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Development/Plasticity/Repair

Combining an Autologous Peripheral Nervous System
“Bridge” and Matrix Modification by Chondroitinase Allows
Robust, Functional Regeneration beyond a Hemisection
Lesion of the Adult Rat Spinal Cord

John D. Houle,1 Veronica J. Tom,1 Debra Mayes,2 Gail Wagoner,2 Napoleon Phillips,2 and Jerry Silver3

1Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, 2Department of Neurobiology and
Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, and 3Department of Neurosciences, Case Western
Reserve University, School of Medicine, Cleveland, Ohio 44106

Chondroitinase-ABC (ChABC) was applied to a cervical level 5 (C5) dorsal quadrant aspiration cavity of the adult rat spinal cord to
degrade the local accumulation of inhibitory chondroitin sulfate proteoglycans. The intent was to enhance the extension of regenerated
axons from the distal end of a peripheral nerve (PN) graft back into the C5 spinal cord, having bypassed a hemisection lesion at C3.
ChABC-treated rats showed (1) gradual improvement in the range of forelimb swing during locomotion, with some animals progressing
to the point of raising their forelimb above the nose, (2) an enhanced ability to use the forelimb in a cylinder test, and (3) improvements
in balance and weight bearing on a horizontal rope. Transection of the PN graft, which cuts through regenerated axons, greatly dimin-
ished these functional improvements. Axonal regrowth from the PN graft correlated well with the behavioral assessments. Thus, many
more axons extended for much longer distances into the cord after ChABC treatment and bridge insertion compared with the control
groups, in which axons regenerated into the PN graft but growth back into the spinal cord was extremely limited. These results demon-
strate, for the first time, that modulation of extracellular matrix components after spinal cord injury promotes significant axonal
regeneration beyond the distal end of a PN bridge back into the spinal cord and that regenerating axons can mediate the return of useful
function of the affected limb.

Key words: spinal cord injury; regeneration; chondroitinase; neurotransplantation; extracellular matrix; plasticity

Introduction
After spinal cord injury (SCI), several different families of inhib-
itory extracellular matrix (ECM) molecules combine with reac-
tive astroglia at the lesion site to form a dense scar that acts as a
barrier to regenerating axons (Reier and Houle, 1988; Silver and
Miller, 2004). Members of the chondroitin sulfate proteoglycan
(CSPG) family are among the most potent groups of repulsive
scar-associated ECM molecules (Snow et al., 1990; McKeon et al.,
1991; Plant et al., 2001; Jones et al., 2003). Depending on the type,
concentration, and geometric relationship to growth-promoting
molecules in their territory, chondroitin-bearing proteoglycans
can cause adult growth cones to turn abruptly, fasciculate tightly,
or become dystrophic (Silver and Miller, 2004; Tom et al., 2004).

Proteoglycans consist of a core protein decorated with long-chain
glycosaminoglycan (GAG) side branches (Dow and Wang, 1998).
Controlled administration of chondroitinase ABC (ChABC), an
enzyme used by certain types of highly invasive bacteria to cleave
the inhibitory side chains, has been used in mammals to degrade
GAGs at spinal cord lesion sites, resulting in enhanced axonal
regrowth and restoration of some downstream postsynaptic ac-
tivity (Bradbury et al., 2002; Chau et al., 2004; Caggiano et al.,
2005). However, whether regenerating axons contribute to the
return of function has remained a matter of speculation.

Intraspinal transplants of fetal spinal cord tissue (Reier et al.,
1992; Bregman, 1994), Schwann cells (Xu et al., 1995; Bunge,
2001), olfactory ensheathing glia (Li et al., 1998; Ramón-Cueto et
al., 1998), genetically modified cells (Grill et al., 1997; Liu et al.,
1999; Jin et al. 2002; Mitsui et al., 2005), and segments of periph-
eral nerve (PN) (David and Aguayo, 1981), the most classic ap-
proach, all provide an environment highly conducive to axonal
regeneration. Axons readily penetrate each of these grafts, but
their growth becomes severely restricted once they reencounter
the CNS environment. In this study, we developed a PN graft
model to bypass a hemisection lesion of the cervical spinal cord
and direct regrowing axons to intermediate gray matter well dis-
tal to the level of injury. Advantages of this approach are that
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regenerating axons can be directed toward a functionally relevant
target region and specific sources of regenerating axons can be
traced as they approach (and hopefully cross) the PN graft–spinal
cord interface (Aguayo et al., 1981; Friedman and Aguayo, 1985).
The ability to test directly the contribution of regenerated axons
to the return of function is particularly advantageous because the
nerve bridge can be severed without causing additional damage
to the cord. In the present study, we provide evidence that robust
axonal regeneration beyond an SCI is facilitated by a PN guide in
combination with treatment of the future distal graft insertion
site with ChABC. Improvements in motor activity are dependent
on the presence of the PN graft and the formation of synaptic
connections between regenerated axons and spinal cord neurons.
However, some lingering behavioral improvement after bridge
resection in some animals suggests that other plastic phenomena
occurring locally may also play a role.

Materials and Methods
Spinal cord injury, ChABC treatment, and peripheral nerve grafts
Adult (225–250 g) female Sprague Dawley rats were anesthetized with a
ketamine (60 mg/kg) and xylazine (10 mg/kg) mixture. A cervical level 3
(C3) complete unilateral hemisection (Hx) lesion cavity was created by
aspiration in all animals. All procedures were performed in accordance
with protocols approved by the University of Arkansas for Medical Sci-
ences and Drexel University College of Medicine Institutional Animal
Care and Use Committees and followed National Institutes of Health
guidelines for the care and use of laboratory animals.

