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Let G be a connected graph that is 2-cell embedded in a surface S, and let G∗ be its

topological dual graph. We will define and discuss several matroids whose element set is

E(G), for S homeomorphic to the plane, projective plane, or torus. We will also state and

prove old and new results of the type that the dual matroid of G is the matroid of the

topological dual G∗.

1. Introduction

One of the most basic examples of matroid duality is the following. Let G be a graph

embedded in the plane and let G∗ be its topological dual graph. If M(G) is the cycle

matroid of G, then the dual matroid M∗(G) = M(G∗). If G is a connected graph that is

2-cell embedded in a surface of demigenus d > 0 (the demigenus is equal to 2 minus the

Euler characteristic of the surface), then M∗(G) 6=M(G∗) for the simple reason that

|V (G)| − |E(G)|+ |F(G)| = 2− d,
(|V (G)| − 1) + (|V (G∗)| − 1) = |E(G)| − d,
rk(M(G)) + rk(M(G∗)) = |E(G)| − d,

6= |E(G)|,
while the rank of a matroid and its dual need to sum to the size of their element set.

In this work we will use biased graphs and their matroids [4, 5] to describe methods of

constructing matroids from G embedded in the projective plane or torus of rank |V (G)|
that will give the desirable result that matroid duality comes from the topological dual of

G. This duality will also yield a connection between closed cuts on surfaces, and matroid

circuits and cocircuits.
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2. Definitions and background

2.1. Graphs, embeddings and homology

A graph is a pair (V (G), E(G)), in which V (G) is a collection of topological points called

vertices and E(G) is a collection of topological 1-cells called edges. Each edge has two

ends: an edge with both ends identified with a single vertex is called a loop and an edge

with its ends identified with distinct vertices is called a link. If S ⊆ E(G), then G:S will

denote the subgraph of G consisting of the edges in S and the vertices of G incident to

edges from S . Since, for any H ⊆ G without vertices of degree zero, H = G:E(H), we

may, without being ambiguous, refer to a subgraph of G without vertices of degree zero

simply by referring to its edge set. We do this often.

Given an edge e, we denote an orientation of e by ~e and the reverse orientation of ~e

by ~e−1. A path is a graph that is a subdivision of a link. A circle is a graph that is a

subdivision of a loop. We specify an orientation of a path γ by ~γ and an orientation of

a circle C by ~C . The reverse orientations are denoted by ~γ−1 and ~C−1, respectively. The

edges of an oriented circle or path are considered to be oriented consistently with the

oriented path or circle.

In this paper, all embeddings of graphs in surfaces will be 2-cell embeddings. That

is, when G is embedded in S, S \ G is a disjoint union of open 2-cells. We use F(G) to

denote the set of open 2-cells (which we call faces) into which G subdivides the surface

S in which it is embedded. When G is 2-cell embedded in S, it is necessary that G is

connected. The topological dual of G is a graph embedded in S, denoted by G∗, which

is constructed as follows. The vertex set V (G∗) is in bijective correspondence with F(G),

where we denote the vertex corresponding to f ∈ F(G) by f∗. The vertex f∗ is embedded

in the interior of the face f. The edge set E(G∗) is in bijective correspondence with E(G),

where the edge in E(G∗) corresponding to e ∈ E(G) is denoted by e∗. The edge e∗ has

its ends connected to vertices f∗1 and f∗2 if and only if f∗1 6= f∗2 , and the boundaries of

faces f1 and f2 intersect on the edge e, or f∗1 = f∗2 and e is a boundary edge of the face

f1 twice. The edge e∗ is embedded connecting vertices (or vertex) f∗1 and f∗2 such that e

and e∗ intersect transversely at a point and e∗ does not intersect G at any other point.

From this definition, G∗ is connected when G is connected, G∗ is 2-cell embedded in S

and (G∗)∗ = G. Given a set X ⊆ E(G) we denote the corresponding subset of E(G∗) as

X∗. To avoid confusion, subsets of E(G∗) will always be denoted with a superscript ∗.
Figure 1 shows an embedding of K4 in the torus with its topological dual constructed and

embedded as defined above. The dual is drawn with the thicker edges.

