
Wright State University Wright State University

CORE Scholar CORE Scholar

Computer Science and Engineering Faculty
Publications Computer Science & Engineering

8-2013

Scale Reasoning with Fuzzy-Scale Reasoning with Fuzzy-EL+ Ontologies based on MapReduce + Ontologies based on MapReduce

Zhangquan Zhou

Guilin Qi

Chang Lui

Pascal Hitzler
pascal.hitzler@wright.edu

Raghava Mutharaju

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

 Part of the Computer Sciences Commons, and the Engineering Commons

Repository Citation Repository Citation
Zhou, Z., Qi, G., Lui, C., Hitzler, P., & Mutharaju, R. (2013). Scale Reasoning with Fuzzy-EL+ Ontologies
based on MapReduce. .
https://corescholar.libraries.wright.edu/cse/215

This Conference Proceeding is brought to you for free and open access by Wright State University’s CORE Scholar.
It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized
administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/36749063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse_comm
https://corescholar.libraries.wright.edu/cse?utm_source=corescholar.libraries.wright.edu%2Fcse%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fcse%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fcse%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Scale reasoning with fuzzy-EL+ ontologies based on MapReduce
Zhangquan Zhou1 and Guilin Qi1 and Chang Liu2 and Pascal Hitzler3 and Raghava Mutharaju3

1Southeast University, China
{quanzz, gqig}@seu.edu.cn

2Shanghai Jiao Tong University, China
liuchang@apex.sjtu.edu.cn

3Wright State University, United States
{pascal.hitzler, mutharaju.2}@wright.edu

Abstract
Fuzzy extension of Description Logics (DLs) al-
lows the formal representation and handling of
fuzzy or vague knowledge. In this paper, we con-
sider the problem of reasoning with fuzzy-EL+,
which is a fuzzy extension of EL+. We first iden-
tify the challenges and present revised completion
classification rules for fuzzy-EL+ that can be han-
dled by MapReduce programs. We then propose an
algorithm for scale reasoning with fuzzy-EL+ on-
tologies using MapReduce. Some preliminary ex-
perimental results are provided to show the scala-
bility of our algorithm.

1 Introduction
The Web Ontology Language OWL which is essentially
based on the description logics, has been designed as one
of the major standards for formal knowledge representation
and automated reasoning in Semantic Web. OWL 2 EL based
on description logic EL++, a restricted language of OWL 2,
stands out for its positive complexity results and the sufficient
expressive power for many real ontologies, such as the medi-
cal ontology Snomed-CT.

However, description logics are not able to represent fuzzy
information, which is available in some applications, such as
multimedia and bioinformatics. Fuzzy extension of descrip-
tion logics has been proposed using fuzzy sets and fuzzy log-
ics [Klir and Yuan, 1995] to provide more expressive power.
One of the challenging problems of fuzzy description logics is
reasoning with large scale fuzzy ontologies. Such ontologies
can be extracted from different sources, such as multimedia
(see [Dalakleidi et al., 2011]).

Parallel reasoning is an obvious choice to easily achieve
the scalability goal. There have been some works covering it.
One of the most successful attempts is WebPIE [Urbani et al.,
2010], an efficient inference engine for large amount of RDF
triples under pD∗ semantics [ter Horst, 2005] using MapRe-
duce framework. This work is further extended in [Liu et al.,
2011] to handle fuzzy knowledge. In [Mutharaju et al., 2010]
a parallel classification algorithm using MapReduce is given
for classical EL+. However, this algorithm is not optimized
for implementation and cannot handle reasoning in fuzzy on-
tologies. A concurrent method based on multi-core system

is discussed in [Kazakov et al., 2011] to reason with classi-
cal EL ontologies, which makes use of multiple cores and the
implemented system, ELK performs well in reasoning with
large ontologies. A parallel reasoner for ALC is introduced
in [Wu and Haarslev, 2012], which is a tableau-based descrip-
tion logic reasoner.

In this paper, we consider a fuzzy extension of EL+, called
fuzzy-EL+, which is introduced in [Stoilos et al., 2008]. Al-
though a polynomial time algorithm is given to classify fuzzy-
EL+ ontologies, no experimental evaluation is reported in
that work. In order to provide scalable reasoning in fuzzy-
EL+, we consider using MapReduce. We first identify the
difficulties and challenges to do fuzzy-EL+ classification us-
ing MapReduce framework. We then revise the completion
fuzzy-EL+ rules that can be handled by MapReduce pro-
grams and implement a prototype system. We provide some
experimental evaluations and prove that our algorithm can
scale to fuzzy-EL+ ontologies.