Group 1: modulation of spinal cord lesion site by enzymatic digestion.
One end of an autologous, 1-week-long pre-degenerated tibial nerve was
apposed to the rostral wall of the cavity, leaving the distal end free and
unapposed to nerve or muscle tissue (supplemental Table 1 A, available at
www.jneurosci.org as supplemental material). Two weeks later, the C5
spinal cord was exposed and an �1 mm 3 dorsal quadrant (DQ) lesion,
extending to the approximate depth of the central canal, was created by
aspiration. During hemostasis, the dura mater was sutured closed except
for a small slit in which an infusion cannula (Alzet Brain Infusion kit;
Durect, Cupertino, CA) was inserted. The hub surrounding the cannula
(supplemental Fig. 1, available at www.jneurosci.org as supplemental
material) was fixed to the dorsal surface of C4 and C6 vertebral bodies
with a cyanoacrylate. The cannula was attached by a catheter tube to an
osmotic minipump (Alzet model 1007D; Durect) that was filled with
saline (as a control; n � 5) or ChABC (1 U/ml; n � 5; Seikagaku America,
Falmouth, MA) and primed earlier for immediate and continuous deliv-
ery of minipump contents at a flow rate of 0.5 �l/h. Five microliters of
ChABC was delivered into the DQ lesion before attaching the catheter to
the cannula, and the minipump was secured between the shoulder
blades. Five days later, animals were given an overdose of Euthasol (390
mg/kg pentobarbital and 50 mg/kg phenytoin, i.p.) and perfused tran-
scardially with 4% paraformaldehyde in 0.1 M Sorenson’s phosphate
buffer. The C5 spinal cord surrounding the DQ lesion was removed,
postfixed at 4°C for 4 h, and then submersed in 20% sucrose for 24 h at
4°C. Cryostat sections at 25 �m in a transverse plane were prepared for
immunocytochemical detection of chondroitin sulfate proteoglycan, the
stub protein of digested CSPG, astroglial cells, and collagen type IV.

Group 2: identification of neurons regenerating their axon into a PN
graft. Two rats received a C3 Hx lesion and apposition of one end of a PN
graft to the rostral cavity wall. The distal PN graft end was left unapposed
to nervous tissue until 4 weeks later when the distal end of the graft was
exposed, trimmed by 1 mm, and exposed to Gelfoam saturated with True
Blue (TB) (2% solution; Sigma, St. Louis, MO). Animals were killed 7 d
later, and tissue was preserved as described above. The entire brainstem
and spinal cord rostral to the C3 Hx lesion (for propriospinal neurons)
was sectioned in a coronal plane at a thickness of 50 �m. Sections were
mounted serially on glass slides, dried, and coverslipped with Fluoro-
mount (Biomedical Specialties, Santa Monica, CA). Each section was
examined by fluorescence microscopy to detect the number and location
of TB-labeled brainstem neurons that had grown an axon into the PN

graft. The number of TB-labeled neurons in a specific region in each
section was counted, and the total per specific region was tallied. The
mean number per region was calculated for the two animals in this
group.

Group 3: structural and functional recovery attributable to regenerating
axons. A total of 18 rats (n � 8 saline treated; n � 10 ChABC treated) were
prepared as in group 1 above except that, after removal of the infusion
cannula, the distal end of the PN graft was trimmed by 1 mm and apposed
to the ventral floor of the C5 DQ cavity (see Fig. 2 A) (supplemental Table
1 B, available at www.jneurosci.org as supplemental material). Efforts
were made not to expand the size of the lesion cavity, although obvious
tissue debris associated with the cannula was removed by gentle aspira-
tion from each cavity. This distal graft end was secured by suturing per-
ineurium to dura mater and covered with supraspinal musculature. An-
imals were allowed to survive for 7 weeks, during which their behavioral
activity was assessed weekly (see below). At 6 weeks after the C5 DQ
lesion, animals were anesthetized and placed in a David Kopf Instru-
ments (Tujunga, CA) stereotaxic head-holder device. Burr holes were
made in the dorsal cranium, and biotinylated dextran amine (BDA) (0.5
�l of a 10% BDA solution; Invitrogen, Carlsbad, CA) was microinjected
into the red nucleus contralateral to the spinal cord lesion and into the
medullary reticular formation ipsilateral to the lesion (for coordinates,
see Houle and Jin, 2001). One week later (7 weeks after the C5 DQ
lesion/PN graft apposition and just after the final session of behavioral
testing), the PN graft was exposed and ligated and cut at its midpoint.
Behavioral activity was tested 24 h after this nerve cut, and the animals
were then killed by an overdose of Euthasol followed by transcardial
perfusion with paraformaldehyde. Transverse sections (25 �m) were
prepared through the C2, C4, and C5 spinal cord that contained the distal
end of the PN graft. In separate wells, free-floating sections from each
spinal cord level were processed for the presence of BDA-labeled axons
by incubation in avidin–peroxidase (Invitrogen) followed by a diamino-
benzidine reaction. Sections were mounted on glass slides and counter-
stained with thionin before being coverslipped with Permount (Fisher
Scientific, Houston, TX). Transverse sections through the C2 spinal cord
were examined to determine whether reticulospinal and rubrospinal
pathways had been labeled with BDA. Sections through the C4 spinal
cord were examined to confirm that descending pathways had been in-
terrupted by the C3 Hx lesion. The presence of BDA-labeled axons at the
C4 level ipsilateral to the lesion would indicate that some axons had been
spared and were likely to be intermixed with regenerated axons in the C5
gray matter. Because regenerated axons could not be distinguished from
spared axons in these animals, they were excluded from additional anal-
ysis if there was BDA labeling in the C4 spinal cord. Only those rats with
anatomical verification of good graft apposition to the C3 and C5 injury
sites, abundant labeling of both rubrospinal and reticulospinal tracts at
the C2 level, no BDA-labeled axons at the C4 level ipsilateral to the C3
Hx, and significant behavioral deficit at 1 week after injury were included
in the report of behavioral activity. A total of 12 rats met these criteria
(n � 5 for saline-treated control animals; n � 7 for the ChABC-treated
animals).

