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Connectionist Model Generation:
A First-Order Approach

Sebastian Bader ∗1, Pascal Hitzler2, Steffen Hölldobler1

1International Center for Computational Logic, Technische Universität Dresden,
01062 Dresden, Germany

2Institute AIFB, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

Abstract

Knowledge based artificial neural networks have been applied quite successfully to propositional
knowledge representation and reasoning tasks. However, as soon as these tasks are extended to
structured objects and structure-sensitive processes as expressed e.g., by means of first-order
predicate logic, it is not obvious at all what neural symbolic systems would look like such that
they are truly connectionist, are able to learn, and allow for a declarative reading and logical
reasoning at the same time. The core method aims at such an integration. It is a method for
connectionist model generation using recurrent networks with feed-forward core. We show in this
paper how the core method can be used to learn first-order logic programs in a connectionist
fashion, such that the trained network is able to do reasoning over the acquired knowledge. We
also report on experimental evaluations which show the feasibility of our approach.

Key words: Connectionist Model Generation, Neural-Symbolic Integration, Recurrent RBF Networks,
First-Order Logic Programs

1. Introduction

The integration of neural networks with systems based on symbolic knowledge rep-
resentation and reasoning is a formidable challenge. It is motivated by the quest for a
tight integration of the robustness and learning abilities of neural networks on the one
hand, and the declarative nature and reasoning capabilities of symbolic systems on the
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other hand. Attempts towards such tight integrations seek for ways to represent logi-
cal knowledge in a connectionist setting, for ways of training neural networks with such
knowledge, and to reason with the symbolic knowledge encoded in such a network.

From the very beginning, research focused on relations between artificial neural net-
works and propositional logic. McCulloch-Pitts networks, for example, can be viewed
as computing propositional logical formulae [29]. Finding global minima of the energy
function associated with a symmetric network corresponds to finding models of a propo-
sitional logic formula [30]. These are just two examples that illustrate what McCarthy
has called a propositional fixation of connectionist systems in [28]. From the perspective
of symbolic systems, however, capabilities beyond propositional logic are required.

There exists a reasonable body of research results on modeling first-order fragments in
connectionist systems. In [7], energy minimization is used to model inference processes
involving unary relations. In [26] and [33] multi-place predicates and rules over such
predicates are modeled. In [23], a connectionist inference system for a limited class of logic
programs was developed. But a deeper analysis of these and other systems reveals that the
systems are in fact propositional, and furthermore, these systems usually either have good
reasoning capabilities or can be trained, but are not able to both learn and reason in a
powerful way. We are unaware of any connectionist system that fully incorporates learning
and reasoning for structured objects in the sense of logic-based knowledge representation,
and thus incorporates the power of symbolic computation as argued for in [34].

Here we are concerned with knowledge based artificial neural networks, i.e., with net-
works which are initialized by available background knowledge before training methods
are applied. In [35] it has been shown that such networks perform better than purely em-
pirical and hand-built classifiers. [35] used background knowledge in the form of proposi-
tional rules and encodes these rules in multi-layer feed-forward networks. Independently,
we have developed along similar lines a connectionist system for computing the least
model of (definite) propositional logic programs [21]. This system has been further devel-
oped into the so-called core method : background knowledge represented as logic programs
is encoded in a multi-layer feed-forward network, training methods can be applied to the
feed-forward kernel in order to improve the performance of the network, and recurrent
connections allow for a computation or approximation of models of the logic program
and thus for reasoning with the encoded knowledge. Finally, an improved program can
be extracted from the trained core, which closes the neural-symbolic cycle.

We present the core method for first-order logic programs. After a general introduction
in Section 3, we present in detail in Section 4 how to represent first-order logic programs
within radial basis function (RBF) networks. The representation is based on the Cantor
space as a bridge between the discrete paradigm of logic programming and the contin-
uous paradigm of neural networks. In Section 5, we present our training algorithm and
in Section 6 we report on an evaluation of our implementation, which shows that our
system is indeed able to learn logic programs, is robust against unit failure, and can be
used for reasoning in the sense that it is possible to compute the desired model of the
target logic program. To the best of our knowledge, this is the first system which com-
bines such capabilities for first-order logic programming within a purely connectionist
architecture. These main sections are framed by introducing technical preliminaries in
Section 2, discussions of further and related work in Sections 7 and 8, and a concluding
Section 9. This paper is a substantially revised and extended version of [5] and [6] by
including all necessary proofs, providing more intuition and more details of the training.
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2. Technical Preliminaries

We assume the reader to be familiar with basic notions from artificial neural networks
and logic programs and refer to [9] and [27], respectively. Nevertheless, we repeat some
basic notions, which will be required in later sections. We will start with the notion of a
metric space as it is crucial throughout the paper.

Definition 1 Let X be a set and let d : X × X → R be a function. The function d is
called a metric and (X, d) is called a metric space if for all x, y, z ∈ X the following
conditions hold: (i) d(x, x) = 0, (ii) d(x, y) = d(y, x) and (iii) d(x, z) ≤ d(x, y) + d(y, z).

For example, the following well known maximum metric over the m-dimensional real
numbers will be used below:

dR : Rm × Rm → R : (x,y) 7→ max
1≤i≤m

|xi − yi|.

The notion of continuity, known from functions on R, can be generalized to metric
spaces as follows. For two metric spaces (X1, d1) and (X2, d2), a function f : X1 → X2

is called continuous if for all ε > 0 there exists δ > 0 such that for all x, y ∈ X1 with
d1(x, y) < δ we have d(f(x), f(x)) < ε.

2.1. Logic Programs

A logic program over some language L is a set of clauses of the form A← L1∧· · ·∧Ln,
where A is an atom in L and the Li, 1 ≤ i ≤ n, are literals in L, that is, atoms or
negated atoms. A is called the head of the clause, the Li are called body literals, and
their conjunction L1 ∧ · · · ∧ Ln is called the body of the clause. If n = 0, A is called a
fact. A clause is ground if it does not contain any variables. Local variables are those
variables occurring in some body but not in the corresponding head. A logic program is
covered if none of the clauses contain local variables. A logic program is propositional if
all predicate letters occurring in the program are nullary.

Example 2 The following propositional logic program will serve as example in Section 3.

P1 = { p, % p is always true.
r ← p ∧ ¬q, % r is true if p is true and q is false.
r ← ¬p ∧ q } % r is true if p is false and q is true. ?

Example 3 The following (first-order) logic program will serve as example in Section 4.

P2 = { e(0). % 0 is even
e(s(X))← o(X). % the successor s(X) of an odd X is even
o(X)← ¬e(X). } % X is odd if it is not even ?

The Herbrand universe UL is the set of all ground terms of L, the Herbrand base BL is
the set of all ground atoms, which we assume to be infinite – indeed the case of a finite
BL can be reduced to a propositional setting. A ground instance of a literal or a clause
is obtained by replacing all variables by terms from UL. For a logic program P , G(P )
denotes the set of all ground instances of clauses from P .
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A Herbrand interpretation I is a subset of BL. Atoms A ∈ I are said to be true under
I, those A 6∈ I are said to be false under I. IL denotes the set of all interpretations. An
interpretation I is a (Herbrand) model of a logic program P (in symbols: I |= P ) if I is
a model for each clause in G(P ) in the usual sense.