2 Preliminaries
2.1 fuzzy-EL+

fuzzy-EL+ is a fuzzy extension of the description logic EL+,
which is introduced in [Stoilos et al., 2008]. Concepts in
fuzzy-EL+ are defined according to the following grammar:

C,D ::= >|A|C uD|∃r.C
whereA ranges over the set of concept names (CN) and r over
the set of role names (RN). A fuzzy-EL+ ontology is a finite
set of fuzzy general concept inclusions (F-GCIs) of the form
〈C v D,n〉, where n ∈ (0, 1], and role inclusions (RIs) of
the form r1◦, ..., ◦rk v s, where k is a positive integer. Note
that the role inclusions axioms are not fuzzified in [Stoilos et
al., 2008].

A polynomial algorithm is given to perform classification
of fuzzy-EL+ ontologies, i.e., it computes all fuzzy subsump-
tions between concepts of the input ontology O. The algo-
rithm first transforms the given ontologyO into normal form,
where all concept inclusions are one of the forms:

〈A1 u ... uAk v B,n〉
〈A v ∃r.B, n〉

〈∃r.B v A,n〉

Table 1: A simple medical ontology
α1 ElbowJoint v Joint 0.9
α2 ElbowJoint v ∃hasLocation.Elbow 0.8
α3 Joint v ∃isPartOf.Body 0.6
α4 ∃isPartOf.Elbow v PartOfArm 0.8
α5 hasLocation v isPartOf

Table 2: A fragment of reasoning

(1)〈ElbowJoint, 1〉 ∈ S(ElbowJoint)
(2)〈Elbow, 1〉 ∈ S(Elbow)
(3)〈Joint, 0.9〉 ∈ S(ElbowJoint) R1:α1,(1)
(4)〈ElbowJoint,Body,0.6〉 ∈ R(isPartOf) R2:α3,(3)
(5)〈ElbowJoint,Elbow,0.8〉 ∈ R(hasLocation) R2:α2,(1)
(6)〈ElbowJoint,Elbow,0.8〉 ∈ R(isPartOf) R4:α5,(5)
(7)〈PartOfArm,0.8〉 ∈ S(ElbowJoint) R3:α4,(2)(6)

and all role inclusions are of the form r1 ◦ r2 v s or r v s.
The normalization can be done in liner time [Stoilos et al.,
2008]. In the following, we assume that an input ontology O
is in normal form.

The algorithm is formulated by two mappings S and R,
where S ranges over subsets of CN×[0, 1] andR over subsets
of CN×CN×[0, 1]. Intuitively, 〈B,n〉 ∈ S(A) implies 〈A v
B,n〉 and 〈A,B, n〉 ∈ R(r) implies 〈A v ∃r.B, n〉. S(A)
and R(r) are initialized as follows:

S(A) = {〈A, 1〉, 〈>, 1〉}, for each class name A in the
input ontology O.
R(r) = ∅, for each role name in O.

Then the two sets S(A) and R(r) are extended by applying
the completion rules in Table 3 until no more rules can be
applied.

This algorithm runs in polynomial time and it is sound and
complete [Stoilos et al., 2008], i.e., after termination on the
given ontology O, 〈A v B,n〉 if and only if 〈B,m〉 ∈ S(A)
holds, where n,m ∈[0,1] and m ≥ n.

2.2 An example of fuzzy-EL+ reasoning
We use an example to illustrate the procedure of fuzzy-EL+

reasoning. A simple medical ontology is given in Table 1 and
it is already in normalized form. α1-α4 are F-GCI axioms.
They express that an elbow joint is a joint (α1) and has loca-
tion in elbow (α2), a joint is a part of body (α3), a stuff which
is a part of elbow is also a part of arm (α4). Each F-GCI
axiom has a fuzzy value. The last axiom (α5) is a RI axiom
which means has-location is more specific than is-part-of.

In Table 2 we show how the consequence subsumptions
〈 ElbowJointvPartOfArm , 0.8 〉 (corresponding to (7)) and
〈 ElbowJointv ∃isPartOf.Body, 0.6〉 (corresponding to (4))
can be derived using the reasoning rules in Table 3.

2.3 MapReduce
MapReduce is a programming model for parallel processing
over huge data sets [Dean and Ghemawat, 2004]. A MapRe-
duce task consists of two main phases: map phase and reduce

Table 3: Completion rules for fuzzy-EL+

R1 If 〈A1, n1〉 ∈ S(X), ..., 〈Al, nl〉 ∈ S(X),
〈A1 u ... uAl v B, k〉 ∈ O and
〈B,m〉 /∈ S(X), where m = min (n1, ..., nl, k)
then S(X) := S(X) ∪ 〈B,m〉,
where m = min (n1, ..., nl, k)

R2 If 〈A,n〉 ∈ S(X), 〈A v ∃r.B, k〉 ∈ O, and
〈X,B,m〉 /∈ R(r), where m = min (n, k)
then R(r) := R(r) ∪ 〈X,B,m〉,
where m = min (n, k)

