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Abstract. The realization of Semantic Web reasoning is cen-
tral to substantiating the Semantic Web vision. However, cur-
rent mainstream research on this topic faces serious chal-
lenges, which forces us to question established lines of re-
search and to rethink the underlying approaches. We argue
that reasoning for the Semantic Web should be understood
as "shared inference," which is not necessarily based on de-
ductive methods. Model-theoretic semantics (and sound and
complete reasoning based on it) functions as a gold standard,
but applications dealing with large-scale and noisy data usu-
ally cannot afford the required runtimes. Approximate meth-
ods, including deductive ones, but also approaches based on
entirely different methods like machine learning or nature-
inspired computing need to be investigated, while quality as-
surance needs to be done in terms of precision and recall val-
ues (as in information retrieval) and not necessarily in terms
of soundness and completeness of the underlying algorithms.

Keywords: Semantic Web, Formal Semantics, Knowledge
Representation, Automated Reasoning, Linked Open Data

1. The Linked Data Web needs semantics

The Semantic Web community, in the course of
its existence, has gone through an interesting swing
concerning the emphasis between “data” and “knowl-
edge.”1 Indeed, much of the talk (and research, and
writing, and programming) in the early days of the Se-
mantic Web was about ontologies as objects of study
in their own right: languages to represent them, log-
ics for reasoning with them, methods and tools to con-

1or, in Description Logic speak: between “A-box” and “T-box”

struct them, etc. Many of the research papers in the
first half decade of Semantic Web research (say, 1999-
2005) seemed to forget that ontologies are not made for
their own sake, but that the purpose of an ontology (at
least on the Semantic Web), is to help foster semantic
interoperability between parties that want to exchange
data. In other words, the knowledge in the ontologies
(the T-box) is supposed to help interoperability of the
data (the A-box).

This insight was at the birth of the Linked Open
Data project [2], which put a renewed emphasis on
publishing sets of actual data according to web prin-
ciples. However, as it is often the case with “counter-
movements,” it seems to us that (some of) the Linked
Open Data work is erring on the other side, by only
publishing just the data, and ignoring the value that can
be had by annotating the data with shared ontologies.

Some of the problems that are plaguing the current
Linked Open Data sets can be profitably solved by an-
notating data with ontologies. For example, knowing
that some properties are inverse functional, knowing
that certain classes are contained in each other, or that
other classes are disjoint, all help to solve the instance
unification problem.2

Similar arguments have been put forth regard-
ing querying of Linked Open Data [19]: One of
the main obstacles in querying over multiple Linked
Open Data datasets is that severe information integra-
tion issues require solving. While having all data in
RDF syntax (Resource Description Framework [23])
solves the information integration issue on a syntac-
tic level, the current state of querying over the Linked
Open Data cloud exposes the fact that semantic in-
tegration is hardly present. Indeed, RDF language
primitives which are actually reflected by the RDF
formal semantics (such as rdfs:subClassOf or

2The instance unification problem refers to the problem of deter-
mining when two differently named instances are in fact identical.
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bills/h3962 dc:title "H.R. 3962: ..." ;
usbill:hasAction _:bnode0 .

_:bnode0 usbill:vote votes/2009-887 .
votes/2009-887 vote:hasOption votes/2009-887/+ .

dc:title "On Passage: H.R. 3962 ..." ;
votes/2009-887/+ rdfs:label "Aye" ;

vote:votedBy people/P000197 .
people/P000197 usgovt:name "Nancy Pelosi" .

Fig. 1. GovTrack triples encoding the knowledge that Nancy Pelosi
voted in favor of the Health Care Bill. URIs have been abbreviated
freely since the details do not matter for our discussion.

rdfs:domain) are relatively scarce in the cloud.3

The only strong semantic language primitive used
heavily is owl:sameAs from the Web Ontology Lan-
guage OWL [15], and it has been observed frequently
that its use is often rather abuse [6,13].