After this group had been analyzed, an additional four animals were
prepared with chondroitinase treatment of the C5 DQ site before appo-
sition of the distal end of the PN graft. Six weeks later, the PN graft was
exposed and cut through its midpoint. The distal cut end was immersed
in BDA for 1 h to label all axons within the graft by a diffusion fill
technique. This approach eliminated the possibility of including in our
analysis BDA-labeled axons arising from contralateral pathways (such as
the reticulospinal tract) that had not grown through the PN graft but that
had sprouted into the gray matter ventral to the C5 DQ lesion. This
labeling approach gave a more comprehensive estimate of the course
within the spinal cord and the number of axons that had regenerated into
and out of the PN graft, although their source could not be determined.
Animals were killed 2 d later, and tissue sections were processed as de-
scribed above.

Group 4: control for effects of ChABC treatment alone. To test for
changes in behavioral outcome that might be attributed to treatment
with ChABC, four animals were prepared with a C3 Hx lesion, PN graft,
and C5 DQ lesion treated with ChABC as described previously. After
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removal of the infusion cannula, the distal end of the PN graft was left
unapposed and covered with supraspinal muscles. Behavioral activity
was tested over a 7 week period.

Axonal tracing
To quantify maximal length traversed by axons growing back into the
spinal cord, digital images from at least five representative transverse
sections through the C5 PN graft–spinal cord interface were captured,
and montages were created from each ChABC- or saline-treated animal.
In each montage, the distance of the tip of the farthest extending axon
from the distal end of the PN graft was measured as a straight line using
MetaMorph imaging software (Universal Imaging Corporation, Down-
ingtown, PA). Only axons that could be traced ventrally from the area of
the PN graft and that had an expanded terminal end were included in this
analysis. The mean length of the longest axon from each animal was
calculated and tested for significant difference using Student’s t test.

Immunocytochemistry
For animals of group 1, the unfixed cervical spinal cord was removed and
blocked to include 2 mm of tissue rostral and 2 mm of tissue caudal to the
C5 injury site. Blocks were fresh frozen on dry ice, and 25 �m cryostat
sections were mounted in serial order on an alternating set of Superfrost/
Plus (Fisher Scientific) slides. This ensured that each slide contained
tissue sections through the rostral, middle, and caudal portions of the
lesion site, with adjacent sections on successive slides. There were four
sections on each slide �600 �m apart from one another (yield was �20
slides from each block). Slides were stored at �80°C until immunocyto-
chemistry (ICC) was performed. Sections were incubated in phosphate-
buffered 4% paraformaldehyde for 15 min. They were then washed with
0.1 M Sorenson’s phosphate buffer before being permeabilized in Triton
X-100 PBS (T-PBS) for 15 min and blocked for nonspecific reactivity
with normal goat serum/T-PBS, 1:20 for 15 min. Primary antibodies
were applied to the sections and incubated overnight at room tempera-
ture. The primary antibodies were against the following: collagen type IV
(1:1000; Chemicon, Temecula, CA), chondroitin sulfate proteoglycan
(1:250, clone CS-56; Sigma), stub protein after ChABC digestion (1:100,
clone 2-B-6; Seikagaku America), and glial fibrillary acidic protein
(GFAP) for astrocytes (1:500; DakoCytomation, Carpinteria, CA). Sec-
tions were washed, incubated with either fluorescein-conjugated or
rhodamine-conjugated secondary antibody for 90 min, and coverslipped
with Fluoromount mounting medium (Biomedical Specialties). All sec-
tions were examined under fluorescent light with a Zeiss (Thornwood,
NY) Axioskop microscope.

For animals of group 3, some of the free-floating sections through the
C5 PN graft–spinal cord interface were reacted with ExtrAvidin– cyanine
3 (Sigma) to detect BDA-labeled axons and then incubated with primary
antibody to the low-affinity nerve growth factor receptor (1:200, 192
clone for p75; Chemicon) to detect Schwann cells in association with
regenerated axons. In another set of sections, the formation of synaptic
contacts by BDA-labeled axons with spinal cord neurons was detected by
reaction with primary antibody to synaptophysin (1:200; Sigma). FITC-
tagged rabbit anti-mouse IgG (Sigma) was used as the secondary anti-
body in both situations. Sections were examined with a Leitz (Wetzlar,
Germany) confocal microscope.

Image analysis
From sections prepared for ICC detection of ECM and non-neuronal cell
components in the injured spinal cord, the proportional area of the
lesioned spinal cord occupied by immunoreactive profiles was obtained
from digitized images using a CoolSnap FX CCD camera (Roper Scien-
tific, Tucson, AZ) and MetaMorph image analysis software. All prepared
sections were examined within 7 d of the immunocytochemical reaction
using the same light intensity, and all images were captured at a constant
exposure time. For each image, contrast settings were adjusted (i.e.,
thresh holding) for a given antibody in a simultaneously processed group
until the software could accurately outline the immunoreactivity within
the prospective structures. A computer-drawn box outlining an area
�940 � 270 �m was superimposed on tissue sections just ventral to the
lesion border (supplemental Fig. 2, available at www.jneurosci.org as
supplemental material), and densitometric measures of the immunore-

active content were made. A second region just ventral to the first region
was highlighted and subjected to densitometry, and the same followed
for a third more ventral area of analysis. A univariate ANOVA was per-
formed to detect statistical differences ( p � 0.05) between a single treat-
ment approach and the saline-treated control group, and post hoc use of
the Newman–Keuls test determined significant differences between the
experimental and control groups.