Let C(G) be the group of formal Z-linear combinations of the oriented edges of G

modulo the relation ~e +~e−1 = 0. We call this the group of chains of G over Z. If ~ω is

an oriented walk in the graph G, then we also use the symbol ~ω to denote the element

of C(G) consisting of the sum of the oriented edges of ~ω all with coefficient 1 ∈ Z. Let

Z(G) be the subgroup of C(G) generated by the oriented circles of G, and let B(G) be the

subgroup of Z(G) generated by the oriented face boundaries of G. These, respectively, are

called the group of cycles and the group of boundaries of G over Z. It is a well-known

result of algebraic topology that the quotient group H1(S) = Z(G)/B(G) is invariant, up

to group isomorphism, for any graph G that is 2-cell embedded in S. Given G embedded
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Figure 1 A depiction of K4 (lower left) embedded in the torus (top) and drawn with the thinner lines, and its

corresponding dual graph (lower right) drawn in the torus with thicker lines

in S, let i : Z(G)→ H1(S) be the natural homomorphism given by the embedding. Some

immediate and important properties derived from the definition of the homomorphism

i : Z(G)→ H1(S) are given in Proposition 2.1.

Proposition 2.1.

(1) If ~C is an oriented circle, then i(~C−1) = −i(~C).

(2) For any theta graph with circles oriented as shown in Figure 2, i(~C1) + i(~C2) = i(~C1 +
~C2) = i(~C3).

It is well known that H1(T) ∼= Z× Z (here T denotes the torus). Proposition 2.2 can be

found in [2, p. 214] and is used freely throughout this paper without further reference.

Proposition 2.2. There exists an oriented circle C embedded in T with i(~C) = (m, n) ∈ H1(T)

if and only if (m, n) is a relatively prime pair of integers.

Let ~C and ~D be two oriented circles embedded in T such that C ∩D is a finite collection

of points. Each intersection point of ~C with ~D is one of three possible types: a clockwise

transverse crossing, a counterclockwise transverse crossing, or a nontransverse crossing.

Examples of clockwise and counterclockwise transverse crossings of ~C with ~D are shown in

Figure 3. An example of a nontransverse crossing of two curves would be the intersection

of the curves y = 0 and y = x2 in the xy-plane. The algebraic intersection ~C · ~D is
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Figure 2 The desired orientations of the circles in the theta graph of Proposition 2.1

C
D

C
D

Figure 3 The left figure displays a clockwise transverse crossing of ~C with ~D. The right is a counterclockwise

transverse crossing of ~C with ~D

the number of clockwise crossings of ~C with ~D minus the number of counterclockwise

crossings of ~C with ~D. Because of Propositions 2.3 and 2.4, the algebraic intersection of

curves on a surface can be especially useful when studying graphs embedded in surfaces.

Proposition 2.3 can be found in [2, Section 6.4.3].

Proposition 2.3. Let ~C and ~D be oriented circles embedded in T that intersect in a finite

number of points. If i(~C) = (m1, n1) and i(~D) = (m2, n2), then

~C · ~D = ±
∣∣∣∣ m1 n1

m2 n2

∣∣∣∣ .
Proposition 2.4. If G is a graph embedded in a surface S, C is the edge set of a circle in

G, and D∗ is the edge set of a circle in G∗, then the following are true.

(1) (G:C)∩ (G∗:D∗) = C ∩D∗ is a finite collection of points, each point being a transverse

crossing of a pair of dual edges (e, e∗).
(2) |C ∩ D∗| = |C ∩ D|.
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In addition to the geometric meaning of the algebraic intersection of two oriented

circles, Proposition 2.3 is even more useful, in that one may impose a multiplicative

structure on Z × Z ∼= H1(T) by defining the product (m1, n1) · (m2, n2) to be the 2 × 2

determinant in Proposition 2.3. Now the algebraic properties listed in Proposition 2.5 may

be brought to bear on the elements of Z(G) which include the oriented circles of G.

Proposition 2.5. For all C,D,D′ ∈ Z(G), the following are true.

(1) i(C) · i(D) = −i(D) · i(C).

(2) i(C) · i(D + D′) = i(C) · [i(D) + i(D′)] = [i(C) · i(D)] + [i(C) · i(D′)].

