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The Annals of Statistics
2001, Vol. 29, No. 4, 1058–1065

CONTROL OF ERROR RATES IN ADAPTIVE ANALYSIS OF
ORTHOGONAL SATURATED DESIGNS

By Weizhen Wang and Daniel T. Voss

Wright State University

Individual and simultaneous confidence intervals using the data adap-
tively are constructed for the effects in orthogonal saturated designs under
the assumption of effect sparsity. The minimum coverage probabilities of
the intervals are equal to the nominal level 1− α.

1. Introduction. Unreplicated factorial designs are extremely useful in
industrial experimentation. Consequently, the analysis of saturated designs
has received considerable attention in recent years.

A common scenario is as follows. An experiment is conducted using a single
replicate or orthogonal fraction of a 2k factorial design yielding observations
Y1� � � � �Yn, which are assumed to be independently normally distributed with
homogeneous variance σ2, and which are to be analyzed using a standard lin-
ear model. The design is said to be saturated if the factorial effect contrasts,
µ1� � � � � µp say, are estimable but n = p + 1 so there are no error degrees
of freedom with which to independently estimate σ2. Henceforth we refer to
the factorial effect contrasts µi simply as “effects.” Let Xi denote the least
squares estimator of µi. The design is said to be orthogonal if the estima-
tors X1� � � � �Xp of the effects are uncorrelated. Thus, under normality the
estimators Xi are independent. Furthermore, Xi ∼ N�µi� a

2σ2� for known
constant a. Suppose the goal is to construct confidence intervals for the ef-
fects, µ1� � � � � µp. Lacking an independent variance estimate, the analysis is
based solely on the estimators X1� � � � �Xp. This can be done assuming effect
sparsity—namely, most of the effects µi are negligible. The difficulty is that
we do not know how many or which of the effects are negligible.

More generally, factorial experiments may involve factors at other than two
levels, and they may be asymmetric. Orthogonal polynomial contrasts may be
used to accommodate factors at other than two levels. Then the estimator
variances may differ, in which case Xi ∼ N�µi� a

2
i σ

2� for known constant ai.
Without loss of generality, we assume henceforth that a2i = 1. Otherwise,

use the Xi/ai’s instead to obtain confidence intervals for the µi/ai’s.
The problem of analysis of orthogonal saturated designs is not new. Hamada

and Balakrishnan (1998) provided an extensive review, discussion, and empir-
ical comparison of many methods. While many methods have been proposed
and studied empirically, few are known to provide control of error rates under
all parameter configurations, called strong control of error rates by Hochberg
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and Tamhane [(1987), page 3]. Kinateder, Voss and Wang (2000) reviewed
methods and problems concerning control of error rates in this context.

The most heuristically appealing methods of analysis utilize adaptive esti-
mators of variability, so as to be more robust to the presence of a few large
effects. Lenth (1989) proposed the first and most influential of these–a “quick
and easy” method of analysis using an adaptive pseudo-standard error. Fol-
lowing Lenth, first obtain an initial estimate σ̂o of σ as 1.5 times the median of
the absolute estimates �Xi�. Secondly, set aside any absolute estimates which
exceed 2.5σ̂o, then compute σ̂ as 1.5 times the median of the remaining abso-
lute estimates. This is an adaptive estimator in the sense that, when viewed
as a linear combination of the ordered absolute estimates, the coefficients are
random, depending on the estimates. Variations on Lenth’s approach were
subsequently considered by Juan and Peña (1992), Dong (1993) and Haaland
and O’Connell (1995). It has been an open problem to show that any such
adaptive method of analysis of saturated designs provides strong control of
error rates.

In this paper we provide a class of adaptive confidence intervals, both in-
dividual and simultaneous, which we show do provide strong control of error
rates for the analysis of orthogonal saturated designs. The confidence coeffi-
cient of the interval or intervals, defined as the minimum or infimum over
parameter configurations of the coverage probability of the interval or inter-
vals, is obtained at the null case, that is, when all µi’s are zero. It is common
sense that one should use as many degrees of freedom as possible for esti-
mating σ . In other words, one should use as many of those Xi’s which have
mean µi = 0 as possible to estimate σ , though which and how many to use
are unknown. In the next sections, we will obtain individual and simultane-
ous confidence intervals by carefully constructing an estimator G, defined in
(5), for σ2, which is continuous and monotone in each �Xi� and uses the data
adaptively.