Example 4 For P2 we have M2 := {e(sn(0)) | n even} ∪ {o(sm(0)) | m odd} |= P . ?

Given a logic program P , the single-step operator or meaning function TP : IL → IL
of P maps an interpretation I to the set of exactly those atoms A for which there is a
clause A← body ∈ G(P ) such that the body is true under I. The operator TP captures
the semantics of P as the Herbrand models of the latter are exactly the pre-fixed points of
the former, i.e., those interpretations I with TP (I) ⊆ I. For logic programming purposes
it is usually preferable to consider fixed points of TP , instead of pre-fixed points, as the
intended meaning of programs. These fixed points are called supported models [2]. The
intended model M2 for Example 3 is supported, while BL is a model but not supported.

A level mapping is a function assigning a natural number |A| ≥ 1 to each ground
atom A. For negative ground literals we define |¬A| := |A|. A program P is called
acyclic if there exists a level mapping | · | such that |A| > |Li| holds for all clauses
A← L1 ∧ · · · ∧ Ln ∈ G(P ).

Example 5 Consider the program from Example 3 and let sn denote the n-fold appli-
cation of s. One possible level mapping for which we find that P2 is acyclic is given as
| · | : BL → N+ with e(sn(0)) 7→ 2n + 1 and o(sn(0)) 7→ 2n + 2. ?

In [14], the following metric was used to show the convergence of the iteration of TP for
acyclic logic programs. This can be done by showing that the space of all interpretations
together with this metric is complete and that the TP -operator is contractive on it. Under
these conditions we can apply Banach’s contraction mapping theorem (see [36]), which
allows to conclude the existence of a unique fixed point and to conclude that the iteration
of TP will converge to it.

Definition 6 Let I and J be Herbrand interpretations. We define dL(I, J) = 0 for I = J
and dL(I, J) = 2−n if n is the smallest level on which I and J disagree.

The set of all interpretations together with d comprises a compact and hence complete
metric space (as shown in [14]). This insight will be applied later in Section 4.2.

Proposition 7 (IL, dL) is a compact metric space.

Using level mappings, we can also define a notion of approximation. Here, an atom
of smaller level is considered more important than one of higher level. By choosing a
certain level mapping, we can specify the importance of the different atoms. We say that
an interpretation I approximates an interpretation J to degree n ∈ N iff d(I, J) ≤ 2−n,
i.e., if I and J agree on all atoms up to level n. This notion of approximation can be
extended to TP -operators as follows:

Definition 8 We say that an operator T̄P approximates the operator TP to degree n, iff
we find d(T̄P(I), TP(I)) ≤ 2−n for all interpretations I ∈ IL.
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Definition 9 Let P be an acyclic logic program wrt. some injective level mapping | · |
and let n ≥ 0. Then P̄ ⊆ G(P) is defined as follows:

P̄ = {H ← L1 ∧ . . . ∧ Lc | H ← L1 ∧ . . . ∧ Ln ∈ G(P) and |H| ≤ n}

We will use T̄P to denote the operator associated with P̄.

The following lemma, shows the connection between an acyclic logic program P and
its approximation P̄. In Section 4, we will embed this approximating operator into a
connectionist system. A similar result is used, for example in [25].

Lemma 10 Let P be an acyclic logic program wrt. some injective level mapping and let
P̄ for n ≥ 0 be defined as above. Then P̄ is finite and T̄P approximates TP to degree n.

Proof (Sketch) Because P is acyclic wrt. some injective level mapping, we find, that
there are only finitely many atoms H ∈ BL with |H| ≤ n, i.e., there are only finitely many
different heads. Furthermore, we know that |Li| < |H|, i.e., there are only finitely many
body literals, which completes the proof of the first statement. For the second statement
we first notice that obviously TP = TG(P). Furthermore, TG(P)(I) and T̄P(I) agree on all
atoms with level ≤ n, because all clauses with heads of level ≤ n are still contained in
P̄. Therefore, we find that d(T̄P(I), TP(I)) ≤ 2−n for all interpretations I ∈ IL. 2

2.2. Artificial Neural Networks

Artificial neural networks consist of simple computational units (neurons), which re-
ceive real numbers as inputs via weighted connections and perform simple operations:
the weighted inputs are added and simple functions (like threshold, sigmoidal) are ap-
plied to the sum. We will consider networks, where the units are organized in layers.
Neurons which do not receive input from other neurons are called input neurons, and
those without outgoing connections to other neurons are called output neurons. Such
so-called feed-forward networks compute functions from Rn to Rm, where n and m are
the number of input and output units, resp. The gray shaded area in Figure 1 on the left
shows a simple feed-forward network with n input and n output units. In this paper we
will construct recurrent networks by connecting the output units of such a feed-forward
network to its input units.

3. The Core Method

In a nutshell, the idea behind the core method is to use feed-forward connectionist
networks – called core – to compute or approximate the meaning function of logic pro-
grams. If the output layer of a core is connected to its input layer then these recurrent
connections allow for an iteration of the meaning function. This iteration may converge to
stable state, which corresponds to the desired (in some cases the least) model of the logic
program (see Figure 1). Moreover, the core can be trained using standard methods from
connectionist systems, in which case it can be conceived as acquiring a connectionist rep-
resentation of logical knowledge. In other words, we are considering connectionist model
generation using training and then iteration of recurrent networks with feed-forward core.
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Figure 1. The blueprint of a recurrent network used by the core method and the core corresponding to
P1. Solid connections have weight 1.0, dashed weight −1.0. The numbers denote the thresholds.

The ideas behind the core method for propositional logic programs were first presented
in [21] (see also [19]). Consider the logic program from Example 2. A translation algorithm
turns the program into a core of logical threshold units. Because the program contains
the predicate letters p, q and r only, it suffices to consider interpretations of these three
letters. Those can be represented by triples of logical threshold units. The input and the
output layer of the core consist exactly of such triples. For each rule of the program a unit
is added to the hidden layer such that the unit becomes active iff the preconditions of
the rule are met by the current activation pattern of the input layer. This unit activates
the output layer unit corresponding to the postcondition of the rule. The right part of
Figure 1 shows the network obtained by the translation algorithm if applied to P1.

In [21] we proved – among other results – that for each propositional logic program P
there exists a core computing its meaning function TP and that for each acyclic propo-
sitional logic program P there exists a core with recurrent connections such that the
computation with an arbitrary initial input converges to the unique fixed point of TP .

The use of logical threshold units in [21] made it easy to prove these results. However,
it prevented the application of standard training methods like back-propagation to the
kernel. This problem was solved in [13] by showing that the same results can be achieved if
bipolar sigmoidal units are used instead. [13] also overcomes a restriction of the KBANN
method originally presented in [35]: rules may now have arbitrarily many preconditions
and programs may have arbitrarily many rules with the same postcondition.

The propositional core method has been extended in many directions. In [24] and [25]
it was extended to finitely determined sets of truth values. Modal logic programs have
been considered in [11]. Answer set programming and meta-level priorities are discussed
in [10] and an application to intuitionistic logic programs in [12].

