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Technical Report, Kno.e.sis Center, Wright State University, Dayton, Ohio, 2010.

Abstract. With the development of more expressive description logics
(DLs) for the Web Ontology Language OWL the question arises how
we can properly deal with the high computational complexity for effi-
cient reasoning. In application cases that require scalable reasoning with
expressive ontologies, non-standard reasoning solutions such as approx-
imate reasoning are necessary to tackle the intractability of reasoning
in expressive DLs. In this paper, we are concerned with the approxima-
tion of the reasoning task of instance retrieval on DL knowledge bases,
trading correctness of retrieval results for gain of speed. We introduce
our notion of an approximate concept extension and we provide imple-
mentations to compute an approximate answer for a concept query by
a suitable mapping to efficient database operations. Furthermore, we re-
port on experiments of our approach on instance retrieval with the Wine
ontology and discuss first results in terms of error rate and speed-up.

1 Introduction

For description logics, there are two main approaches to reasoning. Tableaux-
based methods [1] implemented in tools such as Pellet [2] and Racer [3] have been
shown to be efficient for complex TBox reasoning tasks with expressive DLs. In
contrast, the reasoning techniques based on reduction to disjunctive datalog as
implemented in KAON2 [4] scale well for large ABoxes, with support for the DL
SHIQ. Besides these two directions, other approaches such as rule engines and
database-based techniques scale very well for large ABoxes, but are in principle
limited to lightweight language fragments [5].

Observing the application domain of these approaches, an issue which re-
mains to be investigated is the problem of scalable reasoning over expressive
ontologies with large ABoxes as well as complex or large TBoxes. From a theo-
retical point of view we know that it is impossible to find any tractable algorithm
for reasoning over expressive ontologies due to the underlying high computa-
tional complexities [6]. Thus, non-standard reasoning solutions like approximate
reasoning [7, 8] are helpful in time-critical applications when it is acceptable to
sacrifice soundness or completeness for increased efficiency. Approximate rea-
soning algorithms can be tractable although the underlying language is not, in
contrast to limiting attention only to inexpressive tractable fragments as e.g. [9].

? Research reported in this paper was supported by the the German Federal Ministry
Economics (BMWi) under the Theseus project, http://theseus-programm.de.



Investigations into approximate reasoning usually start from a sound and
complete algorithm and system and directly addresses performance bottlenecks
in order to improve efficiency, i.e. the algorithms are altered, leading to approx-
imate outputs, while improving speed and keeping the introduced error ratio as
low as possible.

In previous work [10, 11] we have shown how to approximate instance re-
trieval for named classes within the KAON2 approach. In this paper we show
how instance retrieval for complex classes can be approximated by reducing it
to instance retrieval for named classes. For this, we compute what we call ap-
proximate extensions of complex classes by means of combining extensions of
named classes, e.g. by using standard database operations. The approach leads
to a speedup of about factor 10, while the number of introduced errors varies
depending on the query, but is within reasonable bounds.

The present paper is structured as follows. After recalling necessary pre-
liminaries on description logics, we present our definition of approximate query
answering. Then we describe our approximate algorithms and report on corre-
sponding evaluations. We conclude with some ideas for further work.

2 Preliminaries

In this section we introduce and recall some formal notions used throughout
the paper. Besides basic notions from description logics we also cover relational
algebra notation for the description of our database implementation.

Description Logics. Description logics (DLs) are a family of knowledge rep-
resentation formalisms that provide the formal basis for the Web Ontology Lan-
guage (OWL) and allow for sophisticated reasoning about ontologies in the Se-
mantic Web. The basic constituents to represent knowledge in DLs are concepts
C, roles r and individuals a. They are used to form axioms collected in a knowl-
edge base KB to make statements about a domain of interest. We primarily
consider concept and role assertion axioms of the form C(a), r(a, b) that assign
an individual to a concept or relate two individuals via a role, and concept inclu-
sion axioms of the form C v D that state subclass relationships. For a detailed
presentation of DLs we refer to [12].

While there are many DL dialects, we recall the syntax of concept expres-
sions in the description logic SHIQ, where complex concepts C and roles r are
produced from the following grammar that involves named concepts A and roles
p, role inverses, conjunction, disjunction, complements, restricted existential and
universal quantification as well as qualified cardinality restrictions.

