a]. Indeed, these re-
lations turn out to be immediate descriptions of sets of step functions, sufficient
to capture all Scott continuous functions between the corresponding algebraic lat-
tices.

Our discussion will also expose the connections between algebraic lattices
and the conjunctive fragment of propositional logic — an approach that appears
to be rather intuitive from the viewpoint of Computer Science and also brings
to bear on the results from [HW03, Hit04]. As encompassed in [Abr91], this is
achieved through the Lindenbaum algebras of these logics. Our profit, besides
finding a simple access to Scott information systems, is an alternative view on
approximable mappings as multilingual sequent calculi, as considered in [JKM99]
for more expressive logics.

The structure of this paper is as follows. In the next Section 2 the most funda-
mental definitions from order theory, topology, and category theory are recalled.
Section 3 starts the discussion of algebraic lattices from a domain theoretic per-
spective, with special emphasis on the role of the semilattice of compact elements.
Thereafter, Section 4 introduces appropriate notions of morphisms for such semi-
lattices, which are shown to be equivalent to Scott continuous functions between
the corresponding algebraic lattices. Section 5 then introduces a category of for-
mal contexts equivalent to the algebraic lattices and Scott continuous functions,
and gives an explicit proof of the cartesian closure of this new category. Building
on the prototypical categorical equivalences established earlier, Section 6 intro-
duces further representation theorems from logic and topology, which are then
connected using Stone duality. Finally, Section 7 gives pointers to further litera-
ture and hints at possible extensions of given results.

A very preliminary report on some of the results in this paper has appeared as
[HZ04]. The notion of approximable concept has first been proposed in [ZS0x],

3

but without exploring its category-theoretical content.
Acknowledgements. The first author acknowledges support by the German

Ministry of Education and Research under the SmartWeb project, and by the Eu-
ropean Union under the KnowledgeWeb network of excellence. The second au-
thor gratefully acknowledges support by Case Western Reserve University, Cleve-
land/Ohio, where most of his work was carried out, and sponsorship by the Ger-
man Academic Exchange Service (DAAD) and by the Gesellschaft von Freunden
und Förderern der TU Dresden e.V.

2 Preliminaries and Notation
We first give some basic definitions of order theory at least to fix notations. Our
main reference will be [GHK+03]. A more gentle first introduction is given in
[DP02].

A partially ordered set (poset) is a set P with a reflexive, symmetric, transitive
relation ≤ ⊆ P × P. If (P,≤) is a poset, then its dual is the poset (P,≥). We denote
posets by their carrier set as long as the partial order is clear from the context.

Definition 2.1 Consider a poset L. A non-empty subset D ⊆ L is directed if, for
any x, y ∈ D, there is some element z ∈ D such that x ≤ z and y ≤ z. If every
directed subset D ⊆ L has a least upper bound (supremum, join)

∨
D in L, then L

is a directed complete partial order (dcpo).
L is a complete lattice if every subset S ⊆ L has a least upper bound

∨
S and

a greatest lower bound (infimum, meet)
∧

S . For a set X, 2X denotes the powerset
lattice, i.e. the complete lattice of all subsets of X under inclusion.

We recall that a poset that has all infima also has all suprema, and vice versa,
so that one of these conditions is in fact sufficient. Furthermore we fix some basic
terminologies about lattices.

Definition 2.2 A poset L is a lattice if every two elements of L have a supremum
and an infimum. These meets and joins of binary sets will be written in infix:∨
{x, y} = x∨ y and

∧
{x, y} = x∧ y. L is distributive if, for all x, y, z ∈ L, one finds

x ∧ (y ∨ z) = (x ∨ y) ∧ (x ∨ z).
An element x ∈ L is called

• meet-irreducible if y ∧ z = x implies y = x or z = x,

• meet-prime if y ∧ z ≤ x implies y ≤ x or z ≤ x.

Join-irreducible and join-prime elements are defined dually.

4

In a distributive lattice, the meet-irreducibles are exactly the meet-primes, and
this will be the only case considered in this paper. Furthermore we want to talk
about functions between partially ordered sets.

Definition 2.3 Consider posets P and Q, and a function f : P → Q. Then f
is monotone if it preserves the order of P, i.e. x ≤ y in P implies f (x) ≤ f (y)
in Q. Moreover, f preserves (directed) suprema if, for any (directed) S ⊆ P
such that

∨
S exists, one finds that

∨
f (S) =

∨
{ f (s) | s ∈ S } exists and that

f (
∨

S) =
∨

f (S). Preservation of infima is defined dually. A function that pre-
serves directed suprema is also called Scott continuous. An order-isomorphism is
a bijective monotone function that has a monotone inverse.

Note that preservation of directed suprema (infima) always entails monotonic-
ity, since every pair of elements x ≤ y induces a directed set {x, y} for which
preservation of suprema (infima) implies f (x) ≤ f (y) as required.

We also need a little general topology. Our view on topology largely agrees
with [Smy92].

Definition 2.4 Let X be a set and let τ ⊆ 2X be a system of subsets of X. (X, τ) is a
topological space if τ contains X and the empty set, and is closed under arbitrary
unions and finite intersections. The members of such a system τ are called open
sets and the complete lattice (τ,⊆) is called the open set lattice. The complements
of open sets are the closed sets. If confusion is unlikely, we will denote topological
spaces by their sets of points. For a topological space X, we also use Ω(X) to
denote its open set lattice.

A subset B of τ is a base of τ if every open set is equal to the union of all
members of B it contains.

The appropriate mappings between topological spaces are continuous func-
tions.

Definition 2.5 Consider topological spaces X and Y , and a function f : X → Y .
Then f is continuous if its inverse image preserves open sets, i.e. for every open
set O ⊆ Y , the set f −1(O) = {x ∈ X | f (x) ∈ O} is open in X. If f is bijective
and both f and f −1 are continuous then f is a homeomorphism. The topological
spaces X and Y are said to be homeomorphic if a homeomorphism between them
exists.

Finally, a minimum amount of category theory is utilized in this paper, in
order to present relationships of the different concepts to their full extent. Our
terminology follows [Bor94]. Other good references include [Mac71], and the
more easy-paced introductions [LR03] and [McL92]. A category C consists of

5

(i) a class |C| of objects of the category,

(ii) for all A, B ∈ |C|, a set C(A, B) of morphisms from A to B,

(iii) for all A, B,C ∈ |C|, a composition operation
◦ : C(B,C) × C(A, B)→ C(A,C),

(iv) for all A ∈ |C|, an identity morphism idA ∈ C(A, A),

such that for all f ∈ C(A, B), g ∈ C(B,C), h ∈ C(C,D), the associativity axiom
h ◦ (g ◦ f) = (h ◦ g) ◦ f , and the identity axioms idB ◦ f = f and g ◦ idB = g are
satisfied. As usual, we write f : A→ B for morphisms f ∈ C(A, B). The opposite
Cop of a category C is defined by setting |Cop| = |C| and Cop(A, B) = C(B, A).
A morphism f : A → A′ is an isomorphism, if it has an inverse, i.e. if there is a
(necessarily unique) morphism g : A′ → A with g ◦ f = idA and f ◦ g = idA′ .

A functor F from a category A to a category B consists of

(i) a mapping |A| → |B| of objects, where the image of an object A ∈ |A| is
denoted by FA,

(ii) for all A, A′ ∈ |A|, a mapping A(A, A′) → B(FA,FA′), where the image of a
morphism f ∈ A(A, A′) is denoted by F f ,

such that for all A, B,C ∈ |A| and all f ∈ A(A, B) and g ∈ A(B,C) we have
F(f ◦ g) = F f ◦ Fg and F idA = idFA.

The third basic ingredient of category theory are natural transformations.
Given two functors F,G : A → B, a family of morphisms η = (ηA : FA →
GA)A∈|A| is a natural transformation from F to G, if, for all morphisms f : A→ A′

of A, one has that ηA′ ◦ F f = G f ◦ ηA. This situation is denoted by η : A ⇒ B. A
natural transformation (ηA)A∈|A| is a natural isomorphism if all of its members are
isomorphisms.

More specific notions will be introduced as they are needed.

3 Algebraic lattices
In this section we introduce algebraic lattices and review their most well-known
characterizations in terms of the sub-poset of compact elements and closure
systems of Scott continuous closure operators. The material basically follows
[GHK+03], to which we refer for the details of the proofs which we omit to avoid
replication. We start with a basic definition.

6

Definition 3.1 Consider a dcpo P. An element c ∈ P is compact if, for every
directed set D ⊆ P we have that c ≤

∨
D implies c ≤ d for some d ∈ D. The set

of all compact elements of P is denoted by K(P). We usually consider K(P) to be
a sub-poset of P.

We note the following

Proposition 3.2 Let L be a complete lattice with compact elements a, b ∈ K(L)
and least element ⊥. Then a ∨ b and ⊥ are compact.

Proposition 3.2 contains important information about the structure of the sub-
poset of compact elements of a complete lattice. The following definition makes
the properties of K(L) precise.

Definition 3.3 A poset S is a join-semilattice, if any two elements a, b in S have
a least upper bound a ∨ b. Dually, in a meet-semilattice any two elements have a
greatest lower bound.

We conclude that the poset K(L) of compact elements of a complete lattice
is a join-semilattice with least element under the order of L. However, for a full
characterization we shall also be interested in the opposite direction, i.e. given
a join-semilattice, we would like to construct a complete lattice. The right tool
for this endeavor is that of ideal completion, introduced next. Given a set X we
define ↓X = {y | there is x ∈ X such that y ≤ x} and ↑X = {y | there is x ∈
X such that x ≤ y}; a set is called an upper (respectively, lower) set if X = ↑X
(respectively, X = ↓X). Upper and lower sets of singleton sets {x} are denoted by
↑x and ↓x, respectively.

Definition 3.4 Consider a partially ordered set P. A subset I ⊆ P is an ideal if it
is a directed lower set. The ideal completion Idl(P) is the collection of all ideals of
P partially ordered via subset inclusion.

Note that lower sets ↓x are always ideals — the principle ideals generated by
the element x. On the other hand, the empty set is not an ideal, since directed
sets need to be non-empty. We see below that the ideal completion of any join-
semilattice with least element is a complete lattice. However, not all complete
lattices arise in this way. The next definition provides the appropriate characteri-
zation.

Definition 3.5 A complete lattice L is an algebraic lattice, if for every element
x ∈ L, we have x =

∨(
↓x ∩ K(L)

)
.

One can easily see from Proposition 3.2 that any set of the form ↓x ∩ K(L) is
necessarily directed. Now we are ready to state the important

7

Theorem 3.6 ([GHK+03] Proposition I-4.10) Let L be an algebraic lattice and
let S be a join-semilattice with least element.

(i) K(L) is a join-semilattice with least element, where the order is induced by
that given on L.

(ii) Idl(S) is a an algebraic lattice, where join is given by set-intersection.

(iii) S is order-isomorphic to K(Idl(S)) via the isomorphism f : S → K(Idl(S)) :
a 7→ ↓a.

(iv) L is order-isomorphic to Idl(K(L)) via the isomorphism g : L → Idl(K(L)) :
x 7→ ↓x ∩ K(L).

This result demonstrates that we can represent any algebraic lattice — up to
isomorphism — by an appropriate semilattice and vice versa. We subsequently ob-
tain a number of alternative characterizations from this statement and its proof. A
first observation is that Theorem 3.6 assures that every algebraic lattice is isomor-
phic to a lattice of sets. More precisely, for an algebraic lattice L, we established
an isomorphism to a subset of the powerset of its compact elements 2K(L). Now
one may ask how to characterize those substructures of powersets which yield
algebraic lattices. The tool for this purpose are closure operators.

Definition 3.7 Consider a poset P and a function c : P → P. Then c is a closure
operator if the following hold for all elements x, y ∈ P

(i) c(x) = c(c(x)) (c is idempotent)

(ii) x ≤ c(x) (c is inflationary)

(iii) x ≤ y implies c(x) ≤ c(y) (c is monotone)

An important result about this kind of operators is that they can be charac-
terized completely by their images, the closure systems. Explicitly, we have the
following.

Proposition 3.8 ([GHK+03] Proposition O-3.13) Let L be a complete lattice
and let c be a closure operator on L. Then c preserves arbitrary infima. Especially,
its image c(L) = {c(x) | x ∈ L} is closed under arbitrary infima in L. Conversely,
any subset C of L that is closed under arbitrary infima in L induces a unique clo-
sure operator c with image C, given by c : L→ L : x 7→

∧
{y ∈ C | x ≤ y}.

In Theorem 3.6(ii) it was shown that the set of ideals is closed under arbitrary
intersections. By the above proposition this assures that Idl(S) is a closure system
on 2S , which can be uniquely characterized by a closure operator. However, not

8

every closure system is algebraic, such that a further restriction on the class of
closure operators is required. It turns out that Scott continuity (see Definition 2.3)
is what is needed to further extend the representation of algebraic lattices.

Theorem 3.9 ([GHK+03] Corollary I-4.14) Any algebraic lattice L is isomor-
phic to the image of a Scott continuous closure operator on the powerset 2K(L).
The operator is given by assigning to any set of compacts the least ideal which
contains this set. Conversely, the image of any such closure is an algebraic lattice,
where the compacts are exactly the images of finite sets of compacts.

This gives us a third characterization of algebraic lattices. One is tempted to
develop a similar statement for join-semilattices with least element. Indeed, any
closure operator on the semilattice of finite elements of a powerset can uniquely
be extended to a Scott continuous closure on the powerset. However, it is not
true that all join-semilattices are images of closure operators on the semilattice of
finite subsets of some set. This is easy to see by noting that any collection of finite
sets can only have finite descending chains, i.e. it satisfies the descending chain
condition (see [DP02]). Yet there are join-semilattices with least element that do
not have this property, like for example the non-negative rational numbers in their
natural order. What we can say is the following.

Corollary 3.10 For any join-semilattice S with least element, there is a closure
operator c : 2S → 2S , such that S is isomorphic to the image of the finite ele-
ments of 2S under c. Conversely, the finite-set image of any closure operator on a
powerset is a join-semilattice with least element.

Proof. Note that any closure operator c on a powerset induces a unique Scott
continuous closure c′ by setting c′(X) =

⋃
{c(A) | A ⊆ X, A finite}, where c′

agrees with c on all finite sets. Then combine Theorems 3.6 and 3.9, especially
the characterization of compact closed subsets. �

The significance of this statement will become apparent in Section 5.