To summarize, the propositional core method allows for model generation with respect
to a variety of logics in a connectionist setting. Given logic programs are translated into
recurrent connectionist networks with feed-forward cores, such that the cores compute the
meaning functions associated with the programs. The cores can be trained using standard
learning methods leading to improved logic programs. These improved programs must
be extracted from the trained cores in order to complete the neural-symbolic cycle. The
extraction is outside the scope of this paper and interested readers are referred to [1,10].

While it was shown in [13], that the propositional core method leads to improved
training behaviour, it is important to notice that propositional logic is in general insuffi-
cient for knowledge based intelligent systems. We thus carried it over to first-order logic
programs, which is what we will report in the sequel.
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4. Connectionist Representation of First-Order Programs

The extension of the core method to first-order logic poses a considerable problem
because first-order interpretations usually do not map a finite but a countably infinite
set of ground atoms to the set the truth values. Hence, they cannot be represented by a
finite vector of units, each of which represents the value assigned to a particular ground
atom. This is due to the fact that first-order logic programs allow to model infinite
structures (such as natural numbers), while neural networks consist of only finitely many
nodes. On the other hand, it is well known that multilayer feed-forward networks are
universal approximators [20,16] for certain functions of the type Rn → Rm. Hence, if we
find a suitable way to represent interpretations of first-order logic programs by (finite
vectors of) real numbers, then feed-forward networks can be used to approximate the
meaning function of such programs. It is necessary, however, that such a representation
is compatible with both, the logic programming and the neural network paradigm, as
the resulting connectionist system shall combine desirable properties from both worlds,
such as reasoning capabilities on the one hand, and robustness and trainability on the
other hand. We thus require a way to bridge the gap between the discrete world of logic
programs and the continuous world of neural networks. This will be realized by means of
a continuous embedding in the sense of metric spaces. The rationale behind this is that
the underlying metrics are meaningful for both logic programming and neural networks.
On the technical side, following [22], we use level mappings to realize the representation.

Definition 11 Let I ∈ IL be a Herbrand interpretation over BL, | · | be an injective level
mapping from BL to N+ and b > 2. Then we define the embedding function ι as follows:

ι : IL → R, I 7→
∑
A∈I

b−|A|.

We will use C := {ι(I) | I ∈ IL} ⊂ R to denote the set of all embedded interpretations.

Definition 12 Let P be a logic program and TP its associated meaning operator. The
embedding fP : C→ C of TP is defined as fP(r) = ι(TP(ι−1(r))).

For b > 2, we find that the following mapping ι is injective from IL to R and, hence,
bijective between IL and C. Please note that ι is not injective for b = 2, because 0.01̄2 =
0.12. In [22] we proved – among other results – that for each logic program P which is
acyclic wrt. an injective level mapping the function fP is continuous and contractive for
b > 3. Moreover we find, that C is a compact subset of the real numbers. This has various
implications: (i) We can apply Funahashi’s result, viz. that every continuous function on
(a compact subset of) the reals can be uniformly approximated by feed-forward networks
with sigmoidal units in the hidden layer [16]. This shows that the meaning function of
acyclic logic program can be approximated by a core. (ii) Considering the metric from
Definition 6, we can apply Banach’s contraction mapping theorem [36] to conclude that
the meaning function has a unique fixed point, which is obtained from an arbitrary initial
interpretation by iterating the application of the meaning function. Using (i) and (ii) we
were able to prove in [22] that the least model of logic programs which are acyclic wrt. a
bijective level mapping can be approximated arbitrarily well by recurrent networks with
feed-forward core. We will re-derive this as Theorem 21 below.
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But what exactly is the approximation of an interpretation or a model in this context?
Let P be a logic program and | · | be a level mapping. Using the metric introduced in
Definition 6, we can use the notion of approximation as given in Definition 8. In other
words, if a recurrent network approximates a model I of a logic program to a degree
n ∈ N and outputs r then for all ground atoms A whose level is equal or less than n we
find that I(A) = ι−1(r)(A). All these relations will be discussed in detail below.

To summarize, from [22] we learn that there exists a recurrent network with a feed-
forward core approximating the least fixed point of TP for an acyclic logic program P
arbitrarily well. But this result is purely theoretical and does not provide a way to ac-
tually construct the network. A constructive approach will be discussed in the sequel.
In Section 4.1, we will show the underlying intuition by discussing an approach, which
approximates the meaning functions of logic programs by means of piecewise constant
functions f̄P : R → R, which will be implemented as a connectionist system. Unfortu-
nately, we will find that the accuracy is very limited. This approach is then extended to
a multi-dimensional setting in Section 4.2, allowing for arbitrary precision, even if imple-
mented on a real computer. A novel training method, tailored for our specific setting is
discussed in Section 5 and some preliminary experiments are presented in Section 6.

4.1. The Underlying Intuition

In this section, we will show how to construct a core network approximating the mean-
ing operator of a given logic program. As mentioned above, this is not meant to be used
in real implementations, but rather to convey the underlying intuitions. All details, in-
cluding the proofs, will be given in the next section. As above, we will consider logic
programs P which are acyclic wrt. a bijective level mapping. It suffices to require injec-
tivity, but bijectivity allows for cleaner proofs. We will construct sigmoidal networks and
RBF networks with a raised cosine activation function.

To illustrate the ideas, we will use the program P2 given in Example 3 as a running
example. The construction consists of five steps: (i) Construct fP as a real embedding
of TP . (ii) Approximate fP using a piecewise constant functions f̄P . (iii) Implement f̄P
using (a) step and (b) triangular functions. (iv) Implement f̄P using (a) sigmoidal and
(b) raised cosine functions. (v) Construct the core network approximating fP .

In the sequel we will describe the ideas underlying the construction. The more general
m-dimensional approach will be described in the following sections. One should observe
that fP is a function on C and not on R. Although the functions constructed below will
be defined on intervals of R, we are thus concerned with accuracy on C only.

Construct fP as a real embedding of TP : We use fP(r) = ι(TP(ι−1(r))) as a real-valued
version for TP . But first, we will have a closer look at its domain C. For readers familiar
with fractal geometry, we note that C is a variant of the classical Cantor set [8]. The
interval [0, 1

b−1 ] is split into b equal parts, where b is the natural number used in the
definition of the embedding function ι. All, except the left- and rightmost subintervals
are removed. The remaining two parts are split again and the subintervals except the first
and the last are removed, etc. We use Cn to denote the result after n splits and removals.
This process is repeated ad infinitum and we find C to be its limit, i.e., C =

⋂
i∈N Ci. The

first four iterations are depicted in Figure 2.
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C0 :
C1 :
C2 :
C3 :

Figure 2. The first four iterations (C0, C1, C2 and C3) of the construction of C for b = 4.

ι(I)

0.3̄

ι(TP (I))
0.3̄

ι(I)

0.3̄

ι(TP (I))
0.3̄

Figure 3. The plot of fP2 is shown on the left. On the right a piecewise constant approximation f̄P2 (for
level n = 3) of fP2 (depicted in light gray) is shown.