C → A | ⊥ | > | ¬C | C1 u C2 | C1 t C2 | ∃r.C | ∀r.C | ≥ n r.C | ≤ n r.C
r → p | p−

The signature of a knowledge base KB, denoted by σ(KB), is the set of all
individual, concept and role names that occur in the axioms within KB. In
particular, σ(KB) comprises all individuals occurring in KB.



Instance retrieval with DL knowledge bases builds on the standard reasoning
task of instance checking. An individual a ∈ σ(KB) is an instance of a concept C
with respect to a knowledge base KB if the axiom C(a) is a logical consequence
of KB, which is denoted by KB |= C(a). Instance retrieval can be interpreted
as the repeated application of instance checking for all known individuals of KB
and a given concept. We call the result of retrieving all instances of concept C
from KB the (conventional) extension of C with respect to KB, denoted by |C|,
and define it as follows.3

|C| := {x ∈ σ(KB) | KB |= C(x)}

In the context of instance retrieval, the concept C is often also called the query.

Relational Algebra. Relational Algebra is the formal underpinning of modern
relational database systems and is used to formalise database operations on the
relational model originally introduced by Codd [13]. The main construct for
representing data in the relational model is a relation, denoted by R(a1, . . . , an),
that represents a database table with column attributes a1 to an and rows that
instantiate the columns as tuples of values. Relational algebra expressions are
used to formulate queries on the thus represented database tables and result
themselves in relations, such that expressions can be nested. Attributes in a
relation can be referred to by means of path expressions of the form R . ai, e.g.
within conditions.

We briefly recall the relational operators that are used in this paper. A pro-
jection π[a1,...,am](R(a1, . . . , an)) restricts the columns of the resulting relation
to the attributes a1, . . . , am for m < n. A selection σ[condition](R(a1, . . . , an))
selects those rows for which condition holds. A cross product R1(a1, . . . , an)×
R2(b1, . . . , bm) generates a combined relation R(a1, . . . , an, b1, . . . bm) in the sense
of the Cartesian product by multiplying rows, which is used for join operations.4

Other set operations are used for relations as usual, namely union R1 ∪R2, in-
tersection R1 ∩ R2 and difference R1 \ R2, operating on relation tuples in the
usual way. For a detailed description of relational algebra see e.g. [14].

3 Approximation of Instance Retrieval

Our approach for the approximation of instance retrieval queries is based on the
notion of the approximate extension 〈C〉 of a concept C with respect to a knowl-
edge base KB. Intuitively, 〈C〉 is the set of instances that are obtained through
interpreting complex concepts in C as simple set operations on the individuals

3 Notice that this notion of extension refers to a particular knowledge base and is
different from the model-theoretic notion of extension defined for an interpretation,
which we do not use in this paper.

4 In relational algebra there is a special notation for database joins using the symbol ./.
However, for simplicity we present join operations by combinations of cross product
with selection.



Table 1. Definition of an approximate extension. A stands for atomic classes while C
and D stand for complex (non-atomic) classes. R stands for roles and n for a natural
number.

Approximate Extensions

〈>〉 = |>|
〈⊥〉 = ∅
〈A〉 = |A|
〈¬A〉 = |¬A|
〈R〉 = {(x, y) | KB |= r(x, y)}
〈R−〉 = {(x, y) | KB |= r(y, x)}

〈C uD〉 = 〈C〉 ∩ 〈D〉
〈C tD〉 = 〈C〉 ∪ 〈D〉
〈¬C〉 = 〈>〉 \ 〈C〉
〈∃R.C〉 = {x ∈ 〈>〉 | ∃y : (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉}
〈∀R.C〉 = {x ∈ 〈>〉 | ∀y : (x, y) ∈ 〈r〉 → y ∈ 〈C〉}

〈≤ nR.C〉 = {x ∈ 〈>〉 | #{y | (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉} ≤ n}
〈≥ nR.C〉 = {x ∈ 〈>〉 | #{y | (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉} ≥ n}

known to KB, starting from the atomic extensions of concepts and roles that oc-
cur in C. In this way, the model-theoretic semantics of DLs is approximated by a
straightforward combination of results for atomic queries that requires less effort
to compute than the reasoning process for complex instance retrieval queries in
DLs does. The exact definition of an approximate extension is given in Table 1
recursively for all language constructs. For an example, consider the knowledge
base KB = {C v A t B,A(a1), C(a2)} and the instance retrieval query A t B.
The conventional extension of the concept A t B contains both individuals a1

and a2, i.e. |A tB| = {a1, a2}. However, the approximate extension of A t B
contains only a1, i.e. 〈A tB〉 = {a1}.