Another issue which points at a lack of semantics
is the sometimes rather convoluted way of expressing
knowledge in the Linked Open Data cloud. As just
one example, let it be noted that the simple fact Nancy
Pelosi voted in favor of the Health Care Bill is encoded
in GovTrack4 using eight RDF triples, two of which
share a blank node (see Figure 1). From this and other
examples, it seems apparent that triplification for the
Linked Open Data cloud is often done without deep
contemplation of semantic issues,5 or of usefulness of
the resulting data.6

2. Semantics as shared inference

Semantic interoperability is usually defined in terms
of a formal semantics. But what does it mean for two
agents to agree on the formal semantics of a message?
Although the primary definition of the semantics of
formal languages is most often in terms of a denota-
tional semantics, e.g. [14] and [24] for RDF and OWL,
respectively, perhaps a more productive definition on
the Semantic Web is to describe semantic interoper-
ability in terms of shared inferences.

When an agent (a web server, a web service, a
database, a human in a dialogue) utters a message, the
message will often contain more meaning than only the
tokens that are explicitly present in the message itself.
Instead, when uttering the message, the agent has in
mind a number of “unspoken,” implicit consequences
of that message. When a web page contains the mes-

3“Scarcity,” in this case, is a rather subjective matter. Let’s just say
that it currently seems too scarce to be really useful for reasoning.

4http://www.govtrack.us/
5See also [1,17,28] for further discussions.
6For an amusing critique on this practice, see [35].

sage “Amsterdam is the capital of The Netherlands,”
then some of the unspoken, implicit consequences of
this are that Amsterdam is apparently a city (since
capitals are cities), that The Hague is not the capital
of the Netherlands (since every country only has pre-
cisely one capital), that The Netherlands is a country,
or a province, but not another city, since countries and
provinces have capitals, but cities do not; a spatial im-
plied fact is that the location of the capital city is inside
the area covered by the country, etc.

If agent A utters the statement about Amsterdam to
agent B, they can only be said to be truly semantically
interoperating if B not only knows the literal content of
the phrase uttered by A, but also understands a multi-
tude of implicit consequences of that statement which
are then shared by A and B. It is exactly these shared,
implicit consequences which are made explicit in the
form of a shared ontology.

We could say that the amount of semantic interop-
erability between A and B is measured by the number
of new facts that they both subscribe to after having
exchanged a given sentence: the larger and richer their
shared inferences, the more semantically interoperable
they are.7

A language such as RDF Schema [23] which con-
tains (almost) no negation, allows agent A to enforce
beliefs on the receiving agent B, e.g. by specifying the
domain and range of a property like “is capital of.”
This puts a lower bound on the inferences to be made
by agent B, i.e., it “enforces” inferences to be made
by B when it subscribes to the shared semantics. A
richer language such as OWL [15] also allows agent A
to “forbid” agent B to make certain inferences. Stating
that Amsterdam is the capital of The Netherlands, that
“is capital of” is an inverse functional property, and
that Amsterdam is different from The Hague will disal-
low the inference that The Hague is the capital of The
Netherlands. This puts an upper bound on the infer-
ences to be made by agent B. By making an ever richer
ontology, we can move the upper and lower bounds of
the shared inferences ever closer, hence obtaining ever
finer-grained semantic interoperability through an ever
more precisely defined set of shared inferences.

Of course, this perspective of semantics as “shared
inference” is entirely compatible with the classical
view of semantics as model theory, in the sense of
the formal semantics of, e.g., RDF and OWL: Valid
inferences are inferences which hold in all models,

7Ontology alignment issues obviously occur here, too.
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and invalid inferences are inferences that hold in no
model. However, semantics as “shared inference” does
not presuppose the use of model theory,8 although
the latter currently seems to be the most advanced
method for capturing this kind of semantics. Essential
to the “shared inference” perspective is that it facil-
itates communication (and, thereby, interoperability),
while model theory is often construed9 as “the defining
of meaning in a unique way.”

3. Semantics as a gold standard

The usual role of semantics is to define precisely
how the meaning of a set of sentences in a logic is de-
fined. In Section 2, we have already seen that it is also
possible to think of semantics in terms of an ever nar-
rowing gap of multi-interpretability (with an ever in-
creasing set of axioms closing the gap between what
must be derived (inferential lower bound) and what
may not be derived (inferential upper bound) from a
set of sentences.

The classical view on semantics is then that any
properly defined system must precisely obey this se-
mantics: it must be sound and complete, i.e., any con-
sequence prescribed by the semantics must also be de-
rived by the system, and vice versa. Only recently the
semantic web community has begun to appreciate the
value of incomplete systems [11]. It is often useful to
build systems that do not manage to derive all required
consequences, as long as they derive a useful subset of
these.