4 Approximable mappings
So far we have only provided object-level correspondences between algebraic lat-
tices and join-semilattices. We supplement this with suitable morphisms which
turn these relations into an equivalence of the respective categories. On the side
of algebraic lattices, one typically employs Scott continuous functions to form
a category Alg. This definition leads to a rather advantageous property, namely
cartesian closedness, which will be discussed in the next section. The aim of this

9

section is to identify a notion of morphism for join-semilattices that produces a
category which is equivalent to Alg.

Definition 4.1 Consider categories A and B. An equivalence of categories A and
B is constituted by a pair of functors F : A → B and G : B → A, together with a
pair of natural isomorphisms η : GF ⇒ idA and ε : FG ⇒ idB, where idA and idB
denote the identity functors on the respective categories.

It is well-known that a functor F : A → B that is part of an equivalence
of categories must be full and faithful, i.e. there must be a bijection between the
hom-sets A(A, A′) (the set of all morphisms from A to A′) and B(FA,FA′). Thus
our next goal is to define a set of morphisms between each pair of join-semilattices
which corresponds bijectively to the set of Scott continuous mappings between
the associated algebraic lattices. It is easy to see that we cannot expect to use
functions for this purpose for mere cardinality reasons: the set of compacts can
be significantly smaller than its algebraic lattice. This problem was already solved
by Scott in the closely related case of his information systems [Sco82a], which we
shall also encounter later on. The idea is to shift to a special set of relations, called
approximable mappings. To our knowledge, the notion of approximable mappings
has not yet been introduced to the study of join-semilattices, so we spell out the
details.

Definition 4.2 Consider join-semilattices S and T with least elements⊥S and⊥T ,
respectively. A relation{ ⊆ S × T is an approximable mapping if the following
hold:

(am1) a{ ⊥T (non-emptiness)

(am2) a{ b and a{ b′ implies a{ b ∨ b′ (directedness)

(am3) a ≤ a′, a { b, and b′ ≤ b imply a′ { b′ (monotonicity and downward
closure)

for all elements a, a′ ∈ S and b, b′ ∈ T . This situation is denoted by writing
S { T .

The labels for the above properties already indicate their purpose: for every
element a ∈ S the set {b ∈ T | a { b} is an ideal of T and the resulting assign-
ment S → Idl(T) is monotone. It is now rather obvious how this encodes Scott
continuous functions: The image of a compact element is given explicitly via the
ideal of compacts which approximates it. The image of a non-compact element is
obtained by representing it as directed supremum of compacts and applying Scott
continuity.

10

Some easy checks show that join-semilattices with least element together with
approximable mappings indeed constitute a category Sem∨, where composition
of morphisms is defined as the usual composition of relations. Thus for two ap-
proximable mappings S {1 R and R{2 T , one defines

{2 ◦{1 = {(s, t) | there is r ∈ R such that (s, r) ∈{1 and (r, t) ∈{2}.

Clearly,{2 ◦{1 satisfies (am1) since a{1 ⊥R and ⊥R {2 ⊥T . Likewise, under
the assumptions of (am2), one finds intermediate values r, r′ ∈ R with a{1 r{2

b and a {1 r′ {2 b′. By (am2) a {1 r ∨ r′, and by (am3) r ∨ r′ {2 b and
r ∨ r′ {2 b′. Hence a {1 r ∨ r′ {2 b ∨ b′ by another application of (am2).
Finally, suppose the assumptions for (am3) hold for{2 ◦{1. Then there is r ∈ R
such that a {1 r {2 b and hence a′ {1 r {2 b′ as required. The identity
morphism on a semilattice S ∈ |Sem∨| is just its greater-or-equal relation ≥S .
The fact that this yields an identity under relational composition is just statement
(am3). Associativity is inherited from relational composition.

Lemma 4.3 The object mappings Idl and K from Section 3 can be extended to
morphisms as follows. For any approximable mapping{ ⊆ S ×T , define Idl({) :
Idl(S) → Idl(T) as Idl({)(I) = {b | there is a ∈ I with a { b}. For any Scott
continuous mapping f : L → M, define K f ⊆ KL × KM by setting K f = {(a, b) |
b ≤ f (a)}. These definitions produce functors Idl : Sem∨ → Alg and K : Alg →
Sem∨.

Proof. To see that Idl is indeed well-defined, observe that for any a ∈ S ,
Idl({)(↓a) = {b | a { b}, by (am3). This set has already be recognized as an
ideal, and hence Idl({) is well-defined for the compact elements of Idl(S). By al-
gebraicity, any ideal I is equal to the directed union

⋃
a∈I ↓a, and hence, observing

that Idl({) preserves all unions, Idl({)(I) =
⋃

a∈I Idl({)(↓a). This observation
shows that, as a directed union of ideals, Idl({)(I) is an ideal, and that Idl({) is
Scott continuous.

It is immediate that Idl({) maps the identity approximable mapping ≥ to the
identity function. To see that it also preserves composition, note that Scott conti-
nuity allows us to restrict to the case of principal ideals. Thus consider two approx-
imable mappings S {1 R and R {2 T and some principal ideal ↓a, a ∈ S . We
compute

(
Idl({2)◦ Idl({1)

)
(↓a) = Idl({2){r | a{1 r} = {b | there is r with a{1

r and r{2 b} = {b | a({2 ◦{1)b} = Idl({2 ◦{1)(↓a).
Now clearly K f has properties (am1) to (am3). For functoriality consider Scott

continuous functions f1 : L → M and f2 : M → N. It is easy to see that for
a ∈ KL and c ∈ KN, whenever there is b ∈ KM with b ≤ f1(a) and c ≤ f2(b),
one has c ≤ f2(f1(a)). Since the converse also holds, we find that K(f2 ◦ f1) =
{(a, c) | c ≤ f2(f1(a))} = {(a, c) | there is b ∈ KM with b ≤ f1(a) and c ≤ f2(b)} =

11

K f2 ◦ K f1. Finally, applying K to the identity function clearly yields the identity
approximable mapping. �

We finish this section by showing the expected categorical equivalence:

Theorem 4.4 The functors Idl and K of Section 3 yield an equivalence of the
categories Alg and Sem∨.

Proof. For an algebraic lattice L let ηL : L → Idl(K(L)) : x 7→ ↓x ∩ K(L) be the
isomorphism as established in Theorem 3.6. Now consider an algebraic lattice M
and a Scott continuous function f : L→ M. For any element x ∈ L, Idl(K(f)) maps
the ideal ηL(x) to the ideal {b | there is a ∈ K(L) with a ≤ x and b ≤ f (a)}. Since
Scott continuity guarantees that the supremum of all f (a) is f (x), this is just the set
ηM(f (x)) of all compacts below f (x). Consequently, Idl(K(f))(ηL(x)) = ηM(f (x)),
i.e. η is natural.

For a join-semilattice S with least element, we define εS ⊆ S × K(Idl(S)) by
setting εS = {(a, I) | I ⊆ ↓a}. From Theorem 3.6 we derive that every compact
ideal I is of the form ↓b, hence εS = {(a, ↓b) | b ≤ a}. It should now be obvious
that εS is an isomorphism whose inverse is given by {(↓b, a) | a ≤ b}. For naturality
of ε, consider some approximable mapping S { T . We compute K(Idl({))◦ εS =
{(a, ↓b) | there is a′ ∈ S with a′ ≤ a and (↓a′, ↓b) ∈ K(Idl({))}. Expanding the
condition (↓a′, ↓b) ∈ K(Idl({)), we find it equivalent to ↓b ⊆ Idl({)(↓a′), which
in turn is true iff ↓b ⊆ {t | a′ { t}, exploiting the fact that ↓a′ is compact. Finally,
by (am3) this is equivalent to a′ { b, and we obtain K(Idl({))◦εS = {(a, ↓b) | a{
b}, again by (am3). On the other hand, εT ◦{ = {(a, ↓b) | there is b′ ∈ T with a{
b′ and b ≤ b′}. Using (am3) once more, this evaluates to {(a, ↓b) | a { b}, which
finishes the proof of naturality of ε. �

5 A cartesian closed category of formal contexts
Formal concept analysis (FCA, [GW99]) is a powerful lattice-based tool for sym-
bolic data analysis. In essence, it is based on the extraction of a lattice — called
formal concept lattice — from a binary relation called formal context consisting
of a set of objects, a set of attributes, and an incidence relation. The transformation
from a two-dimensional incidence table to a lattice structure is a crucial paradigm
shift from which FCA derives much of its power and versatility as a modeling
tool. The concept lattices obtained this way turn out to be exactly the complete
lattices, and the particular way in which they structure and represent knowledge
is very appealing and natural from the perspective of many scientific disciplines.

12

The successful applications of FCA, however, are mainly restricted to finite
contexts and finite concept lattices, since infinite complete lattices generally do not
lend themselves for practical implementations. Yet, infinite structures are highly
relevant for numerous concrete tasks in knowledge representation and reasoning:
model theories of logic programs, computation domains in functional program-
ming, and class hierarchies in ontology research are some typical examples. In
order to make methods from FCA available in these application areas, we sug-
gest an interpretation of formal contexts based solely on finitely representable
knowledge, thereby obtaining a canonical and computationally feasible represen-
tation of infinite data-structures. In effect, we establish a systematic connection
between formal concept analysis and algebraic lattices, and thus with domain the-
ory [AJ94], as a categorical equivalence, enriching the link between the two areas
as outlined in [Zha03a]. This leads to a category of formal contexts that we now
show directly to be cartesian closed.

Definition 5.1 A formal context is a structure P = (O, A, |=), where O and A are
sets, and |= ⊆ O × A is a binary relation. In this case the members of O are called
objects, the members of A are called attributes, and |= is viewed as an incidence
relation between these two. Accordingly, one says that an object o has property a
whenever o |= a, i.e. (o, a) ∈ |=.

Functions αP : 2O → 2A and ωP : 2A → 2O are defined by setting αP(X) = {a ∈
A | o |= a for all o ∈ X} and ωP(Y) = {o ∈ O | o |= a for all a ∈ Y}.1 If the context
is clear, we omit the subscript from these maps. We also abbreviate α ◦ ω by αω
etc. as is customary in category theory.

Intuitively, α yields all attributes common to a set of objects. Conversely, ω
maps a set of attributes to all objects that fall under all of these attributes. It is
straightforward to show that α and ω form an antitone Galois connection between
the powerset lattices. This is usually exploited for constructing closure operators
α ◦ ω : 2A → 2A and ω ◦ α : 2O → 2O. It turns out that the closure systems for
both of these are dually isomorphic, the isomorphisms being given by α and ω.

For studying these closure systems, we can therefore focus our attention on the
map α◦ω. Sets of attributes that are closed with respect to this operator are called
(attribute) concepts in the literature. FCA builds on the fact that the collection of
all concepts of any given formal context is a complete lattice, and that all complete
lattices can be obtained this way. This relationship is mediated by the closure
system on 2A induced by the mapping αω. We take a slightly different approach
and focus our attention on the operation of αω on K(2A), the join-semilattice with
least element given by the finite subsets of A. It turns out that this way we obtain

1In FCA, αP(X) is usually written as X′, and ωP(Y) is similarly written as Y ′. We feel that for
our treatment a more explicit notation is more convenient.

13

all complete algebraic lattices instead of all complete ones. Now Corollary 3.10
suggests the following.

Corollary 5.2 For every formal context P = (O, A, |=), the set Sem(P) =
αω(K(2A)) is a join-semilattice with least element. Conversely, every such semi-
lattice can (up to isomorphism) be represented in this way.

Proof. In spite of our earlier considerations, we give the easy direct proof. For two
finite sets X and Y , αω(X ∪ Y) is the least closed set that contains X and Y , and
thus also αω(X) and αω(Y). Hence αω(X)∨αω(Y) = αω(X ∪ Y). The first part of
the proof is finished by noting that αω(∅) is the least closed set.

Conversely, for a join-semilattice with least element S , consider the context
(S , S ,≥). Then for any finite X ⊆ S , αω(X) is the set of all lower bounds of all
upper bounds of X. But this is easily recognized as ↓

∨
X. Note that the least

upper bound of the empty set is just the least element. The obvious isomorphism
between S and the semilattice ({↓s | s ∈ S },⊆) suffices to complete the proof. �

By Theorem 3.6 the above shows that every algebraic lattice can be repre-
sented by some formal context and vice versa. To make this explicit, we can ex-
tend the closure operator of Corollary 5.2 to a Scott continuous closure operator
on 2A, as done before in the proof of Corollary 3.10. In this way we can recover
the following result from [ZS0x].

Corollary 5.3 Consider a formal context P = (O, A, |=) and the mapping c : 2A →

2A : x 7→
⋃
{αω(X) | X ⊆ x, X finite}. Then Alg(P) = c(2A) is an algebraic lattice

and every algebraic lattice is of this form (up to isomorphism).

Proof. Clearly, c is just the unique Scott continuous closure operator induced by
α ◦ ω as in Corollary 3.10. By Theorem 3.9 its closure system is indeed an al-
gebraic lattice. For the other direction combine Theorem 3.9 and Theorem 3.6 to
see that c(2A) is isomorphic to the ideal completion of Sem(P). Since every alge-
braic lattice is of this form for some join-semilattice with least element, the claim
follows from Corollary 5.2. �

Closed sets with respect to the operator c from the above proposition have been
termed approximable concepts in [ZS0x]. Naturally, it is also possible to extend
this result to a categorical equivalence. For this purpose we define a category Cxt
of formal contexts. The morphisms between two contexts P and Q are defined by
setting Cxt(P,Q) = Sem∨(Sem(P),Sem(Q)).2 The following is readily seen.

2In [HZ04] a slightly different definition of morphisms is given. In the formulation given there,
the corresponding approximable mapping is not defined on the closed sets Sem(P) but on all finite
attribute sets. We get a context morphism in this sense by extending our approximable mappings,
relating two finite sets iff their closures are related.

14

P

R

{P ..

〈{P,{Q〉 //______

{Q 00

P × Q

πP

<<yyyyyyyyy

πQ

""DD
DD

DD
DD

D

Q

Figure 1: The product construction in Cxt.

Theorem 5.4 The categories Sem∨ and Cxt are equivalent.

The functors needed for this result are obvious: on the object level, we obtain
suitable mapping from Corollary 5.2, and the situation for morphisms is trivial.
The construction of the natural isomorphisms is similar to the one of ε in Theorem
4.4, where the identity approximable mapping was modified using the given order-
isomorphism of the semilattices.

In the remainder of this section we investigate the categorical constructions
that are possible within the categories Alg, Sem∨, and Cxt, where the latter will
be the explicit object of study. Because Cxt is equivalent to Alg, we know that it
is cartesian closed. We make the required constructions explicit in the sequel, and
thus give a mostly self-contained proof of cartesian closedness of Cxt.