Example 13 Considering program P2, and the level mapping from Example 5, we ob-
tain fP2 as depicted in Figure 3 on the left. ?

Approximate fP using a piecewise constant function f̄P : Under the assumption that P
is acyclic, we find that all variables occurring in the body of a clause are also contained in
its head. Hence, for each level n and two interpretations I and J , we find that whenever
d(I, J) ≤ 2−n holds, d(TP(I), TP(J)) ≤ 2−n follows. Therefore, we can approximate
TP to degree n by some function T̄P which considers ground atoms with a level less or
equal to n only. Due to the acyclicity of P, we can construct a finite ground program
P̄ ⊆ G(P) containing those clauses of G(P) with literals of level less or equal n only and
find TP̄ = T̄P (see Lemma 10). We will use f̄P to denote the embedding of T̄P and we
find that it is a piecewise constant function, being constant on each connected interval of
Cn−1. Furthermore, we find that |fP(x)− f̄P(x)| ≤ 2−n for all x ∈ C, i.e., f̄P is a constant
piecewise approximation of fP . As mentioned above, we will discuss all this formally in
Section 4.2.

Example 14 For our running example P2 and n = 3, we obtain P̄2 = {e(0). e(s(0))←
o(0). o(0)← ¬e(0).} and f̄P2 as depicted in Figure 3 on the right. ?

Implement f̄P using (a) step and (b) triangular functions: As a next step, we will show
how to implement f̄P using step and triangular functions. Those functions are the linear
counterparts of the functions actually used in the networks constructed below. If f̄P
consists of k intervals, then we can implement it using k − 1 step functions which are
placed such that the steps are between two neighboring intervals. This is depicted in
Figure 4 on the left.

Each constant piece of length λ := 1
b−1 ×

1
bn could also be implemented using two tri-

angular functions with width λ which are centered at the endpoints. Those two triangles

9



ι(I)

0.3̄

ι(TP (I))
0.3̄

ι(I)

0.3̄

ι(TP (I))
0.3̄

Figure 4. Two linear approximation of f̄P2 . On the left, three step functions were used; On the right,
eight triangular functions (shown in gray) add up to the approximation, which is shown using thick lines.

ι(I)

0.3̄

ι(TP (I))
0.3̄

ι(I)

0.3̄

ι(TP (I))
0.3̄

Figure 5. Two non-linear approximation of f̄P2 . On the left, sigmoidal functions were used and on the
right, raised cosines.

add up to the constant piece. For base b, we find that the gaps between two intervals
have a length of at least (b − 2)λ. Therefore, the triangular functions of two different
intervals will never interfere. This is depicted in Figure 4 on the right.

Implement f̄P using (a) sigmoidal and (b) raised cosine functions: To obtain a sigmoidal
approximation, we replace each step function with a sigmoidal function. Unfortunately,
those add some further approximation error, which can be dealt with by increasing the
accuracy in the constructions above. By dividing the desired accuracy by two, we can
use one half as accuracy for the constructions so far and the other half as a margin to
approximate the constant pieces by sigmoidal functions. This is possible because we are
concerned with the approximation on C only. The triangular functions can simply be
replaced by raised cosine activation functions, as those add up exactly as the triangles
do and do not interfere with other intervals either.

Construct the core network approximating fP : A sigmoidal network approximating a
given TP -operator consists of: An input layer containing one input unit whose activation
will represent an interpretation I. A hidden layer containing a unit with sigmoidal activa-
tion function for each sigmoidal function constructed above. An output layer containing
one unit whose activation will represent the approximation of TP(I). The weights from
input to hidden layer together with the bias of the hidden units define the positions of
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the sigmoidals. The weights from hidden to output layer represent the heights of the
single functions. An RBF network can be constructed analogously, but will contain more
hidden layer units, namely one for each raised cosine functions. A constructive proof for
the existence of approximating networks follows directly from the fact that the network
constructed above approximates a given TP -operator up to any given accuracy.

4.2. A Distributed Embedding

In the previous section, we showed how to construct a core network for a given pro-
gram and some desired level of accuracy. Due to the one-dimensional embedding, the
precision of a real implementation is very limited. This limitation can be overcome by
distributing an interpretation over more than one real number. In our running exam-
ple P2, we could embed all even-atoms into one real number and all odd-atoms into
another one, thereby obtaining a two-dimensional vector for each interpretation, hence
doubling the accuracy. By embedding interpretations into higher-dimensional vectors, we
can approximate meaning functions of logic programs arbitrarily well.

We now present the details of this approach. We base our treatment on RBF networks,
although in principle other kinds of activation functions could also be used. Our choice
was in part inspired by vector-based networks as described in [15]. Analogously to the
previous section, we will proceed as follows: (i) Construct fP as a real embedding of TP .
(ii) Approximate fP using a piecewise constant functions f̄P . (iii) Construct the core
network approximating fP . After discussing a new embedding of interpretations into
vectors of real numbers, we will show how to approximate the embedded TP -operator
using a piecewise constant function. This piecewise function will then be implemented
using a connectionist system. The system presented here is a fine blend of ideas from
vector-based networks and the approach presented above.

Construct fP as a real embedding of TP : We will first extend level mappings to a multi-
dimensional setting, and then use them to represent interpretations as real vectors. This
leads to a new embedding of TP .

Definition 15 An m-dimensional level mapping ‖ · ‖ : BL → (N+, {1, . . . ,m}) maps
atoms to two natural numbers. For A ∈ BL and ‖A‖ = (l, d), we call l and d the level
and dimension of A respectively. Again, we define ‖¬A‖ := ‖A‖.

Example 16 A possible 2-dimensional level mapping for P2 is given as:

‖ · ‖ : BL → (N+, {1, 2}) with e(sn(0)) 7→ (n + 1, 1) and o(sn(0)) 7→ (n + 1, 2).

All even-atoms are mapped to the first dimension, and the odd-atoms to the second. ?

Definition 17 Let b ≥ 3 and let A ∈ BL be an atom with ‖A‖ = (l, d). The m-
dimensional embedding ι :BL → Rm and its extensions ι :IL → Rm are defined as:

ι(A) := (ι1(A), . . . , ιm(A)) with ιj(A) :=

{
b−l if j = d

0 else
and ι(I) :=

∑
A∈I

ι(A).

We will use Cm := {ι(I) | I ∈ IL} ⊂ Rm to denote the set of all embedded interpretations.
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C1
0: C1

1: C1
2: C1

3:
; ; ;

C2
0: C2

1: C2
2: C2

3:

; ; ; ι(M2)

Figure 6. The first four iterations of the construction of C1 are depicted on the top. The construction of
C2 is depicted below containing ι(M2) from Example 18. Both are constructed using b = 4.

As mentioned above, C1 is the classical Cantor set and C2 the 2-dimensional variant
of it [8]. Without going into detail, Figure 6 shows the first 4 steps in the construction
of C2. The big square is first replaced by 2m shrunken copies of itself, the result is again
replaced by 2m smaller copies and so on. The limit of this iterative replacement is C2.
Again, we will use Cm

i to denote the result of the i-th replacement, i.e., Figure 6 depicts
C2

0,C
2
1,C

2
2 and C2

3. For readers with a background in fractal geometry we note that these
are the first four applications of an appropriately set up iterated function system [8].