R3 If 〈X,Y, n1〉 ∈ R(r), 〈A,n2〉 ∈ S(Y),
〈∃r.A v B,n3〉 ∈ O, and
〈B,m〉 /∈ S(X), where m = min (n1, n2, n3)
then S(X) := S(X) ∪ 〈B,m〉,
where m = min (n1, n2, n3)

R4 If 〈X,Y n〉 ∈ R(r), r v s ∈ O, and 〈X,Y n〉 /∈ R(s)
then R(s) := R(s) ∪ 〈X,Y, n〉

R5 If 〈X,Y, n1〉 ∈ R(r), 〈Y,Z, n2〉 ∈ R(s),
r ◦ s v t ∈ O, and
〈X,Z,m〉 /∈ R(t), where m = min (n1, n2)
then R(t) := R(t) ∪ 〈X,Z,m〉,
where m = min (n1, n2)

phase. Several tasks complete a MapReduce job which solves
a specific problem.

In map phase, a user-defined map function receives a
key/value pair and outputs a set of key/value pairs. All the
pairs sharing the same key are grouped and passed to reduce
phase. Then a user-defined reduce function is set up to pro-
cess the grouped pairs. The outcome of reduce nodes may
be the results of the overall job or the intermediate input of
following tasks. The grouping procedure between map and
reduce phase is called shuffle which is the key factor to deter-
mine the efficiency of a task. The functionalities of map and
reduce nodes can be formulated as:

Map: (key1, value1) 7→ list(key2, value2),

Reduce: (key2, list(value2)) 7→ list(value3).

We give an example on how to use MapReduce programs
to apply a rule. We use the previous example and con-
sider the rule R2 in Table 3 on α3 and (3). In a naive rea-
soning program, the map function first scans the dataset.
When the axiom 〈Jointv ∃isPartOf.Body, 0.6〉 is scanned,
it generates a key/value pair (key=’Joint’, value={Jointv
∃isPartOf.Body, 0.6}). When 〈Joint, 0.9〉 ∈ S(ElbowJoint)
is scaned, it generates a pair (key=’Joint’, value ={〈Joint,
0.9〉 ∈ S(ElbowJoint)}). Then the reduce function processes
outputs of map function that share the same key. It iterates
the collected values and computes the fuzzy value. Finally
the reduce function generates the consequence subsumption 〈
ElbowJointv ∃isPartOf.Body, 0.6〉.

Here are some principles for designing an efficient MapRe-
duce program:

i Always keep in mind to make full use of the throughout
capacity of clusters.

ii Do not increase the burden of shuffle phase unless nec-
essary.

Table 4: The correspondence between tables and sets
(l, A1, ..., Al, B, n) ∈ H ↔ 〈A1 u ... uAl v B,n〉 ∈ O,

(A,B, n) ∈ I ↔ 〈A v B,n〉 ∈ O,
(A, r,B, n) ∈ J ↔ 〈A v ∃r.B, n〉 ∈ O,
(r,A,B, n) ∈ K ↔ 〈∃r.A v B,n〉 ∈ O,

(r, s) ∈ L ↔ r v s ∈ O,
(r, s, t) ∈M ↔ r ◦ s v t ∈ O,
(X,A, n) ∈ S ↔ 〈A,n〉 ∈ S(X),

(r,X, Y, n) ∈ R ↔ 〈X,Y, n〉 ∈ R(r).

iii Minimize the number of MapReduce tasks due to the
overhead of one MapReduce task.

iv Carefully design the data structures for faster and more
efficient processing of MapReduce cluster.

The tradeoff between these principles lead us to design and
optimize our algorithms in following work.

3 MapReduce Algorithms for fuzzy-EL+

Classification
3.1 Challenges in fuzzy-EL+ reasoning
We summarize two main challenges of reasoning on fuzzy-
EL+ using MapReduce, and give our methods to deal with
them.

Translating rules using MapReduce language. The
rules in Table 3 can not be directly realized by MapReduce,
since the input data for MapReduce should be translated into
key/value pairs. We consider to reconstruct the rules in tab-
ular form. In detail, we create eight tables (see Table 4) cor-
responding to the different forms of axioms in sets O, S and
R, where H, I,J ,K,L,M,S,R are tables which contain
several tuples, for example the table I contains the tuples of
the form (A,B, n) and these tuples can be easily translated to
a key/value pair like (key=I, value = {A,B, n}). Therefore
the rules can be rewritten using the operations on tables. For
example, rule R2 is rewritten as:

R2 If (X,A, n1) ∈ S, (A, r,B, n2) ∈ J and (r,X,B,m) /∈
R, wherem = min(n1, n2), thenR := R∪(r,X,B,m),
where m = min(n1, n2).

The other rules can be rewritten similarly. In this way, the
procedure of applying rules can be regarded as the sequences
of operations on these tables. For R2, an application of it
can be treated as a 2-way join between S and J (formulated
as S ./ J) in which A is the joint. It is easy to prove the
correctness of the rules in tabular form by the correspondence
between the eight tables and the axioms in the sets O, S and
R.