Definition 5.5 A category C is cartesian closed if it has all finite products, and
there is a functor Cop ×C→ C : (A, B) 7→ BA and a natural bijection between the
hom-sets C(A × B,C) and C(A,CB).

Exact requirements for showing each of these properties will be given in the
respective proofs and statements. We first consider the empty product, i.e. the
terminal object, which turns out to be given by the formal context 1 = (∅, ∅, ∅).
Indeed, for every formal context P = (O, A, |=) there is a unique approximable
mapping P{ 1 that relates every finite subset of A to the empty set. The situation
for binary products is not much more difficult.

Proposition 5.6 Consider two formal contexts P = (OP, AP, |=P) and Q =

(OQ, AQ, |=Q), and define a formal context P × Q = (OP] OQ, AP] AQ, (|=Q)]
(|=P)] (OP × AQ)] (OQ × AP)), where] denotes disjoint union.

Then P × Q is the categorical product of P and Q, i.e. there are approximable
mappings πP : P × Q → P and πQ : P × Q → Q such that, given approximable
mappings {P and {Q as in Figure 1, there is a unique approximable mapping
〈{P,{Q〉 that makes this diagram commute.

15

Proof. Since context morphisms were defined with reference to the induced semi-
lattices, we first look at Sem(P×Q). It is easy to see that concept closure in P×Q
is computed by taking disjoint unions of closures in P and Q, i.e. for sets X ⊆ AP

and Y ⊆ AQ, one finds that αω(X] Y) = αω(X)] αω(Y). Hence every element
of Sem(P×Q) corresponds to a unique disjoint union of elements of Sem(P) and
Sem(Q).

We can now define the projections by setting (X] Y, X′) ∈ πP iff X′ ⊆ X and
(X] Y,Y ′) ∈ πQ iff Y ′ ⊆ Y , for all X, X′ ∈ Sem(P) and Y , Y ′ ∈ Sem(Q). It is
readily seen that these morphisms satisfy the properties of Definition 4.2.

Now consider {P and {Q as in Figure 1. We define the relation 〈{P,{Q〉

by setting (Z, X] Y) ∈ 〈{P,{Q〉 iff Z {P X and Z {Q Y , for all concepts X, Y ,
Z from the corresponding semilattices. Again it is easy to check the conditions of
Definition 4.2, since they follow immediately from the corresponding properties
of{P and{Q. Furthermore, if there is X] Y ∈ Sem(P × Q) with (Z, X] Y) ∈
〈{P,{Q〉 and (X] Y, X′) ∈ πP then Z {P X′ by the definition of πP and (am3).
Conversely, if Z {P X′ then one finds that X′] αω(∅) ∈ Sem(P × Q) yields
the required intermediate element to show that (Z, X′) ∈ πP ◦ 〈{P,{Q〉. Since a
similar reasoning applies to{Q, Figure 1 commutes as required.

Finally, for uniqueness of 〈{P,{Q〉 consider R{ P × Q with πP ◦{ ={P

and πQ ◦{ = {Q. If Z { X] Y , then (Z, X) ∈ πP ◦{ and hence Z {P X and,
by a similar reasoning, Z {Q Y . Conversely, if Z {P X then there must be some
X′ and Y ′ such that X ⊆ X′ and Z { X′] Y ′. By (am3) this implies Z { X] Y ′.
The same argument can be applied to{Q. Thus whenever Z {P X and Z {Q Y ,
there are X′ and Y ′ with Z { X] Y ′ and Z { X′] Y . Invoking properties (am2)
and (am3) for{, this shows that Z { X]Y . We have just shown that Z { X]Y
iff Z {P X and Z {Q Y , and hence that{ = 〈{P,{Q〉 as required. �

The above product construction is also known in formal concept analysis as
the direct sum of two contexts [GW99]. However, it is not the only possible spec-
ification of the products in Alg. For each formal context P = (OP, AP, |=P), we
define a context P+ = (O+P, A

+
P, |=P+), where O+P = OP ∪ {g} and A+P = AP ∪ {m},

with g and m being fresh elements: g < OP and m < AP. For defining the incidence
relation, we set o |=P+ a whenever o |=P a (requiring that a ∈ AP and o ∈ OP) or
o = g or a = m. Thus P+ emerges from P by “adding a full row and a full column.”

Now let P = (OP, AP, |=P) and Q = (OQ, AQ, |=Q) be formal contexts. Define
a new formal context P ⊗ Q = (O+P × O+Q, A

+
P × A+Q, |=P×Q) of P and Q by setting

(o1, o2) |=P×Q (a1, a2) iff o1 |=P+ a1 and o2 |=Q+ a2. This turns out to be an alterna-
tive description of the products in Cxt.

Proposition 5.7 Given arbitrary formal contexts P = (OP, AP, |=P) and Q =
(OQ, AQ, |=Q), the contexts P × Q and P ⊗ Q are isomorphic in Cxt. Equivalently,

16

P ⊗ Q is the object part of the categorical product of P and Q in Cxt.

Proof. The required isomorphism corresponds to an iso approximable mapping
between the semilattices Sem(P×Q) and Sem(P⊗Q). The elements of the former
were already recognized as disjoint unions of concepts from P and Q. In the latter
case, concepts are easily recognized as products of concepts from P+ and Q+.
Adding the additional elements m and g guarantees that neither of these extended
formal contexts allows for the empty set as a concept, so that each element of
Sem(P ⊗ Q) is indeed of the form X × Y for two uniquely determined concepts
X = αω(X) ∈ Sem(P+) and Y = αω(Y) ∈ Sem(Q+).

We define a relation {+ ⊆ Sem(P × Q) × Sem(P ⊗ Q) by setting X {+ Y
whenever p1(Y) ∩ AP ⊆ X and p2(Y) ∩ AQ ⊆ X, where pi denotes the projection
to the ith components in a set of pairs. Conversely, a relation {− ⊆ Sem(P ⊗
Q) × Sem(P × Q) is specified by setting Y {− X whenever X ∩ AP ⊆ p1(Y) and
X ∩ AQ ⊆ p2(Y).

We claim that {+ and {− are mutually inverse approximable mappings be-
tween Sem(P × Q) and Sem(P ⊗ Q). The properties of Definition 4.2 follow
immediately from our use of set-theoretic operations in the definitions. Further-
more it is easy to see that X({− ◦ {+)X′ implies X′ ⊆ X for any two ele-
ments X, X′ ∈ Sem(P × Q). The converse implication also holds, which can be
concluded from the obvious relationships X {+ αω(X ∩ AP) × αω(X ∩ AQ),
αω(X′ ∩ AP) × αω(X′ ∩ AQ) {− X′, and αω(X′ ∩ AP) × αω(X′ ∩ AQ) ⊆
αω(X ∩ AP) × αω(X ∩ AQ). Hence{− ◦{+ is indeed the identity approximable
mapping. A similar reasoning shows that the same is true for{+ ◦{−, thus fin-
ishing the proof.

Finally, the assertion that this makes ⊗ an alternative product construction
is a basic fact from category theory. The required projections are obtained by
composing{− with the projections from the proof of Proposition 5.6. �

The construction of exponentials in Cxt turns out to be slightly more intricate.
To fully understand the following definition, it is helpful to look at the function
spaces in Alg. These are just the sets of all Scott continuous maps between two
algebraic lattices under the pointwise order of functions. The standard technique
for describing the compact elements of this lattice are so-called step functions.
Given two algebraic lattices L and M and two compacts a ∈ K(L) and b ∈ K(M),
one defines a function |a ⇒ b| : L → M, that maps an element x to b whenever
a ≤ x, and to ⊥M otherwise. It is well-known that any such step function is Scott
continuous and compact in the function space of L and M (see [GHK+03]). How-
ever, not all compacts are of this form, since finite joins of step functions are also
compact maps that can usually take more than two different values.

Our goal is to construct a formal context that represents the join-semilattice of
all compact Scott continuous functions in the sense of Corollary 5.2. Intuitively,

17

the collection of all step functions suggests itself as the set of attributes. Finitely
generated concepts should represent finite joins of step functions, which in turn
correspond bijectively to lower sets with respect to the pointwise order of step
functions. In order to obtain a formal context that yields this lower closure, one is
tempted to take some subset of Scott continuous functions for objects, and to em-
ploy the inverted pointwise order as an entailment relation. This is indeed feasible,
but our supply of step functions unfortunately is insufficient to serve as object set
in this case. We end up with the following definition:

Definition 5.8 Consider two formal contexts P and Q, and the sets A = Sem(P)×
Sem(Q) and O = Fin(A). A formal context [P { Q] = (O, A, |=) is defined by
setting {(ai, bi)} |= (a, b) iff b ⊆

∨
{bi | ai ⊆ a}, where

∨
is the join operation from

the semilattice Sem(Q).

This definition derives from the above discussion by representing step func-
tions |a ⇒ b| via pairs (a, b).3 Hence, the approximable concepts of [P { Q] as
obtained in Corollary 5.3 are sets of such pairs, i.e. relations between Sem(P) and
Sem(Q). The reader’s suspicion about the true nature of these relations shall be
confirmed:

Lemma 5.9 Given contexts P and Q, the algebraic lattice L = Alg[P { Q] of
approximable concepts of [P{ Q] coincides with the lattice of all approximable
mappings from P to Q, ordered by subset inclusion.

Proof. Consider any approximable concept x ∈ L. Definition 5.8 implies that
the pairs of arbitrary elements a ∈ Sem(P) and the least element of Sem(Q)
are modelled by any object of [P { Q], i.e. (am1) of Definition 4.2 holds for
x. For (am2), assume (a, b1) ∈ x and (a, b2) ∈ x. Following the construction in
Corollary 5.3, one finds that αω

(
{(a, b1), (a, b2)}

)
⊆ x. However, for any object

o of [P { Q], o |= (a, b1) and o |= (a, b2) clearly implies o |= (a, b1 ∨ b2),
by expanding the definition of |=, and thus (a, b1 ∨ b2) ∈ x. Finally, for (am3)
consider some (a, b) ∈ x, a′ ⊇ a, and b′ ⊆ b. Clearly, we have αω({(a, b)}) ⊆ x.
The definition of |= shows immediately that every object that models (a, b) must
also model (a′, b′), and thus (a′, b′) ∈ αω({(a, b)}) as required.

For the converse consider any approximable mapping P { Q. We show that
{ ∈ L. Given any finite subset X = {(ai, bi)} ⊆ {, one finds that X |= (an, bn)
for all (an, bn) ∈ X. Thus X ∈ ω(X) and, whenever (a, b) ∈ αω(X), one also has
X |= (a, b), i.e. b ⊆

∨
{b j | a j ⊆ a}. Defining J = { j | a j ⊆ a}, one finds that for

every n ∈ J, an ⊆
∨
{a j | j ∈ J} and hence

∨
{a j | j ∈ J}{ bn by (am3). Since J is

finite, one can employ an easy induction to show that
∨
{a j | j ∈ J}{

∨
{b j | j ∈

3This correspondence is not injective. In fact, the context [P { Q] in general contains both
duplicate rows and duplicate columns.

18

J}, where the case J = ∅ follows from (am1) and the induction step uses (am2).
Obviously

∨
{a j | j ∈ J} ⊆ a and b ⊆

∨
{b j | j ∈ J}, and hence a { b by (am3).

This shows that{ is an approximable concept. �

The above considerations shed additional light on approximable mappings in
general: they can in fact be viewed as lower sets of step functions, the joins of
which uniquely determine an arbitrary Scott continuous map between the induced
algebraic lattices. We remark that this also hints at an alternative formulation of
the constructions in Lemma 4.3.

It remains to show that the above construction does indeed yield a function
space in the sense of category theory:

Proposition 5.10 The construction [−{ −] yields the categorical function space
of the two contexts, i.e. for all contexts P, Q, and R, there is a bijection between
the sets Cxt(P × Q,R) and Cxt(P, [Q { R]), and this bijection is natural in all
arguments.

Proof. Our earlier results can be employed to simplify this proof. The algebraic
lattices associated with the above contexts is denoted by L = Alg(P), M = Alg(Q),
and N = Alg(R), and we write [M → N] for the lattice of all Scott continuous
functions from M to N, ordered pointwise. The categorical equivalences between
Cxt, Sem∨, and Alg (Theorem 4.4 and Theorem 5.4) and the categorical role of the
product construction Q × R (Proposition 5.6) establish natural bijections between
the sets Cxt(P × Q,R) and Alg(L × M,N), where L × N is the standard product
order. Likewise, using the same equivalences and the bijection of function spaces
from Lemma 5.9, one finds another natural bijection between Cxt(P, [Q { R])
and Alg(L, [N → M]).

The proof is completed by providing the well-known natural bijection of the
sets Alg(L×M,N) and Alg(L, [N → M]). This standard proof can for example be
found in [GHK+03]. �

Summing up these results, we obtain:

Theorem 5.11 The categories Alg, Sem∨, and Cxt are cartesian closed.

Proof. Cxt was shown cartesian closed in Proposition 5.6 and Proposition 5.10.
Closure of the other categories follows by their categorical equivalence (Theorem
4.4 and Theorem 5.4). �

The cartesian closed category Cxt which we propose here is tailored to the
needs of Computer Science. It differs from the categories normally considered in
formal concept analysis by emphasizing algebraicity, whereas morphisms listed
e.g. in [GW99] are suitable for complete, but not necessarily algebraic, lattices.

19

We also stress the fact that our novel interpretation of formal contexts perfectly
agrees with the classical one, as long as finite contexts or lattices are considered,
which covers most of the current FCA applications in Computer Science. On the
other hand, the different treatment of infinite data structures displays a deviation
from the classical philosophically motivated viewpoint towards one that respects
the practical constraints of finiteness and computability.

6 Further representations
So far, we encountered three equivalent representations for algebraic lattices.
Clearly, the hard part was to establish the equivalence of the rather diverse cat-
egories Alg and Sem∨. Many other equivalent categories can now be recognized
by relating them to one of these two — an objective that will in general be accom-
plished rather easily. A typical example for this has already been given in form of
the category Cxt, that was easily seen to be equivalent to Sem∨.

The representations given below are grouped according to these observations:
we start with “logical” descriptions that have their closest relationships to the
categories Cxt and Sem∨, and then proceed to formulations that can be connected
to Alg in a more natural way. Classifying representations in this way is by no
means arbitrary: as we will see the end of this section, our arrangement reflects
the “localic” respectively “spacial” side of a very specific case of Stone duality.