The more complex the query concept C is, the more the approximate exten-
sion deviates from the conventional extension. For the simplest queries, such as
atomic concepts, the two types of extensions coincide and no errors are made in
instance retrieval. This characteristics is captured by the following proposition.

Proposition 1 (soundness and completeness of simple approximate
extensions). For a knowledge base KB and a concept C of the form C =
A1 u · · · u Am u ¬B1 u . . .¬Bn, with all Ai and Bj atomic, the approximate
extension of C is equivalent to its conventional extension, i.e. 〈C〉 = |C|.

Proposition 1 states that, for queries that have the form of conjunctions of
possibly negated named concepts, the approximate and conventional extensions
have exactly the same instances. In other words, computing the approximate
extension is sound and complete with respect to the conventional extension.

For more complex queries, however, the approximation might deviate signif-
icantly from the correct answer in both that it might miss instances as well as
show improper instances. In particular the approximation of the complement
constructor is supposed to cause significant deviation as it interprets negation



in a closed-world sense, potentially including improper instances in an answer.
Hence, we aim at eliminating general complements by means of normalisation,
avoiding this source of error.

For standard reasoning in DLs a query concept can be expressed in various
normal forms and semantics-preserving transformations do not affect the result
of instance retrieval. For the calculation of approximate extensions, however, the
result depends on the form of the concept, and different semantically equivalent
concept expressions can have different approximate extensions. We can exploit
this characteristics by choosing a normal form for query concepts that fits best
the process of approximation in terms of both error rate and ease of computation.
In this light, we consider the negation normal form [15] of concept expressions
for queries, denoted by NNF(C) for a concept C, in which negation symbols are
pushed inside to occur only in front of atomic concepts. This eliminates the case
of considering the approximation for general complements with its rather drastic
closed-world interpretation. Besides the lower expected error rate this also avoids
the computationally costly handling of large sets of individuals in case of large
ABoxes by an algorithm that computes approximate extensions. The positive
effect that elimination of complement approximation has on the error rate in
instance retrieval can be expressed by the following property, which ensures that
approximation of concepts in negation formal form only gives up completeness
but preserves soundness at least for a certain class of queries.

Proposition 2 (soundness of limited approximate instance retrieval).
Let KB be a knowledge base and C be a concept such that NNF(C) contains
no ∀- and no ≤- and ≥-constructs. The approximate extension of NNF(C) only
contains instances that are also contained in the conventional extension of C
with respect to KB, i.e. 〈NNF(C)〉 ⊆ |C|.
Proposition 2 states that, for queries that do not make use of the ∀, ≥ and
≤ constructs (after normalisation), the approach of approximating concepts in
their negation normal form yields an extension that might miss some instances
but has no improper instances in it. In other words, computing the approximate
extension is sound with respect to the conventional extension.

4 Computing Approximate Extensions

In this section, we will design algorithms for computing the approximate ex-
tension of a query concept. We will lay out the architecture of a system for
approximate instance retrieval and elaborate on two implementations of the al-
gorithms, one in a database and one in memory.

4.1 System Architecture

Our system for approximate instance retrieval takes as input a SHIQ5 knowl-
edge base KB and a complex query concept Q to compute the approximate

5 We use SHIQ since we build on KAON2 for our experimental results. However, our
approximation approach can easily be extended to nominals, the missing feature for
handling OWL ontologies.



Fig. 1. An overview of the system architecture

extension of Q with respect to KB as a set of individuals. This is depicted on
the right-hand side of Figure 1. The principle behind computing 〈Q〉 is always to
start from the individuals in the conventional extensions of (possibly negated)
atomic concepts and (possibly inverse) roles that occur in Q and to recursively
combine these according to the structure of concepts in Q, reflecting the set
operations from Table 1. According to Propositions 1 and 2, this results in an
answer that is sound and complete for some cases, only sound for others, or
neither sound nor complete, depending on the language constructs used in the
query.

