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What Is Approximate Reasoning??

Sebastian Rudolph1, Tuvshintur Tserendorj2, and Pascal Hitzler1

1 AIFB, University of Karlsruhe, Germany
2 FZI Karlsruhe, Germany

Abstract. Approximate reasoning for the Semantic Web is based on
the idea of sacrificing soundness or completeness for a significant speed-
up of reasoning. This is to be done in such a way that the number of
introduced mistakes is at least outweighed by the obtained speed-up.
When pursuing such approximate reasoning approaches, however, it is
important to be critical not only about appropriate application domains,
but also about the quality of the resulting approximate reasoning pro-
cedures. With different approximate reasoning algorithms discussed and
developed in the literature, it needs to be clarified how these approaches
can be compared, i.e. what it means that one approximate reasoning ap-
proach is better than some other. In this paper, we will formally define
such a foundation for approximate reasoning research. We will clarify –
by means of notions from statistics – how different approximate algo-
rithms can be compared, and ground the most fundamental notions in
the field formally. We will also exemplify what a corresponding statistical
comparison of algorithms would look like.

1 Introduction

In different application areas of Semantic Technologies, the requirements for
reasoning services may be quite distinct; while in certain fields (as in safety-
critical technical descriptions) soundness and completeness are to be rated as
crucial constraints, in other fields less precise answers could be acceptable if this
would result in a faster response behaviour.

Introducing approximate reasoning in the Semantic Web field is motivated by
the following observation: most nowadays’ specification languages for ontologies
are quite expressive, reasoning tasks are supposed to be very costly with respect
to time and other resources – this being a crucial problem in the presence of large-
scale data. As a prominent example, note that reasoning in most description
logics which include general concept inclusion axioms (which is simply standard
today, and e.g. the case in OWL DL) is at least EXPTIME complete, and if
nominals are involved (as for OWL DL) even NEXPTIME complete. Although
? Research reported in this paper was partially supported by the EU in the

IST project NeOn (IST-2006-027595, http://www.neon-project.org/)), by the
Deutsche Forschungsgemeinschaft (DFG) under the ReaSem project, and by the
German Federal Ministry of Education and Research (BMBF) under the Theseus
project, http://theseus-programm.de.
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those worst case time complexities are not likely to be thoroughly relevant for the
average behaviour on real-life problems, this indicates that not every specifiable
problem can be solved with moderate effort.

In many cases, however, the time costs will be the most critical ones, as a user
will not be willing to wait arbitrarily long for an answer. More likely, she would
be prone to accept “controlled inaccuracies” as a tradeoff for quicker response
behaviour. However, the current standard reasoning tools (though highly opti-
mized for accurate, i.e., sound and complete reasoning) do not comply with this
kind of approach: in an all-or-nothing manner, they provide the whole answer to
the problem after the complete computation. It would be desirable, however, to
have reasoning systems at hand which can generate good approximate answers
in less time, or even provide “anytime behaviour”, which means the capability of
yielding approximate answers to reasoning queries during ongoing computation:
as time proceeds, the answer will be continuously refined to a more and more
accurate state until finally the precise result is reached. Clearly, one has to define
this kind of behaviour (and especially the notion of the intermediate inaccuracy)
more formally.

These ideas of approximate reasoning are currently cause for controversial
discussions. On the one hand, it is argued that soundness and completeness of
Semantic Web reasoning is not to be sacrificed at all, in order to stay within
the precise bounds of the specified formal semantics. On the other hand, it is
argued that the nature of many emerging Semantic Web applications involves
data which is not necessarily entirely accurate, and at the same time is critical
in terms of response time, so that sacrificing reasoning precision appears natural
[1].

Another suggestion to avoid the necessity is to restrict knowledge represen-
tation to so-called tractable fragments that allow for fast sound and complete
reasoning. Although this might be useful in scenarios where all essential knowl-
edge can be modelled within the restricted fragment, in general there are strong
arguments in favor of the usage of expressive formalisms:

– Real and comprehensive declarative modelling should be possible. A content
expert wanting to describe a domain as comprehensive and as precisely as
possible will not want to worry about limiting scalability or computability
effects.