2.2. Biased graphs and matroids derived from graphs embedded in the torus

Biased graphs are discussed in [4]. We will state the relevant definitions. A collection

of circles L in a graph G is called a linear class of circles if each theta subgraph of G

contains 0, 1, or 3 circles from L. A biased graph is a pair (G,L) where G is a graph and

L is a linear class of circles of G. Circles in L are called balanced. A subgraph H of G is

called balanced if all circles of H are balanced; H is called contrabalanced if all circles of

H are unbalanced.

A special case of a biased graph is an additively biased graph. This is a biased graph in

which each theta subgraph contains either 1 or 3 balanced circles. A signed graph is a pair

(G, σ) in which σ : E(G) → {+,−}. Given a signed graph (G, σ), let C+ be the collection

of circles in G for which the product of signs on its edges is positive. In [3, Section 2] it

is shown that the pair (G,C+) is an additively biased graph; furthermore, any additively

biased graph is of the form (G,C+) for some signed graph (G, σ).

We will define two biased graphs associated with G. First, let H(G) be the collection

of circles C in G such that i(~C) = −i(~C−1) = 0. The pair H(G) = (G,H(G)) is a biased

graph because Proposition 2.1(2) guarantees that a theta graph cannot have exactly two

circles in the homology class 0 ∈ H1(T).

Second, let A(G) be the collection of circles C such that the vector dot product i(~C) ·
(1, 1) ≡ 0 mod 2 (which happens if and only if i(~C) = (m, n) and m and n have the same

parity). The pairA(G) = (G,A(G)) is an additively biased graph because Proposition 2.1(2)

and the fact that i(~C1 + ~C2) · (1, 1) = (i(~C1) + i(~C2)) · (1, 1) = i(~C1) · (1, 1) + i(~C2) · (1, 1)

guarantee that a theta graph may only have 1 or 3 circles in A(G).

Proposition 2.6. If G is 2-cell embedded in T, then H(G) and A(G) are both unbalanced

biased graphs.

Proof. Since H1(T) = Z(G)/B(G), the natural homomorphism i : Z(G)→ H1(T) ∼= Z× Z
is a surjection. So for each (x, y) ∈ Z× Z , there is z ∈ Z(G) such that i(z) = (a, b).

By the definition of Z(G), there are λ1, . . . , λt ∈ Z and oriented circles ~C1, . . . , ~Ct in G

such that z = λ1
~C1 + · · · + λt~Ct. So if we insist that i(z) 6= 0, or that i(z) · (1, 1) =

λ1i(~C1) · (1, 1) + · · · + λti(~Ct) · (1, 1) is not even, then there must be some i(~Cj) 6= 0 or

i(~Cj) · (1, 1) that is not even. Thus there is an unbalanced circle in each of H(G) and

A(G).
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We will consider three matroids associated with a biased graph (G,L). Two of these

matroids have element set E(G) and the third has element set E0(G) = E(G) ∪ e0. They

are, respectively, the lift matroid L(G,L), the bias matroid B(G,L), and the complete lift

matroid L0(G,L).

These matroids are discussed in detail in [5]. We will review them in the next two

paragraphs. The definitions of these matroids use the cyclomatic number of a graph G.

It is the number of edges of G outside a maximal forest: that is, |E(G)| − |V (G)| + c(G),

where c(G) is the number of connected components of G. Also, in a matroid M, we will

denote the rank of X ⊆ E(M) by rkM(X). The rank of a matroid M is defined to be

rkM(E(M)) but is denoted more simply by rk(M).

The circuits of the lift matroidL(G,L) are the edge sets of minimal balanced subgraphs

of cyclomatic number 1 (i.e., balanced circles) and minimal contrabalanced subgraphs of

cyclomatic number 2 (i.e., the union of two vertex-disjoint unbalanced circles, or the

union of two unbalanced circles that intersect in a vertex or path and whose union is

contrabalanced). See Figure 4. Proposition 2.7 is from [5, Theorem 3.1(j)].

Proposition 2.7. Given X ⊆ E(G),

rkL(G,L)(X) =

{ |V (G:X)| − c(G:X) if G:X is unbalanced

|V (G:X)| − c(G:X)− 1 if G:X is balanced

}
.