Multiple joints. In Table 3, the rules R1, R3 and R5
have multiple joints (more than one) in their preconditions.
As mentioned above, these rules can be seen as multi-way
joins (for example R3 can be formulated as a 3-way join
R ./ S ./ K). It is easy for MapReduce to handle 2-way
joins like the example in section 2.3 but not for multi-way
joins. In our case, R2 and R4 can be directly handled by

Table 5: Revised fuzzy-EL+ rules

Key Completion Rule For MapReduce
If 〈Aj , n1〉 ∈ S(X) and 〈i, B, l, n2〉 ∈ T (Aj)

Aj R1-1 then P (X) := P (X) ∪ {〈i, Aj , B, l,m〉},
where m = min(n1, n2),
i = (〈A1 u ... uAj u ... uAl v B,n2〉)
If 〈i, A1, B, l, n1〉 ∈ P (X),...,
〈i, Al−1, B, l, nl−1〉 ∈ P (X)

A.i R1-2 and〈i, Al, B, l, nl〉 ∈ P (X)
then S(X) := S(X) ∪ {〈B,m〉},
where m = min(n1, ..., nl−1, nl)
If 〈A,n1〉 ∈ S(X) and 〈A v ∃r.B, n2〉 ∈ O

A R2 then R(r) := R(r) ∪ {〈X,B,m〉},
where m = min(n1, n2)
If 〈A,n1〉 ∈ S(Y) and 〈∃r.A v B,n2〉 ∈ O

A R3-1 then Q(X) := Q(r) ∪ {〈Y,B,m〉},
where m = min(n1, n2)
If 〈X,Y, n1〉 ∈ R(r) and 〈Y,B, n2〉 ∈ Q(r)

Y.r R3-2 then S(X) := S(X) ∪ {〈B,m〉},
where m = min(n1, n2)

r R4 If 〈X,Y, n〉 ∈ R(r) and r v s ∈ O
then R(s) := R(s) ∪ {〈X,Y, n〉}
If 〈X,Z, n1〉 ∈ R(r) and
〈Z, Y, n2〉 ∈ R(s) and r ◦ s v t ∈ O

Z R5 then R(t) := R(t) ∪ {〈X,Y,m〉},
where m = min(n1, n2)

MapReduce programs and the remaining rules need to be
modified. We give revised fuzzy-EL+ rules in Table 5 and
in following sections, we will discuss why we adopt these
modifications.

3.2 Handling R1
The rule R1 handles the concept conjunction inclusion (CCI)
axioms. A CCI axiom is in the form of 〈A1u...uAl v B,n〉,
where l ≥ 1 (〈A v B,n〉 is a special case with l = 1). The
application of R1 is a complex multi-way join on tables S and
H,and it is not intuitive to split the multi-way join into several
2-way joins.

In order to handle R1 using MapReduce programs, we first
introduce a function I and a mapping T . The function I as-
signs each CCI axiom in input ontology O an integer that is
used as the identifier of the axiom. To create T , we first set
T (X) as ∅ for each X in CN. Then for every CCI axiom like
〈A1u ...uAj u ...uAl v B,n〉, each conceptAj (i ≤ j ≤ l)
occurring in the left side of B is checked and its correspond-
ing set T (Aj) is extended as:
T (Aj) := T (Aj) ∪ {〈i, B, l, n〉} where i = I(〈A1 u ... u

Aj u ... uAl v B,n〉).
In this way, 〈A1 u ... u Al v B,n〉 can be replaced by

〈i, B, l, n〉 ∈ T (A1),..., 〈i, B, l, n〉 ∈ T (Al).
We get T and I before reasoning and use a new map-

ping P to split R1 into R1-1 and R1-2 in Table 5.
〈i, Aj , B, l,m〉 ∈ P (X) (i = (〈A1 u ... u Aj u ... u Al v
B,n〉)) means thatX is subsumed byAj with the fuzzy value
m and Aj occurs in the concept conjunction of the axiom

Table 6: Effects of intermediate results

ontology QR./S QR./K QS./K
no. of tuples/M 163 1638 40

GALEN utilization ratio 1.61% 1.36% 12.81%
total cost time
of R3/minutes 33 580 27

〈A1u ...uAj u ...uAl v B,n〉. P (X) contains the interme-
diate or incomplete derived information that is used only in
R1-2 to complete the work of R1. The length of conjunction
l is recorded in P (X) and used in R1-2 to check whether all
concepts in conjunction (A1 u ... uAl) are collected.

If we transform the mappings T and P to tables T and P ,
the application of R1 can be represented by a sequence of two
2-way joins, respectively S ./ T and P ./ P , which can be
easily handled by MapReduce programs, i.e., we can use two
MapReduce tasks to handle R1-1 and R1-2. The keys A.i
in the left side of R1-2 means that A and i are both used to
construct the key.