6.1 Logic and information systems
The representation of join-semilattices via formal contexts did already incorporate
some logical flavor: approximable concepts can be viewed as sets closed under
a certain entailment relation. Scott continuity of this closure is reminiscent of
the compactness property of a logic. However, we will see that a much closer
connection to some very well-known logics can be made. The reader is referred
to [DH01] for related considerations.

Definition 6.1 Given a set A of propositions, the set of well-formed conjunctive
propositional formulae S (A) over A is given by the following expression:

S (A) F > | a ∈ A | (S (A) ∧S (A))

A relation ` ⊆ S (A) × S (A) is a consequence relation of conjunctive proposi-
tional logic (CCP logic) if it is closed under application of the following rules:

F ` > (T) F ` F (R)
F ` G, G ` H

F ` H
(Cut)

20

F ` (G ∧ H)
F ` G

(W1)
F ` (G ∧ H)

F ` H
(W2)

F ` G, F ` H
F ` (G ∧ H)

(And)

In this case (S (A), `) is called a deductive system (of CCP logic). For any two
formulae F,G ∈ S (A), the situation where F ` G and G ` F is denoted F ≈ G.

Hence deductive systems are logical systems of the conjunctive fragment of
propositional logic, together with a (not necessarily minimal) consequence rela-
tion. The following properties are easily verified.

Lemma 6.2 Consider a deductive system (S (A), `). The following hold for all
formulae F, G, and H ∈ S (A):

• ((F ∧G) ∧ H) ≈ (F ∧ (G ∧ H))

• (F ∧G) ≈ (G ∧ F)

• F ≈ (F ∧ F)

• F ≈ (F ∧ >)

Hence we see that the rules (W1), (W2), and (And) imply associativity,
commutativity, and idempotency of ∧. Furthermore, occurrences of > can be
eliminated. Consequently, we henceforth write formulae of CCP in the form
a1∧a2∧ . . .∧an (ai ∈ A), knowing that this determines a set of “real” formulae up
to proof-theoretic equivalence. Additionally, for the case n = 0 the above expres-
sion is interpreted as the singleton set {>}. Any statement about formulae in this
notation represents the corresponding set of statements about the original formu-
lae. We can now consider the algebraic semantics (see [DH01]) of these logics.
This is based largely on the following notion:

Definition 6.3 Consider a deductive system (S (A), `). The Lindenbaum algebra
of (S (A), `) is the poset obtained from the preorder (S (A), `) through factoriza-
tion by the equivalence relation ≈, i.e. [F]≈ ≤ [G]≈ iff F ` G. The Lindenbaum
algebra is denoted by LA(S (A), `).

Hence the Lindenbaum algebra is a partially ordered set of ≈-equivalence
classes of formulae, ordered by syntactic entailment. Since it can cause hardly
any confusion, we take the freedom to denote equivalence classes by one of their
representatives or even by the simplified notation introduced above. Of course,
this creates possible ambiguity between the conjunction symbol and the meet op-
eration within the Lindenbaum algebra. The following lemma shows that this is
not a problem.

Lemma 6.4 Consider a deductive system (S (A), `) and formulae F,G ∈ S (A).
Then [F]≈ ∧ [G]≈ = [F ∧G]≈.

21

Proof. We have to show that F ∧ G ` F, F ∧ G ` G, and that for any formula H
such that H ` F and H ` G, we find H ` F ∧ G. These assertions are obvious
consequences of the proof rules of CCP. �

Since the meet operation yields a unique result, this shows that F ≈ F′ and
G ≈ G′ imply F ∧G ≈ F′ ∧G′, which is just the Replacement Theorem [DH01]
for CCP logics. We state the now obvious representation theorem:

Theorem 6.5 For any deductive system (S (A), `), the Lindenbaum algebra
LA(S (A), `) is a meet-semilattice with greatest element. Conversely, every such
semilattice is isomorphic to the Lindenbaum algebra of some deductive system.

Proof. Lemma 6.4 already showed the existence of binary meets. We conclude the
first part of the proof by noting that [>]≈ is the required greatest element.

For the converse let S be a meet-semilattice with greatest element. We define
a consequence relation ` on S (S) by setting, for all a1, a2, . . . , an, b1, b2, . . . , bm ∈

S , a1∧a2∧. . .∧an ` b1∧b2∧. . .∧bm whenever a1∧a2∧. . .∧an ≤ b1∧b2∧. . .∧bm.
One can easily check that this definition satisfies all of the required rules. Note that
(T) follows by our convention to represent > by the empty conjunction. To reduce
confusion, we denote meets in S by

∧
and meets in LA(S (S), `) by

∧
≈.

We claim that S is isomorphic to LA(S (S), `). Indeed, one can define map-
pings f : S → LA(S (S), `) and g : LA(S (S), `)→ S by setting f (a) = [a]≈ and,
for propositions ai, 1 ≤ i ≤ n, g[

∧
≈ ai]≈ =

∧
ai. To see that g is well-defined, note

that for any two formulae
∧
≈ ai,
∧
≈ b j ∈ S (S) we have that

∧
≈ ai ≈

∧
≈ b j (in

S (S)) implies
∧

ai =
∧

b j (in S) by the definition of `.
Finally, we show that g and f are inverse to each other. By what was said

above, g(f (a)) = a is immediate. On the other hand, any formula
∧
≈ ai is syntac-

tically equivalent to
∧

ai by the definition of `. This shows bijectivity of f and g.
Monotonicity of both functions is obvious from their definition. �

This relationship closes the gap to our prior category Sem∨, since the above
meet-semilattices are just the order duals of the objects within this category. By an
approximable mapping between two meet-semilattices with least element or two
deductive systems of CCP logic, we mean an approximable mapping between the
induced join-semilattices. The following is immediate.

Theorem 6.6 Consider the categories Sem∧ and CCP of meet-semilattices with
greatest element and deductive systems of CCP logic, respectively, together with
approximable mappings as morphisms. Then Sem∨, Sem∧, and CCP are equiva-
lent.

The insights just obtained allow to relate our study with results obtained in
[HW03, Hit04], where the conjunctive fragment of the logic RZ (introduced in

22

[RZ01]), was found to be closely related to concept closure in FCA. We derive a
very similar result, but some preparations are needed first.

An algebraic cpo D is a dcpo with least element ⊥ such that every e ∈ D is the
directed supremum of all compact elements below it. A coherent algebraic cpo
is an algebraic cpo such that, with respect to the Scott topology (see Definition
6.10), the intersection of any two compact open sets is compact open.

These notions can be found in [RZ01], along with a characterization of the
Smyth Powerdomain of any given coherent algebraic cpo D by means of a logic
defined on D, which we call the logic RZ. We will only be concerned with the
conjunctive fragment of RZ, which can be given as follows. For compact ele-
ments c1, . . . , cn, d1, . . . , dm we write c1 ∧ . . . ∧ cn ` d1 ∧ . . . ∧ dm iff any minimal
upper bound of {c1, . . . , cn} is above all di. This way, we obtain a deductive system
(K(D), `), and the following result, which is related to those in [HW03, Hit04],
and such considerations were put to use in [Hit04] for developing a generic non-
monotonic rule-based reasoning paradigm over hierarchical knowledge.

Theorem 6.7 Let P = (O, A, |=) be any formal context. Then there is a coherent
algebraic cpo D and a mapping ι : A → D such that for every finite set X =
{a1, . . . , an} ⊆ A we have αω(X) = {a | ι(a1) ∧ . . . ∧ ι(an) ` ι(a)}.

Proof. Define D = Alg(P) and set ι(a) = αω({a}) for a ∈ A. Since D is a complete
algebraic lattice, it is a coherent algebraic cpo.

Now consider the finite set X as above. Using the completeness of the lattice,
we obtain that ι(X) has αω(X) as supremum, which suffices. �

The difference between Theorem 6.7 and the results in [HW03, Hit04] lies in
the fact that the latter were proven by taking D to be a sublattice of the (classical)
formal concept lattice, instead of Alg(P), which facilitates reasoning with formal
contexts in a natural way.

Finally, we come to another popular description of algebraic lattices, that fits
well into the above discussion, and will also shed additional light on morphisms
of CCP.

Definition 6.8 Consider a structure (A,
), where A is a set, and
 ⊆ Fin(A) × A
is a relation between finite subsets of A and elements of A. Then (A,
) is a Scott
information system (with trivial consistency predicate) if the following hold:

(ISi) a ∈ X implies X
 a,

(ISii) if X
 y for all y ∈ Y and Y ` a, then X
 a.

Scott information systems were introduced in [Sco82a] as a logical charac-
terization of order structures arising in denotational semantics. The connection to
CCP logic is as follows.

23

Proposition 6.9 There is a bijective relationship between Scott information sys-
tems and deductive systems of CCP logic.

Proof. Consider a Scott information system (A,
). Using the set A as proposi-
tions, we obtain the set of CCP formulae S (A). A consequence relation ` for
S (A) is defined by setting a1 ∧ a2 ∧ . . . ∧ an ` b1 ∧ b2 ∧ . . . ∧ bm whenever
{a1, a2, . . . , an}
 bi for all i = 1, . . .m. We have to verify that ` is closed under the
rules given in Definition 6.1. For the case m = 0 the condition is obviously true so
that we obtain axiom (T). Likewise, the conditions for axiom (R) are satisfied due
to condition (ISi) in Definition 6.8. Similarly, the (Cut) rule follows immediately
from (ISii). For the rules (W1), (W2), and (And), we simply notice that these are
direct consequences from our definition of `.

Now for the opposite direction, consider a deductive system (S (A), `). Using
the set of propositions of S (A) as attributes, we construct a Scott information
system (A,
), where we define {a1, a2, . . . , an}
 b whenever a1∧a2∧ . . .∧an ` b.
Again it is straightforward to check that this is indeed an information system. (ISi)
can be deduced from the rules (R) and iterated applications of (W1) and (W2).
Under the assumption of (ISii), we see that the (And) rule allows us to construct
a conjunction that corresponds to the premise Y of the second rule. By (Cut) this
yields the required entailment.

To complete the proof, we note that these two constructions are in fact inverse
to each other. The identity on Scott information systems is trivial. For CCP logics,
we note that any sequent a1∧a2∧. . .∧an ` b1∧b2∧. . .∧bm induces via (W1)/(W2)
the existence of sequents a1 ∧ a2 ∧ . . . ∧ an ` bi, for all i = 1, . . . ,m. The original
sequent can then be reconstructed from the entailment of the Scott information
system induced from these relations. �

Note that this proposition yields a bijective correspondence, not just a rela-
tionship up to isomorphism. Indeed Scott information systems are essentially an
efficient formulation of conjunctive propositional logic, where the properties of ∧
are obtained implicitly by using sets in the first place. The category of Scott infor-
mation systems and approximable mappings between the induced semilattices is
denoted SIS4. From 6.9 one easily concludes that SIS is isomorphic to CCP, and
hence also equivalent to all categories mentioned earlier.

Furthermore, approximable mappings between CCP logics need not be ex-
pressed on the level of their Lindenbaum algebras, but could be formulated di-
rectly on formulae. From this viewpoint, approximable mappings appear as con-
sequence relations between different logical languages. Indeed, all the require-
ments of Definition 4.2 do still have a very intuitive reading under this interpreta-

4Historically, this is indeed the first context for which approximable mappings were defined
[Sco82a].

24

tion: (am1) and (am2) correspond to (T) and (And) of Definition 6.1, respectively,
while (am3) can be viewed as a modified (Cut) rule, that also subsumes (W1) and
(W2). Hence we recognize approximable mappings as a simple form of multilin-
gual sequent calculi as introduced in [JKM99] for the more complicated case of
positive logic (i.e., logics including conjunction and disjunction). Further details
and motivation can be found therein.

We remark that one could as well have connected CCP logic or information
systems directly to algebraic lattices, instead of presenting the ideal completion
for semilattices of compacts. In the case of logics, algebraic lattices are obtained
directly as sets of models of a deductive system, where models are considered
as deductively closed sets of (true) formulae. These turn out to be exactly the
filters5 within the corresponding Lindenbaum algebras, and the duality to ideal
completion is immediate. The reader may care to consult [DH01] for a general
treatment of such matters. For Scott information systems, algebraic lattices are
constructed similarly as sets of elements. As defined in [Sco82a], an element of
an information system (A,
) is a subset x ⊆ A such that a ∈ x whenever there is
some finite set X ⊆ x with X
 a.

Our logical considerations can also be put to practical use by noting that every
definite logic program (see, e.g., [Llo87]) can be expressed by a deductive system
in the above sense. This has also been mentioned in [Zha03b]. Considering the
fact that the theory of definite logic programs is quite well-developed, these in-
sights are merely providing some further explanation for the situation in this field.
In the light of the connections to Stone duality outlined below and the immedi-
ate connection to algebraic semantics of logical systems, one could also further
analyze the situation for more expressive logical languages from this perspective.

Note that only a small portion of Scott information systems and algebraic lat-
tices can be obtained from definite logic programs. The reason is that there are
only countably many different programs, but uncountably many Scott informa-
tion systems (even for countable sets of generators). We also remark that, while
algebraicity always makes fixed point computation possible in theory, the specific
structure of the information systems of logic programs is employed to ensure that
the semantic operator suitable for logic programs is indeed effectively computable.

We do not bother to give a category of logic programs, although this could be
done by adjusting the formalism of approximable mappings. However, it is not
clear at the moment how the subcategory of algebraic lattices that arises in this
way can be characterized.

5A filter F is the dual of an ideal: an upper set F = ↑F such that a, b ∈ F implies the existence
of some c ∈ F such that c ≤ a and c ≤ b.

25

6.2 The Scott topology
Next we want to study the spacial side of Stone duality. It is here where we find
the models and their semantic entailment, while the localic side is inhabited by
syntactic representations and their proof theory. We already mentioned that mod-
els in our case take the specific form of algebraic lattices, and thus it is natural
to ask which subsets of models correspond to a logical theory. The appropriate
collection of sets turns out to be the following well-known topology:

Definition 6.10 Consider a dcpo P. A subset O ⊆ P is Scott open if the following
hold:

(i) x ∈ O and x ≤ y imply y ∈ O (O is an upper set),

(ii) for any directed set D ⊆ P,
∨

D ∈ O implies D ∩ O , ∅ (O is inaccessible
by directed suprema).

The Scott topology on P is the collection of Scott open sets. We use σ(P) to denote
this collection and Σ(P) = (P, σ(P)) for the resulting topological space.