The setting posed previously is that the estimators X1� � � � �Xp are inde-
pendently distributed Xi ∼ N�µi� σ

2�. However, for our results, the following
more general conditions are sufficient and assumed henceforth to hold. Let
fi�x� be the pdf of a continuous, unimodal distribution which is symmetric
about zero with variance one, for 1 ≤ i ≤ p. Assume independent estimators
X1� � � � �Xp, where

Xi ∼
1
σ
fi

(xi − µi

σ

)
(1)

for unknown µ1� � � � � µp and σ .

2. Individual confidence intervals. In this section, we discuss how to
construct the individual confidence interval for each effect, µi. The method
is the same for each, so consider µp. Denote the vector of effects by � =
�µ1� � � � � µp�, with �o = �0� � � � �0� representing the null case.
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Theorem 1. Suppose G�x1� � � � � xp−1� is a nonnegative function satisfying
the following. For each 1 ≤ i ≤ p− 1, suppose G�x1� � � � � xp−1�


(i) is symmetric about zero, that is, G�x1� � � � � xp−1� = G��x1�� � � � � �xp−1��,
and nondecreasing in �xi� when the other variables xj �j �= i� are held fixed
and

(ii) satisfies G�ax1� � � � � axp−1� = a2G�x1� � � � � xp−1� for any a ≥ 0.

Then the probability P��σ� �Xp−µp�2
G�X1�����Xp−1� ≥ d� for any positive constant d de-

pends on its parameters through µ1/σ� � � � � µp−1/σ , and is nonincreasing in
each �µi/σ � when the others are fixed. Therefore,

P�o�σ

(
�Xp − µp�2

G�X1� � � � �Xp−1�
≥ d

)
= sup

��σ
P��σ

(
�Xp − µp�2

G�X1� � � � �Xp−1�
≥ d

)
(2)

and

Xp ±
√
dG�X1� � � � �Xp−1�(3)

is an interval estimator for µp with confidence coefficient 1 − α, where α is
defined to be the left hand side of �2�.

Proof. It is clear that the distribution of

Q = �Xp − µp�2
G��X1�� � � � � �Xp−1��

= ��Xp − µp�/σ�2
G��X1�/σ� � � � � �Xp−1�/σ�

depends on the parameters through �µ1/σ �� � � � � �µp−1/σ � because of ii) and con-
ditions on the fi. Since X1� � � � �Xp are independent, Q is nonincreasing as a
function of �xi� for each i < p, and each �Xi�/σ �i < p� is stochastically non-
decreasing in �µi/σ �, the distribution of Q is stochastically nonincreasing in
each �µi/σ � [Alam and Rizvi (1966), Mahamunulu (1967) and Voss (1999)]. ✷

Now the remaining problem is to construct a function satisfying properties
(i) and (ii) in Theorem 1. Let �X��i� be the ith order statistic of �X1�� � � � � �Xp−1�,
and let

SSi =
i∑

h=1
�X�2�h�(4)

denote the sum of squares of the i smallest of these order statistics, with
observed value ssi =

∑i
h=1 �x�2�h�. Intuitively, it is more likely that the smaller

order statistics �X��h� will correspond to estimators Xi with negligible means.
Thus, it is natural to use a multiple of ssi to estimate σ2, for reasonable choice
of i. Consider how to choose i adaptively. If we believe a priori that at least
ν of the means µi are negligible, then the sum in (4) should include at least
ν terms–namely, we should use ssi for some i ≥ ν. Also, if r of the means
are negligible (where r is unknown) and the rest are large in magnitude, the
procedure should adapt to this by using ssi for i close to but not exceeding r.
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To make the choice of i adaptive, we propose the following step-up approach.
Start with i = ν, to include (at least) the first ν terms. With i terms included,
include the next term, namely �x�2�i+1�, as long as it is not too large relative to
ssi. Iteratively add terms in this way, iterating on i, until a term is too large
to be added. In other words, we propose using as the variance estimator a
multiple of ssm, where m is the smallest value of i ≥ ν for which �x�2�i+1�/ssi
exceeds a specified value [see ci in (7)], or m = p− 1 if this is never the case.
While there is no guarantee that SSm so obtained will be composed entirely
from estimators Xi with negligible means, intuitively this is likely to be the
case if ν is not chosen to be too large.

Theorem 2. Define

G�x1� � � � � xp−1� = ssm/km�(5)

where

m =


p− 1� if �x�2�i+1� < cissi

∀ i = ν� � � � � p− 2
min�i 
 i ≥ ν� �x�2�i+1� ≥ cissi�� otherwise

(6)

for

ci = cν/�1+ �i− ν�cν�(7)

and for cν a positive constant, and where

ki = 1+ �i− ν�cν�(8)

Then the function G satisfies properties (i) and (ii) in Theorem 1.