We have implemented the approximate instance retrieval method in two
different ways and distinguish between database and in-memory computation:
in the first case computation is delegated to underlying database operations,
whereas in the second case it is performed in main memory. While for the
database variant the atomic extensions are pre-computed prior to query-time and
materialised in the database using a sound and complete reasoner, the in-memory
variant allows for two possibilities to access the atomic extensions: in online pro-
cessing a sound and complete DL reasoner is invoked at query-time to compute
atomic extensions, while in offline processing they are again pre-computed and
materialised either in a database or in memory if possible. Database computa-
tion and offline processing are very useful when dealing with large amounts of
data in scenarios with frequent querying on rather static ontologies, for which
materialisation can be done in advance. Online processing is intended to be used
in such cases where a materialisation is hardly manageable as ontologies are
subject to frequent changes.

For online processing we utilise the KAON2 reasoner, as illustrated in Figure
1. The reason for this choice is that KAON2 was designed to be an efficient
ABox reasoner on knowledge bases with large ABoxes and simple TBoxes in
comparison to other state-of-art DL reasoners, which typically perform better on
knowledge bases with large (or complex) TBoxes and small ABoxes. As depicted



Concept Expression Relational Algebra Expression

τdb(A) π[ind](σ[class=A](Ext
C))

τdb(¬A) π[ind](σ[class=¬A](Ext
C))

τdb(∃r.C) EC := τdb(C)
Er := σ[role=r](Ext

r)
π[ind1](σ[ind=ind2](EC × Er))

τdb(∀r.C) EC := τdb(C)
Er := σ[role=r](Ext

r)
E := π[ind1](σ[ind6=ind2](EC × Er))
π[ind1](Ext

C) \ E
τdb(≤ nR.C) EC := τdb(C)

Er := σ[role=r](Ext
r)

π[ind](σ[count(ind1)≤n ∧ ind=ind2](EC × Er))

τdb(≥ nR.C) EC := τdb(C)
Er := σ[role=r](Ext

r)
π[ind](σ[count(ind1)≥n ∧ ind=ind2](EC × Er))

τdb(C0 u C1 u · · · u Cn) τdb(C0) ∩ τdb(C1) ∩ · · · ∩ τdb(Cn)

τdb(C0 t C1 t · · · t Cn) τdb(C0) ∪ τdb(C1) ∪ · · · ∪ τdb(Cn)

Table 2. Mapping of DL concept expression to Relational Algebra Expression

on the left-hand side of Figure 1, KAON2 transforms the TBox together with
complex queries into a disjunctive datalog program in a first step, to perform
ABox reasoning in a second step based on the result of this transformation.
Hence, for every complex ABox query KAON2 needs to repeatedly perform the
TBox transformation, which is computationally costly. For ABox queries that
have the form of atomic concepts, however, this transformation is not necessary
and can be bypassed. For the variant with in-memory and online processing
we can take advantage of this because for computing atomic extensions with
KAON2 the costly TBox translation is saved.

In Figure 1, we introduce the running times for various steps in the query
execution, which will be used in the remainder of this paper. We refer to the
time required to compute conventional extensions with KAON2 as tkaon2. Fur-
thermore, we refer to the time taken for the computation with involving the DL
reasoner as tonline, the time for that with the materialisation as toffline and the
time for the database variant as tdb.

4.2 Delegation of Computation to Database

The variant that performs database computation is a presumably efficient im-
plementation of approximate instance retrieval as the pre-computed atomic ex-
tensions are materialised and approximate extensions are computed by making
use of highly optimised database operations. This variant is essential in practice
for handling ontologies with large ABoxes that cannot be processed efficiently
in memory. Here, the recursive combination of atomic extensions in terms of
set operations as defined in Table 1 is completely delegated to the underlying
database, which benefits performance. As a basis for this form of computation we



use a database schema that consists of two Relations, namely ExtC(ind, class)
for storing concept extensions and Extr(ind1, role, ind2) for storing role exten-
sions. In their schema, the attribute ind(i) stands for individual names, class for
names of possibly negated concepts and role for names of possibly inverse roles.
Starting from a knowledge base KB, these two relations are initialised as follows.