– As research proceeds, more efficient reasoning algorithms might become
available that could be able to more efficiently deal with expressive specifi-
cation formalisms. Having elaborated specifications at hand enables to reuse
the knowledge in a more advanced way.

– Finally, elaborated knowledge specifications using expressive logics can re-
duce engineering effort by horizontal reuse: Knowledge bases could then be
employed for different purposes because the knowledge is already there. How-
ever, if only shallow modelling is used, updates would require overhead effort.

From our perspective, it depends on the specifics of the problem at hand
whether approximate reasoning solutions can or should be used. We see clear



What Is Approximate Reasoning? 3

potential in the fields of information retrieval, semantic search, as well as ontol-
ogy engineering support, to name just a few examples.

At the same time, however, we would like to advocate that allowing for un-
sound and/or incomplete reasoning procedures in such applications must not lead
to arbitrary “guessing” or to deduction algorithms which are not well-understood.
Quite on the contrary, we argue that in particular for approximate reasoning,
it is of utmost importance to provide ways of determining how feasible the ap-
proximations are, i.e. of what quality the answers given by such algorithms can
be expected to be.

Obviously, soundness and completeness with respect to the given formal se-
mantics of the underlying knowledge representation languages cannot be used as
a measure for assessing the quality of approximate reasoning procedures. Instead,
they must be evaluated experimentally, and analysed by statistical means.

In this paper, we thus lay the foundations for a statistical approach to eval-
uating approximate reasoning algorithms. We will do this in a very abstract
manner, which can be made concrete in different ways, depending on the con-
sidered use case. At the same time, we will use this statistical perspective to
precisely define approximate reasoning notions which to date have remained
quite vague. We furthermore show that our mathematical modelling can be used
for guiding the development of composed approximate reasoning systems. In the
end, our mathematical modelling can be used for rigorous comparative statistical
evaluation of approximate reasoning algorithms.

As a word of caution, let us remark that the notion approximate reasoning
bears two different meanings in two different communities. Often, the notion is
associated with uncertainty reasoning e.g. in the sense of fuzzy or probabilistic
approaches. The notion of approximate reasoning we use in this paper refers to
approximate reasoning algorithms on data which is not uncertain in this sense.3

While approximate reasoning methods for propositional and first-order logic
have been proposed (see e.g. [2–10]), they are only now being applied in the
context of OWL reasoning for Semantic Web technologies. Notable recent papers
papers in this area are [11–18] — and to the best of our knowledge, this list should
be almost exhaustive.

The paper is structured as follows. In Section 2, we will establish a mathe-
matical framework as a foundation for approximate reasoning notions and eval-
uation. In Section 3 we will discuss composition of approximate reasoning al-
gorithms from the perspective of our framework. In Section 4 we show how to
instantiate our framework by means of an example. We conclude in Section 5.

3 Perhaps introducing the notion of qualitative approximate reasoning – to replace
approximate reasoning in our sense – would help to clarify matters. In order to be
consistent with the literature, however, we prefer to use the established notion for
now.
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2 A mathematical framework for the study of
approximate reasoning

In this section, we will establish a mathematical framework. By doing this, we
will provide a formal basis for central notions of the field and establish guidance
for lines of further research in that area.

First, let us stipulate some abbreviations which we will use in the sequel: let
IR+ = {x ∈ IR : x ≥ 0} and IR+

∞ = {x ∈ IR : x ≥ 0} ∪ {+∞}.
First of all, we have to come up with a general and generic formalization of the

notion of a reasoning task. Intuitively, this is just a question (or query) posed to
a system that manages a knowledge base, which is supposed to deliver an answer
after some processing time. The (maybe gradual) validity of the given answer
can be evaluated by investigating its compliance with an abstract semantics.
We will extend this classical conceptualisation in the following way: we allow an
algorithm to – roughly spoken – change or refine its output as time proceeds, thus
capturing the notion of anytime behaviour, as a central concept in approximate
reasoning. Yet in doing so, we have to take care not to lose the possibility of
formalizing “classical” termination. We solve this by stipulating that every output
of the system shall be accompanied by the information, whether this output is
the ultimate one.