Proof. It is easy to see that property (ii) is true for G and, for (i), that
G is symmetric about zero. To show for i) that G is nondecreasing in �xi�, we
first prove the continuity of the function G.

For ν ≤ i ≤ p− 2, let

Bi =
{
�x1� � � � � xp−1� 
 �x�2�i+1� < cissi

}
�

where ci is as defined in (7), or equivalently, ci+1 = ci/�1 + ci�, and cν is a
positive constant. Also, let

Aν = Bc
ν� Ai =

i−1⋂
h=ν

Bh ∩Bc
i for ν < i < p− 1 and Ap−1 =

p−2⋂
h=ν

Bh �

It is clear that �Ai�p−1i=ν form a partition of the sample space. [Specifically,
�x1� � � � � xp−1� ∈ Am, wherem is as defined in (6).] On eachAi,G is continuous.

Consider G on the boundary between Ai and Aj for any ν ≤ i < j ≤ p− 1.
The equation

�x�2�i+1� = cissi
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holds on the common boundary of Ai and Aj, so

ssi+1 = �1+ ci�ssi�

Also,

�x�2�i+2� ≤ ci+1ssi+1

on the boundary of Aj. Therefore, on the common boundary of Ai and Aj,

�x�2�i+2� ≤ ci+1ssi+1 = ci+1�1+ ci�ssi = cissi = �x�2�i+1��(9)

and so �x��i+2� = �x��i+1�. Similarly, �x��j� = �x��j−1� = � � � = �x��i+1�, so

ssj
kj

=
ssi + �j− i��x�2�i+1�

kj
= �1+ �j− i�ci�ssi

kj
= ssi

ki
�(10)

so G is continuous on the common boundary of Ai and Aj. This implies the
continuity of G on the entire sample space. Hence, G, as a function of xi, is
continuous for all 1 ≤ i ≤ p− 1.

Now it suffices to prove that G, as a function of x1, is nondecreasing on
x1 > 0. On each Aj ∩ �x1 > 0� (now we use Aj as a set of x1), the derivative
of G with respect to x1 is either 0 (if x1 > �x��j�) or 2x1/kj, which is positive.
Therefore, G is nondecreasing on each Aj∩�x1 > 0�, and is nondecreasing on
x1 > 0 due to the continuity of G. ✷

Remark 1. From equations (9) and (10), one may see that the ci and ki
for i > ν are uniquely determined given cν, kν, and the requirement that G
be continuous, in order for property i) to be satisfied for a given cν. We have
implicitly and without loss of generality defined kν to be one in equation (8).

Remark 2. Our method is adaptive if and only if cν > 1/ν. In particular,
�x�2�i+1�/ssi > 1/i, so �x1� � � � � xp−1� ∈ Aj for j > i is possible if and only if
ci > 1/i for all ν ≤ i < j. However, cν > 1/ν implies ci > 1/i for all i > ν. In
other words, for any value of cν > 1/ν, the method is adaptive and any value
of m ≥ ν is possible.

Remark 3. The adaptive estimator of Lenth (1989)—his pseudo standard
error—is not monotone in the absolute estimates �Xi�, so the confidence level
of his interval cannot be established to be 1−α using the method of this paper.
Likewise for the variations on Lenth’s method considered by Juan and Peña
(1992), Dong (1993) and Haaland and O’Connell (1995). To the best of our
knowledge, none of the adaptive methods proposed in the literature satisfy
the monotonicity condition of Theorem 1. Voss’ (1999) individual confidence
interval, which always uses SSν as denominator, that is, G = SSν, is a special
non-adaptive case of Theorem 2, obtained by choosing cν ≤ 1/ν.
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Remark 4. If effect sparsity is questionable, ν should be chosen to be small.
Otherwise, one may use ν equal to the integer part of �p + 1�/2 if one antic-
ipates that at least half of effects are not active, or even larger depending
on the knowledge of the effects under study. For a fixed ν, each ci (i > ν) is
increasing in cν, by equation (7). So the larger cν is, the more �X�2�i�’s that are
likely to be included in the function G. If these observations are from popu-
lations with µi = 0, the resulting confidence interval tends to be tighter. We
recommend that cν be selected by solving the following equation:

P�� σ

( �X�2�ν+1�
SSν

≥ cν � µp = 0 ∀ p ≤ ν + 1� µp = +∞ ∀ p ≥ ν + 2

)
= γ�(11)

using a small probability γ. This choice of cν is analogous to conducting a
size γ test of the null hypothesis that ν + 1 means are zero and the rest
infinite against the alternative hypothesis that ν means are zero and the rest
infinite. For example, assuming normality [i.e. assuming fi in (1) is the pdf of a
standard normal distribution], if p = 15, ν = 8 and γ = 0�05, then cν = 1�765,
based on 500,000 simulations coded in Gauss. Further values of cν will be
given later in Table 1.