3.3 Handling R3
As mentioned in section 3.1, the application of R3 can be seen
as a 3-way join on tablesR, S and K, formulated as:
R(r,X, Y, n1) ./ S(Y,A, n2) ./ K(r,A,B, n3)

This 3-way join can be completed by two 2-way joins be-
cause the two joins in the 3-way join can be done sequentially,
i.e., we can first join two of the three tables and then join the
intermediate result with the third one. Since any two tables
share a common joint, there are three join orders to split the
3-way join into two steps as follows:

(R(r,X, Y, n1) ./ S(Y,A, n2)) ./ K(r,A,B, n3) ./1
(R(r,X, Y, n1) ./ K(r,A,B, n3))./ S(Y,A, n2) ./2
(S(Y,A, n2) ./ K(r,A,B, n3))./ R(r,X, Y, n1) ./3
The distinctions in performance among those three orders

are just decided by the intermediate join results, because in
the first hand, the tables R, S and K will be read once and
joined with other tables in reduce function, thus the overheads
these three tables contribute to is in equality (formulated as
|R| + |S| + |K|). In the second hand, the three join orders
will output the same results, so the overheads contributed by
the final results are also in equality. We use tables QR./S ,
QR./K andQS./K to respectively denote the intermediate re-
sults of ./1, ./2 and ./3 (namely the results of first joins in
brackets). We did an experiment1 to investigate the overheads
contributed by QR./S , QR./K and QS./K. The experimental
results on GALEN are listed in Table 6.

In this experiment, we accumulate the number of tuples of
QR./S , QR./K and QS./K generated in all iterations of rea-
soning. The total size of the three tables is listed in first row.
The second row shows the utilization ratio of the three tables,
which denotes the percentage of the tuples used in second
joins. The total cost times of R3 are collected in the third
row.

1This experiment is done in a cluster with 8 nodes, in which each
node have 2G memory and runs two units for map or reduce func-
tion.

From the experiment results, we find that QS./K has the
smallest size and the highest utilization ratio, and its corre-
sponding join order costs minimal time compared to the other
two orders. We have the same results on other ontologies.

We give a brief analysis here. The size ofQS./K is p|S||K|,
where p is the probability of two tuples from S and K agree-
ing on their common joint. Since S ./ K is on the joint
A, namely the named concepts, p can be estimated as |CN |

|CN |2

(= 1
|CN |). Therefore, we estimate that |QS./K| ≈ |S|·|K|

|CN | .
R ./ K is on r (roles), we can estimate that |QR./J | ≈
|R|·|J |
|RN | , similarly, |QR./S | ≈ |R|·|S|

|CN | . As we see, the table
K keeps unmodified, so its size (|K|) is fixed. In another re-
spect, S and J are expanding and generally larger than K
during the reasoning. Thus |QR./S | is always bigger than
|QS./K|. We have an observation that the number of roles is
much less than that of concepts (|RN | � |CN |) in most real
ontologies, so |QR./J | is always the biggest one among the
three intermediate results, which is also consistent with the
experimental results.

We adopt the join order ./3 and introduce a new mapping
Q to split R3 into R3-1 and R3-2 in Table 5. Q records the in-
termediate result of R3 (corresponding toQS./K). Intuitively,
〈Y,B, n〉 ∈ Q(r) implies 〈∃r.A v B,n〉. Q(r) is initially
set to ∅ for each role r. R3-1 and R3-2 can be handled by
MapReduce programs.

3.4 Loading role inclusion axioms into memory
The Application of R5 can be seen as a 3-way join on two
tablesR andM as:

R(r,X,Z, n1) ./ R(s, Z, Y, n2) ./M(r, s, t)
This rule is unmodified because we have the observation

that the number of role inclusion axioms (resp. roles) of the
form r v s or r ◦ s v t is much less than that of the concept
inclusion axioms (resp. concepts) in some real ontologies like
Snomed-CT and GALEN.

Therefore we assume the role inclusion axioms fit in
memory, so that we parallelize the axioms of the form
〈X,Y, n〉 ∈ R(r) into different map nodes and load the ax-
ioms of property chain into memory to complete the applica-
tion of R5. To illustrate the process, we give Algorithm 1 and
Algorithm 2 which correspond respectively to map function
and reduce function of R5. For simple understanding, these
two algorithms are described using the rule in Table 5.