Rather than regarding this as an unfortunate but
perhaps inevitable sloppiness of such implementations
with respect to their semantic specification, we would
advocate a different perspective, namely to view the
formal semantics of a system (in whatever form it is
specified) as a “gold standard,” that need not neces-
sarily be obtained in a system (or even be obtainable).
What is required from systems is not a proof that they
satisfy this gold standard, but rather a precise descrip-
tion of the extent to which they satisfy this gold stan-
dard [29].

8We do not want to propose any particular approach at this stage,
but let it be noted that even the notion of formal semantics does not
necessarily rely on model theory. Semantics based on order theory or
on metric spaces, as used in denotational semantics of programming
languages, are just one example, and can be ported to the knowledge
representation realm [16].

9it might be more accurate to say: misconstrued

Notice that in other, related, fields this is already
commonplace: in Information Retrieval, the measures
of precision and recall correspond exactly to soundness
and completeness, but with the crucial difference that
nobody only expects systems where both of these val-
ues are at 100%. Instead, systems are routinely mea-
sured on the extent to which they approximate full pre-
cision (soundness) and recall (completeness), and both
researchers and application builders have learned to
live with imperfect systems, and with laws that tell us
that increasing one of the measures typically decreases
the other. In short, the logical model has perhaps con-
fused the ideal with the realistic, and the theory and
practice of information retrieval may well be more ap-
propriate for Semantic Web reasoners.10

A wide misconception is that, even when incom-
pleteness may be a worthy strategy, surely unsound-
ness is bad in all cases. Again, the perspective from In-
formation Retrieval shows that this is simply false: de-
pending on the use-case, one may have a preference for
erring either on the side of incompleteness (e.g. find-
ing just a few but not all matching products is fine as
long as all answers do match the stated requirements)
or on the side of unsoundness (e.g. finding all potential
terrorist suspects, even when this possibly includes a
few innocent people). Just as in Information Retrieval,
a use-case specific balance will have to be struck be-
tween the two ends of the spectrum, with neither being
always better than the other.

From this perspective (semantics as a, possibly un-
obtainable, gold-standard) systems with anytime be-
haviour also become a very natural object of study:
they just happen to be systems that succeed in in-
creasingly better approximations of the gold standard
as time progresses. It turns out that many algorithms
for deduction, query answering, subsumption check-
ing, etc., have a natural anytime behaviour that can be
fruitfully exploited from the perspective of “semantics
as a gold standard” that need not be perfectly achieved
before a system is useful.

4. Semantics as possibly non-classical

If we take the viewpoints that “semantics is a (possi-
bly unobtainable) gold standard for shared inference,”

10See [3] for some alternatives to precision and recall in a Se-
mantic Web context. We restrict our discussion to precision and re-
call simply because they are well established. We do not claim that
there are no good or better alternatives: future research will have to
determine this.
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then we can also change our view on what form this
semantics must take. Why would a shared set of infer-
ences have to consist of conclusions that are held to be
either completely true or completely false? Wouldn’t
it be reasonable to enforce a minimum (or maximum)
degree of believe in certain statements? Or a degree of
certainty? Or a degree of trust? This would amount to
agent A and agent B establishing their semantic inter-
operability not by guaranteeing that B holds for eter-
nally true all the consequences that follow from the
statements communicated by A, but rather by guaran-
teering that B shares a degree of trust in all the sen-
tences that are derivable from the sentences communi-
cated by A.

A similar argument can be made for the handling of
inconsistency. Shouldn’t a semantics for “shared infer-
ence” be able to sort out inconsistencies and different
perspectives on the fly? We know that classical model
theory cannot deal with these issues. And what about
default assumptions and the occurrence of exceptions
to them? Classically, these lead to inconsistency, but
in “shared inference” it should be dynamically resolv-
able.

While these perspectives, again, appear to be com-
patible with well-known knowledge representation ap-
proaches using, e.g., fuzzy or probabilistic logics [21,
31], paraconsistent reasoning [22], non-monotonic [7,
12,20,25], or mixed approaches [30], it is an open
question whether they carry far enough for realistic use
cases. While apparently promising as conceptual ideas,
these logics have not yet been shown to be applicable
in practice other than in simplified settings. How they
could work on the open Semantic Web remains, to this
date, unclear.