ExtC(ind, class) = {(a,C) | KB |= C(a)}, for C = A | ¬A with A ∈ σ(KB)

Extr(ind1, role, ind2) = {(a, r, b) | KB |= r(a, b)}, for r = p | p− with p ∈ σ(KB)

Notice that, for the purpose of approximate instance retrieval, ExtC and Extr

form a complete representation of the original knowledge base KB.
A complex query concept Q is answered by transforming its negation nor-

mal form NNF(Q) into a relational algebra expression according to a mapping
τdb posed as a query to the underlying database system. The complete map-
ping definition for τdb is given in Table 2. The left-hand side shows the concept
constructors that can occur in NNF(Q) and the right-hand side shows their re-
spective relational algebra expression. Recursive application of τdb ultimately
produces a single database query τdb(NNF(Q)) that is used for computing 〈Q〉.

For an example consider the query Q = Au∃r.¬B. The mapping τdb produces
the following nested relational algebra expression.

τdb(Q) = π[ind](σ[class=A](Ext
C))∩

π[ind1](σ[ind=ind2](σ[role=r](Ext
r)× π[ind](σ[class=¬B](Ext

C)))) .

When posed to the underlying database, this rather large expression is subject
to efficient internal query optimisation strategies as they are typically employed
by database systems.

4.3 In-memory Computation

Both the variants with online and offline processing share the same implementa-
tion of the approximate algorithm of which the pseudocode is described in Algo-
rithm 1. The difference is the handling of atomic extensions which is presented
by the function Compute Ext. This function takes as parameters a knowledge
base and an atomic concept or atomic role for which the atomic extension is to
be computed while the algorithm ψ accepts the knowledge base and a complex
concept query for which the approximate extension is to be computed.

For the computation of the atomic extension, depending on the chosen vari-
ant, Compute Ext invokes either a complete and sound reasoner or retrieves the
atomic extension from the database. In the following, we exemplarily describe
the most common part of the algorithm. For concepts being of the form ∃r.C,
it first computes the atomic extension of the role r, represented by R. Next, it
recursively calculates the approximate extension of the concept C, which is as-
signed to a temporary set C. Then, it determines such role assertions in R whose
second component belongs to C and returns the set of their first components. A
similar procedure is used in the calculation of ∀r.C and cardinality restrictions.



However, for cardinality restrictions the number of explicit role fillers is taken
into account and for ∀r.C the set difference of 〈>〉 and B.

Algorithm 1: ψ(KB,Q)

Data: SHIQ knowledge base KB and a complex query concept Q in NNF
Result: The approximate extension of Q
if Q is of the form A or ¬A then

return Compute Ext(KB,Q)

else if Q is of the form ∃r.C then
T := ∅; R := Compute Ext(KB, r); C := ψ(KB,C);
for (x, y) ∈ R do

if y ∈ C then
T := T ∪ {x}

return T
else if Q is of the form ∀r.C then
T := |>|; B := ∅; R := Compute Ext(KB, r); C := ψ(KB,C);
for (x, y) ∈ R do

if y /∈ C then
B := B ∪ {x}

return T \B;
else if Q is of the form ≥ n r.C or ≤ n r.C then
T := ∅; K := ∅; R := Compute Ext(KB, r); C := ψ(KB,C);
for (x, y) ∈ R do

if y ∈ C then
K := K ∪ {(x, y)}

if ≥ n r.C then
we determine such x holding the property
{x ∈ |>| | #{y | (x, y) ∈ K} ≥ n} and put it into T

else if ≤ n r.C then
we determine such x holding the property
{x ∈ |>| | #{y | (x, y) ∈ K} ≤ n} and put it into T

return T
else if Q is of the form C0 u C1 · · · u Cn then

return ψ(KB,C0) ∩ ψ(KB,C1) ∩ · · · ∩ ψ(KB,Cn);

else if C is of the form C0 t C1 · · · t Cn then
return ψ(KB,C0) ∪ ψ(KB,C1) ∪ · · · ∪ ψ(KB,Cn);

return ∅;

5 Experimental results

We have conducted experiments to determine how effective our approach is at
instance retrieval for concept queries. In this section, we present the experimental
results obtained from the execution of online and offline processing in the in-
memory variant as well as the database variant. The primary metrics we have



considered are response time and correctness of the computed extensions in terms
of precision and recall.