The complete lift matroid L0(G,L) is defined to be the lift matroid of the biased graph

(G,L)0, which is (G,L) together with a new vertex v0 attached to the unbalanced loop e0.

Proposition 2.8 is apparent from the definitions of L(G,L) and L0(G,L).

Proposition 2.8.

(1) L0(G,L)\e0 =L(G,L).

(2) L0(G,L)/e0 =M(G).

The circuits of the bias matroidB(G,L) are the edge sets of minimal balanced subgraphs

of cyclomatic number 1 (i.e., balanced circles) and minimal connected contrabalanced

subgraphs of cyclomatic number 2 (i.e., the union of two vertex-disjoint unbalanced

circles and a connecting path between them or the union of two unbalanced circles

that intersect in a vertex or path and whose union is contrabalanced). See Figure 5.

Proposition 2.9 is from [5, Theorem 2.1(j)].

Proposition 2.9. Given X ⊆ E(G),

rkB(G,L)(X) = |V (G:X)| − b(G:X),

where b(G:X) is the number of connected components of G:X that are balanced.

Proposition 2.10 is evident from the definitions of B(G,L) and L(G,L).

Proposition 2.10. If (G,L) is a biased graph, then B(G,L) = L(G,L) if and only if there

do not exist 2 vertex-disjoint unbalanced circles in (G,L).
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Figure 4 Lift matroid circuits are edge sets of balanced circles and edge sets of contrabalanced subgraphs

that are subdivisions of one of the above graphs

Figure 5 Bias matroid circuits are edge sets of balanced circles and edge sets of contrabalanced subgraphs

that are subdivisions of one of the above graphs

2.3. Matroid duality

Let M be a matroid on the element set E. If B is the set of bases of M, then the set

of cobases of M is E \B = {E \ B : B ∈ B}. The dual matroid M∗ is normally defined

to be the matroid on E whose set of bases is E \B and whose set of cobases is B. For

our purposes, it will be more convenient to do the following. Let E∗ be a set in bijective

correspondence with E by the map e 7→ e∗. The subset of E∗ corresponding to X ⊆ E will

be denoted by X∗; additionally, subsets of E∗ will always be written with a ∗ superscript.

Define M∗ to be the matroid on E∗ whose set of bases is (E \ B)∗ and whose set of

cobases is B∗. Proposition 2.11 is a characterization of matroid duality.

Proposition 2.11. If M is a matroid on E and N is a matroid on E∗, then M∗ = N if

and only if rk(M) + rk(N) = |E| and, for each circuit C of M and each circuit D∗ of N,

|C ∩ D| 6= 1.

Proof. The conditions on rank and circuit intersections are well known necessary con-

ditions for M∗ = N. Conversely, let B be a basis of M. Since rk(M)+rk(N) = |E|, showing

that (E \ B)∗ is independent in N will imply that (E \ B)∗ is a basis of N. This will prove

that M∗ = N.

By way of contradiction, if we assume that (E \B)∗ is a dependent set in N, there exists

D∗ ⊆ (E \ B)∗ that is a circuit of N. Pick e ∈ D. Since B is a basis of M and e /∈ B, there
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exists C ⊆ B ∪ {e} that is a circuit of M and contains e. This gives us the contradiction

|C ∩ D| = 1.

2.4. Matroid duality from graphs embedded in the plane and projective plane

Proposition 2.11 along with Proposition 2.4 are excellent tools for proving results about

matroid duality from graphs embedded in surfaces. Using them will prove two known

results (Theorem 2.12 and Corollary 2.16) and one closely related result (Theorem 2.15).

Theorem 2.12. If G be a connected graph embedded in the plane, then M∗(G) =M(G∗).

Proof. Since G is connected and embedded in the plane, |V (G)| − |E(G)|+ |F(G)| = 2. By

definition of G∗, |V (G)| − |E(G)|+ |V (G∗)| = 2. Thus

(|V (G)| − 1) + (|V (G∗)| − 1) = |E(G)|,
rk(M(G)) + rk(M(G∗)) = |E(G)|,

which is the first condition from Proposition 2.11 needed to prove that M∗(G) =M(G∗).
The second and last condition of Proposition 2.11 is that, for each circle C in G and

circle D∗ in G∗, |E(C) ∩ E(D)| 6= 1. By Proposition 2.4, |E(C) ∩ E(D)| 6= 1 if and only

if |C ∩ D∗| 6= 1. Now the Jordan curve theorem states that every simple closed curve in

the plane separates the plane into two regions. Since every intersection of C and D∗ is

transverse, |C ∩ D∗| is even. Thus |C ∩ D| 6= 1, as required.