Example 18 Using the 1-dimensional level mapping from Example 5, we obtain C1 as
depicted in Figure 6 at the top. Using the 2-dimensional from above, we obtain C2 and
ι(M2) = (0.1010b, 0.0101b) ≈ (0.2666667, 0.0666667) for the embedding of the intended
model M2. ?

Next, we will discuss some important properties of the embedding ι and its codomain
Cm. These include the bijectivity and continuity of ι, as well as the compactness of Cm.
The bijectivity allows to relate the TP -operator and its embedded version in a precise
way. Furthermore, we will establish a precise relation between the space of interpretations
and their embeddings. We will consider ι as a mapping from BL to Cm.

Lemma 19 The following three properties hold:
(i) ι is a bijection between BL and Cm.
(ii) ι : BL → Rm is a continuous mapping from (IL, dL) to (Rm, dR).
(iii) ι−1 : Cm → BL is also a continuous mapping.

Proof First we show that ι is injective (one-to-one), i.e., that ι(I) = ι(J) implies I = J
by assuming the existence of I 6= J such that ι(I) = ι(J) and deriving a contradiction.
From I 6= J follows that there is some A ∈ BL with ‖A‖ = (l, d) on which both disagree.
Without loss of generality, we assume A ∈ I and A 6∈ J . Furthermore, we assume that
there is no atom with level < d on which both disagree. Let K := {B ∈ I | ‖B‖ =
(lB , dB) and dB < d}, i.e., K contains all atoms with smaller level than A; and I and J
agree on K. Furthermore, let I ′ and J ′ denote the remaining parts of I and J respectively,
i.e., I ′ := I \ ({A} ∪K) and J ′ := J \ ({A} ∪K). Looking at dimension d only, we find
ιd(I) = ιd(K)+ b−d + ιd(I ′) and ιd(J) = ιd(K)+ ιd(J ′). I.e., to derive a contradiction it
suffices to show that ιd(J ′) < b−d, which follows from the fact that ιd(J ′) can be at most
b−d

b−1 which is smaller than b−d. Obviously, ι is also surjective (onto), hence it is bijective.
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To show the continuity of ι, we need to show that there is a δ > 0 for all ε > 0, such
that dL(I, J) < δ implies dR(ι(I), ι(J)) < ε. As in the proof of injectivity just given, we
assume that I and J differ on some atom A (with A ∈ I and A 6∈ J) of level n and agree
on all atoms with smaller level. For I ′ and J ′ as defined above, we get dL(I, J) = b−n and
dR(ι(I), ι(J)) = b−n + ιd(I ′)− ιd(J ′) < b−n + b−d

b−1 . Obviously, there exists an n for each

ε > 0 such that b−n + b−d

b−1 < ε and for δ = b−n, we find dR(ι(I), ι(J)) < b−n + b−d

b−1 < ε
for all I and J with dL(I, J) < δ.

Analogously to the proof of continuity of ι just given, we need to show that there is
a δ > 0 for all ε > 0, such that dR(ι(I), ι(J)) < δ implies dL(I, J) < ε. As in the proof
above, this can be done by computing a suitable n. 2

In other words, Lemma 19 states that ι is a homeomorphism, i.e., a structure-preserving
mapping between two metric spaces. Homeomorphisms are fundamental to theory of
metric spaces in that central notions such as compactness and continuity are preserved
under them. With general knowledge from metric space theory (see [36]), we obtain:

Corollary 20 Cm is a compact subset of Rm. Furthermore, TP is continuous if and only
if ι(TP) is continuous.

Proof The statements follow from the fact that homeomorphisms preserve compactness
and continuity in the way needed for the result (see [36]). 2

We see from these results that ι indeed serves as a bridge between the space of inter-
pretations of a logic program, and the reals. Obviously, the natural metric on the reals –
which underlies the standard notion of continuity on the reals – is a meaningful notion
for the continuous neural network paradigm. The question remains, though, whether the
considered metric on the space of all interpretations is meaningful for logic programs.
And indeed, this metric is most suitable for capturing semantic notions for logic pro-
grams, which is well-known from research in this area (see [14,31]). Our embedding ι
is thus a priori a promising candidate for a useful connectionist representation of logic
programs, and we will indeed verify this in the sequel.

Knowing that Cm is a compact subset of the reals, we now immediately obtain the
main theorem of [22], stating that there exists an approximating network for a given
acyclic program P. It follows from the fact that TP is continuous for acyclic programs.
Using Corollary 20 we can also conclude that fP is a continuous function on a compact
set, which allows to apply Funahashi’s theorem [16].

Theorem 21 Let P be acyclic. Then there exists a 3-layer connections system which
approximates TP arbitrarily well.

Using the m-dimensional embedding, the TP -operator can be embedded into real vec-
tors to obtain a real-valued function fP . The following theorem follows immediately from
the fact that ι is a bijection.

Definition 22 Let ι be an m-dimensional embedding. The m-dimensional embedding
fP of a given TP -operator is defined as fP : Cm → Cm : x 7→ ι

(
TP

(
ι−1(x)

))
.
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ι1(I) (even)

ι2(I) (odd)

ι1(f̄P (I))

ι1(I) (even)

ι2(I) (odd)

ι2(f̄P (I))

Figure 7. f̄P for P2, the 2-dimensional level mapping from Example 16 and n = 3. The outputs for
dimension 1 and 2 are shown on the left and on the right, respectively.

Theorem 23 Let TP be a consequence operator defined over BL, IL be the corresponding
space of interpretations and let ι : BL → Rm be the bijective m-dimensional embedding
as introduced above. Then TP(I) = ι−1(fP(ι(I))).

Approximate fP using a piecewise constant function f̄P : Under the assumption that
P is acyclic, we can approximate TP up to some level n by T̄P . After embedding T̄P
into Rm, we find that it is constant on certain regions, namely on all those embedded
interpretations which are contained in the same connected interval in Cm

n . Those intervals
will be referred to as hyper-squares in the sequel. We will use Hl to denote a hyper-square
of level l, i.e., one of the squares occurring in Cm

l . An approximation of TP up to some
level n will yield a function f̄P which is constant on all hyper-squares of level n.

Example 24 Considering program P2, and the level mapping from Example 16, we
obtain f̄P for n = 3 as depicted in Figure 7. ?

Using the results discussed in Section 2.1, we can prove the following lemma, which
provides the basis for the approximation of acyclic logic programs. It shows, that the
T̄P -operator for some n and, hence, its embedded version f̄P are constant on certain
regions of the input space.

Lemma 25 Let P be acyclic wrt. some injective level mapping ‖ · ‖, let n ≥ 0 and let
T̄P be as in Definition 9. Then we find T̄P(I) = T̄P(J) and hence f̄P(ι(I)) = f̄P(ι(J))
for all I, J ∈ IL with dL(I, J) ≤ 2−n.