Algorithm 1 Map function for R5
Input: key, 〈X,Y, n1〉 ∈ R(r) as the value

1: for each r ◦ s v t ∈ O do
2: emit(key:Y, value:〈X,Y, n1〉 ∈ R(r))
3: end for
4: for s ◦ r v t ∈ O do
5: emit(key:X, value:〈X,Y, n1〉 ∈ R(r))
6: end for

The map function completes two joins (R(r,X,Z, n1) ./
M(r, s, t) and R(s, Z, Y, n2) ./ M(r, s, t)). The results of
the two joins are processed in reduce function. Therefore we

Algorithm 2 Reduce function for R5
Input: key, iterator values

1: for each 〈X,Z, n1〉 ∈ R(r) in values do
2: for each 〈Z, Y, n2〉 ∈ R(s) in values do
3: for each r ◦ s v t ∈ O do
4: m := min(n1, n2)
5: emit(〈X,Y,m〉 ∈ R(t))
6: end for
7: end for
8: end for

can use only one MapReduce task to handle R5, which helps
reduce the numbers of MapReduce tasks. Inspired by the
treatment for R5, we can also further optimize the applica-
tion of R4. We first compute the role inclusion closure (RIC)
which stands for the reflexive transitive closure of the axiom
r v s in O. When any new axiom 〈X,Y, n〉 ∈ R(r) is ob-
tained, namely after applying R2 and R5, we call Algorithm
3 to do further process with the loaded RIC. We use r v∗ s
to describe that role r is semantically subsumed by the role s,
which is explicit in RIC.

Algorithm 3 applyRIC for R2 and R5
Input: 〈X,Y, n〉 ∈ R(r) : the inferences of R2 and R5

1: for each s in O do
2: if r v∗ s is in RIC then
3: emit(〈X,Y, n〉 ∈ R(s))
4: end if
5: end for

This method allows R4 being omitted from the reasoning
iteration, thus there is no need to consider the I/O overheads
and map-out of R4. Since we choose not to fuzzify role ax-
ioms as well as [Stoilos et al., 2008], the application of RIC
has no effects on the fuzzy values of other derived axioms.
We call the function applyRIC in the reduce function of R2
and R5 to complete the inference task of R4. The reduce
function of R2 is given by Algorithm 4 to illustrate how to
finish the application of R4.

Algorithm 4 Reduce function for R2
Input: key, iterator values

1: for each 〈A,n1〉 ∈ S(X) in values do
2: for each 〈A v ∃r.B, n2〉 ∈ O in values do
3: m := min(n1, n2)
4: emit(〈X,B,m〉 ∈ R(r))
5: applyRIC(〈X,B,m〉 ∈ R(r))
6: end for
7: end for

3.5 Overview of the reasoning algorithm
We first discuss the rationales of these revised rules. Rules
R2, R4 and R5 are almost unchanged except the precondi-
tions like 〈B,m〉 /∈ S(X) or 〈X,B,m〉 /∈ R(r) are omitted,

as they are only used for termination judgment. Since we
will consider the termination condition in our reasoning al-
gorithm, there is no difference between these rules in Table
3 and Table 5. Rule R1 (resp. rule R3) is replaced by R1-1
and R1-2 (resp. R3-1 and R3-2). The outputs of R1-1 (resp.
R3-1) are only used in the precondition of R1-2 (resp. R3-2),
so it does not have any effect on final results.

We then give the reasoning algorithm based on the revised
fuzzy-EL+ rules.

Before reasoning, we first transform all input axioms to
normalized forms and initializes S, R, P and Q. The main
part of the reasoning work is given by Algorithm 5, which
consists of two phases. The first phase is preprocessing, in
which Algorithm 5 creates the mapping T and computes the
complete role inclusion closure (RIC). The second phase is
reasoning, in which Algorithm 5 iteratively applies the fuzzy-
EL+ rules until a fix point is reached. At the end of each
iteration, a MapReduce task is used to delete the duplicates
and get the greatest fuzzy value for an axiom obtained from
completion rules. When there is no new axiom generated, the
algorithm terminates.

Algorithm 5 Fuzzy-EL+ reasoning
1: create the mapping T ;
2: RIC := computeRIC();
3: firstTime := true;
4: derived = 0;
5: while firstTime or derived ≥ 0 do
6: derived := applyRules();
7: firstTime := false;
8: end while

The application of each rule can be handled by a MapRe-
duce task. In map phase, each axiom which satisfies one of
the preconditions of the rule is given as output in form of
a key/value pair , where key is concept or role as shown in
the left part of Table 5. All axioms having the same key are
grouped from different map nodes and passed to one reduce
node. The conclusions of the rule can be achieved in reduce
phase. Since we can load the axioms of property chain into
different nodes, the application of R5 can be done in one
MapReduce task. We use RIC in the reduce phases of R2
and R5 to complete the inference task of R4.

4 Experiments
We implemented a prototype system based on a popular im-
plementation of MapReduce model, Hadoop2, which is an
open-source Java implementation project under the Apache
Foundation.

Since there is no optimized fuzzy DL system for fuzzy-
EL+, we validate the correctness of our system against jCEL
which is a reasoner handling EL ontologies. We run our sys-
tem on the revised versions of test ontologies, i.e., we manu-
ally add fuzzy values to each axiom in these ontologies. Our
system can produce the same results as jCEL without consid-
ering fuzzy values.