In the sequel we will formalize those intuitions. By the term input space we
denote the set of possible concrete reasoning tasks. Formally, we define the input
space as a probability space (Ω,P ), where Ω is some set (of inputs) and P is
a probability measure on Ω. The probability P (ω) encodes how often a specific
input (knowledge base, query) ω occurs in practice resp. how relevant it is for
practical purposes. Naturally, information about the probability distribution of
inputs will be difficult to obtain in practice (since, e.g., in general there can be
infinitely many different inputs). So rules of thumb, like giving short queries a
higher probability than long ones, or using some kind of established benchmarks,
will have to be used until more systematic data is available.

The use of having a probability on the set of inputs is quite obvious: as already
stated before, correctness of results cannot be guaranteed in the approximate
case. So in order to estimate how good an algorithm performs in practice, it is
not only important, how much the given answer to a specific input deviates from
the correct one, but also how likely (or: how often) that particular input will be
given to the system. Certainly, a wrong (or strongly deviant) answer to an input
will be more tolerable if it occurs less often.

For actual evaluations, one will often use a discrete probability space. For
the general case – for developing the theory in the sequel – we will assume that
all occurring functions are measurable (i.e. integrals over them exist), which is
obviously a very mild assumption from a computer science perspective.

The output space comprises all possible answers to any of the problems
from the input space. In our abstract framework, we define it simply as a set X.
A function e : X×X → IR+ – which we call error function – gives a quantitative
measure as to what extent an output deviates from the desired output (as given
by a sound and complete algorithm). More precisely, the real number e(x, y)
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stands for the error in the answer x, assuming that y would be the correct answer.
For all x ∈ X we assume e(x, x) = 0, but we place no further constraints on
e. It will be determined by the problem under investigation, though a suitable
example could be 1 − f , where f is the f-measure as known from information
retrieval. In cases, it might be also useful to put more constraints on the error
function, one could e.g. require it to be a metric,4 if the output space has a
structure where this seems reasonable.

We will assess the usefulness of an approximate reasoning algorithm mainly
by looking at two aspects: Runtime and error when computing an answer. By
introducing the error function, we are able to formalize the fact that out of two
wrong answers one might still be better than the other since it is “closer” to
the correct result. While this might not seem to make much sense in some cases
(e.g. when considering the output set {true, false} or other nominal scales5),
it might by quite valuable in others: When we consider an instance retrieval
task, the outputs will be sets of domain individuals. Obviously, one would be
more satisfied with an answer where just one element out of hundred is missing
(compared to the correct answer) than with a set containing, say, only non-
instances.

We assume X to contain a distinguished element ⊥ which denotes no output.
This is an issue of “backward compatibility”, since classical algorithms – and also
many approximate reasoning algorithms – usually do not display any output until
termination. So, to include them into our framework, we define them to deliver
⊥ before giving the ultimate result. ⊥ will also be used as output value in case
the algorithm does not terminate on the given input.

Since by this definition,⊥ contains no real information, one could argue about
additional constraints for the error function with respect to this distinguished
element, e.g., e(⊥, y) ≥ supx∈X{e(x, y)} or even e(⊥, y) ≥ supx,z∈X{e(x, z)}.
We do not need to impose these in general, however.

After having formalized inputs and outputs for problems, we now come to
the actual algorithms. In order not to unnecessarily overcomplicate our formal
considerations, we make some additional assumptions: We assume that hard-
ware etc. is fixed, i.e., in our abstraction, an algorithm is always considered to
include the hard- and software environment it is run in. I.e., we can, for exam-
ple, assign any algorithm-input pair an exact runtime (which may be infinite).
This assumption basically corresponds to a “laboratory” setting for experiments,
which abstracts from variables currently not under investigation.