5.1 Test Data

There are already several well-known benchmarks for evaluating DL reasoning
systems. However, objectively comparing the performance of approximate rea-
soning systems with that of complete and sound DL reasoners is different, and
in fact it is not a priori clear how this should best be done. So currently, there
exist no generally accepted benchmarks. The point of difficulty is that we do not
only want to measure execution time, but we also need to determine empirically
to what extent the evaluated algorithms are sound and complete – in terms of
precision and recall. In order to do this, we need to test a suitable and large
enough sample of queries whilst for comparing complete and sound reasoning
systems usually a few complex queries suffice.

This poses the question, however, which of the potentially infinitely many
queries should be used for the testing. Obviously, we want to restrict our at-
tention to a finite set, but two general problems arise: it is not possible to do
unbiased random selections from an infinite set, and many randomly generated
queries would simply result in no answer at all. For our experiments, we thus
confine our attention to relatively simple queries such that we have only a finite
set to choose from, and we furthermore restrict our attention to those queries
that actually produce non-empty answers using a sound and complete DL rea-
soner. The queries that we use for testing are of the forms A uB (we call them
u-queries), AtB (t-queries), ∃r.A(∃-queries), ∀r.A (∀-queries) and ≥ nr.A (≥-
queries), where A and B are named classes. In addition to these basic queries,
we performed some experiments with complex queries to investigate the runtime
behaviour also for a combination of basic constructs as well as effects of error
compensation.

Another issue is to choose appropriate test ontologies. Not all well-known
benchmarking ontologies are suitable for highlighting the performance of our ap-
proximate algorithms. A particular difficulty is to find realistic ontologies that
are of sufficient expressivity in terms of TBox constructors, and at the same
time have a reasonably sized ABox. Since we consider scalable reasoning over
expressive ontologies with large TBoxes and ABoxes, we decided to use the WINE
ontology for our evaluation. WINE has originally been designed as a showcase for
the expressivity of OWL, and thus is a hard enough task to tackle using reason-
ing. WINE has 140 named classes, 10 object properties, 123 subconcept relations,
61 concept equivalences, 10127 concept assertions and 10086 role assertions. As
queries, we considered about 9876 queries of the forms AuB and AtB and 100
queries of the forms ∃r.A.

The approximate algorithms are implemented in Java 6.0 using the KAON2
API. Computation times are reported in milliseconds. All tests were performed
on a Lenovo laptop with dual 2.40 GHz Intel(R) Core(TM)2 Duo processors,
2GB of RAM (with 1024M heap space allocated to JVM), Ubuntu 8.04, Kernel
Linux 2.6.24- 21-generic.



5.2 Results

In our experiments, we compared our algorithms with KAON2 as a sound and
complete DL reasoner. The results are summarised in Table 3.

For ∃-queries, we first had to identify a meaningful set of such queries, as
randomly generated ones very often had empty extensions. We thus considered
only such queries for which KAON2 computed non-empty extensions. This way,
we identified 107 ∃-queries for testing. Running the approximation algorithm
in the database variant, we obtained a significant performance improvement for
each ∃-query, about 90%. The mean time consumed to answer the queries was
274 ms while it was 2789 ms for KAON2. Running the algorithm in offline pro-
cessing where the approximation is computated in memory, we obtained another
significant performance gain, indeed about 99% compared to KAON2. Consid-

Table 3. Summary of the offline and database variants, summarized over all considered queries.

miss indicates the elements of the conventional extensions that were not found by the approxima-

tion, corr indicates those that were correctly found, and more indicates those that were incorrectly

computed to be part of the extension. 〈C〉 indicates the sum of the sizes of the approximate exten-

sions while |C| indicates the sum of the sizes of the conventional extensions. tdb gives the runtime for

the database variant, toffline gives the runtime for the offline variant while tkaon2 gives the runtime

of KAON2 – these times are in ms and are the sums over all considered queries.