Behavioral testing
Animals were habituated to the testing condition preoperatively. Ani-
mals in groups 3 and 4 were assessed for baseline behavioral activity 1
week before the C3 Hx injury and then weekly beginning 1 week after
apposition of the distal end of the PN graft. All sessions were videotaped
for later analysis by individuals blinded to the treatment of the animal.
Vertical exploration (cylinder test), rope walk, and forelimb swing dur-
ing open-field locomotion were adapted from Kim et al. (2001) and
Shumsky et al. (2003). Student’s t test was used to determine statistical
significance between ChABC-treated and saline-treated groups at indi-
vidual weekly intervals.

Cylinder test. Animals were placed in a Plexiglas cylinder (17.8 cm in
diameter and 35.5 cm in height) for 4 min. During spontaneous rearing
and vertical exploration, the number of forepaw contacts (left, right, and
both) with the cylinder wall was recorded and expressed as a percentage
of total placements. No bias in forepaw use was demonstrated before
spinal cord injury.

Rope test. Before injury, rats were trained to walk across a 100-cm-
long, 5-cm-wide suspended rope. The number of slips with either fore-
paw or falls from the rope was counted over five consecutive trials and
expressed as the percentage of errors over the total number of steps.
Animals that could not cross the rope were assigned 100% error.

Forelimb swing. The angle (relative to the body trunk) of forelimb
movement that was displayed consistently during open-field locomotion
(supplemental movies 1–5, available at www.jneurosci.org as supple-
mental material) was rated with a score of 1 for movement �90°, 2 for
movement of 90°, 3 for movement �90 0, 4 for paw placement above the
nose when stationary, or 5 for grooming motion above the level of the
eyes. The pattern of affected forelimb use was graded in the first minute
of activity, during which at least 10 steps were recorded.

Figure 1. Immunocytochemical detection of CSPG and stub antigen/core protein adjacent to
a dorsal quadrant lesion 5 d after treatment with saline (control) or ChABC. The lesion cavity is
positioned at the top left, with intact tissue to the right and below the dotted line. After ChABC
treatment (B), CSPG-immunoreactivity is condensed right at the lesion relative to the more
diffuse labeling observed adjacent to saline-treated lesions (A). In contrast, immunoreactive
staining for core protein greatly increased after ChABC treatment (D) compared with the saline-
treated lesion (C). Scale bar, 100 �m.
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Results
C5 DQ distal graft site: distribution of
CSPGs in control animals and after
ChABC treatment
In saline-treated animals (group 1),
CSPG-IR was diffusely spread throughout
the spinal cord ventral to the injury site,
and the contralateral side of the cord con-
tained very little immunoreactivity except
in gray matter adjacent to the central ca-
nal. There was no apparent structural
arrangement to the CSPG-IR close to the
lesion site, although some of the immuno-
staining appeared to be closely associated
with cells lying in the cavity wall (Fig. 1A).
After treatment with chondroitinase,
CS-56 immunostaining was nearly absent
in the spinal cord ventral to the cavity le-
sion (Fig. 1B). ChABC-treated animals ex-
hibited a twofold to threefold decrease
( p � 0.01) in the densitometric measure-
ment of CSPG-IR in all regions of the spi-
nal cord ventral to the lesion, including the
area comprising the cavity wall. Relative
densitometric measures of CSPG, stub
protein, GFAP, and collagen IV are pro-
vided in supplemental Figure 2 (available at
www.jneurosci.org as supplemental
material).

The spinal cord of saline-treated ani-
mals contained no stub antigen immuno-
reactivity close to the lesion cavity (Fig.
1C) or in more ventral areas of the spinal
cord. Stub protein-IR of the digested
GAGs was obvious after ChABC treat-
ment, especially close to the cavity wall in
which many large deposits of immunore-
active material were clustered (Fig. 1D).
The density of stub protein-IR increased
threefold to fourfold ( p � 0.01) after
treatment with ChABC in regions 1 and 2
of the spinal cord ventral to the lesion.
There was no significant difference in im-
munoreactivity in region 3, ventralmost
from the lesion cavity.

Collagen IV immunostaining formed part of the thin con-
nective tissue layer surrounding blood vessels but was also
present diffusely within the extracellular matrix of the injured
spinal cord (data not shown). There was no obvious difference
in the distribution of collagen IV-IR between the injured and
uninjured sides of the spinal cord, except immediately adja-
cent to the lesion cavity in which blood vessels were oriented
along the cavity wall. This discontinuous layer of collagen
IV-IR was especially evident in the saline-treated animals in
contrast to ChABC-treated animals. Treatment with ChABC
did not appear to disrupt the overall vascular composition in
the gray matter ventral to the lesion, although the tendency
toward orientation of vessels tangential to the cavity wall was
not as pronounced as in saline-treated animals.

GFAP-IR defined the distribution of intensely reactive astro-
cytes throughout the gray matter ventral to the lesion site, with a

tendency toward increases in expression at the lesion border
(data not shown). Quantitatively, there was no significant differ-
ence in the general patterning of GFAP within astroglia along the
cavity wall for ChABC-treated animals compared with the saline-
treated animals, but there was a trend toward a decrease in inten-
sity of GFAP staining in the ChABC treatment group with in-
creasing distance from the cavity floor.