To us, it appears to be a reasonable perspective, that
these issues need to be resolved, practically, in a dif-
ferent manner, as described below. Formal semantics,
using non-classical logics, can probably still serve as a
gold standard for evaluating inference system perfor-
mances, but realistic data and applications will most
likely force us to deviate from classical automated rea-
soning grounds for computing shared inferences.

5. Computing shared inferences

To summarize the train of thought we have laid out
so far, we see that, in order to realize the interoperabil-
ity required by the Semantic Web, we

– require shared ontologies which carry a formal
semantics,

– formal semantics acts as a gold standard but does
not need to be computed in a sound and complete
way, and

– systems should be able to deal with noise, differ-
ent perspectives, and uncertainty.

Traditionally, systems for computing inferences are
based on logical proof theory and realize sound and
complete algorithms on the assumption that input data
is monolithic, noise-free, and conveys a single perspec-
tive on a situation or domain of applications. While
this approach is certainly valid as such, it faces several
severe challenges if ported to the Semantic Web. Two
of the main obstacles are scalability of the algorithms,
and requirements on the input data.

Concerning scalability, reasoning systems have made
major leaps in the recent past [33,34]. However, it
remains an open question when (and if11) these ap-
proaches will scale to the size of the web, and this
problem is aggravated by the incorporation of non-
classical semantics as discussed in Section 4, which
inherently brings a rapid decrease in efficiency.

Concerning requirements on the input data, it is
quite unrealistic to expect that data from the open Se-
mantic Web will ever be clean enough such that clas-
sical reasoning systems will be able to draw useful in-
ferences from them. This would require Semantic Web
data to be engineered strongly according to shared
principles, which not only contrasts with the bottom-
up nature of the Web, but is also unrealistic in terms of
conceptual realizability: many statements are not true
or false, they rather depend on the perspective taken.

If we come to the conclusion that inference systems
based on logical proof theory likely will not work on
web-scale realistic Semantic Web data,12 the discus-
sion from Section 3 becomes of central importance:
Formal semantics is required as a gold standard for
evaluation of systems computing shared inferences,
however, it is okay for such systems to deviate from
the gold standard, in a manner which can be qualita-
tively assessed in terms of precision and recall, if they
scale better and/or are able to deal with realistic, noisy,
data.

11Since the web keeps growing, they may never scale, even if they
become much more efficient.

12This does, obviously, not preclude them from being very useful
for smaller and/or more controled domains.
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6. What is needed?

We have argued for the need of methods for comput-
ing shared inferences, which are not foremost based on
the idea of producing sound and complete systems. We
believe that there is a need for a concerted effort in the
Semantic Web community to address this issue, both
in terms of producing such systems, and in terms of
pursuing use cases involving shared inference which
employ reasoning methods which can scale up to web
size.

Potential methods for establishing such inference
systems can be found in other realms, where the need
for approximate solutions is an accepted fact. Approx-
imate algorithms, e.g., are commonly employed for
NP-hard problems.13 Approximate reasoning, under-
stood in the same sense, has an established tradition.
The development of according ideas for semantic web
reasoning is indeed being pursued to a certain extent
[18,26,27,32], and would benefit from a critical mass
of further research.

Alternative approaches may employ methods which
do not involve proof-theoretic aspects at all. From a
bird’s eye perspective, reasoning can be understood as
a classification problem: classify a query as “true” or
as “false.” Machine learning, nature-inspired comput-
ing, or any method used in data mining or informa-
tion retrieval are candidates for exploring new Seman-
tic Web reasoning paradigms (see, e.g., [5,4,8,9,10]).
These methods often have the pleasing property to be
robust with respect to noise or contradictory input, and
so there is reason to believe that they may simply ren-
der the difficulties identified in Section 4 to be void.

Let us close by emphasizing again that taking such
approaches does not mean that we give up on formal
semantics. It still serves as a gold standard for evalua-
tion. It just means that we acknowledge that we need
to rethink the role of semantics and the role of compu-
tation of semantics, provided we hope to make signifi-
cant advances in the Semantic Web quest.

Acknowledgements. We thank Prateek Jain for dig-
ging out the example in Figure 1. Pascal Hitzler ac-
knowledges support by the Write State University Re-
search Council.

13Considering the fact that OWL reasoning is harder than NP, it
is unfathomable why there should be any resistance against using
approximate methods for OWL reasoning.
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