Proof From dL(I, J) ≤ 2−n, we can conclude, that I and J agree on all atoms with
level ≤ n. Furthermore, we know that T̄P does only consider those atoms. Therefore,
we can conclude that T̄P(I) = T̄P(J). From the bijectivity of ι we obtain immediately
f̄P(ι(I)) = f̄P(ι(J)) for all I, J ∈ IL with dL(I, J) ≤ 2−n. 2

Taking a closer look at the set of embedded interpretations whose distance is below
2−n, we find that they are all contained in one of the hyper-squares of level n. First
we will define the smallest and the largest interpretation, sn(I) and ln(I) respectively,
with dL(I, sn(I)) ≤ 2−n, dL(I, ln(I)) ≤ 2−n and dL(sn(I), ln(I)) ≤ 2−n. Afterwards, the
corresponding hypersquares are defined.
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v1
v2

v3

v4

s1

l1

x

0.3̄

y

0.3̄

v1
v2

v3

v4

x

0.3̄

y

0.3̄

Figure 8. The largest exclusive hyper-square of v1 with respect to the set {v2, v3, v4} is shown on the
left, together with the smallest s1 and largest l1 embedded interpretation with respect to ι−1(v1) and
level 1. The smallest inclusive hyper-square of the set {v1, v2, v3, v4} is shown on the right. Both are
depicted in light gray together with C2 in black.

Definition 26 Let I ∈ IL and n ≥ 0. We define smallest sn(I) and largest interpreta-
tion ln(I), and the corresponding hyper-square Hn(I) of level n as follows:

sn(I) := {A ∈ I | ‖A‖ = (l, d) with l ≤ n}
ln(I) := {A ∈ I | ‖A‖ = (l, d) with l ≤ n} ∪ {A ∈ BL | ‖A‖ = (l, d) with l > n}

Hn(I) :=
∏

1≤i≤m

[ιi(sn(I)), ιi(ln(I))].

Example 27 Figure 8 on the left, shows the smallest s1 and the largest l1 embedded
interpretation with respect to ι−1(v1) and level 1. The corresponding hyper-square of
level 1 is depicted in light gray. ?

Without proving it formally, we find Hn(I) = Hn(J) for all interpretations I and
J with dL(I, J) ≤ 2−n. Furthermore, we find that every such hyper-square is one of
the connected intervals occurring in the n-th step of the construction of C. To be more
precise, we find Cm

n =
⋃

I∈IL Hn(I).

Construct the core network approximating fP : We will use a 3-layered network with a
winner-take-all hidden layer. For each hyper-square H of level n, we add a unit to the
hidden layer, such that the input weights encode the position of the center of H. The
unit shall output 1 if it is selected as winner, and 0 otherwise. The weight associated
with the output connections of this unit is the value of f̄P on that hyper-square. Thus,
we obtain a connectionist network approximating the semantic operator TP up to the
given accuracy ε. To simplify the notations later, we will introduce the largest exclusive
hyper-square and the smallest inclusive hyper-square as follows.

Definition 28 The largest exclusive hyper-square of a vector u ∈ Cm
0 and a set of

vectors V = {v1, . . . ,vk} ⊆ Cm
0 , denoted by Hex(u, V ), either does not exist or is the

hyper-square H of least level for which u ∈ H and V ∩ H = ∅. The smallest inclusive
hyper-square of a non-empty set of vectors U = {u1, . . . ,uk} ⊆ Cm

0 , denoted by Hin(U),
is the hyper-square H of greatest level for which U ⊆ H.
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Example 29 Let v1 =(0.07, 0.07), v2 =(0.27, 0.03), v3 =(0.13, 0.27) and v4 =(0.27, 0.13)
as depicted in Figure 8. The largest exclusive hyper-square of v1 with respect to {v2, v3, v4}
is shown in light gray on the left. That of v3 with respect to {v1, v2, v4} does not ex-
ists, because there is no hyper-square which contains only v3. The smallest inclusive
hyper-square of all four vectors is shown on the right, and is in this case C0. ?

To determine the winner for a given input, we designed an activation function such
that its outcome is greatest for the “responsible” unit. Those are defined as follows: Given
some hyper-square H, units which are positioned in H but not in any of its sub-hyper-
squares are called default units of H, and they are responsible for inputs from H except
for inputs from sub-hyper-squares containing other units. If H does not have any default
units, the units positioned in its sub-hyper-squares are responsible for all inputs from H
as well. After all units’ activations have been computed, the unit with the greatest value is
selected as the winner. The details of this activation function dC are given in Algorithm 1.
Please note that the algorithm outputs a 3-tuple, which is compared component wise,
i.e., the first component is most important. If for two distances this first component is
equal, the second component is used and, finally, the third, if the first two are equal. This
activation function can easily be turned into a function computing a single real value.

Algorithm 1: The activation function for the Fine Blend
Input: Inputs x,y ∈ Cm

0

Output: Distance dC(x,y) ∈ (N, {1, 2, 3}, R)

if x = y then return (∞, 0, 0)1

l := level of Hin({x,y})2

k :=


3 if Hin({x}) and Hin({y}) are of level greater than l

2 if Hin({x}) or Hin({y}) is of level greater than l

1 otherwise3

m := 1
|x−y| , i.e., m is the inverse of the Euclidean distance4

return (l, k,m)5

Example 30 Let v1, v2, v3 and v4 from Example 29 be the incoming connections for
some units. The different input regions for which each of the units are responsible together
to their distances to the vector i = (0.05, 0.02) are depicted in Figure 9. Here, v1 and i are
in the same hyper-square of level 1, one of them is located in one of the sub-hyper-squares
and their Euclidean distance is 1

20.18 . We find dC(v1, i) > dC(v4, i) > dC(v3, i) > dC(v2, i).
Even though, v2 is euclidically closer to i than v3 and v4 it is further away according to
our distance function, because it is considered to be the default unit for the south-east
hyper-square, whereas v3 and v4 are responsible for parts of the big square. ?

Now, we can state an algorithm that constructs a connectionist system for a given
acyclic program and some level of accuracy n. This is done as Algorithm 2. First, m
units are added to the input and output layer, one for each dimension of the embedding,
and the hidden layer and the connections are initialized to be empty. Afterwards, the set
of important atoms is constructed containing all those atoms with a level smaller than n.
For each possible subset of those units, treated as an interpretation, we add a hidden layer

16



v1
v2

v3

v4

i
x
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dC(v1, i) = (1, 2, 20.18)
dC(v2, i) = (0, 1, 4.61)
dC(v3, i) = (0, 2, 3.84)
dC(v4, i) = (0, 2, 4.09)

Figure 9. The areas of responsibility for v1, v2, v3 and v4 and their distances to i.

unit, such that its incoming connections encode the center of the corresponding hyper-
square and its outgoing connections encode the desired output value. As we will use a
winner-take-all behaviour, only one of the input units will output 1, which is propagated
through those connections, leading to the desired values in the output layer.