Axonal growth into PN grafts
All neurons in the brainstem that were retrogradely labeled from
the PNS graft with True Blue were considered to have grown
axons into the PN graft. The mean � SEM number of neurons
identified within animals of group 2 was 1456 � 3 (supplemental
Fig. 3, available at www.jneurosci.org as supplemental material).
Most were located within the medullary and pontine reticular
formation (55%), and neurons from raphe nuclei (15%), locus
ceruleus (10%), and the red nucleus (5%) also made important
contributions. Each PN graft also contained axons originating

Figure 2. Evidence for axonal growth from a PN graft into the spinal cord. A, This diagram depicts the positioning of the graft
(PNG) between the C3 Hx (shaded area) and C5 DQ lesion. Regenerated axons (dotted lines) are shown to extend from several
regions of the ventrolateral white matter at C3 into the intermediate gray of the C5 spinal cord ventral to the lesion site. B, Many
BDA-labeled axons are found in the graft (PNG) close to the interface (dotted line) with the spinal cord, with some crossing into the
ventral gray matter (VGM). CC, Central canal. Thionin counterstain. C, Most BDA-labeled axons (arrows) failed to cross the PN
graft–spinal cord interface when the lesion was treated with saline. Several axons with a bend at the terminal end appear to be
repulsed from the interface. Occasionally, short segments of axons appear in the spinal cord adjacent to the interface (arrow-
heads). D, Treatment of the C5 lesion with ChABC was sufficient to allow the extension of many axons (arrows) across the PN
graft–spinal cord interface. Scale bars: B, 250 �m; C, D, 100 �m.

Figure 3. BDA-labeled axons have extended from a PN graft (top left out of frame) into spinal cord gray matter independent
from Schwann cells labeled with an antibody to p75 receptor (green in B). Overlap of the images (C) indicates that most Schwann
cells remain within the PN graft, disengaged from the growth of regenerated axons into the spinal cord.

7408 • J. Neurosci., July 12, 2006 • 26(28):7405–7415 Houle et al. • Matrix Modulation Promotes Functional Regeneration after SCI



from nearly 900 propriospinal neurons located in cervical seg-
ments rostral to the C3 Hx lesion. The extent of axonal regener-
ation into the PN grafts was comparable with previous studies of
C3 Hx injury performed in the laboratory.

Axonal growth into the spinal cord
The distinction between the PN graft and spinal cord tissue was
made according to the obvious orientation of Schwann cells and
BDA-labeled axons uniformly down the dorsal-to-ventral course
of the PN graft and the often abrupt ending of axons at the inter-
face with spinal cord tissue (Fig. 2B,C) regardless of whether the
lesion cavity had been treated with saline or ChABC. The absence
of Schwann cell invasion into the spinal cord, as highlighted by
immunocytochemical staining for p75, the low-affinity NGF re-
ceptor (Fig. 3), indicated that extension of Schwann cells into the
spinal cord was not correlated with axonal outgrowth from the
PN graft.

The best example of axonal outgrowth across an interface after
saline treatment is shown in Figure 2C. A few short axons were
found just across the PN graft–spinal cord interface, with a rare
fiber extending �20 –30 �m into the spinal cord. Most of these
axons appeared to be of very fine caliber and exhibited little
branching. Many axons stopped abruptly on the graft side of the
interface or turned away from the spinal cord and appeared to
grow back toward the C3 end (Fig. 2C). In contrast, axon out-
growth was far reaching in animals that had been treated with
ChABC. Many axons traversed the interface (Fig. 2D), extended
primarily in a dorsoventral direction within the intermediate
gray matter, and often grew for distances �1000 �m (Fig. 4A).
The mean length of the longest axon extending into the spinal
cord after saline treatment was 11.5 � 5.3 �m (from 15 samples),
which was significantly less ( p � 0.01) than that observed after
treatment with ChABC (1271.6 � 48.5 �m, from 112 samples).
Few axons were found within white matter apposed to the PN
graft, but some short axons could be seen in the ventral white
matter (Fig. 4A). Most regenerating axons remained within the
immediate segment of their entrance into the spinal cord, not
venturing rostral or caudal into adjacent segments. Regenerated
axons had few proximal varicosities, whereas their distal ends had
multiple branches with prominent varicosities that often ended
with an enlarged terminal (Figs. 4B,C, 5A). Possible anatomical
contact between regenerated axons and spinal cord neurons was
frequently observed and was characterized by bouton-like axon
endings approximating spinal cord neurons (Figs. 4B,C, 5B–D).
Indeed, many ventral motoneurons were surrounded by multiple
branches of regenerated axons (Fig. 5C,D). Double-labeled sec-
tions demonstrated that many regenerated axons were colocal-
ized with synaptophysin immunoreaction product on the surface
of intermediate gray (Fig. 6C) and ventral motoneurons, sugges-
tive of synaptic contacts distal to the injury site. Multiple sites of
synaptophysin immunoreactivity occurred along the length of
regenerated axons as well as on the expanded terminal endings
(Fig. 6A–C).

Our evaluation protocol was designed to ensure that BDA-
labeled axons ventral to the graft– host interface were regenerated
fibers, but it remained possible that some BDA-labeled axons had
sprouted from the contralateral spinal cord because the ReST has
some bilateral projections that could cross into the spinal cord
close to the C5 lesion site. Figure 7 demonstrates the results of a
different technical approach to labeling axons within the PN
graft. Diffusion fill from the cut midportion of the graft resulted
in more extensive labeling of axons than was apparent after mi-
croinjection of BDA into the red nucleus and reticular formation
(compare Figs. 7C, 2B). A per section comparison also suggested
that the diffusion fill method labeled more axons extending into
the spinal cord. Based on examination of sections used to prepare
Figure 7, it appears that �20 –25% of the axons within the PN
graft cross into the spinal cord. There was only sparse growth or

Figure 4. Relationship of BDA-labeled axons with spinal cord neurons. A, Spinal cord tissue
ventral to the PN graft (top of image) contained many regenerated axons (arrows), with some
extending toward a motoneuron pool in the medial ventral horn (bottom left). B, C, Higher-
magnification images from boxes outlined in A show branching of BDA-labeled axons and
multiple varicosities along their length. Possible anatomical contact between regenerated ax-
ons and thionin-stained spinal cord neurons is evident (arrows). Scale bars: A, 250 �m; B, C,
50 �m.
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extension of labeled axons beyond the seg-
ment in which they entered the spinal
cord. BDA-labeled spinal cord neurons
adjacent to the graft– cord interface also
were found, indicative of host cells that
had grown an axon into the PN graft,
reaching at least to its midpoint.