query miss corr more 〈C〉 |C| recall prec f-meas toffline tdb tkaon2
toffline

tkaon2

tdb
tkaon2

∃.r.A 872 1667 0 1667 2539 0.65 1 0.79 3187 29331 298472 0.01 0.098

≥ n r.C 872 1667 0 1667 2539 0.65 1 0.79 404 4524 71031 0.005 0.063

∀.r.A 0 3730 5109 8839 3730 1 0.42 0.59 545 13847 173088 0.003 0.080

A tB 0 43050 0 43050 43050 1 1 1 552 11681 312677 0.001 0.037

A uB 0 1476 0 1476 1476 1 1 1 2801 5432 278805 0.01 0.019

ering this rather drastic speed-up by one respectively two orders of magnitude,
the introduced error appears to be rather mild, namely with a recall of 0.65
and a precision of 1.0 (due to Proposition 2), resulting in an f-measure of 0.79.
Note also that we considered only queries that do have a non-empty extension:
obviously, queries with no answers are also sometimes used. If we would add
such queries to our sample set, then recall would be even better, while precision
would be unaffected.

We again obtained a significant performance gain for 107 ∀-queries while it
shows a precision of 0.42 due to unsoundness. Surprisingly, KAON2 took much
time to answer the ∀-queries. For ≥ n r.C-queries (n=1), the performance gain
was also significant while recall is the same for ∃-queries due to the number
restriction.

For the u-queries we obtained even more favourable results. The performance
gain for each query was above 95% while recall, precision and f-measure are 100%
as expected by Proposion 1. For the database variant the overall time gain was
98 %, while it was 99% for the offline variant.



For the t-queries we find it remarkable that recall turns out to be 100%,
which is coincidental.6 At the same time, we obtained reasonable speed-up for
the database variant, namely 97%, and remarkable 99.9%, i.e. three orders of
magnitude, for the offline variant. Turning to the online variant, we obviously
obtain the same values for precision and recall as for the offline and database
variants.

As for computation time, we expect an improvement over KAON2 if the TBox
translation is time-consuming (since the approximate algorithm does not need
it) compared to the ABox reasoning part performed with the datalog reasoner.
For WINE, the effect is rather small, so we would need an ontology with a
TBox translation that is very expensive compared to the datalog reasoning part.
However, we did not find any real ontology with this property. In order to show
that for some ontologies we would get the desired effect, we thus modified WINE
by multiplying the TBox, i.e. we used n renamed copies of the original TBox
together with the original ontology (including the ABox). Table 4 shows the
results for the original WINE, for WINE with additional 4 copies of the TBox,
and for WINE with additional 9 copies of the TBox. Indeed the TBox translation
took 2629 ms for WINE, 6674 ms for WINE with 4 TBox copies, and 18223 ms
for WINE with 9 TBox copies, showing – as expected – a worse than linear
development. When taking WINE with 10 TBox copies, KAON2 in fact was no
longer able to translate the TBox.

Table 4. Measured performance for querying 100 t-queries over wine ontology with
different TBoxes

ontology tonline tkaon2
tonline
tkaon2

WINE 243808 277714 0.88

WINE + 4 TBoxes 551101 922626 0.60

WINE + 9 TBoxes 1055881 2058829 0.51

The results in Table 4 show the desired effect, namely that our approach
brings an improvement for ontologies where the TBox translation is very expen-
sive. However, the effect is not as strong as we originally hoped it to be. It should
be noted that the online variant could be combined with further methods that
we are investigating. In particular it can be combined with the Screech approach
discussed in [10, 11], which results in further speed-up. It remains to be inves-
tigated, though, how the methods perform when combined. Another option for
further improvement of the online variant is to use logic programming systems
instead of a datalog reasoner following [16]; this is also under investigation.

Let us briefly discuss the matter of complex queries, i.e. of queries involving
more than one class constructor. Generally speaking, answering complex queries
with KAON2 is not more expensive than answering simple queries of the form
we have discussed so far. For our approximate approach, however, any addi-
tional class constructor in the query causes additional computation, namely the
retrieval of one or several approximate extensions, and the combination of these

6 The experiments performed in [11] show that disjunction cannot in general be ignored
in WINE without loss of precision or recall.



with the result of the remaining query. The effect of this can be expected to
be roughly linear in the number of class constructors. In the end, this means
that our approach yields less speed-up for more complex queries, but we also see
from the figures in Table 3 that the approximation can still be worthwhile, in
particular for the in-memory offline variant.