2http://hadoop.arpache.org/

Table 7: Comparison of reasoning time (in seconds)
Test ELK jCEL Pellet Our system
Datasets (8 nodes)
1-GALEN 2.3 116.2 742.4 6552.5
2-GALENs 5.5 243.7 - 11952.5
4-GALENs 11.6 - - 19908.3
8-GALENs - - - 38268.7

Table 8: Scalability over data volume
Test Input Output Time Throughput
Datasets (No. of (No. of (hours) (Axioms(K)

axioms axioms /minutes)
(K)) (K))

f-1-GALEN 90 6,838 1.82 62.62
f-2-GALENs 178 13,680 3.32 68.67
f-4-GALENs 352 27,349 5.53 82.42
f-8-GALENs 703 54,699 10.63 85.76

The experiments were run in a Hadoop cluster containing
8 nodes. Each node is a PC machine with a 2-core, 3GHz,
E8400 CPU, 2GB main-memory and 500G hard disk. In the
cluster, each node is assigned two processes to run map tasks,
and two processes to run reduce tasks. So the cluster allows
program running on 16 mappers or 16 reducers simultane-
ously.

4.1 Test datasets
To compare our system with other reasoners and test its scal-
ability, we generate fuzzy-EL+ ontologies based on GALEN,
called f-GALEN, for experimental purpose. In detail, for the
normalized GALEN we assign a random fuzzy value f (0
< f ≤ 1) to each GCI axiom and keep RI axioms unfuzzi-
fied.

In order to validate the scalability of our algorithms, we
need to run our system on datasets with different sizes to see
the relation between the data volume and the throughput. For
this purpose, we use a simple method which uses GALEN
as a core and generates different number of copies based on
the core, and these copies are independent. For the GALEN
copies (here n-GALENs denotes to n copies of GALEN) with
different sizes, we add fuzzy values to them and get the fuzzy
versions (f-n-GALENs).

4.2 Comparison with memory-based reasoners
We compared the reasoning time with three memory-based
reasoners ELK, jCEL and Pellet. ELK is a concurrent rea-
soner using multiple cores [Kazakov et al., 2011]. jCEL is a

Table 9: Scalability over number of mappers
No.of units Time(hours) Speedup

16 1.82 2.24
8 2.02 2.02
4 2.80 1.46
2 4.09 1.00

Figure 1: Time versus number of copies

java implementation of CEL [Baader et al., 2006] for EL rea-
soning [Mendez, 2012]. Pellet is a tableau-based reasoner for
OWL DL [Sirin and Parsia, 2004]. We ran these reasoners in
one node of the cluster. In comparison we ran our system in
the cluster without considering fuzzy values. The experimen-
tal results are given in Table 7. From the results we can see
that for memory-based reasoners, the classification will finish
when the input datasets fit in memory. For 8-GALENs, none
of the three reasoners can finish classification with such mem-
ory that is given to them. Our system will finish reasoning on
the four datasets using this cluster.

4.3 Scalability tests
To test the scalability of our algorithms, we ran two experi-
ments. The first experiment ran on the cluster with 8 nodes
(16 processing units), and handles four datasets with differ-
ent sizes, they are f-1-GALEN, f-2-GALENs, f-4-GALENs
and f-8-GALENs. We give the experimental results in Ta-
ble 8 to show the relation between the data volume and the
throughput. In the second experiment we ran our system on
f-1-GALEN with different number of processing units (map-
pers and reducers) to see the relation between the processing
units and the throughput.

Figure 2: Time versus inverse of number of mappers

From the results of the first experiment, we can see that the
throughput increases while the the size of datasets increases.
Specially, when the test dataset changes from f-2-GALENs to

f-4-GALENs, the throughput increases significantly and the
throughput while handling f-8-GALENs is 37% higher than
the throughput while handling f-1-GALEN.

Since the cluster has overheads in startup, data transmis-
sion and processing, the speedup is non-linear shown in the
results of the second experiments (see Table 9). Without con-
sidering the overheads and ignoring the constant from the
time dimension, we can see that the reasoning time is pro-
portional to the number of copies (see Figure 1) and inversely
proportional to the number of units (see Figure 2). For the
test datasets, the scalability of our system is validated from
the experiments.

5 Conclusion and future work
In this paper, we proposed MapReduce algorithms for clas-
sifying ontologies based on fuzzy-EL+ (it is an extension of
EL+ with fuzzy vagueness). We identified two main chal-
lenges using MapReduce for fuzzy-EL+ reasoning and pro-
posed our solutions for tackling them. We revised the original
rules and gave the classification algorithms using MapReduce
framework. Furthermore, we implemented a prototype sys-
tem for the evaluation. The experimental results show that
this system has scalability and it can finish the work of classi-
fication through adding nodes in the cluster when ontologies
do not fit in memory.