So, let A be a set of algorithms. To every algorithm a ∈ A we assign an
IO-function fa : Ω × IR+ → X × 2 with 2 := {0, 1}. Hereby, fa(ω, t) = (x, b)
means that the algorithm a applied to the input (task, problem, . . . ) ω yields
the result x after running time t together with the information whether the
algorithm has already reached its final output (b = 1) or not yet (b = 0). As a
natural constraint, we require fa to additionally satisfy the condition that for

4 i.e. a distance function as used in the mathematical theory of metric spaces
5 although also these cases can seamlessly be covered by choosing a discrete error

function
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all t2 ≥ t1 we have that

fa(ω, t1) = (x, 1) implies fa(ω, t2) = (x, 1),

i.e. after having indicated termination, the output of the algorithm (including
the termination statement) will not change anymore. For convenience we write
f res

a (ω, t) = x and f term
a (ω, t) = b, if fa(ω, t) = (x, b).

By f0 : Ω → X we denote the correct output function, which is deter-
mined by some external specification or formal semantics of the problem. This
enables us to verify the (level of) correctness of an answer x ∈ X with respect
to a particular input ω by determining e(x, f0(ω)) – the smaller the respective
value, the better the answer. By our standing condition on e, e(x, f0(ω)) = 0
ensures f0(ω) = x coinciding with the intuition.

To any algorithm a, we assign a runtime function %a : Ω → IR+
∞ by setting

%a(ω) = inf{t | f term
a (ω, t) = 1},

being the smallest time, at which the algorithm a applied to input ω indicates its
termination.6 Note that this implies %a(ω) = ∞ whenever we have f term

a (ω, t) =
0 for all t ∈ IR+. Algorithms, for which for all ω ∈ Ω we have that %a(ω) < ∞
and f res

a (ω, t) = ⊥ for all t < %a(ω) are called one-answer algorithms: They
give only one output which is not ⊥, and are guaranteed to terminate7 in finite
time.

Clearly, for a given time t, the expression e(f res
a (ω, t), f0(ω)) provides a mea-

sure of how much the current result provided by the algorithm diverges from the
correct solution. Moreover, it is quite straightforward to extend this notion to
the whole input space (by taking into account the occurrence probability of the
single inputs). This is done by the next definition.

The defect δ(a, t) associated with an algorithm a ∈ A at a time
point t is given by

δ : A×IR+ → IR+
∞ : δ(a, t) = E(e(f res

a (ω, t), f0(ω))) =
∑
ω∈Ω

e(f res
a (ω, t), f0(ω))P (ω).

Note that E denotes the expected value, which is calculated by the rightmost
formula.8 Furthermore, one can even abstract from the time and take the results
after waiting “arbitrarily long”: The (ultimate) defect of an algorithm a ∈ A
is given by

δ : A → IR+
∞ : δ(a) = lim sup

t→∞
δ(a, t).

6 We make the reasonable assumption that f res
a is right-continuous.

7 We impose termination here because our main interest is in reasoning with descrip-
tion logics for the Semantic Web. The same notion without imposing termination
would also be reasonable, for other settings.

8 The sum could easily be generalised to an integral – with P being a probability
measure –, however it is reasonable to expect that Ω is discrete, and hence the sum
suffices.
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By the constraint put on the IO-function we get

δ(a) = E(e(f res
a (ω, %a(ω)), f0(ω))) =

∑
ω∈Ω

e(f res
a (ω, %a(ω)), f0(ω))P (ω).

if a terminates for every input.

2.1 Comparing algorithms after termination

For a, b ∈ A, we say that a is more precise than b if it has smaller ultimate
defect, i.e. if

δ(a) ≤ δ(b).

Furthermore, it is often interesting to have an estimate on the runtime of an
algorithm. Again it is reasonable to incorporate the problems’ probabilities into
this consideration. So we define the average runtime9 of algorithm a by

α(a) = E(%a(ω)) =
∑
ω∈Ω

%a(ω)P (ω).