Behavioral assessment
Damage to the right hindlimb caused by
removal of the tibial nerve (which was
used as an autologous graft) resulted in
impaired function of all animals in our
testing situations. Quantification of fore-
limb use during attempted vertical explo-
ration showed no significant improve-
ment in the placement of the right paw on
the cylinder with ChABC treatment, which
likely was attributable in part to the right
hindlimb handicap, affecting stability dur-
ing the rising phase of exploration. Diffi-
culty with balance often resulted in ani-
mals falling sideways, especially as they
attempted to rise up on their hindlimbs.
Despite this difficulty, we detected qualita-
tive differences in forelimb use in most
ChABC-treated animals compared with
the saline-treated group. Placing animals
in the confines of a glass cylinder helped
them assume a more upright posture and
permitted observation of forelimb use
during attempted standing on four limbs.
Figure 8A demonstrates apparent weight
support by the affected forelimb in a
ChABC-treated animal with obvious plan-
tar placement of the forepaw. The ability
to weight support and to plantar place was
lost 1 d after severing of the PN graft (Fig.
8B). Saline-treated animals (Fig. 8C) were
unable to use the affected forelimb for
weight support, and the forepaw remained
dorsiflexed (Fig. 8C).

The activity of animals on the rope walk
also was impaired by hindlimb peripheral
nerve damage. They had great difficulty
maintaining their balance on the rope es-
pecially at early postgraft periods. However, after 3– 4 weeks,
three of seven of the ChABC-treated animals were able to rise up
on both forelimbs (Fig. 8D) and attempted to walk along the
rope, although they still had great difficulty completing a single
pass. Plantar placing and forepaw gripping was a characteristic of the
best ChABC-treated animals (three of seven), and the use of the
injured forelimb in these movements was lost after severing the PN
graft (Fig. 8E). None of the saline-treated animals showed any ca-
pacity to rise up to move along the rope or to exhibit weight support
or plantar placing (Fig. 8F).

Forelimb swing in an open field (albeit with impaired hind-
limb function) was assessed in terms of range of motion relative
to the body trunk and head. At 1 week after C5 injury and distal
graft apposition, there was no significant difference between
ChABC- and saline-treated animals (Fig. 9) (supplemental Table
2, available at www.jneurosci.org as supplemental material) because
all animals had scores of 1 or 2 (forelimb swing less than or equal to

90°). At 3 weeks after treatment, ChABC-treated animals began to
show improvement in range of motion that reached significance at 4
weeks compared with saline-treated animals. This difference was
maintained through week 7 when ChABC-treated animals had a
mean score of 2.86 (nearly full swing forward during locomotion)
compared with 1.6 for saline-treated animals (two of five rats failed
to reach 90° during forelimb swing after 7 weeks) (for animal behav-
ior at 1 and 7 weeks after distal graft apposition, see supplemental
movies 1–5, available at www.jneurosci.org as supplemental mate-
rial). Nearly half of the ChABC-treated animals (three of seven) were
capable of arm movements past 90° to reach the nose or face (achiev-
ing a score of 4 during some point in the 7 week behavioral assay
period), although none of the animals regained the capacity for full
grooming or consistently exhibited a score of 4 or more. None of the
saline-treated rats achieved a score above 2 at any stage of the testing.
Importantly, five of seven ChABC-treated rats demonstrated a con-
siderable degree of functional recovery with a rating of 3 or 4 at week

Figure 5. Examples of possible anatomical contact between regenerated axons and spinal cord neurons. BDA-labeled axons
form multiple branches and punctuate endings that appear adjacent to (or in contact with) spinal cord neurons (arrows) of the
intermediate gray matter (A, B) ventral to an apposed PN graft (out of frame but would be at the top of A and B) and with ventral
motoneurons (C, D). In C, several motoneurons are intimately associated with labeled rubrospinal and/or reticulospinal axons in
which there appears to be heightened branching by axons closest to individual motoneurons. In D, punctuate terminals of
regenerated axons are prominent on the surface of motoneurons. Scale bars: A–C, 50 �m; D, 25 �m.
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7. There was a decrease in range of motion of 1–2 points 1 d after
severing the PN graft in all seven ChABC-treated animals but no
change in score of any of the saline-treated animals after the graft was
cut (Fig. 9) (supplemental Table 2, available at www.jneurosci.org as
supplemental material). However, in two ChABC-treated animals,
recovered forelimb function did not disappear completely back
down to baseline levels seen at 1 week. This suggests an additional
source of information transfer into the spinal cord caudal to the C3
Hx lesion (see Discussion).

All tissue sections through the C5 site of apposition were ex-
amined in a blinded manner for the extent of axonal growth to
test whether there was a correlation between axonal regeneration
with behavioral recovery. A ranking of the overall extent of ax-
onal outgrowth was performed based on a qualitative assessment
of axon number and distribution through spinal cord gray mat-
ter, with animals exhibiting no axonal outgrowth receiving a 0, a
�1 for a small number of axons close to the interface, a �2 for
axonal outgrowth extending into the intermediate gray, and a �3
for animals with robust outgrowth reaching areas of the ventral
horn. Each of the three ChABC-treated animals that achieved a
rating of 4 in forelimb mobility exhibited substantial axonal out-
growth into the spinal cord (supplemental Table 2, available at
www.jneurosci.org as supplemental material). Two other
ChABC-treated rats that achieved scores of 3 were ranked as �2,
whereas the two remaining rats that did not score above a 2 had
an axonal outgrowth rank of �1. The five saline-treated animals
were ranked as 0 or �1. Thus, the rough estimation of total
axonal outgrowth correlated well with behavioral activity, sug-
gesting that greater axonal outgrowth should yield better
recovery.