Algorithm 2: Construction of a Fine Blend-network for a given program.
Input: A program P which is acyclic wrt. an injective m-dimensional level mapping

‖ · ‖ and a level n
Output: A network, which computes the embedding of TP up to level n
Let Ui := {I1, . . . , Im}, be a set of m input units1

Let Uo := {O1, . . . , Om}, be a set of m output units with the identity as output2

function and the weighted sum as input function
Let Uh := {}, be an initially empty hidden layer, with winner-take-all behaviour,3

such that the winner output 1 and all other units output 0, using the activation
function as detailed in Algorithm 1
Let p := {A ∈ BL | ‖A‖ = (l, d) and l ≤ n} be the set of important atoms4

Let Cih and Cho be initially empty sets of connections5

forall I ⊆ p do6

Let Hn(I) be the corresponding hyper-square for I with center c7

Let r := ι(TP(I)) be the embedded desired result8

Add a hidden unit h to Uh9

forall 1 ≤ i ≤ m do10

Connect Ii to h with weight ci, i.e., add Ii
ci→ h to Cih11

Connect h to Oi with weight ri, i.e., add h
ri→ Oi to Cih12

return NP := (Ui, Cih, Uh, Cho, Uo)13

Example 31 Considering program P2, and the level mapping from Example 16, we
obtain for n = 2 the connectionist systems depicted in Figure 10. Using e.g., (0, 0)
as input, we will find the following activation values for the hidden layer units: h1 7→
(1, 2, 70.7), h2/3 7→ (0, 3, 3.84) and h4 7→ (0, 3, 2.72). Therefore, unit h1 would be the
winner and hence the output will be (0.25, 0.25). This corresponds to the application of
T̄P to the empty interpretation, which yields {e(0), o(0)}. ?
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0.3̄
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o1
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Figure 10. The connectionist system corresponding to P2 for n = 2. Instead of showing the input and
output units and the values of the weights, the positions are indicated. There are actually two input and
two output units. If both input units would be activated with 0.0, the hidden unit h1 would become
active (as the closest to this input), and hence, the output would be (0.25, 0.25). For all inputs from the
right side of the input space (e(0) is true), i.e., for those that activate h3 and h4, we would obtain an
output of (0.25, 0) which corresponds to the conclusion that only e(0) is true.

5. Learning

In this section, we will describe the adaptation of the system during training, i.e., how
the weights and the structure of a network are changed, given training samples with
input and desired output. This process can be used to refine a network resulting from an
incorrect or incomplete program, or to train a network from scratch, i.e., using an initial
network with a single hidden layer unit. The training samples in our case come from the
original (non approximated) program, but might also be observed in the real world or
given by experts. First we discuss the adaptation of the weights and then the adaptation
of the structure by adding and removing hidden-layer units. Some of the methods used
here are adaptations of ideas described in [15]. In particular, we used the notion of utility
as used for the refinement of vector-based neural networks.

Adapting the weights Let x be the input, y be the desired output and u be the winner-
unit from the hidden layer. Let win denote the weights of the incoming connections of u
and wout be the weights of the outgoing connections. To adapt the system, we move u
towards the center c of the smallest inclusive hyper-square Hin({x, u}):

win ← µ · c + (1− µ) ·win.

The output of the system is changed towards the desired output by adapting the outgoing
weights:

wout ← η · y + (1− η) ·wout.

η and µ are predefined learning rates. Note that (in contrast to the methods described
in [15]) the winner unit is not moved towards the input, but towards the center of the
smallest hyper-square including the unit and the input. The intention is that units should
be positioned in the center of the hyper-square for which they are responsible. Figure 11
depicts the adaptation of the incoming connections in two different scenarios.

18



v1 v2

v3

v4

i
x

0.3̄

y
0.3̄

v1
;

v1 v2

v3

v4

i
x

0.3̄

y
0.3̄

v2

v3

v4

i
x

0.3̄

y
0.3̄

v4
;

v2

v3

v4

i
x

0.3̄

y
0.3̄

Figure 11. The adaptation of the input weights for a given input i. The first row shows the result
of adapting v1. The second row shows the result if v1 would not be there and therefore v4 would be
selected as winner. To emphasize the effect, we used a learning rate µ = 1.0, i.e., the winning unit is
moved directly into the center of the hyper-square.

Adding new units The adjustment described above enables a certain kind of expansion
of the network by allowing units to move to positions where they are responsible for larger
areas of the input space. A refinement now should take care of densifying the network
in areas where a great error is caused. Every unit will accumulate the error for those
training samples, for which it is the winner. If this accumulated error exceeds a given
threshold, the unit will be selected for refinement. I.e., we try to figure out the area it is
responsible for and a suitable position to add a new unit.

Let u be a unit selected for refinement. If it occupies a hyper-square on its own, then
the largest such hyper-square is considered to be u’s responsibility area. Otherwise, we
take the smallest hyper-square containing u. Now u is moved to the center of this area.
Information gathered by u during the training process is used to determine a sub-hyper-
square into whose center a new unit is placed, and to set up the output weights for the
new unit. All units collect statistics to guide the refinement process. E.g., the error per
sub-hyper-square or the average direction between the center of the hyper-square and the
training samples contributing to the error could be used (weighted by the error). This
process is depicted in Figure 12.

Removing inutile units Each unit maintains a utility value, initially set to 1, which
decreases over time and increases only if the unit contributes to the network’s output.
The contribution of a unit is the expected increase of error if the unit would be removed
[15]. If it drops below a threshold, the unit will be removed as depicted in Figure 13.

The methods described above, i.e., the adaptation of the weights, the addition of new
units and the removal of inutile ones, allows the network to learn from examples. While
the idea of growing and shrinking the network using utility values, was taken from vector-
based networks [15], the adaptation of the weights and the positioning of new units are
specifically tailored for the type of function we like to represent, namely functions on Cm

0 .
The preliminary experiments described below show that our method actually works.
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Figure 12. Adding a new unit to support v4. First, v4 is moved to the center of the hyper-square it
is responsible for. There are four possible sub-hyper-squares to add a new unit. Because v4 is neither
responsible for the north-western, nor for the south-eastern sub-hyper-square, there are two cases left.
If most error was caused in the south western sub-hyper-square (a), a new unit (v5) is added there. If
most error was caused in the north-eastern area (b), a new unit (v6) would be added there.
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Figure 13. Removing an inutile unit. Let us assume that the outgoing weights of v1 and v4 are equal. In
this case we would find that the over-all error would not increase if we remove v1. Therefore its utility
would decrease over time until it drops below the threshold and the unit is removed.

6. Evaluation

In this section, we present a proof-of-concept evaluation using our implementation of
the first-order core method. The evaluation was set up to show that we indeed achieved
the best of both worlds with our integration of the neural and the symbolic paradigm.
We were thus interested in the capabilities of the integrated system (1) to learn symbolic
knowledge, (2) to reason with the acquired knowledge, and (3) to be robust against unit
failure. For the experiments, we initialized a network with a wrong program while creating
the training samples randomly using the semantic operator of the correct program P2.

Learning Symbolic Knowledge To illustrate the effects of varying parameters in our
system, we used two setups: One with softer utility criteria and one with stricter ones (in
the stricter setting the utility decreases faster). Starting from the incorrect initialization,
the former decreases the initial error, paying with an increasing number of units, while
the latter significantly decreases the number of units, paying with an increasing error.
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Figure 14. Iterating random inputs. The two dimensions of the input vectors are plotted against each
other. The ε-neighborhood of the fixed point M is shown as a small box.