This justifies to say that a is quicker than b if

α(a) ≤ α(b).

Note that this does not mean that a terminates earlier than b on every input.
Instead, it says that when calling the algorithm very often, the overall time when
using a will be smaller than when using b – weighted by the importance of the
input as measured by P .

Throughout the considerations made until here, it has become clear that
there are two dimensions along which approximate reasoning algorithms can be
assessed or compared: runtime behaviour and accuracy of the result. Clearly, an
algorithm will be deemed better, if it outperforms another one with respect to
the following criterion:

Definition 1. For a, b ∈ A, we say that a is strongly better than b if a is
more precise than b and a is quicker than b.

The just given definition is very strict; a more flexible one will be given below,
when we introduce the notion that an algorithm a is better than an algorithm b.

2.2 Anytime behaviour

The definitions just given in Section 2.1 compare algorithms after termination,
i.e. anytime behaviour of the algorithms is not considered. In order to look at
anytime aspects, we need to consider the continuum of time points from initiating
the anytime algorithm to its termination.
9 We are aware that in some cases, it might be more informative to estimate the

runtime behaviour via other statistical measures as e.g. the median.
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For a, b ∈ A, we say that a is more precise than b at time point t if it
has smaller defect wrt. a and t, i.e. if

δ(a, t) ≤ δ(b, t).

We say that a ∈ A realises a defectless approximation if

lim
t→∞

δ(a, t) = 0.

Note that δ(a) = 0 in this case.

Definition 2. We say that an algorithm a ∈ A is an anytime algorithm if
it realizes a defectless approximation. We say that it is a monotonic anytime
algorithm if it is an anytime algorithm and furthermore δ(a, t) is monotoni-
cally decreasing in t, i.e. if δ(a, ·) ↘ 0.

Obviously, is is reasonable to say about two algorithms a and b – be they
anytime or not –, that (1) a is better than b if a is more precise than b at
any time point. A less strict – and apparently more reasonable – requirement
accumulates the difference between a and b over the entire runtime, stating
that (2) a is better than b if

∑
ω∈Ω P (ω)

∫ max{%a(ω),%b(ω)}
t=0

(e(f res
a (ω, t), f0(ω)) −

e(f res
b (ω, t), f0(ω))dt ≤ 0. We find formula (2) still not satisfactory as it ignores

the reasonable assumption that some time points might be more important than
others, i.e. they need to be weighted more strongly. Formally, this is done by
using a different measure for the integral or – equivalently – a density function
f̄ : R+ → R+, which modifies the integral. Summarizing, we now define for two
(not necessarily anytime) algorithms a and b that (3) a is better than b (wrt.
a given density function f̄) if

∑
ω∈Ω

P (ω)
∫ max{%a(ω),%b(ω)}

t=0

(
e(f res

a (ω, t), f0(ω))− e(f res
b (ω, t), f0(ω))

)
f̄(t)dt ≤ 0.

Our definition (3) specialises to the case in (2) for the constant density func-
tion f̄ ≡ 1. We cannot capture (1) with our definition by one specific choice of
f̄ , so in the case of (1) we simply say that a is more precise than b at any time
point.10

Clearly, the choice of the density function depends on the considered scenario.
In cases where only a fixed time ttimeout can be waited before a decision has to be
made based on the results acquired so far, the value f̄(t) of density function would
be set to zero for all t ≥ ttimeout. Usually earlier results are preferred to later
ones which would justify the choice of an f̄ that is monotonically decreasing.

10 However, (1) could be formulated in terms of (3) as a being better than b for all
Dirac delta functions that have their singularity at a nonnegative place.
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3 Anytime algorithms by composition

Realised approximate reasoning systems are often not anytime. However, it is
possible to obtain anytime behaviour by composing one-answer algorithms.