But one can also reverse the process to obtain orders from topologies:

Definition 6.11 Consider a topological space (X, τ). Then τ defines a specializa-
tion (pre-)order ≤ on X by setting x ≤ y whenever x ∈ O implies y ∈ O for
any O ∈ τ. A topology on a partially ordered set is called order consistent if its
specialization order coincides with the order of the poset.

For an algebraic lattice, the Scott topology has some more specific properties.
Recall that an open set is compact if it is a compact element of the open set lattice,
and that a topology is coherent if the intersection of any two compact open sets
is compact. Proof for the following statements can be found in [AJ94, GHK+03,
Joh82].

Proposition 6.12 Consider an algebraic lattice L. We have the following:

(i) Σ(L) is order consistent.

(ii) The set B = {↑c | c ∈ K(L)} is a base for σ(L).

(iii) The compact opens of Σ(L) are exactly the finite unions of members of B.

(iv) σ(L) is coherent.

(v) σ(L) is sober.6

6We did not define sobriety in this document. Readers who are not familiar with this concept
may safely ignore this statement.

26

Order consistency insures that algebraic lattices and their Scott topologies
uniquely characterize each other. A category ΣAlg of Scott topologies on algebraic
lattices is readily obtained by employing continuous maps between topologies as
morphisms.

Theorem 6.13 The categories Alg and ΣAlg are isomorphic, hence equivalent.

Proof. The required functors are defined on objects by taking the Scott topology
and the specialization order of the arguments, respectively. By order consistency
of the topologies, this yields a bijection between the classes of objects. Since the
carrier sets of lattices and topologies remain unchanged, one can consider every
function between algebraic lattices directly as a function between spaces and vice
versa. To finish the proof, one needs to show that a function between algebraic
lattices is Scott continuous iff it is continuous with respect to the Scott topologies.
This standard result can for example be found in [AJ94]. �

In the next section, we see that the topological spaces of ΣAlg are indeed very
specific.

6.3 Stone duality
Since the very beginning of the theory, Stone duality has been recognized as a
tool for relating proof theory, algebraic semantics, and model theory of logical
systems (see [Sto37]). One direction of this investigation has already been men-
tioned in Section 6.1: Lindenbaum algebras can be represented by corresponding
model theories, where models are characterized as subsets (filters) of formulae.
Dually, one could also have presented every formula by the set of its models. The
conceptual step from such systems of specific subsets to topological spaces was
the key to the strength and utility of Stone’s original representation theorems.

However, it still took decades to recognize that it would be even more advan-
tageous to undo this step to the spacial side of Stone duality and to return to the
more abstract world of partially ordered sets. It became apparent that topologies
could not only serve as a representation for specific ordered structures, but that
conversely orders could serve as a general substitute for topological spaces. In-
deed, the leap to the spacial side is usually not an easy one — in many cases it
cannot be made within classical Zermelo-Fraenkel set theory (ZF). The localic
side on the other hand can mimic most of the features of the original topological
setting, while being freed from the weight of points which often prevent purely
constructive reasoning.

In what follows we embed our specific scenery into the setting of Stone du-
ality. However, it turns out that the special case we consider does not justify to
present the theory in its common generality. Hence we give explicit proofs for

27

the object level relationships in our specialized setting and hint at the connections
to more abstract versions of Stone duality where appropriate. Other than provid-
ing the merit of a more self-contained presentation, this also enables us to work
exclusively in ZF, with no additional choice principles whatsoever. As a general
reference on Stone duality, we recommend [Joh82].

The passage from spaces to orders is a particularly simple one: the open set
lattice of a topology is already a poset. The class of posets arising in this way are
the spacial locales.

Definition 6.14 A complete lattice L is a locale if the following infinite distribu-
tive law holds for all S ⊆ L and x ∈ L:

x ∧
∨

S =
∨
{x ∧ s | s ∈ S }.

A point of a locale is a principal prime ideal of L, i.e. a subset p ⊆ L such that
p = ↓

∧
p and, for any x ∧ y ∈ p, x ∈ p or y ∈ p. The set of all points of L is

denoted by pt(L).
A locale is spacial if, for any two elements x, y ∈ L with x � y, there is a point

p ⊆ L such that x ∈ p and y < p. L is spectral if L is algebraic, its greatest element
is compact, and the meet of any two compact elements of L is compact.

We remark that locales are also called frames, and that structures of this kind
are equivalently characterized as complete Heyting algebras.7

It is now easy to see that any open set lattice yields a locale, where distribu-
tivity follows from the corresponding distributivity of finite intersections over in-
finite unions. Furthermore, Proposition 6.12 (ii), (iii), and (iv) show that, for an
algebraic lattice L, (σ(L),⊆) is even a spectral locale. We shall find that these
locales are even more specific than this.

Our starting point for investigating topologies were algebraic lattices, which
we have earlier recognized as the model theories of deductive systems of CCP
logics. The abstraction to (certain) spectral locales brings us back to proof theory.
We now characterize the above locales by relating them to Lindenbaum algebras
of CCP logic, and reobtain topological spaces from this data.

We consider arbitrary meet-semilattices with greatest element, knowing that
they are up to isomorphism just the Lindenbaum algebras of CCP (Theorem 6.5).
Furthermore, we already mentioned that the collections of all filters (the order-
dual concepts of the ideals) of such semilattices are just the algebraic lattices,
which follows immediately from Theorem 3.6. We can now give a characterization
for the locale of Scott open sets of algebraic lattices:

7The interested reader will find definitions and treatment in [Joh82, GHK+03].

28

Theorem 6.15 Consider a meet-semilattice S with greatest element and the cor-
responding algebraic lattice (Flt(S),⊆) of filters of S . The collection of lower sets
of S , ordered by subset inclusion, is isomorphic to σ(Flt(S)). Every Scott open set
lattice of an algebraic lattice is of this form.

Proof. Theorem 3.6 shows the bijective correspondence between the elements of
S and the compacts of Flt(S), since S is dually order-isomorphic to K(Flt(S)).
Proposition 6.12 demonstrated that every Scott open set is characterized by the
compact elements it contains. Now it is obvious that such sets of compacts corre-
spond to upper sets in the join-semilattice of compacts, and thus to lower sets in its
dual meet-semilattice. The other direction is also immediate from the according
part of Theorem 3.6. �

Hence the spectral locales of the form σ(L) for some algebraic lattice L are
more precisely characterized as the lower set topologies of meet-semilattices with
greatest element, i.e. as the Alexandrov topologies of join-semilattices with least
element. Note also that meets and joins within these locales are really given by
the corresponding set operations. By σAlg we denote the category of all locales
isomorphic to the collection of lower sets on some meet-semilattice with greatest
element together with functions that preserve finite meets and arbitrary joins.8

Next we want to connect up with the common constructions of Stone duality.

Lemma 6.16 Consider a meet-semilattice with greatest element S and its locale
of lower sets σ. Then the meet-prime elements of σ are exactly the complements
of the filters of S .

Proof. Let F ⊆ S be a filter and set A = S \F ∈ σ. Now assume there are lower
sets B1, B2 ∈ σ such that B1 ∩ B2 = A. For a contradiction, assume that there are
elements b1 ∈ B1∩F and b2 ∈ B2∩F. Then b1∧b2 ∈ F and b1∧b2 ∈ B1∩B2 = A —
a contradiction. Hence, one of B1, B2 contains just the elements of A as required.

Conversely, let A ∈ σ be meet-prime and consider the upper set F = S \A.
For any two elements a, b ∈ F it is easy to see that ↓a ∩ ↓b = ↓(a ∧ b). Hence, if
a ∧ b ∈ A then ↓a ∪ A and ↓b ∪ A are elements of σ with intersection A, which
cannot be. Hence a ∧ b ∈ F as required. �

This gives us all necessary information about the points of these locales (see
Definition 6.14), since these were defined to be just the principal ideals generated
by meet-prime elements. We can thus identify the set of points pt(σ) with the set

8This is of course rather a category of frames and frame homomorphisms than a category of
locales (which would be described by its dual). We have chosen to trade some terminological
precision for conciseness of the presentation.

29

of all meet-prime elements of σ.9 Our insights allow us to give a direct description
of the topological spaces associated with semilattices:

Corollary 6.17 Let S be a meet-semilattice with greatest element, let L be an
algebraic lattice, and let σ be a spectral locale, such that

• S op is isomorphic to K(L) and

• σ is isomorphic to σ(L).

Then the following are homeomorphic:

(i) (L, σ(L)), the Scott topology on L;

(ii) the topology on Flt(S) generated from the basic open sets

Oa = {F ∈ Flt(S) | a ∈ F} for all a ∈ S ;

(iii) the topology on pt(σ) given by the open sets

PA = {p ∈ pt(σ) | A < p} for all A ∈ σ.

Proof. Most of the above should be obvious at this stage, so we spare out some
details. Suitable bijections between L, Flt(S), and pt(σ) have been obtained in 3.6
and 6.16. First we show the homeomorphism between (i) and (ii) (which induces
also that (Oa) is indeed a base). For this we only have to note that Oa = {F ∈
Flt(S) | ↑a ⊆ F}. Using the bijection between (principal) filters and (compact)
elements from Theorem 3.6, one sees that Oa corresponds to an open set ↑c, c ∈
K(L), of (i). The fact that these subsets are open and form the basis for the Scott
topology has been shown in Proposition 6.12.

For the homeomorphism between (ii) and (iii), we consider the locale of lower
sets of S , which is isomorphic to σ by Theorem 6.15. Clearly this affects the
topology of (iii) only up to homeomorphism. Now in the locale of lower sets, a
point (principal prime ideal) p = ↓B is in PA iff the corresponding meet-prime
B does not contain A. But this is the case iff the complement of B intersects A.
Hence, by Lemma 6.16, PA corresponds exactly to the collection of those filters
of S that contain some element of A, i.e. to the set

⋃
{Oa | a ∈ A}. But these are

precisely the open sets of the topology of (ii). �

9Furthermore, we remark that this guarantees a sufficient supply of prime elements without
invoking any additional choice principles, i.e. we are dealing with a class of locales that is spacial
in Zermelo-Fraenkel set theory. This contrasts with the class of all spectral locales, which is only
spacial when the existence of prime ideals is explicitly postulated, i.e. when the Boolean prime
ideal theorem [DP02] is assumed to hold.

30

With respect to the given preconditions on the relationship between S , L, and
σ, note that the various transformations between semilattices, algebraic lattices,
and locales established earlier yield a variety of equivalent ways to state that the
three given objects describe “the same thing”.

To complete the targeted categorical equivalence between the dual category
of σAlg and ΣAlg (Alg, Sem∨, . . .), one still needs to prove a suitable bijection
of hom-sets. This correspondence between inverse frame homomorphisms and
continuous functions is a basic result of Stone duality which we will not repeat
here. See [Joh82] for details.

7 Summary and further results
We provided characterizations of the category of algebraic lattices by means of
structures from logic, topology, domain theory, and formal concept analysis. More
precisely, we characterized algebraic lattices by certain semilattices, formal con-
texts, and deductive systems of the conjunctive fragment of propositional logic.
The novel category Cxt of formal contexts and approximable mappings was used
to establish the cartesian closure of these categories, and the categorical construc-
tions needed for this were explicitly given. Other representations referred to spe-
cial classes of closure systems, Scott topologies, locales, and definite logic pro-
grams. An overview of the major equivalences given herein is displayed in Figure
2.

Although this treatment is quite comprehensive, one could still add some more
equivalent formalisms. Especially, we left out the coverage technique of [Joh82]
(see also [Sim04]), which represents locales in a syntactical way that relates
closely to Scott information systems. Furthermore, we deliberately ignored Scott’s
earlier approach to presenting domains via neighborhood systems [Sco82b], since
these structures are not much more than a mixture of the later (token-set based) in-
formation systems and continuous closure operators. Finally, one could also iden-
tify the classes of distributive lattices that arise as the compact elements of the
spectral locales we considered as the free distributive lattices over the underlying
semilattice.

In this article we have also presented a unified treatment of the basic tech-
niques and mechanisms that are applied to join domain theory, algebra, logic, and
topology. Algebraic lattices turn out to be the simplest case where such a discus-
sion is feasible. Part of the given results have been generalized in various ways,
some of which are subject to current research. A common way to generalize the
above results is to extend the logic under consideration. A technique for includ-
ing “negation-like” constraints without need for an internal negation operation
has been employed by Scott in his original formulation of information systems

31

σAlg gg

(6.16)

Prm

σ

--

ΣAlg//(6.17)
Ω

pt
oo

Alg
OO

(3.6)

K

Idl

��

��

(6.12)

Σ

≤

OO

CCP66

(6.5)
llllllll

LAvvlllllll

oo (6.9) // SIS Cxt cc

(5.2)
GG

GG

Sem ##GGG
G

��

(5.3)
�������

Alg

CC�������

Sem∧

(3.6)op

Flt
..

��

(6.15)

Down
OO

Sem∨//
·op ·op
oo

Figure 2: Summary of all established equivalences with reference to the corre-
sponding (object-level) statements. Labels at the arrow tips specify the name of
the functor that was used in a construction, where Down denotes the construction
of the lower set topology from a meet-semilattice, Prm yields the set of principal
prime ideals of a locale, ordered by subset inclusion, and ≤ denotes the construc-
tion of the specialization order from a topological space.

[Sco82a]. There he introduced a collection of finite subsets of propositions that
are consistent, assuming that no inconsistent sets can be mapped to true by any
model. This procedure can be viewed as an extension of the deductive system that
allows statements of the form “X
”, interpreted as

∧
X
 ⊥, where ⊥ is the con-

stant false — a construction well-known under the notion of integrity constraint
in database theory. Clearly, ⊥ will then represent the least element in the result-
ing Lindenbaum algebras. However, as important as introducing the constant ⊥
into the logical language is a change of the model theory: models now have to
be proper filters, i.e. the case that all (including ⊥) formulae evaluate to true is
excluded. The posets of models for such logics turn out to be exactly the Scott
domains (the bounded complete algebraic cpos).

As another step, one can include disjunction into the formalism. This already
leads to a substantial complication of the theory: choice principles are now needed
to obtain models. Since logical conjunction and disjunction are classically as-
sumed to distribute over each other, one obtains all (bounded) distributive lattices
as Lindenbaum algebras. In place of algebraic lattices one finds a curious class

32

of dcpos that have been termed information domains in [DG90]. Later the di-
rect construction of distributive lattices and locales from such deductive systems
was studied in [CC00] and [CZ00], and in [RZ01] Smyth powerdomains were
characterized by similar means using a clausal logic which was also extended to
non-monotonic reasoning paradigms on hierarchical knowledge [RZ01, Hit04].
Other than this, one can apply all the representation machinery that has been set
up for distributive lattices, including both Stone’s and Priestley’s representation
theorems for these structures ([Joh82]).