Behavioral analysis of animals in group 4 (ChABC-treated but
unapposed distal end of PN graft) indicated no significant im-
provement in any task for which they were tested. Scoring of
rotational arm motion was similar to that observed in saline-
treated animals of group 3, indicating the absence of a significant
effect of ChABC treatment alone on local axonal sprouting or
other synaptic changes that might contribute to an improvement
of forelimb use.

Discussion
The present study has tested whether ChABC modulation of the
local proteoglycan-rich milieu surrounding a spinal cord cavita-
tion site would create an environment more conducive to the
extension of regenerated axons from the distal end of a PN graft
back into the spinal cord. Robust axonal outgrowth after treat-
ment with ChABC contrasted vividly with the scarcity of fibers
crossing a saline-treated lesion site. Bouton-like structures on
regenerating axons in close association with interneurons
and motoneurons and overlap of BDA-labeling with synapto-
physin-IR imply reconnection of descending spinal pathways
with appropriate target neurons beyond the distal end of the
graft. Behavioral analyses revealed significant improvement in
forelimb function in the PN-bridged/ChABC-treated groups
compared with the control animals. Transection of the PN graft

4

Figure 6. Indications of synaptic contact between regenerated axons and spinal cord neu-
rons. A, The distribution of BDA-labeled axons is depicted in A, and the distribution of synapto-
physin (SYN)-IR in the same field is presented in B. Merging of these images (C) provides an
indication of the presence of synaptic contacts associated with regenerated axons (arrows).
Multiple synaptic sites are found along the length of regenerated axons as well as on the cluster
of fibers found in the bottom center of the image (highlighted in the inset).
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resulted in a loss of the behavioral gains,
strongly suggesting that regenerated axons
played a significant role in the restoration
of function. These results demonstrate, for
the first time in a model of adult SCI, the
potential to promote extensive axonal re-
generation and functional recovery when
an autologous nerve graft is combined
with modulation of inhibitory ECM.

The distal end of the PN graft, which
had been apposed to a C3 Hx lesion 3
weeks earlier, was trimmed before apposi-
tion to the C5 site. This intervention cuts
through regenerating axons and, thus, has
the potential to elicit a conditioning lesion
response in the previously damaged neu-
rons (McQuarrie et al., 1977). Although
the conditioning phenomenon can en-
hance the intrinsic growth capacity of the
regenerating neurons, it does not promote
significant axonal regrowth centrally in the
classic PN bridging model (Richardson et
al., 1980; and our present results) or in
other types of CNS injury (Neumann et al.,
2002; Filbin, 2003). Previous injury of pe-
ripheral sensory fibers in the sciatic nerve
can induce the central processes of dorsal
root ganglion (DRG) neurons to grow far-
ther into the core of a dorsal column lesion
but rarely beyond. Even maximal condi-
tioning brought about by double lesions of
the sciatic nerve before lesion of the dorsal
column (Neumann et al., 2005) or by in-
ducing an inflammatory response in DRG
neurons before lesion of dorsal roots (Ri-
chardson and Issa, 1984) yields minimal
regeneration within the CNS compart-
ment. Recently, it was reported that in-
tense preconditioning of sensory axons via
zymosan-induced inflammation in the
DRG before root crush followed by
ChABC administration into the dorsal
root entry zone (DREZ) allowed robust re-
generation into the spinal cord (Steinmetz
et al., 2005). Importantly, ChABC applica-
tion by itself was essentially ineffective in
promoting recovery. Preconditioned re-
growth of axons in a PNS environment
appears to be an especially strong, regen-
eration-promoting stimulus when com-
bined with inhibitory matrix modifica-
tion. However, stimulating DRG neurons
by inflammation after injury of the dorsal
roots failed to cause any axons to regener-
ate through the DREZ, even in the pres-
ence of ChABC. Fortunately, although use
of the PN bridge after cord injury has sim-
ilar advantages of the DREZ model by al-
lowing for lengthy preconditioning and
regeneration of CNS axons in a PNS envi-
ronment, it also is effective in the more
clinically relevant postinjury situation of
the present study.

Figure 7. Reconstruction of axonal outgrowth from PN grafts exposed to BDA. The entire PN graft (PNG) appears filled with
BDA-labeled axons after exposing the cut end of the middle of the graft to BDA. The distribution of regenerating axons within the
spinal cord is presented in tracings next to their respective montage of images. Several retrogradely filled spinal cord neurons
(arrows) close to the graft– host interface are indicative of neurons that grew an axon into the PN graft.