Remark 5. By this approach, the value of m (i.e., the set Am) is selected
analogous to using a step-up testing procedure–namely, m is selected by step-
ping up from the value i= ν until obtaining a value i=m for which �x�2�m+1�/ssm
is sufficiently large. However, our inference procedure is not a stepwise pro-
cedure, as the choice of m does not imply an assertion that the effect µi cor-
responding to �x��m� is nonzero, and our procedure does not control the proba-
bility of correctly choosing m in any sense. Some step-up tests in this
context were considered by Loughin and Noble (1997), Venter and Steel
(1996, 1998) and Langsrud and Naes (1998), though it remains open to show
that their procedures provide control of error rates under all parameter
configurations.

Table 1

Constants dα and d′
α for 100�1 − α�% individual and simultaneous confidence intervals for p

effects, respectively, and cν for γ = 0�05

Individual Simultaneous
confidence intervals confidence intervals

p � c� d0�10 d0�05 d0�01 d′
0�10 d′

0�05 d′
0�01

11 6 2.676 5.873 9.289 20.59 19.84 26.74 48.38
15 8 1.765 4.258 6.544 13.59 14.73 19.00 31.41
19 10 1.324 3.374 5.112 10.14 11.91 14.99 23.42
23 12 1.063 2.775 4.174 8.120 10.08 12.45 18.74
27 14 .8885 2.386 3.550 6.760 8.754 10.70 15.65
31 16 .7685 2.093 3.110 5.839 7.806 9.429 13.49
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3. Simultaneous confidence intervals. To construct simultaneous con-
fidence intervals for �µ1� � � � � µp�, we follow the method of Voss and Wang
(1999) but use the function G in Theorem 2. Let

x̂i = �x1� � � � � xi−1� xi+1� � � � � xp��(12)

for 1 ≤ i ≤ p. Note that �x1� � � � � xp−1� = x̂p and G�X1� � � � �Xp−1� = G�X̂p�.

Theorem 3. Define

V2
i =

�Xi − µi�2
G�X̂i�

(13)

for 1 ≤ i ≤ p, where G is defined in �5�, and let
W2 = max

1≤i≤p
V2

i �(14)

Then

P�o� σ
�W2 ≥ d′� = sup

�� σ
P�� σ�W2 ≥ d′�(15)

where d′ is a constant. Therefore,

Xi ±
√
d′G�X̂i�(16)

for 1 ≤ i ≤ p are simultaneous interval estimators for µ1� � � � � µp with simul-
taneous confidence coefficient 1− α, where α is defined to be the left hand side
of �15�.

Proof. Analogous to the proof of Theorem 1 in Voss and Wang (1999). ✷

Remark 6. Suppose one guesses correctly (though unknowingly) that ν of
the effects are zero, and suppose the nonzero effects are all large in magnitude.
The confidence intervals will tend to be tight for the nonzero means. However,
if Xi is one of those estimators with zero mean, then the corresponding error
estimate will necessarily include the estimate of a nonzero effect, lengthening
the interval considerably. This may not be considered a problem, since the
focus is generally on detection of nonzero effects and corresponding directional
inference. If it is considered a problem, one might intentionally start at ν − 1
rather than ν.

Remark 7. Analogously, one can construct simultaneous confidence inter-
vals for any subset �µi1

� � � � � µij
� of �µ1� � � � � µp� by consideration of

W2 = max
1≤h≤j

V2
ih
�

Remark 8. The same approach as presented here for constructing individ-
ual and simultaneous confidence intervals can be used to obtain hypothesis
tests of specified size.
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Remark 9. Implementation of the methods requires availability of the con-
stant d of equation (3) for individual confidence intervals or the constant d′ of
equation (16) for all simultaneous confidence intervals, as well as the constant
cν of equation (7). These constants are given in Table 1 for common values of
p assuming normality.

Acknowledgments. We thank two anonymous referees, whose careful
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