Assume that a number of algorithms ai (i = 1, . . . , n) is given. Further-
more, assume there is an oracle algorithm c whose behaviour can be de-
scribed by a function c : (X × 2)n → X × 2 which combines a vector of outputs
(a1(ω, t), . . . , an(ω, t)) of the algorithms ai and yields a single output. Given an
input ω, the invocation of all ai in parallel and the subsequent call of the oracle
algorithm yield a new algorithm ca1,...,an with IO-function

fca1,...,an
(ω, t) = c(a1(ω, t), . . . , an(ω, t)).

The definition just given is very general in order to allow for a very free com-
bination, depending on the algorithms which are being combined. For the general
setting, we impose only the very general constraint that for all x1, . . . , xn ∈ X
we have

c((x1, 1), . . . , (xn, 1)) = (x, 1)

for some x, and also that the natural constraint from page 6 on the corre-
sponding IO-function fca1,...,an

is satisfied. This is just to ensure %ca1,...,an
(ω) ≤

max{%a1 , . . . , %an
}, i.e. the “combiner” indicates termination at the latest when-

ever all of the single input algorithms ai do so.
It is more interesting to look at more concrete instances of oracles. Assume

now that a1, . . . , an−1 are one-answer algorithms and that an is an (always ter-
minating) sound and complete algorithm. Let c be such that

c(a1(ω, %an
(ω)), . . . , an−1(ω, %an

(ω)), an(ω, %an
(ω))) = (f res

an
(ω), 1).

Then it is easy to see that ca1,...,an
is anytime.

If we know about soundness or completeness properties of the algorithms
a1, . . . , an−1, then it is also possible to guarantee that ca1,...,an is monotonic
anytime. This can be achieved in several ways, and we give one specific example
based on ABox reasoning in description logics:

Assume that each input consist of a class description C over some description
logic L, and each output consists of a set of (named) individuals. For construct-
ing an oracle from such algorithms, we will actually consider as outputs pairs
(A,B) of sets of individuals. Intuitively, A contains only individuals which are
known to belong to the extension of C, while B constitutes an individual set
which is known to contain all individuals in the extension of C. A single out-
put (set) A can be equated with the output pair (A,A). Now let a1, . . . , an be
sound11 but incomplete12 one-answer algorithms over L, let b1, . . . , bm be com-
plete but unsound one-answer algorithms over L and let a be a sound, complete
11 We mean soundness in the following sense: If the set I of individuals is the correct

answer, then the algorithms yields as output a pair (A, A) of sets with A ⊆ I.
12 We mean completeness in the following sense: If the set I of individuals is the correct

answer, then the algorithms yields as output a pair (A, A) of sets with I ⊆ A.
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and terminating algorithm over L, i.e. f res
a (C, %a) – which we denote by Ca –

contains exactly all named individuals that are in the extension of C as a logical
consequence of the given knowledge base. Under this assumption, we know that
f res

ai
(C, %ai) = (Cai , I) and f res

bj
(C, %bj ) = (∅, Cbj ) for some sets Cai and Cbj ,

where I stands for the set of all (known) individuals, and furthermore we know
that Cai ⊆ Ca ⊆ Cbj for all i, j.

The oracle c is now defined as follows.

c(a1(C, t), . . . , an(C, t), b1(C, t), . . . , bm(C, t), a(C, t))

=



((f res
a (C, t), f res

a (C, t)), 1) for t ≥ %a(C),
((upper , lower), term) for t < %a(C)

where lower =
⋃

(Ai,Bi,1)=fai
(C,t) Ai,

upper =
⋂

(Aj ,Bj ,1)=fbj
(C,t) Bj ,

term = 1 if lower = upper , otherwise 0.

Note that the empty set union is by definition the empty set, while the empty
set intersection is by definition I.

In words, the oracle realises the following behaviour: if the sound and com-
plete subalgorithm has terminated, display its result. Before, use the lower
resp. upper bounds delivered by the sound resp. complete algorithms to cal-
culate one intermediate lower and one intermediate upper bound. If those two
happen to coincide, the correct result has been found and may terminate with-
out waiting for a’s termination. This squeezing in of the correct result now also
explains why we have chosen to work with pairs of sets as outputs.