The memory-based reasoners mentioned in experiments
cannot handle SNOMED-CT in single node because of the
memory limit. Our system can process SNOMED-CT, al-
though it cost nearly two days to finish the whole classifica-
tion in our cluster.

In our next step, we will test the scalability using a larger
cluster on the copies of SNOMED-CT and the ontologies in
which SNOMED-CT is merged with other medical ontolo-
gies. We will also further optimize our algorithm based on
following analysis of the limits of our system. 1) Since our
system is based on fixed-point algorithms, it will scan the
whole rules to check whether there are new axioms generated
in each iteration. This costs overheads for reasoning. 2) Our
system will set up same nodes for every rule in each iteration,
however some rules will do more work than others on special
datasets. We can get the statistic information of input ontolo-
gies and balance the usage of nodes for rules. 3) Hadoop will
rescan all axioms and collect them for application of one rule
R in every iteration. However these collected axioms do not
need to be rescanned for R. So they can be processed in local
node when applying R.

For test data, we would like to use the tool LogMap3 to get
a fuzzy-EL+ ontology, i.e., we merge two ontologies with the
mapping results and use the measures of similarity as fuzzy
values. We also consider to extend fuzzy-EL+ to process
ABox datasets [Ren et al., 2011], since ABox datasets are
always beyond the memory capacity.

Acknowledgments
Guilin Qi is partially supported by the NSFC grant 61272378.
Pascal Hitzler and Raghava Mutharaju are partially supported

3http://www.cs.ox.ac.uk/isg/projects/LogMap/

by the National Science Foundation under award 1017225 III:
Small: TROn - Tractable Reasoning with Ontologies.

References
[Baader et al., 2006] Franz Baader, Carsten Lutz, and

Boontawee Suntisrivaraporn. Cel - a polynomial-time rea-
soner for life science ontologies. In International Joint
Conference on Automated Reasoning, 2006.

[Dalakleidi et al., 2011] Kalliopi Dalakleidi, Stamatia Da-
siopoulou, Giorgos Stoilos, Vassilis Tzouvaras, Giorgos B.
Stamou, and Yiannis Kompatsiaris. Semantic Representa-
tion of Multimedia Content. In Knowledge-Driven Mul-
timedia Information Extraction and Ontology Evolution,
2011.

[Dean and Ghemawat, 2004] Jeffrey Dean and Sanjay Ghe-
mawat. MapReduce: Simplified Data Processing on Large
Clusters. In Operating Systems Design and Implementa-
tion, 2004.

[Kazakov et al., 2011] Yevgeny Kazakov, Markus Krötzsch,
and Frantisek Simancik. Concurrent Classification of EL
Ontologies. In International Semantic Web Conference,
2011.

[Klir and Yuan, 1995] George J. Klir and Bo Yuan. Fuzzy
sets and fuzzy logic - theory and applications. Prentice
Hall, 1995.

[Liu et al., 2011] Chang Liu, Guilin Qi, Haofen Wang, and
Yong Yu. Large Scale Fuzzy pD∗ Reasoning Using
MapReduce. In International Semantic Web Conference,
2011.

[Mendez, 2012] Julian Mendez. jcel: A modular rule-based
reasoner. In International Workshop on OWL Reasoner
Evaluation (ORE 2012), 2012.

[Mutharaju et al., 2010] Raghava Mutharaju, Frederick
Maier, and Pascal Hitzler. A Mapreduce Algorithm for
EL+. In Description Logics, 2010.

[Ren et al., 2011] Yuan Ren, Jeff Z. Pan, and Kevin Lee. Par-
allel abox reasoning of el ontologies. In Joint International
Semantic Technology Conference, 2011.

[Sirin and Parsia, 2004] Evren Sirin and Bijan Parsia. Pellet:
An owl dl reasoner. In Description Logics, 2004.

[Stoilos et al., 2008] Giorgos Stoilos, Giorgos B. Stamou,
and Jeff Z. Pan. Classifying Fuzzy Subsumption in Fuzzy-
EL+. In Description Logics, 2008.

[ter Horst, 2005] Herman J. ter Horst. Combining RDF and
Part of OWL with Rules: Semantics, Decidability, Com-
plexity. In International Semantic Web Conference, 2005.

[Urbani et al., 2010] Jacopo Urbani, Spyros Kotoulas, Jason
Maassen, Frank van Harmelen, and Henri E. Bal. OWL
Reasoning with WebPIE: Calculating the Closure of 100
Billion Triples. In European Semantic Web Conference,
2010.

[Wu and Haarslev, 2012] Kejia Wu and Volker Haarslev. A
parallel reasoner for the description logic alc. In Descrip-
tion Logics, 2012.

	Scale Reasoning with Fuzzy-EL+ Ontologies based on MapReduce
	Repository Citation

	tmp.1408558568.pdf.bPIAC