Further strengthening of the logic is possible by including some internal nega-
tion operation. Intuitionistic negation yields Heyting algebras as Lindenbaum al-
gebras. The resulting topologies are already studied in [Sto37], though the signif-
icance of specialization orders and domain theoretic concepts were not yet recog-
nized at this time. If classical negation is preferred instead, thus yielding classical
propositional logic, the class of Boolean algebras provides the well-known alge-
braic semantics. While topological representation via Stone’s theorem is rather
pleasant in this case, the domain theoretic aspects are quite disappointing: the
specialization order of models is discrete. Related approaches nevertheless have
been taken for the context of negation in logic programming [Sed95, Hit04], but
the domain-theoretic content of these investigations remains to be determined.

For reasons as those just described, internal negation is usually not considered
in domain-theoretical studies. However both inconsistency of finite subsets and
finite disjunctions can be employed with various restrictions to obtain classes of
domains that are more general than the Scott domains. A slight constraint on ei-
ther the logical ([DG90]) or the localic level ([Abr91]) restricts the obtained class
of dcpos (of models) to the coherent algebraic dcpos. However, while this is a
well-known concept in domain theory, it results in rather unusual restrictions on
the logics (Lindenbaum algebras, locales). Further conditions will lead to SFP-
domains [Abr91, Zha91]. On the other hand, conditions that characterize a class
of deductive systems that produces exactly the L-domains have been studied in
[Zha92].

References
[Abr91] S. Abramsky. Domain theory in logical form. Annals of Pure and

Applied Logic, 51:1–77, 1991.

[AJ94] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume III. Oxford University Press, 1994.

33

[Bor94] F. Borceux. Handbook of Categorical Algebra 1: Basic Category The-
ory, volume 53 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1994.

[CC00] J. Cederquist and T. Coquand. Entailment relations and distributive
lattices. In S. Buss, P. Hájek, and P. Pudlák, editors, Proceedings of the
Annual European Summer Meeting of the Association for Symbolic
Logic, Prague, Czech Republic, 1998, volume 13 of Lecture Notes in
Logic. Association for Symbolic Logic, 2000.

[CZ00] T. Coquand and G.-Q. Zhang. Sequents, frames and completeness. In
P. Clote and H. Schwichtenberg, editors, Proceedings of the Annual
Conference of the European Association for Computer Science Logic
(CLS2000), Fischbachau/Munich, Germany, volume 1862 of Lecture
Notes in Computer Science. Springer, 2000.

[DG90] M. Droste and R. Göbel. Non-deterministic information systems and
their domains. Theoretical Computer Science, 75:289–309, 1990.

[DH01] J. M. Dunn and G. M. Hardegree. Algebraic methods in philosophical
logic. Clarendon Press, 2001.

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, second edition, 2002.

[GHK+03] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and
D. S. Scott. Continuous Lattices and Domains, volume 93 of Ency-
clopedia of Mathematics and its Applications. Cambridge University
Press, 2003.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis — Mathematical
Foundations. Springer, 1999.

[Hit04] P. Hitzler. Default reasoning over domains and concept hierarchies.
In S. Biundo, T. Frühwirth, and G. Palm, editors, Proceedings of
the 27th German conference on Artificial Intelligence, KI’2004, Ulm,
Germany, September 2004, volume 3238 of Lecture Notes in Artificial
Intelligence, pages 351–365. Springer, Berlin, 2004.

[HW03] P. Hitzler and M. Wendt. Formal concept analysis and resolution in
algebraic domains. In A. de Moor and B. Ganter, editors, Using Con-
ceptual Structures — Contributions to ICCS 2003, pages 157–170.
Shaker Verlag, Aachen, 2003.

34

[HZ04] P. Hitzler and G.-Q. Zhang. A cartesian closed category of approx-
imable concept structures. In K.-E. Wolff, H. D. Pfeiffer, and H. S.
Delugach, editors, Proceedings of the International Conference On
Conceptual Structures, Huntsville, Alabama, USA, Lecture Notes in
Computer Science, pages 170–185. Springer, July 2004.

[JKM99] A. Jung, M. Kegelmann, and M. A. Moshier. Multi lingual sequent
calculus and coherent spaces. Fundamenta Informaticae, XX:1–42,
1999.

[Joh82] P. T. Johnstone. Stone spaces. Cambridge University Press, 1982.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer Verlag,
2nd extended edition, 1987.

[LR03] F. W. Lawvere and R. Rosebrugh. Sets for mathematics. Cambridge
University Press, 2003.

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer,
1971.

[McL92] C. McLarty. Elementary categories, elementary toposes. Clarendon
Press, 1992.

[RZ01] W. C. Rounds and G.-Q. Zhang. Clausal logic and logic programming
in algebraic domains. Information and Computation, 171(2):156–182,
2001.

[Sco82a] D. S. Scott. Domains for denotational semantics. In M. Nielsen and
E. M. Schmidt, editors, Proceedings of the 9th Colloquium on Au-
tomata, Languages and Programming, Aarhus, Denmark (ICALP’82),
volume 140 of Lecture Notes in Computer Science. Springer, 1982.

[Sco82b] D. S. Scott. Lectures on a mathematical theory of computation. In
M. Broy and G. Schmidt, editors, Theoretical Foundations of Pro-
gramming Methodology, pages 145–292. Carnegie-Mellon Univer-
sity, Department of Computer Science, Pittsburgh, D. Reidel Publish-
ing Company, 1982.

[Sed95] A. K. Seda. Topology and the semantics of logic programs. Funda-
menta Informaticae, 24(4):359–386, 1995.

[Sim04] H. Simmons. The coverage technique for enriched posets. Available
from the author’s homepage www.cs.man.ac.uk/~hsimmons, 2004.

35

[Smy92] M. B. Smyth. Topology. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume I.
Oxford University Press, 1992.

[Sto37] H. M. Stone. Topological representations of distributive lattices and
Brouwerian logics. Časopis pro Pěstování Matematiky a Fysiky,
67:1–25, 1937.

[Stu02] G. Stumme. Formal concept analysis on its way from mathematics to
computer science. In U. Priss, D. Corbett, and G. Angelova, editors,
Conceptual Structures: Integration and Interfaces, Proc. ICCS 2002,
LNAI, pages 2–19. Springer, 2002.

[Wil82] R. Wille. Restructuring lattice theory: An approach based on hierar-
chies of concepts. In I. Rival, editor, Ordered Sets, pages 445–470.
Reidel, Dordrecht-Boston, 1982.

[Zha91] G.-Q. Zhang. Logic of Domains. Birkhauser, Boston, 1991.

[Zha92] G.-Q. Zhang. Disjunctive systems and L-domains. In W. Kuich, ed-
itor, Proceedings of the 19th International Colloquium on Automata,
Languages, and Programming (ICALP’92), Vienna, Austria, volume
623 of Lecture Notes in Computer Science. Springer, 1992.

[Zha03a] G.-Q. Zhang. Chu spaces, concepts lattices, and domains. In Pro-
ceedings of the 19th Conference of the Mathematical Foundations
of Programming Semantics, Montreal, Canada, 2003, volume 83 of
Electronic Notes in Theoretical Computer Science, 2003.

[Zha03b] G.-Q. Zhang. Topology, lattices, and logic programming. Presentation
at the DIMACS Lattice Workshop, Juli 8–10, 2003.

[ZR04] G.-Q. Zhang and W. Rounds. Reasoning with power defaults. Theo-
retical Computer Science, 323(1–3):321–350, 2004.

[ZS0x] G.-Q. Zhang and G. Shen. Approximable concepts, Chu spaces, and
information systems. Theory and Applications of Categories, 200x.
To appear.

36

Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 1-2, 2004, 25–30

A GENERALIZED RESOLUTION THEOREM

Pascal Hitzler
∗

W.C. Rounds and G.-Q. Zhang have recently proposed to study a form of resolution on algebraic domains [2]. This

framework allows reasoning with knowledge which is hierarchically structured and forms a (suitable) domain, more precisely,

a coherent algebraic cpo as studied in domain theory. In this paper, we give conditions under which a resolution theorem —

in a form underlying resolution-based logic programming systems — can be obtained. The investigations bear potential for
engineering new knowledge representation and reasoning systems on a firm domain-theoretic background.

K e y w o r d s: domain theory; automated theorem proving; domain logics; resolution

1 INTRODUCTION

Domain Theory [2] is an abstract mathematical the-
ory for programming semantics and has grown into a re-
spected field on the borderline between mathematics and
computer science. Relationships between domain theory
and logic were noted early on by Scott [3], and subse-
quently developed by many authors, including Smyth [4],
Abramsky [5], and Zhang [6]. There has been much work
on the use of domain logics as logics of types and of pro-
gram correctness, with a focus on functional and imper-
ative languages. However, there has been only little work
relating domain theory to logic programming or other
AI paradigms, two exceptions being the application of
methods from quantitative domain theory to the seman-
tic analysis of logic programming paradigms studied by
Hitzler and Seda [7, 8], and the work of Rounds and Zhang
on the use of domain logics for disjunctive logic program-
ming and default reasoning [1 9].

The latter authors, in [1], introduced a form of clausal
logic generalized to coherent algebraic domains, moti-
vated by theoretical investigations into the logical nature
of ordered spaces occuring in domain theory. In essence,
they propose to interpret finite sets of compact elements
as abstract formal clauses, yielding a theory which links
standard domain-theoretic notions to corresponding logi-
cal notions. Amongst other things, they establish a sound
and complete proof theory based on a generalized reso-
lution rule, and a form of disjunctive logic programming
in domains. A corresponding semantic operator turns out
to be Scott-continuous.

In this paper, we study this clausal logic, henceforth
called logic RZ for convenience. The occurrence of a
proof theory based on a generalized resolution rule poses
the question whether results underlying resolution-based
logic programming systems can be carried over to the
logic RZ. One of the most fundamental results underly-
ing these systems is the resolution theorem which states
that a clause X is a logical consequence of a theory T if
and only if it is possible to derive a contradiction, iethe
empty clause, via resolution from the theory T ∪ {¬X}
[10, 11].

What we just called resolution theorem is certainly
an immediate consequence of the fact that resolution is
sound and complete for classical logic. However, it is not
obvious how it can be transfered to the logic RZ, mainly
because it necessitates negating a clause, and negation
is not available in the logic RZ in explicit form. This
observation will lead our thoughts, and in the end we
will develop conditions on the underlying domain which
ensure that a negation is present which allows to prove
an analogon of the theorem.

The paper is structured as follows. In Section 2 we
review the most fundamental definitions from the logic
RZ, as laid out in [1]. In Section 2.2 we recall the corre-
sponding proof theory, based on a form of resolution for
this framework. In Section 3 we will simplify the proof
theory and provide a rule system which is simpler and
easier to work with. The remainder of the paper is de-
voted to determining conditions under which a resolution
theorem, in the form mentioned above, can be proven for
the logic RZ. These conditions will involve atomicity of
the underlying domain, studied in Section 4, and a form
of negation for these spaces, studied in Section 5. We will
conclude in Section 6.

An extended abstract of this paper appeared in [12].

2 PRELIMINARIES

2.1 The Logic RZ

A partially ordered set is a pair (D,v) , where D is
a nonempty set and v is a relexive, antisymmetric, and
transitive relation on D . A subset X of a partially or-
dered set is directed if for all x, y ∈ X there is z ∈ X
with x, y v z . An ideal is a directed and downward closed
set. A complete partial order, cpo for short, is a partially
ordered set (D,v) with a least element ⊥ , called the bot-

tom element of (D,v) , and such that every directed set
in D has a least upper bound, or supremum,

⊔

D . An
element c ∈ D is said to be compact or finite if whenever
c v

⊔

L with L directed, then there exists e ∈ L with
c v e . The set of all compact elements of a cpo D is de-
noted by K(D) . An algebraic cpo is a cpo such that every
e ∈ D is the directed supremum of all compact elements
below it.

∗ Artificial Intelligence Institute, Department of Computer Science, Dresden University of Technology, Germany,

E-mail: phitzler@t-online.de

ISSN 1335-3632 c© 2004 FEI STU

26 P. Hitzler: A GENERALIZED RESOLUTION THEOREM

A set U ⊆ D is said to be Scott open, or just open, if
it is upward closed and for any directed L ⊆ D we have
⊔

L ∈ U if and only if U ∩ L 6= 0. The Scott topology

on D is the topology whose open sets are all Scott open
sets. An open set is compact open if it is compact in the
Scott topology. A coherent algebraic cpo is an algebraic
cpo such that the intersection of any two compact open
sets is compact open. This coincides with the coherency
notion defined in [2], which may be consulted as basic
reference for domain theory. We will not make use of
many topological notions in the sequel. So let us note
that coherency of an algebraic cpo implies that the set of
all minimal upper bounds of a finite number of compact
elements is finite, ieif c1, . . . , cn are compact elements,
then the set mub{c1, . . . , cn} of minimal upper bounds of
these elements is finite. Note that mub ∅ = {⊥} , where
⊥ is the least element of D .

In the following, (D,v) will always be assumed to be
a coherent algebraic cpo. We will also call these spaces
domains. Two elements c, d ∈ D are called inconsistent,
symbolically c 6↑ d , if c and d have no common upper
bound.

Following [13], an element a ∈ D is called an atom, or
an atomic element, if whenever x v a we have x = a or
x = ⊥ . The set of all atoms of a domain is denoted by
A(D) .

Definition 2.1. Let D be a coherent algebraic cpo with
set K(D) of compact elements. A clause is a finite subset
of K(D) . We denote the set of all clauses over D by C(D) .
If X is a clause and w ∈ D , we write w |= X if there
exists x ∈ X with x v w , ie X contains an element
below w .

A theory is a set of clauses, which may be empty. An
element w ∈ D is a model of a theory T , written w |= T ,
if w |= X for all X ∈ T or, equivalently, if every clause
X ∈ T contains an element below w .

A clause X is called a logical consequence of a theory
T , written T |= X , if w |= T implies w |= X . If T =
{E} , then we write E |= X for {E} |= X . Note that this
holds if and only if for every w ∈ E there is x ∈ X with
x v w .

For two theories T and S , we say that T |= S if
T |= X for all X ∈ S . We say that T and S are (logically)
equivalent, written T ∼ S , if T |= S and S |= T . In order
to avoid confusion, we will throughout denote the empty
clause by {} , and the empty theory by ∅ . A theory T is
(logically) closed if T |= X implies X ∈ T for all clauses
X . It is called consistent if T 6|= {} or, equivalently, if
there is w with w |= T .