Table 5. Approximate extensions of complex queries

query (Ci) miss corr more 〈Ci〉 |Ci| toffline tdb tkaon2

C1 = ∃locatedIn.(ItalianRegion t USRegion) 1 36 0 36 37 11 123 1900
C2 = C1 u WhiteWine 0 7 0 7 7 15 137 1583

C3 = ∀hasSugar.Dry 0 47 109 156 47 5 104 1219
C4 = ∀hasSugar.Dryu WhiteWine 0 18 2 20 18 9 129 1500

C5 = ∀hasSugar.Dryu C1 u WhiteWine 0 6 0 6 6 23 161 1564

In order to investigate the effects of error compensation for complex queries,
we consider some complex concepts presented in Table 5. Consider first the
complex concept C1. The conventional extension of C1 contains 37 individuals.
In contrast, the approximate extension 〈C1〉 only contains 36 individuals; one
individual is not found by the algorithm due to its incompleteness for t and
∃-queries. If we combine this query with a more specific concept WhiteWine as
in C2, the missing individual disappears, i.e. the error is being compensated for
and we have that 〈C2〉 = |C2|.

As for unsoundness, we consider the query C3 and its approximate extension.
There are many (109) individuals that are computed incorrectly. Note that we
have had relatively low precision for ∀-queries, in Table 3. If we further constrain
this query by a conjunction with the named concept WhiteWine as in C4, then
the amount of the individuals computed incorrectly for the query C3 drastically
reduces from 109 to 2. This shows that also an error due to unsoundness can be
compensated for by a combination of constructs in complex queries.

As a final example, we consider the intersection of all the query constructs
used above in the query C5. Here we have full compensation of both kinds of
errors as its approximate extension is equal to its conventional one, i.e. 〈C5〉 =
|C5|. This suggests that for many practical complex queries our approximation
approach yields less errors than indicated for the simple queries in Table 3 due
to the effect of compensation, while speed-up in computation (see the columns
toffline and tdb) is still significant.

6 Related Work

The awareness that approximate reasoning approaches are needed for the Se-
mantic Web is rising within the community. This is witnessed by an increas-
ing number of research results which are explicitly or implicitly in the spirit of
approximate reasoning. They range from general or visionary articles [7, 8] to
concrete proposals of approximate systems, like the MARVIN and the SOAR
systems presented at the Billion Triple Challenge at the 2008 International Se-



mantic Web Conference.7 We refrain from even attempting a general listing of
current approaches.

Concerning work more closely related to the approach presented herein, we
would like to remark that the general idea we have presented here is hardly very
original. Using materialisations of extensions of named classes into databases for
avoiding the expensive use of online reasoning algorithms is indeed a straightfor-
ward idea and has been used without further ado when practical cicrumstances
seemed to make it feasible. Systematically, the approach has e.g. been used in
the Instance Store system [17], which is a sound and complete system based on
computing increments on the approximations obtained from the materialisations.

The new perspective we want to take, however, is that approximate exten-
sions can indeed be used in the straightforward way we have laid out to realise
approximate instance retrieval. But we also believe that approximate reasoning
methods should be evaluated properly before being used to understand their
advantages and their limitations, and to this end we have presented the first
systematic study of this approach which indeed shows that significant speed-up
can be obtained while introducing only few errors in the reasoning process.

7 Conclusion

We have presented an approach to approximate instance retrieval based on ap-
proximate extensions. Compared with a complete and sound DL reasoner, our
approach can significantly improve the performance of reasoning over expressive
ontologies with large ABoxes and TBoxes. We presented several instantiations
of our approach resulting online and offline in-memory and database variants.
We evaluated the approaches and showed that a significant speed-up of around
90% can be obtained while the number of introduced errors remains relatively
small.

Future work includes improvements on the online variant using logic pro-
gramming engines, further experiments for complex queries, combinations with
other approximate reasoning methods, extension to more expressive language
features and applications of our approach in suitable use case scenarios.
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