Corollary 2.13. If G is a graph embedded in the plane and X ⊆ E(G), then G:X separates

the plane if and only if X∗ separates G∗.

Proof. It is known that the cocircuits ofM(G) are the bonds of G. SinceM∗(G) =M(G∗),
C is a circuit of M(G) iff C∗ is a cocircuit of M(G∗). Thus G:X separates the plane iff

G:X contains a circle iff X∗ contains a bond of G∗ iff X∗ separates G∗.

Corollary 2.16 below is an unpublished result of Thomas Zaslavsky from [6]. It follows

from Theorem 2.15, Proposition 2.8, and the fact that, for any matroid M and e ∈ E(M),

(M/e)∗ = M∗\e∗. Before presenting these results, we note a few facts about graphs

embedded in the projective plane, which we denote by P2.

Proposition 2.14. If G is a connected graph that is 2-cell embedded in the projective plane,

then

(1) H1(P2) = Z(G)/B(G) ∼= Z2,

(2) C is a circle in G that separates P2 if and only if i(C) = 0, and

(3) if C and C ′ are circles such that i(C) = i(C ′) = 1, then C ∩ C ′ 6= ∅.

Now let H(G) be the collection of circles in G such that i(C) = 0 (i.e., H(G) is the

collection of circles in G that separate P2). It follows from Propositions 2.1, 2.14, and 2.10

that H(G) = (G,H(G)) is an additively biased graph for which B(H(G)) =L(H(G)).
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Theorem 2.15. If G is a graph that is 2-cell embedded in the projective plane, then

L∗0(H(G)) =L0(H(G∗)).

Proof. Since G∗ is 2-cell embedded in the projective plane, G is connected and i : Z(G)→
H1(P2) = Z(G)/B(G) is onto. Thus there must be an unbalanced circle in H(G). Thus

rk(L0(H(G))) = |V (G)|. Similarly, rk(L0(H(G∗))) = |V (G∗)|. Since G is connected and is

2-cell embedded in the projective plane, we have |V (G)| − |E(G)|+ |F(G)| = 1. Thus

|V (G)| + |V (G∗)| = |E(G)|+ 1

rk(L0(H(G))) + rk(L0(H(G∗))) = |E0(G)|.
Our result will now follow by showing that, for any circuit C inL0(H(G)) and any circuit

D∗ in L0(H(G∗)), we have |C ∩ D∗| 6= 1. Now, without loss of generality, either C is a

balanced circle or neither C nor D is a balanced circle.

Case 1: Recall that C is a balanced circle because i(C) = 0. Thus C separates P2. Since D

is either a circle or the union of two edge-disjoint circles and since G and G∗ only intersect

in transversely crossing dual edge pairs, |C ∩ D∗| is even. In particular |C ∩ D∗| 6= 1.

Case 2: Since both C and D∗ are not balanced circles, C is the union of two edge-disjoint

circles in G and D∗ is the union of two edge-disjoint circles in G∗. Since G and G∗ only

intersect in transversely crossing dual edge pairs, we get the following: |C ∩D∗| > 4 when

e0 /∈ C and e∗0 /∈ D∗, |C ∩ D∗| > 2 when e0 /∈ C if and only if e∗0 ∈ D∗, and |C ∩ D∗| > 2

when e0 ∈ C and e∗0 ∈ D∗. In all cases |C ∩ D∗| 6= 1.

Corollary 2.16. If G is a graph that is 2-cell embedded in the projective plane, thenM∗(G) =

L(H(G∗)).

3. Lift matroid duality from topological duality

Theorems 3.1 and 3.2 are both similar to the well-known result that M∗(G) =M(G∗) for

a graph G embedded in the plane.

Theorem 3.1. If G is a connected graph that is 2-cell embedded in the torus, then

L∗(H(G)) =L(H(G∗)).