Rounds and Zhang originally set out to characterize
logically the notion of Smyth powerdomain of coherent al-
gebraic cpos. It naturally lead to the clausal logic RZ from
Definition 2.1. Indeed, as was shown in [1], the Smyth
powerdomain of any coherent algebraic domain is isomor-
phic to the set of all consistent closed theories over the
domain, ordered by set-inclusion. A corollary from the
proof is that a clause is a logical consequence of a theory

if and only if it is a logical consequence of a finite sub-
set of the theory, which is a compactness theorem for the
logic RZ.

Example 2.2. In [1], the domain T
ω from [14], here

denoted T
V , was given as a running example. Consider

some three-valued logic in the propositional case, with
the usual (knowledge)-ordering on the set T = {f ,u, t}
of truth values given by u < f and u < t . This induces a
pointwise ordering on the space T

V of all interpretations
(or partial truth assignments), where V is the (count-
ably infinite) set of all propositional variables in the lan-

guage under consideration. The partially ordered set T
V

is a coherent algebraic cpo. Compact elements in T
V are

those interpretations which map all but a finite number
of propositional variables to u . We denote compact ele-
ments by strings such as pqr , which indicates that p and
q are mapped to t and r is mapped to f .

We note that {e | e |= φ} is upward-closed for any
logical formula φ if considering eg Kleene’s strong three-
valued logic, which has been recognized as being impor-
tant in a logic programming context [15]. A clause in T

V

is a formula in disjunctive normal form, eg {pqr, pq, r}
translates to (p ∧ q ∧ ¬r) ∨ (¬p ∧ q) ∨ r .

We also note that every compact element in T
V can be

uniquely expressed as the supremum of a finite number
of atomic elements, and the set of all atomic elements is
A

(

T
V
)

= V ∪ {v | v ∈ V} . Furthermore, there exists a

bijective function : A
(

T
V
)

→ A
(

T
V
)

: p → p which
extends naturally to a Scott-continuous involution on all
of T

V via p1 . . . pn = p1 . . . pn . In the following, a clause
over a domain D will be called an atomic clause if it is a
finite subset of A(D) . Atomic clauses on T

V correspond
to propositional clauses in the classical sense. Note that
p 6↑ p for p ∈ A

(

T
V
)

and in general for all c ∈ K
(

T
V
)

we have c 6↑ c .

The following example shows how knowledge can be
represented in algebraic domains. For convenience, exam-
ples will be presented as subsets of T

V , in the notation
from Example 2.2.

Example 2.3. Consider the subspace of T
V constituted

by the elements ⊥ , b (is a bird), f (flies), f (does not
fly), a (lives in australia), s (lives near south pole),

bfs (is a penguin), and bfa (is an ostrich). Then eg
{

{b},
{

f
}}

|= {a, s} .

As to the knowledge representation capabilities of the
logic RZ, we remark that some first investigations have
exhibited a strong link to formal concept analysis [16, 17].

2.2 Resolution in the logic RZ

In [1], a sound and complete proof theory, using clausal

hyperresolution, was given as follows, where {X1, . . . , Xn}
is a clause set and Y a clause.

Xi; ai ∈ Xi (i ≤ n); mub{ai | i ≤ n} |= Y

Y ∪
⋃

i≤n (Xi \ {ai})
(hr)

Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 1-2, 2004 27

This rule is sound in the following sense: Whenever
w |= Xi for all i , then for any admissible choice of
the ai and Y in the antecedent, we have w |= Y ∪
⋃n

i=1 (Xi \ {ai}) .

For completeness, it is necessary to adjoin to the above
clausal hyperresolution rule a special rule which allows
the inference of any clause from the empty clause. We
indicate this rule as follows.

{}; Y ∈ C(D)

Y
(spec)

With this addition, given a theory T and a clause X with
T |= X , we have that T `∗ X , where `∗ stands for a fi-
nite number of applications of the clausal hyperresolution
rule together with the special rule.

Furthermore, [1, Remark 4.6] shows that binary hy-
perresolution, together with (spec), is already complete,
ie the system consisting of the binary clausal hyperreso-

lution rule

X1 X2; ai ∈ Xi; mub{a1, a2} |= Y

Y ∪ (X1 \ {a1}) ∪ (X2 \ {a2})
(bhr)

together with the special rule is sound and complete.

If the set {a1, a2} is inconsistent, then mub{a1, a2} =
{} . Since {} |= {} , clausal hyperresolution generalizes the
usual notion of resolution, given by the following rule.

X1 X2; ai ∈ Xi; a1 6↑ a2

(X1 \ {a1}) ∪ (X2 \ {a2})
(r)

Example 2.4. Returning to Example 2.3, note that

eg
{

{b},
{

f
}}

`
{

bfs, bfa
}

using (bhr).

3 SIMPLIFYING THE RESOLUTION SYSTEM

Note that two special instances of the clausal hyper-
resolution rule are as follows, which we call the reduction

rule and the extension rule.

X; {a, y} ⊆ X; y v a

X \ {a}
(red),

X; y ∈ K(D)

{y} ∪X
(ext)

Indeed, the first rule follows from (hr) since a ∈ X and
{a} |= {y} , while the latter rule follows since {a} |=
{a, y} for all y ∈ K(D) . The special rule (spec) can be
understood as an instance of (ext). Note also that reso-
lution (r) together with (ext) and (red) is not complete.
In order to see this, we refer again to Example 2.2. Let
T = {{p}, {q}} and X = {pq} . Then T |= X but there
is no way to produce X from T using (r), (ext) and (red)
alone. Indeed, it is easy to show by induction that any X
which can be derived from T by using only (r), (ext) and
(red), contains either p or q , which suffices.

It is our desire to provide a sound and complete sys-
tem whose rules are as simple as possible. Consider the

following rule, which we call simplified hyperresolution.
It is easy to see that it is an instance of (hr) and more
general than (r).

X1 X2; ai ∈ Xi

mub{a1, a2} ∪ (X1 \ {a1}) ∪ (X2 \ {a2})
(shr)

Theorem 3.1. The system consisting of (shr), (ext) and

(red) is complete.

P r o o f . In order to show completeness, we derive
(bhr) from (shr), (ext) and (red). Let X1 , X2 be given
with a1 ∈ X1 and a2 ∈ X2 with a1 ↑ a2 . Furthermore, let
Y be a clause with mub{a1, a2} |= Y . Let mub{a1, a2} =
{b1, . . . , bn} . Then for every bi there exists yi ∈ Y with
yi v bi . Using (shr), from X1 and X2 we can derive
X3 = mub{a1, a2} ∪ (X1 \ {a1}) ∪ (X2 \ {a2}) , and with
repeated application of (ext) and (red) we obtain from this
X4 = {y1, . . . , yn}∪(X1\{a1})∪(X2\{a2}) . Finally, using
(ext) repeatedly, we can add to X4 all remaining elements
from Y . The argumentation for a1 6↑ a2 is similar. This
completes the proof.

We note that a rule with weaker preconditions than
(red) suffices, which we call the weakening rule:

X; a ∈ X; y v a

{y} ∪ (X \ {a})
(w)

Indeed, (red) can be derived from (w) as follows. Let
{a, y} ⊆ X with y v a . Then in particular a ∈ X ,
ieusing (w) we can derive {y} ∪ (X \ {a}) which is equal
to X \ {a} since y is already contained in X . On the
other hand, (w) can be derived from (red) and (ext) as
follows. Let a ∈ X and y v a . If a = y then there is
nothing to show, so assume a 6= y . Then X ` X ∪{y} by
the extension rule, so the reduction rule can be applied,
yielding (X ∪ {y}) \ {a} as required.

The following technical result is inspired by
[18, Theorem 7].

Proposition 3.2. For clauses X1, . . . , Xn we have

{X1, . . . , Xn} |= X if and only if {{a1}, . . . , {an}} |= X
for all (a1, . . . , an) ∈ X1 × . . .×Xn .

P r o o f . Assume {X1, . . . , Xn} |= X and let ai ∈ Xi

be arbitrarily chosen for i = 1, . . . , n . Then {ai} Xi for
all i = 1, . . . n by (ext) and therefore {{a1}, . . . , {an}} |=
{X1, . . . , Xn} |= X .

Conversely, assume that {{a1}, . . . , {an}} |= X for
all (a1, . . . , an) ∈ X1 × . . . × Xn and let w ∈ D with
w |= {X1, . . . , Xn} , ie w |= Xi for all i = 1, . . . , n . Then
for all i = 1, . . . , n there is ai ∈ Xi with ai v w . So
for all i = 1, . . . , n choose ai with ai v w . Then w |=
{{a1}, . . . , {an}} and by assumption we obtain w |= X .

We call the system consisting of the rules (red), (ext)
and (shr) the RAD system, from Resolution in Algebraic

Domains. For two theories T and S , we write T `∗ S

28 P. Hitzler: A GENERALIZED RESOLUTION THEOREM

if T `∗ A for each A ∈ S , and for clauses X and Y
we write X `∗ Y , respectively X `∗ T , for {X} `∗ Y ,
respectively {X} `∗ T . The symbol ` denotes derivation
by a single application of one of the rules in RAD. With
slight abuse of notation, for two theories T and S we
allow to write T ` S if T ` X for some clause X and
S ⊆ T ∪ {X} .

We interpret the RAD rules in the setting of Example
2.2. We already know that clauses correspond to formulas
in disjunctive normal form (DNF), and theories to sets of
DNF formulas. The weakening rule acts on single clauses
and replaces a conjunction contained in a DNF formula by
a conjunction which contains a subset of the propositional
variables contained in the original conjunction, eg (p∧q)∨
r becomes p∨r . The extension rule disjunctively extends
a DNF formula by a further conjunction of propositional
variables, eg (p ∧ q) ∨ r becomes (p ∧ q) ∨ r ∨ (s ∧ q) .
The simplified hyperresolution rule finally takes two DNF
formulas, deletes one conjunction from each of them, and
forms a disjunction from the resulting formulas together
with the conjunction of the deleted items, eg (p ∧ q) ∨ r
and ¬p∨(s∧r) can be resolved to (p∧q)∨(r∧¬p)∨(s∧r) .

A more abstract interpretation of the RAD system
comes from a standard intuition underlying domain the-
ory. Elements of the domain D are interpreted as pieces
of information, and if x v y , this represents that y con-
tains more information than x . Compact elements are
understood as items which are computationally accessi-
ble. From this point of view, RAD gives a calculus for
reasoning about disjunctive information in computation,
taking a clause, iea finite set of computationally acces-
sible information items as disjunctive knowledge about
these items. The rules from RAD yield a system for de-
riving further knowledge from the given disjunctive in-
formation. The weakening rule states that we can replace
an item by another one which contains less information.
The extension rule states that we can always extend our
knowledge disjunctively with further bits of information.
Both rules decrease our knowledge. The simplified hy-
perresolution rule states that we can disjunctively merge
two collections of disjunctive information, while strength-
ening our knowledge by replacing two of the items from
the collections by an item which contains both pieces of
information, and deleting the original items.

Example 3.3. For Example 2.3, note that
{

{b},
{

f
}}

`
{

bfs, bfa
}

using (shr),
{

bfs, bfa
}

`
{

s, bfa
}

using (w),

and finally
{

s, bfa
}

` {s, a} using (w) again.

4 ATOMIC DOMAINS

We simplify proof search via resolution by requiring
stronger conditions on the domain.

Definition 4.1. An atomic domain is a coherent alge-
braic cpo D with the following property: For all c ∈
K(D) , the set A(c) = {p ∈ A(D) | p v c} is finite and
c =

⊔

A(c) .

The domain T
V from Example 2.2 is an example of an

atomic domain. In the remainder of this section, D will
always be an atomic domain.

We seek to represent a clause X by a finite set A(X) of
atomic clauses which is logically equivalent to X . Given
X = {a1, . . . , an} , we define A(X) as follows.

A(X) = {{b1, . . . , bn} | bi ∈ A(ai) for all i = 1, . . . , n}

Then the following theorem holds.

Theorem 4.2. For any clause X we have A(X) ∼ {X} .

P r o o f . For a clause X = {a1, . . . , an} set X/a1 =
{{b, a2, . . . , an} | b ∈ A(a1)} . Then X/a1 |= X . Indeed,
since

⊔

A(a1) = a1 we obtain mub A(a1) |= {a1} , and
therefore X/a1 `

∗ X from (hr).

Now let X = {a1, . . . , an} and let Y = {b1, . . . , bn} ∈
A(X) with bi ∈ A(ai) for all i . Then bi v ai for all i and
hence X `∗ Y by repeated application of the weakening
rule. Conversely, define for any compact element a and
any set T of clauses: T/a = {Z ∈ T | a 6∈ Z} ∪ {{b} ∪
(Z \ {a}) | b ∈ A(a), a ∈ Z ∈ T} . So for any clause Z
and a ∈ Z we have {Z}/a = Z/a and we obtain that
T/a |= T for all sets of clauses T and a ∈ K(D) . Now let
X = {a1, . . . , an} . Then (. . . (X/a1)/a2 . . .)/an = A(X)
and consequently A(X) |= X , which completes the proof.

In view of Theorem 4.2, it suffices to study T `∗ X for
theories T and atomic clauses X . We can actually obtain
a stronger result, as follows, which provides some kind
of normal forms of derivations. For a theory T , define
A(T) = {A(X) | X ∈ T} .

Theorem 4.3. Let D be an atomic domain, T be a

theory, X be a clause and

T ` T1 ` · · · ` TN ` X

be a derivation in RAD. Then there exists a derivation

A(T) `∗ A(T1) `
∗ · · · `∗ A(TN) `∗ A(X)

using only the atomic extension rule

X; y ∈ A(D)

{y} ∪X
(axt)

and the multiple atomic shift rule (mas), as follows.

ai ∈ Xi; mub{ai | i ≤ n} = {xj | j ≤ m}; bi ∈ A(xi)

{b1, . . . , bm} ∪
⋃

i≤n(Xi \ {ai})

Furthermore, all clauses occuring in the derivation are

atomic.

P r o o f . Let X1, X2, X be clauses. We distinguish
three cases, from which the assertion follows easily by
induction on N .

Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 1-2, 2004 29

1. X1 ` X using the reduction rule. First note that
the following atomic shift rule (ash) is a special instance
of the multiple atomic shift rule.

a1 ∈ X1 a2 ∈ X2; a ∈ A(x) for all x ∈ mub{a1, a2}

{a} ∪ (X1 \ {a1}) ∪ (X2 \ {a2})

Indeed, (ash) follows from (mas) with n = 2 and
a = b1 = . . . = bk . Now let a, y ∈ X1 with y v
a and X = X1 \ {a} = {y, x1, . . . , xn} . Let A ∈
A(X) , say A = {y′, x′

1, . . . , x
′
n} with y′ ∈ A(y) and

x′
i ∈ A(xi) for all i . Without loss of generality we

can assume that A(y) ⊂ A(a) , so there is {a′} ∪
A ∈ A(X1) for some a′ ∈ A(a) \ A(y) . So we now
have a′, y′ v a and y′ v y , ie {y′, a′, x′

1, . . . , x
′
n} ∈

A(X1) and {y′, y′, x′
1, . . . , x

′
n} = A ∈ A(X1) . So a′ ∈

{y′, a′, x′
1, . . . , x

′
n} , y′ ∈ {y′, y′, x′

1, . . . , x
′
n} and since

y′ v x for all x ∈ mub{y′, a′} we can derive {y′} ∪
({y′, a′, x′

1, . . . , x
′
n} \ {a

′})∪ ({y′, y′, x′
1, . . . , x

′
n} \ {y

′}) =
{y′, x′

1, . . . , x
′
n} = A using the atomic shift rule.

2. X1 ` X using the extension rule, ie X = X1 ∪ {y}
for some y . Let A ∈ A(X) . Then A = {y′} ∪ Y for some
y′ ∈ A(y) and Y ∈ A(X1) . Using the atomic extension
rule we can derive Y ` A and therefore A(X1) ` A using
the atomic extension rule only, which suffices.

3. {X1, X2} ` X using the simplified hyperresolution
rule. Let a1 ∈ X1 , a2 ∈ X2 and X = mub{a1, a2}∪(X1\
{a1})∪(X2\{a2}) . Furthermore, let M = mub{a1, a2} =
{m1, . . . ,mk} and let A ∈ A(X) , ie A = {m′

1, . . . ,m
′
k} ∪

B1 ∪B2 , where m′
i ∈ A(mi) for all i , B1 ∈ A(X1 \ {a1})

and B2 ∈ A(X2 \ {a2}) . Note that for all a′
1 ∈ A(a1) we

have that B1 ∪ {a
′
1} ∈ A(X1) and for all a′

2 ∈ A(a2) we
have that B2 ∪ {a

′
2} ∈ A(X2) . Let A(a1) = {a′

1, . . . , a
′
k1
}

and A(a2) = {a′
k1+1, . . . , a

′
k1+k2

} . For i = 1, . . . , k1 let

Yi = B1 ∪ {a
′
i} ∈ A(X1) and for i = k1, . . . , k1 + k2 let

Yi = B2 ∪ {a
′
i} ∈ A(X2) . Since a1 =

⊔

A(a1) and a2 =
⊔

A(a2) we have mub (A(a1) ∪ A(a2)) = mub{a1, a2} =
{m1, . . . ,mk} = M . From the multiple atomic shift rule
we obtain (with i ≤ k1 + k2 and j ≤ k)

ai ∈ Yi mub{a′
1, . . . , a

′
k1+k2

} = M, m′
j ∈ A(mj)

{m′
1, . . . ,m

′
k} ∪

⋃

i≤k1+k2
(Yi \ {ai})

Since Yi \{a
′
i} ⊆ B1 for i = 1, . . . , k1 and Yi \{a

′
2} ⊆ B2

for i = k1, . . . , k1 + k2 , we obtain {m′
1, . . . ,m

′
k} ∪

⋃

(Yi \
{ai}) ⊆ A which suffices by the atomic extension rule.

Note that the atomic extension rule is a special case of
the extension rule, and that the multiple atomic shift rule
can be obtained as a subsequent application of first the
hyperresolution rule (with Y = mub{a1, . . . , an}) and
then multiple instances of the reduction rule, hence both
rules are sound.

R e m a r k 4.4 . We note that Theorem 4.3 does not
hold if (mas) is replaced by its binary version (bas), as
follows.

a1 ∈ X1, a2 ∈ X2;mub{a1, a2} = {x1 | i ≤ k}; bi ∈ A(xi)

{b1, . . . , bk} ∪ (X1 \ {a1}) ∪ (X2 \ {a2})

In order to see this, consider three atomic elements
a1, a2, a3 which are mutually consistent with supre-
mum sup{ai, aj} = aij , but do not have a common
upper bound. Then {{a1}, {a2}, {a3}} |= {} , but the
empty clause {} cannot be derived from the theory
T = {{a1}, {a2}, {a3}} using (axt) and (bas) alone. In-
deed it is easy to show by induction that every clause
which is derived from T using applications of (axt) and
(bas) always contains one of the elements a1 , a2 or a3 .

5 DOMAINS WITH NEGATION

We introduce and investigate a notion of negation on
domains, motivated by classical negation as in Exam-
ple 2.2.

Definition 5.1. An atomic domain is called an atomic

domain with negation if there exists an involutive and
Scott-continuous negation function : D → D with the
following properties:

(i) maps A(D) onto A(D) .

(ii) For all p, q ∈ A(D) we have p 6↑ q if and only if
q = p .

(iii) For every finite subset A ⊆ A(D) such that p ↑ q
for all p, q ∈ A , the supremum

⊔

A exists.

T
V from Example 2.2 is an example of an atomic

domain with negation.

Proposition 5.2. Let D be an atomic domain with

negation. Then for all c ∈ K(D) we have

c =
⊔

{a | a ∈ A(c)} .

P r o o f . Let c ∈ K(D) . Then c =
⊔

A(c) , hence A(c)
is consistent. By (ii) of Definition 5.1, we obtain that
every pair of elements from {a | a ∈ A(c)} is consistent,
and by (iii) the supremum d =

⊔

{a | a ∈ A(c)} exists.
From monotonicity of , we obtain first d v c , and then

d v c = c . But, again by monotonicity of , we know

that d is an upper bound of A(c) , hence c v d , and

consequently c = d and c = d =
⊔

{a | a ∈ A(c)} as
required.

The following result, an analogon to the resolution the-
orem mentioned in the introduction, allows one to replace
the search for derivations by search for contradiction.

Theorem 5.3. Let D be an atomic domain with nega-

tion. Let T be a theory and X be an atomic clause. Then

T |= X if and only if T ∪ {{ā} | a ∈ X} `∗ {} .

P r o o f . Assume T |= X .
Then T `∗ X and {X} ∪ {{ā} | a ∈ X} `∗ {} follows
easily by repeated application of the resolution rule (r).

Conversely, assume T ∪ {{a} | a ∈ X} `∗ {} , ie

T∪{{a} | a ∈ X} |= {} . If T |= {} then T `∗ {} `∗ X . So
assume that T 6|= {} , iethere exists w ∈ D with w |= T .
We have to show that w |= X for every such w . Since
w |= T but w 6|= T ∪ {{a} | a ∈ X} , we have that there
is a ∈ X with a 6↑ w . Hence there exists x ∈ A(w) with

30 P. Hitzler: A GENERALIZED RESOLUTION THEOREM

x 6↑ a . From the hypothesis we obtain x = a . Hence
a v w and therefore, by the weakening rule, w `∗ X , ie

w |= X .

On atomic domains with negation, we can therefore
establish the following sound and complete proof princi-
ple.

Theorem 5.4. Let T be a theory and X a clause. Con-

sider T ′ = A(T) . For every atomic clause A ∈ A(X)
attempt to show T ′ ∪ {{a} | a ∈ A} `∗ {} using (axt)
and (mas). If this succeeds, then T |= X . Conversely, if

T |= X then there exists a derivation

T ′ ∪ {{a} | a ∈ A} `∗ {} for each A ∈ A(X) using only

the above mentioned rules.

P r o o f . If T ′ ∪ {{a} | a ∈ A} `∗ {} , then by Theo-
rem 4.3 the derivation can be carried out using only the
mentioned rules and we obtain T ′ ∪ {{a} | a ∈ A} |= {} .
By Theorem 5.3 we obtain T ′ |= A , so T ′ |= A for all
A ∈ A(X) . By Theorem 4.2 this yields T ′ |= X and fi-
nally we obtain T |= X by application of Theorem 4.2,
noting that T ′ = A(T) ∼ T .

Conversely, if T |= X then we have T ′ |= A for all
A ∈ A(X) , again by Theorems 4.2. Theorem 5.3 then
yields T ′ ∪ {{a} | a ∈ A} `∗ {} for all A ∈ A(X) , and
finally from Theorem 4.3 we obtain that this derivation
can be done using only the designated rules.

Example 5.5. We give an abstract example, again using
notation from Example 2.2, which shows that reasoningin
atomic domains with negation does not lead directly back
to resoning in T

V . Consider the subcpo constituted by the
elements {⊥, p, q, r, p, q, r, pqr, pqr, pq, pr, qp, qr, rp, rq} ,
which is an atomic domain with negation. Then eg

{{p}, {q}} |= {r} . Indeed, {{p}, {q}, {r}} ` {} by (mas)
because mub{p, q, r} = {} .

6 CONCLUSIONS

We have shown that for certain domains logical con-
sequence in the logic RZ can be reduced to search for
contradiction, a result which yields a proof mechanism
similar to that underlying the resolution principle used
in resolution-based logic programming systems. The re-
sult should be understood as foundational for establish-
ing logic programming systems on hierarchical knowledge
— like eg in formal concept analysis — built on a firm
domain-theoretic background. Further research is being
undertaken to substantiate this.

References

[1] ROUNDS, W. C.—ZHANG, G.-Q. : Clausal Logic and Logic

Programming in Algebraic Ddomains, Information and Compu-

tation 171 No. 2 (2001), 156–182.

[2] ABRAMSKY, S.—JUNG, A. : Domain theory, Handbook of

Logic in Computer Science, volume 3 (Samson Abramsky, Dov

Gabbay, and Thomas S.E. Maibaum, eds.), Clarendon, Oxford,

1994.

[3] SCOTT, DANA S. : Domains for Denotational Ssemantics, Pro-

ceedings of Automata, Languages and Programming, 9th Collo-

quium, July 1982, Aarhus, Denmark, Lecture Notes in Computer

Science (Magens Nielsen and Erik M. Schmidt, eds.), vol. 140,

Springer, Berlin, 1982, pp. 577–613.

[4] SMYTH, M. B. : Powerdomains and Predicate Transformers:

A Topological View, Proceedings of Automata, Languages and

Programming, 10th Colloquium, July 1989, Barcelona, Spain,

Lecture Notes in Computer Science (Josep Dı́az, ed.), vol. 298,

Springer, Berlin,, 1989, pp. 662–675.

[5] ABRAMSKY, S. : Domain Theory in Logical Form, Annals of

Pure and Applied Logic 51 (1991), 1–77.

[6] ZHANG, G.-Q. : Logic of Domains, Birkhäuser, Boston, 1991.

[7] HITZLER, P. : Generalized Metrics and Topology in Logic Pro-

gramming Semantics, PhD Thesis, Department of Mathematics,

National University of Ireland, University College Cork, 2001.

[8] HITZLER, P.—SEDA, A.-K. : Generalized Metrics and Unique-

ly Determined Logic Programs, Theoretical Computer Science

305 No. 1-3 (2003), 187–219.

[9] ZHANG, G.-Q.—ROUNDS, W. C. : Semantics of Logic Pro-

grams and Representation of Smyth Powerdomains., Domains

and Processes (Klaus Keimel et al , eds.), Kluwer, 2001,

pp. 151–179.

ROBINSON, J. A. : A Machine-Oriented Logic Based on the

Resolution Principle, Journal of the ACM 12 No. 1 (1965),

23–41.

[11] LLOYD, J. W. : Foundations of Logic Programming, Springer,

Berlin, 1988.

[12] HITZLER, P. : A Resolution Theorem for Algebraic Domains,

Proceedings of the 18th International Joint Conference on Arti-

ficial Intelligence, Acapulco, Mexico, August 2003 (Georg Gott-
lob and Toby Walsh, eds.), Morgan Kaufmann Publishers, 2003,

pp. 1339–1340.

[13] JOHNSTONE, P. T. : Stone Spaces, Number 3 in Cambridge

Studies in Advanced Mathematics, Cambridge University Press,

1982.

[14] PLOTKIN, G. : T
ω as a Universal Domain, Journal of Com-

puter and System Sciences 17 (1978), 209–236.

[15] FITTING, M. : A Kripke-Kleene-Semantics for General Logic

Programs, The Journal of Logic Programming 2 (1985), 295-312.

[16] HITZLER, P.—WENDT, M. : Formal Concept Analysis and

Resolution in Algebraic Domains, Using Conceptual Structures

— Contributions to ICCS 2003 (Aldo de Moor and Bernhard

Ganter, eds.), Shaker Verlag, Aachen, 2003, pp. 157–170.

[17] ZHANG, G.-Q. : Chu Spaces, Concept Lattices, and Domains,

Proceedings of the Nineteenth Conference on the Mathematical

Foundations of Programming Semantics, March 2003, Montreal,

Canada, volume 83 of Electronic Notes in Theoretical Computer

Science, 2003.

[18] COQUAND, T.—ZHANG, G.-Q. : Sequents, Frames, and Com-

pleteness, 14th International Workshop on Computer Science

Logic, Fischbachau, Germany, August 2000, Lecture Notes in

Computer Science, vol. 1862, Springer, 2000, pp. 277–291.

Received 6 October 2003

Pascal Hitzler (PhD, Dipl-Math), born 1971 in Germany,
studied Mathematics and Computer Science at the University
of Tübingen, completed with distinction in 1998. He then was
a PhD student of Dr. Anthony K. Seda at the National Uni-
versity of Ireland, University College Cork, where he finished
his dissertation in Mathematics in 2001. Since then, he is a
research assistant of Prof. Dr. Steffen Hölldobler at the Ar-
tificial Intelligence Institute at the Department of Computer
Science of Dresden University. His published papers eg in pure
mathematics (topology and fixed-point theory), foundations of
artificial intelligence (domain-theoretic aspects of knowledge
representation and reasoning; logic and connectionism) and
in programming language semantics (in particular logic pro-
gramming). He is also actively involved in running enhance-
ment programmes for skilled high-school students. Homepage:
www.wv.inf.tu-dresden.de/∼pascal/

In: Aldo de Moor and Bernhard Ganter (Eds.): Using Conceptual Structures - Contributions to ICCS 2003.

Shaker Verlag, Aachen, ISBN 3-8322-1705-3, pp. 157-170.

	Nichtmonotone, Neuro-Symbolische und Begriffliche Wissensverarbeitung
	Repository Citation

	tmp.1408724487.pdf.usDqB