As error function, we might use the sum of the symmetric difference between
A and A0, respectively between B and A0, i.e.

e((A,B), (A0, A0)) = |A0 \A|+ |B \A0|.

We could also use a value constructed from similar intuitions like precision and
recall in information retrieval, but for our simple example, this error function
suffices. It is indeed now straightforward to see that ca1,...,an,b1,...,bm,a is mono-
tonic anytime. It is also clear that ca1,...,an,b1,...,bm,a is more precise than any of
the ai and bj , at all time points.

4 An Example

In this section, we will instantiate the very general framework established in
the preceding sections. We will use the presented techniques to compare three
approximate reasoning algorithms and compose a (simple) anytime algorithm
following the example at the end of Section 3.

Consider the three algorithms Screech-all, Screech-none and KAON2,
as discussed in [19]. We do not intend to give any details here, and it shall
suffice to mention that these are one-answer algorithms for reasoning with the
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description logic SHIQ, and the task considered is instance retrieval for named
classes. Screech-all is complete but unsound, Screech-none is sound but
incomplete, and KAON2 is sound and complete.

Following the general framework, we first have to stipulate the probability
space (Ω,P ) for our case. Here we introduce the first simplifying assumptions,
which are admittedly arguable, but will suffice for the example:

– We consider only one knowledge base, namely the well-known Wine ontology.
Further evaluation data is available [19] but will not be taken into account
for the illustrating example.

– As queries, we consider only instance retrieval tasks, i.e. given an atomic
class description, we query for the set of individuals which can be inferred
to be instances of that class. Hence Ω – the query space – consists of named
classes C of the Wine ontology the instances of which are to be retrieved:
Ω = C. Examples for named classes in this ontology are e.g. Chardonnay,
StEmilion or Grape.

– All those instance retrieval queries ω ∈ Ω are assumed to be equally probable
to be asked to the system, hence

P (ω) =
1
|C|

for all ω ∈ Ω.

Obviously, the probability of a query could also be assumed differently, e.g.
correlating with the number of instances the respective class has. Neverthe-
less, for the sake of simplicity we will stick to the equidistributional approach.

Obviously, the output space X consists of subsets of the set of individuals I
from the Wine ontology together with the no-output symbol ⊥: X = 2I ∪ {⊥}.
As the error function e comparing an algorithm’s output I with the correct one
I0, we use the inverted value of the common f-measure, i.e.

e(I, I0) := 1− 2 · precision · recall
precision + recall

where (as usual)

precision :=
|I ∩ I0|
|I|

and recall :=
|I ∩ I0|
|I0|

.

According to the proposed handling of ⊥, we stipulate the overall “worst-case
distance”: e(⊥, I0) = 1 for all I ⊆ I.

As mentioned before, the set A of considered algorithms comprises three
items:

A = {KAON2, Screech-all, Screech-none}

For every of those algorithms we carried out comprehensive evaluations: we
queried for the class extensions of every named class and stored the results
as well as the time needed. By their nature none of the considered algorithms
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exhibits a genuine anytime behavior, however, instead of displaying the “honest”
⊥ during their calculation period, they could be made to display an arbitrary
intermediate result. It is straightforward to choose the empty set in order to
obtain better results: most class extensions will be by far smaller than half of
the individual set, hence the distance of the correct result to the empty set will
be a rather good guess.

Hence, for any algorithm a of the above three and any class name C let IC

denote be the set of retrieved instances and tC denote the measured runtime for
accomplishing this task. Then we can define the IO-function as

fa(C, t) =
{

(∅, 0) if t < tC
(IC , 1) otherwise.

The values of the correct output function f0 can be found via KAON2, as this
algorithm is known to be sound and complete. Moreover, the runtime functions
ρa(C) of course coincide in our case with the runtimes tC measured in the first
place. Since all of the considered algorithms are known to terminate, no ρa will
ever take the value ∞.