Theorem 3.2. If G is a connected graph that is 2-cell embedded in the torus, then

L∗(A(G)) =L(A(G∗)).

Before the proofs of Theorems 3.1–3.2 we present Lemmas 3.3–3.5.

Lemma 3.3. If G is a connected graph that is 2-cell embedded in the torus, then

(1) the matroids B(H(G)), L(H(G)), B(A(G)), and L(A(G)) all have rank |V (G)|, and

(2) |V (G)| − |E(G)|+ |F(G)| = 0.
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Proof. Part (1) follows from Proposition 2.6 and the definition of rank in the bias and

lift matroids. Part (2) is Euler’s formula.

Lemma 3.4. Let G be a graph that is 2-cell embedded in the torus.

(1) If C and D are vertex-disjoint circles in G with each i(~C), i(~D) 6= 0, then i(~C) = ±i(~D).

(2) If Θ is a contrabalanced theta graph in H(G) with circles C1, C2, C3, then i(~Cj) 6=
±i(~Ck) for each j 6= k.

Proof. (1) Since C and D are vertex-disjoint, ~C ·~D = 0. A 2×2 determinant with nonzero

rows is zero is if and only if the first row is a constant multiple of the second. If this

multiple is anything other than ±1, then either i(~C) or i(~D) is not a relatively prime pair.

(2) By way of contradiction, say that i(~C1) = i(~C2). Thus i(~C3) = ±i(~C1) ± i(~C2) = 0 or

±2i(~C1); however, i(~C3) 6= 0 because Θ is contrabalanced, and i(~C3) 6= ±2i(~C1) because

i(~C3) is a relatively prime pair of integers.

Lemma 3.5. If G is a graph embedded in S, C is a circle in G, and D∗ is a circle in G∗,
then

(1) |C ∩ D∗| = 1 implies that ~C · ~D = ±1, and

(2) |C ∩ D∗| is even if and only if ~C · ~D is even.

Proof. Both parts follow from the fact that G and G∗ only intersect in transversely

crossing edge pairs e, e∗.

Proof of Theorem 3.1. To prove our theorem we will use Proposition 2.11. First, Euler’s

formula states that |V (G)| − |E(G)| + |F(G)| = 0 when G is a 2-cell embedding. Since G

and G∗ are unbalanced (by Proposition 2.6), rk(L(H(G))) = |V (G)| and rk(L(H(G∗))) =

|F(G)|. Thus rk(L(H(G))) + rk(L(H(G∗))) = |E(G)|. So, to complete the proof we need

only show that |C ∩ D∗| 6= 1, for any lift circuit C in H(G) and lift circuit D∗ in H(G∗).
We break the proof into two cases. In the first case, C is a balanced circle and, in the

second case, both C and D are not balanced circles.

Case 1: Since C is a balanced circle in H, i(~C) = 0. Thus, for any circle D∗0 in D∗, ~C ·~D∗0
is even. Thus |E(C) ∩ E(D0)| 6= 1.

Case 2: Since C and D∗ are not balanced circles we may write C = C1 ∪ C2 and

D∗ = D∗1 ∪ D∗2 where (C1, C2) and (D∗1 , D∗2) are modular pairs of circles in nonzero

homology classes. Without loss of generality, we may split the remainder of the proof

into the following four subcases:

i(~C1) = ±i(~C2) = ±i(~D1) = ±i(~D2),

i(~C1) = ±i(~C2) 6= ±i(~D1) = ±i(~D2),

i(~C1) = ±i(~C2) and ± i(~D1) 6= ±i(~D2),

i(~C1) 6= ±i(~C2) and ± i(~D1) 6= ±i(~D2).
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Case 2.1: By Lemma 3.4, E(C1) ∩ E(C2) = E(D∗1) ∩ E(D∗2) = ∅. Since each ~Cj · ~D∗k = 0,

each |E(Cj) ∩ E(Dk)| is even. Thus |E(C) ∩ E(D)| =
∑

j,k∈{1,2} |E(Cj) ∩ E(Dk)| is even (in

particular, |E(C) ∩ E(D)| 6= 1).

