

Wright State University

CORE Scholar

Neuroscience, Cell Biology & Physiology Faculty Publications

Neuroscience, Cell Biology & Physiology

2011

Perinatal or Adult *Nf1* Inactivation using Tamoxifen-inducible PlpCre Each Cause Neurofibroma Formation

Debra A. Mayes Wright State University - Main Campus, debra.mayes@wright.edu

Tilat A. Rizvi

Jose A. Cancelas

Nathan T. Kolasinski

Georgianne M. Ciraolo

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/ncbp

Part of the Medical Cell Biology Commons, Medical Neurobiology Commons, Medical Physiology Commons, Neurosciences Commons, and the Physiological Processes Commons

Repository Citation

Mayes, D. A., Rizvi, T. A., Cancelas, J. A., Kolasinski, N. T., Ciraolo, G. M., Stemmer-Rachamimov, A. O., & Ratner, N. (2011). Perinatal or Adult *Nf1* Inactivation using Tamoxifen-inducible PlpCre Each Cause Neurofibroma Formation. . https://corescholar.libraries.wright.edu/ncbp/1074

This Abstract is brought to you for free and open access by the Neuroscience, Cell Biology & Physiology at CORE Scholar. It has been accepted for inclusion in Neuroscience, Cell Biology & Physiology Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

Authors

Debra A. Mayes, Tilat A. Rizvi, Jose A. Cancelas, Nathan T. Kolasinski, Georgianne M. Ciraolo, Anat O. Stemmer-Rachamimov, and Nancy Ratner

Published on RASopathy Network (http://ras-pathway-syndromes.com)

Home > Perinatal or Adult Nf1 Inactivation using Tamoxifen-inducible PlpCre Each Cause Neurofibroma Formation

Perinatal or Adult Nf1 Inactivation using Tamoxifen-inducible PlpCre Each Cause Neurofibroma Formation

¹<u>Mayes DA</u>, ¹Rizvi TA,^{1,3}Cancelas JA, ¹Kolasinski N,²Ciraolo CM,⁴Stemmer-Rachamimov AO, and¹Ratner N Divisions of¹Experimental Hematology and Cancer Biology, and²Pathology, Cincinnati Children?s Hospital Medical Center,³ Hoxworth Blood Center, University of Cincinnati, Department of Pathology⁴, Massachusetts General Hospital and Harvard Medical School.

OBJECTIVES

Neurofibromas are tumors initiated by biallelic mutation of the *NF1* tumor suppressor gene in the Schwann cell lineage. One idea within the field suggests that *Nf1* loss must occur within progenitor cells present within a critical window during Schwann cell development in order for neurofibromas to form. To test this hypothesis and to examine whethermyelinating Schwann cells can serve as aneurofibroma cell of origin, *Nf1* loss was induced at perinatal or adult timepoints using a tamoxifen-inducible PIp-CreERT driver.

RESULTS

Perinatal loss of *Nf1* resulted in small neurofibromas late in life, while adult loss caused large neurofibromas and morbidity beginning 4 months after onset of *Nf1* loss. PLP-CreERT recombination (EGFP+ cells) occurred in: satellite cells, S100?+ myelinating Schwann cells, and p75+ cells. Plp-CreERTnerves and neurofibromas contained cells with Remak bundle disruption; however, no recombination within GFAP+ non-myelinating Schwann cells was identified. Extramedullarylympho-hematopoietic expansion that contained EGFP+/Sca-1+ stromal cells amongst EGFP-negative lympho-hematopoietic cells was also observed.

CONCLUSIONS/SIGNIFICANCE

Neurofibroma formation is not restricted to loss of *Nf1* in embryonic life, but can be triggered by *Nf1* loss throughout life. Although all neurofibroma models and human samples have Remak bundle disruption (leading to the assumption that *Nf1* loss within the non-myelinating Schwann cell may be vital for tumor formation), there was no EGFP+ recombination within GFAP+ non-myelinating Schwann cells ? eliminating the GFAP+ non-myelinating Schwann cell as the cell of origin for neurofibroma formation.

SUPPORTED BY: This work was supported by an NIH NRSA (T32CA117846) and the National Multiple Sclerosis Society (FG1762A1/1) Postdoctoral Fellowships to D.A.M and the DAMD Program on Neurofibromatosis (W81XWH-06-1-0114 to T.A.R. and N.R.) and NIH R01-NS28840 (NR).

Mayes DA, et al. (2011). <u>Perinatal or adult Nf1 inactivation using tamoxifen-inducible PlpCre each cause neurofibroma formation</u>. *Cancer Research*. May 6. PMID: 21551249

RASopathy network UK is a founding member of the RASopathies Community, in partnership with the RASopathies Network USA - (c) 2010 - 2013

Source URL: http://ras-pathway-syndromes.com/content/perinatal-or-adult-nf1-inactivation-using-tamoxifen-inducible-plpcre-each-cause-neurofibroma