Hence, the performance of the network critically depends on the choice of the parameters.
The optimal parameters obviously depend on the concrete setting, e.g., the kind and
amount of noise present in the training data, and methods for finding them remain to
be investigated. For our experiments we used values which resulted from a mixture of
intuition and (non-exhaustive) comparative simulations.

In order to see how suitable our system is for the learning of first-order logic pro-
grams, we pitted it against Supervised Growing Neural Gas [15]. Our system clearly
outperformed it, which shows that our specialized architecture is superior to the generic
architecture in the specific setting for which it was developed.

Reasoning One of the original aims of the core method is to obtain connectionist systems
for logic programs which, when iteratively feeding their output back as input, settle to a
stable state corresponding to an approximation of a fixed point of the program’s single-
step operator. In our running example, a unique fixed point is known to exist. To check
whether our system reflects this, we proceed as follows: (i) Train a network from scratch
until the relative error caused by the network is below 1, i.e., the network outputs are
in the ε-neighborhood of the desired outputs. (ii) Transform the obtained network into
a recurrent one by connecting the outputs to the corresponding inputs. (iii) Choose a
random input vector ∈ Cm

0 (which is not necessarily a valid embedded interpretation)
and use it as initial input to the network. (iv) Iterate the network until it reaches a stable
state, i.e., until the outputs stay inside an ε-neighborhood.

For our example program, the unique fixed point of TP2 is M2 as given in Example 4.
Figure 14 shows the input space and the ε-neighborhood of M2, along with all inter-
mediate results of the iteration for 5 random initial inputs. The example computations
converge, because the underlying program is acyclic [22,19]. After at most 6 steps, the
network is stable in all cases in the sense that all outputs stay within the ε-neighborhood.
This coincides with the number of applications of the TP2 operator required to fix the sig-
nificant atoms, which confirms that the training method really implements our intention
of learning TP2 . The fact that even a network obtained through training from scratch
converges in this sense further underlines the efficiency of our training method.

The experiment shows that the network acquired a representation of the target program
in such a way that it can be used to compute the desired model of the logic program. Since
this represents the conclusions which can be drawn by logical deduction, we can conclude
that our connectionist system is indeed able to reason with the encoded knowledge.
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Figure 15. The effects of unit failure. We use a logarithmic scale for the error axis, and the error values
are relative to ε, i.e., a value of 1 designates an absolute error of ε.

Robustness The described system is able to handle noisy data and to cope with damage.
Indeed, the effects of damage to the system are quite obvious: If a hidden unit u fails,
the receptive area is taken over by other units, thus only the specific results learned
for u’s receptive area are lost. While a corruption of the input weights may cause no
changes at all in the network function, generally it can alter the unit’s receptive area.
If the output weights are corrupted, only certain inputs are effected. If the damage to
the system occurs during training, it will be repaired very quickly as indicated by the
following experiment. Noise is generally handled gracefully, because wrong or unnecessary
adjustments or refinements can be undone in the further training process.

To demonstrate the effects of unit failure, a FineBlend 1 network is initialized and
refined through training with 5000 samples, then one third of its hidden units are removed
randomly, and the training is continued as if nothing had happened. Figure 15 shows that
the network handles the damage gracefully and recovers quickly. The error increases only
slightly and drops back very soon; the number of units continues to increase to the
previous level, recreating the redundancy necessary for robustness.

While it is no surprise that a connectionist system is robust against unit failure, we
would like to emphasize that the trained network actually encodes symbolic knowledge,
and knowledge bases are generally fragile against loss of information. Robustness in con-
junction with the reasoning abilities reported earlier is, in our opinion, very remarkable.
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7. Further Work

While our work shows that it is possible to build integrated neural-symbolic systems
for first-order logic which combine the best of both worlds, much remains to be done to
realize applications based on it. Obviously, it will be necessary to further evaluate our
system and to test it using larger and real world examples. This will also necessitate
a reimplementation suitable for such a task. It would certainly also be of interest to
compare our system with others, although such a comparison will only be partial due
to the limitations which other neural-symbolic approaches currently have (see Section
8). We expect that such tests together with an in-depth analysis of the system will also
provide heuristics to determine optimal values for the parameters of the system.

Further work will also be required in order to take full advantage of the symbolic
aspect of our integrated system. More precisely, it shall be necessary to complete the
neural-symbolic cycle by developing algorithms which are able to extract knowledge
from the trained network in logical form. We note, however, that while the extraction of
propositional rules from trained networks is reasonable well understood, the extraction of
first-order rules is still a very open issue, and entirely new ideas will be needed to address
it. A starting point may be to interpret a (trained) neural network N as an x-dimensional
real vector consisting of the x parameters which define the network (i.e., the weights). A
search space is now spanned by a set of first-order logic programs. Each P in this set can
be cast into a network NP using our representation algorithm. It should then be possible
to select the P for which NP is closest to N in Rx, and this P could be interpreted as the
extraction of N . Obviously, a number of obstacles need to be resolved before this idea
can be realized, including the questions about the appropriate way of measuring distance
between two networks in Rx. Further insights from fractal geometry could also lead to
a novel extraction method. In particular ideas from fractal image encoding [8] together
with the results from [3] seem to be promising. But all this remains to be done.

8. Related Work

In Section 3, we already mentioned some work related to the core method. Literature
reporting on various attempts and methods for the connectionist dealing with structured
knowledge exists in abundance. Therefore, we will refer to the survey article [4] and to
the book [18] only, containing state of the art contributions by leading researchers.

Concerning the more specific problem of dealing with first-order predicate logic, there
are only few other approaches worth mentioning. Most famous is the SHRUTI system
[33,32] which is a connectionist system which is able to do reasoning over first-order logic
in a parallelized way. SHRUTI, however, has only very limited learning capabilities, and
can process only a very limited fragment of first-order logic in a sound and complete
way. An entirely different approach is taken in [17], where first-order logical formulae are
expressed in variable-free form by means of topos theory, and this is taken as a basis for
a connectionist system which is able to learn models of first-order theories. [25], finally,
is based on the propositional core method. The underlying idea is to first approximate a
target first-order logic program by a (finite) propositional logic program and then use the
propositional core method for encoding this program. The work reported in [25] is purely
theoretical in nature, and it is unclear whether it can lead to a useful implementation.
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9. Conclusion

We presented the first integrated neural-symbolic system with the following features:
(i) It can learn knowledge in the form of first-order logic programs.
(ii) It outperforms other less specialized approaches in the learning task.
(iii) It can be used for reasoning over the learned knowledge in the form of model

generation for the encoded logic program.
(iv) It is robust against unit failure.
While our results are preliminary in the sense that much work remains to be done to

realize a practically applicable system, our work shows that the propositional fixation of
many neural-symbolic systems can be overcome.

Acknowledgments: Many thanks go to Sven-Erik Bornscheuer, Artur d’Avila Garcez,
Yvonne McIntyre (formerly Kalinke), Anthony K. Seda, Hans-Peter Störr, Andreas Witzel
and Jörg Wunderlich, who all contributed to the core method.
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