Figure 8. Examples of forelimb use at rest and during rope walking. Some of the images are from a mirror facing the camera on
the far side of the testing platform. Some animals treated with ChABC (A, D) before placement of the distal PN graft demonstrated
the ability to use the affected forelimb for balance during grooming and movement along a suspended rope compared with the
absence of such use in saline-treated animals (C, F ). Forelimb use that was recovered after ChABC treatment (A, D) was absent for
at least 24 h after severing the PN graft (B, E). R indicates the injury-affected right forelimb.
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Because behavioral recovery was not entirely eliminated in all
animals by bridge relesion, mechanisms in addition to axon re-
generation through the bridge must account for the maintained
functionality. The absence of intact descending motor fibers be-
low C3 ipsilateral to the injury suggests that some behavioral
recovery may arise from fibers that may have sprouted from con-
tralateral pathways. It is clear that ChABC-mediated local synap-
tic plasticity was not sufficient to restore useful motility, because
the ChABC controls without distal graft insertion (group 4) had
no restoration of useful limb movements. CSPG-rich perineuro-
nal nets are lattice-like structures encapsulating neuronal cell
bodies throughout the adult CNS that help maintain and stabilize
the structural integrity of synaptic junctions (Celio et al., 1998;
Murakami and Ohtsuka, 2003; Massey et al., 2006). Motoneu-
rons and many cord interneurons have a protective perineuronal
net of CSPG (Takahashi-Iwanaga et al., 1998). ChABC digestion
of CSPG within the perineuronal net of cortical area 17 allows for
activity-dependent plasticity in adult visual cortex, long after ex-
piration of the critical period (Pizzorusso et al., 2002; Berardi et
al., 2004). Recent evidence suggests that ChABC administration
into visual cortex combined with reverse lid suture stimulates
sufficient plasticity to restore normal vision to the once deprived
eye in animals made amblyopic at weaning (Pizzorusso et al.,
2006). In the spinal cord, ChABC treatment likely affects this
extracellular covering as well as scar-associated matrix, allowing
the regenerating neurons to grow more vigorously toward and
make indirect or direct connections with denervated motoneu-
rons (Bertolotto et al., 1996; Takahashi-Iwanaga et al., 1998; Mu-
rakami and Ohtsuka, 2003). It is conceivable that formation of
new, functional synapses between the regenerating axons emerg-
ing from the PN graft and the target host neuronal populations
may, in turn, allow an additional measure of plasticity from local
circuitry or from contralateral descending fiber systems once the
perineuronal net is degraded. This could explain why some re-
covered function persisted after the bridge lesion. The absence of

functional plasticity as a result of ChABC treatment alone sug-
gests that there may be a synergistic effect with the PN graft on
local circuit remodeling, beyond that which was observed by
Bradbury et al. (2002).

Our observation that �20% of the fibers in the bridge exit into
the CNS raises two important questions. Why is axonal out-
growth limited even after enzyme-induced CSPG remodeling,
and how can we improve the extent of regeneration? One likely
reason for regeneration failure at PNS/CNS interfaces is an
addictive-like behavior that develops between axons and PNS glia
(Grimpe et al., 2005), in which the strong interaction of the two
somehow reduces the capacity for axonal exploration beyond the
graft. Another possibility may be the long-term, de novo accumu-
lation of heavily glycosylated proteoglycans at the graft– host in-
terface after termination of the enzyme treatment. In the face of
increasing CSPGs, perhaps only the most vigorously growing fi-
bers would have access to the cord. Strategies that might enhance
the exodus of axons would include the modification of the inte-
grin repertoire of the regenerating growth cones (Condic, 2001),
the delivery of classic (Kobayashi et al., 1997) or novel (Yin et al.,
2006) neurotrophins to the region of supraspinal cell bodies or to
the lesion site (Ye and Houle, 1997; Ramer et al., 2000; Romero et
al., 2001), or the use of a combinatorial approach to target other
inhibitory molecules that are not affected by ChABC (Filbin,
2003). Techniques that allow for the sustained release of ChABC
even after distal graft insertion also may be advantageous. En-
hancement of the rate and efficacy of axonal elongation in the
bridge (Dusart et al., 2005; Hu et al., 2005) as well as increasing
the magnitude of axonal exit into and synaptogenesis within
the CNS is going to be especially important in larger animals in
which distances across the lesion and into the relevant spinal
gray matter regions are much greater than in the rat. It also will
be important to ascertain whether a conditioning effect can be
identified and used to advantage in larger animals and human
injury situations.

It is noteworthy to discuss the obvious advantages as well as
the disadvantages of PN grafts compared with other potentially
useful transplantation techniques. Schwann cells have evolved to
provide severed axons with an outstanding support system for
rapid regeneration via growth-supporting adhesion and trophic
molecules (Mirsky and Jessen, 1999; Sherman and Brophy,
2005). As the axons journey through the bridge toward the CNS,
bands of Bungner support growth along the longitudinal axis of
the bridge and curtail excess sprouting in ectopic directions. An-
other critical biological feature of the Schwann cell is its capacity
to provide new myelin for the fibers they encapsulate. Indeed, all
of the structural elements necessary for maintenance of a regen-
erated axonal tract are assembled in a peripheral nerve with con-
nective tissue and vascular elements in the epineuria and peri-
neuria conferring proper tensile and elastic characteristics and a
well nourished environment to the tract formed within them.
Given that there is an abundant supply of PNS segments, espe-
cially in larger animals, that can be used for autografting without
major declinations in function (unlike the rat), there is no need
for immunosuppressive therapy or an embryonic donor. A clin-
ical disadvantage of long-distance PN grafting might be the need
to route the bridge outside of the cord dura mater, making it
vulnerable to long-term mechanical trauma. Perhaps in larger
animals, a course under the dura may be feasible. Finally, the PNS
bridging strategy, although capable of stimulating relatively long-
distance regeneration of efferent axon systems caudally, has yet to
be demonstrated to be capable of guiding sensory axons rostrally.
Nonetheless, our results demonstrate that, once allowed back

Figure 9. Animals in both groups exhibited a significant decrease in the range of motion
immediately after creation of the C5 DQ lesion (compare Pre-injury with week 1 scores). Over the
next 3 weeks, there was a steady improvement in forelimb swing in ChABC-treated animals
compared with additional decline in saline-treated animals. At 4 weeks, there was a significant
improvement in range of motion of the affected forelimb of ChABC-treated animals that con-
tinued through week 7 after distal graft insertion. Behavioral assessment 1 d after cutting of the
PN graft indicated a decline in forelimb use by ChABC-treated animals that was indistinguish-
able from saline-treated animals. At some point during the 7 week period for behavioral anal-
ysis, three of seven ChABC-treated rats achieved a score of 4, whereas the maximum for the five
saline-treated rats did not rise above a score of 2.
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into the spinal cord, even a relatively small number of regener-
ated supraspinal axons targeted to a specific spinal cord segment
can promote a significant measure of functional improvement
after cervical spinal cord injury.
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