Fig. 1. Defect over time.

After this preconsiderations, we are ready to carry out some calculations esti-
mating the quality of the considered algorithms. Figure 1 shows a plot depicting
the decrease of the defect for all the three algorithms. As expected, there is an
ultimate defect for the two screech variants, namely 0.013 for Screech-none
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and 0.015 for Screech-all, i.e. with respect to the terminology introduced ear-
lier, we can say that Screech-none is more precise than Screech-all. While
the defect of KAON2 is initially greater than those of the screech variants, it
becomes better than them at about 6 seconds and decreases to zero defect after
about 7 seconds. In other words, Screech-all is more precise than KAON2
at all time points less than 6 seconds. A first conclusion from this would be:
if a user is willing to wait for 7 seconds for an answer (which then would be
guaranteed to be correct) KAON2 would be the best choice, otherwise (if time
is crucial and precision not), screech-all might be a better choice as it shows
the quickest defect decrease.

If we now assume a time-critical application where responses coming in later
than, say, 5 seconds are ignored, we can describe this by the fact that Screech-
all is better than KAON2 with respect to the density function

f̄(x) =

{
1 0 ≤ x ≤ 5,

0 otherwise.

Considering the fact that Screech-all is complete, Screech-none is sound,
and KAON2 is both, we can now utilise a variant of the oracle given in the ex-
ample from Section 3. The behaviour of the combined algorithm can in this
simple case be described as follows. It indicates termination whenever one of the
following occurs:

– KAON2 has terminated. Then the KAON2 result is displayed as solution.
– Both Screech-all and Screech-none have terminated with the same

result. In this case, the common result will be displayed as the final one.

If none of above is the case, the experimental findings suggest to choose the
Screech-none result as intermediate figure. The algorithm obtained that way
is anytime and more (or equally) precise than any of the single algorithms at all
time points.

5 Conclusions

Approaches to approximate reasoning tackle the problem of scalability of de-
ducing implicit knowledge. Especially if this is done on the basis of large-scale
knowledge bases or even the whole Web, often the restriction to 100% correct-
ness has to be abandoned for complexity reasons, in particular if quick answers
to posed questions are required. Anytime algorithms try to fulfill both needs
(speed and correctness) by providing intermediate results during runtime and
continually refining them.

In our paper, we have provided solid mathematical foundations for the as-
sessment and comparison of approximate reasoning algorithms with respect to
correctness, runtime and anytime behaviour. We are confident that this general
framework can serve as a means to classify algorithms w.r.t. their respective
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characteristics and help in deciding which algorithm best matches the demands
of a concrete reasoning scenario.

As opposed to our example scenario, in most practical cases, it will be unfea-
sible or even impossible to measure the whole input space as it will be too large or
even infinite. That is where statistical considerations come into play: one has to
identify and measure representative samples of the input space. The first part of
this is far from trivial: for fixed settings with frequently queried knowledge bases,
such a sample could be determined by protocolling the actually posed queries
over a certain period of time. Another way would be to very roughly estimate a
distribution based on plausible arguments. Respective heuristics would be: (1)
the more complex a query the more unlikely, (2) queries of similar structure are
similarly frequent resp. likely, (3) due to some bias in human conceptual think-
ing, certain logical connectives (e.g. conjunction) are preferred to others (e.g.
disjunction, negation) which also gives an opportunity to estimate a query’s fre-
quency based on the connectives it contains. Admittedly, those heuristics are
still rather vague and more thorough research is needed to improve reliability of
such estimates.

In general, the proposed intelligent combination of several algorithms with
different soundness/completeness properties (as well as being specialised to cer-
tain logical fragments) can increase speed and might help avoid heavy-weight
reasoning in cases. We are confident, that this idea can be easily generalised
to reasoning tasks other than instance retrieval. Obviously, this strategy comes
with an immediate opportunity of parallelisation even if the single algorithms
have to be treated as black boxes. Hence, this approach could also be conceived
as a somewhat exotic approach to distributed reasoning.
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