Case 2.2: By Lemma 3.4, E(C1) ∩ E(C2) = E(D∗1) ∩ E(D∗2) = ∅. Since each ~Cj · ~D∗k 6= 0,

each |E(Cj) ∩ E(Dk)| > 1. Thus |E(C) ∩ E(D)| = ∑
j,k∈{1,2} |E(Cj) ∩ E(Dk)| > 4.

Case 2.3: By Lemma 3.4, E(C1) ∩ E(C2) = ∅. Without loss of generality, i(~C1) 6= ±i(~D∗1).

Thus each ~Cj · ~D∗1 6= 0, and |E(C) ∩ E(D)| >∑j∈{1,2} |E(Cj) ∩ E(D1)| > 2.

Case 2.4: Without loss of generality ~C1 · ~D∗1 6= 0 and ~C2 · ~D∗2 6= 0. We may now conclude

that |E(C) ∩ E(D)| > 2 unless we have E(C1) ∩ E(D1) = E(C2) ∩ E(D2) = {e}. In the

latter case, C must be a contrabalanced theta graph in H, because E(C1) ∩ E(C2) 6= ∅.
Consider C1 + C2, which is the third circle in C . We cannot have (~C1 + ~C2) · ~D∗1 =

(~C1 +~C2) ·~D∗2 = 0, or else i(~D∗1) = ±i(~C1 +~C2) = ±i(~D∗2) while we assumed i(~D∗1) 6= ±i(~D∗2).

Thus |E(C1 + C2) ∩ E(D1)| > 1 or |E(C1 + C2) ∩ E(D2)| > 1 and, since e ∈ E(C1) ∩ E(C2),

we may now conclude that |E(C) ∩ E(D)| > 2.

Proof of Theorem 3.2. First, rk(L(A(G))) + rk(L(A(G∗))) = |E(G)| follows from the

same argument as in the first paragraph of the proof of Theorem 3.1. So let C be a lift

circuit of A(G) and D∗ be a lift circuit of A(G∗). We will show that |E(C)∗ ∩ E(D)| 6= 1.

Recall that an additively biased graph contains no contrabalanced theta graphs. Thus a

lift circuit is either a balanced circle or the union of two edge-disjoint unbalanced circles.

We divide the remainder of the proof into three cases: C and D∗ are both balanced circles,

C is a balanced circle and D∗ is not, C and D∗ are not balanced circles.

Case 1: Here i(~C) · (1, 1) and i(~D∗) · (1, 1) are both even. Thus i(~C) and i(~D∗) are both pairs

of odd integers, which implies the 2× 2 determinant ~C ·~D∗ is even. Thus |E(C)∩E(D)| is
even, and |E(C) ∩ E(D)| 6= 1.

Case 2: Here i(~C) is a pair of odd integers and D∗ is the union of two edge-disjoint

circles D∗1 and D∗2 such that each i(~D∗j ) is a pair of integers of different parity. Thus the

2×2 determinant ~C ·~D∗j is odd. Thus each |E(C)∩E(Dj)| > 1, whence |E(C)∩E(D)| > 2.

Case 3: Here C is the union of edge-disjoint circles C1 and C2 and D∗ is the union of two

edge-disjoint circles D∗1 and D∗2. The details of the remainder of the proof are contained

in the proof of Theorem 3.1, Case 2.

3.1. The topological action of lift circuits on the torus

Theorem 3.1 tells us that if C is a lift circuit ofH(G), then C∗ is a lift cocircuit ofH(G∗). In

a matroidM,H ⊆ E is a hyperplane if and only if E\H is a cocircuit. Thus a lift cocircuit in

a biased graph is a minimal edge set D such that rkL(G,L)(E(G) \D) = rkL(G,L)(E(G))− 1.

Thus D is the minimal edge set that either disconnects G or whose removal leaves a

balanced subgraph of (G,L). Given this and Proposition 2.7, we have Proposition 3.6.
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Proposition 3.6. If C is a lift cocircuit of (G,L), then

(1) G \ C is a connected and balanced subgraph of (G,L), or

(2) C is a bond of G separating connected subgraphs G1 and G2, no more than one of which

is balanced.

Combining Theorem 3.1 and Proposition 3.6 yields Theorem 3.7.

Theorem 3.7. If G is 2-cell embedded in the torus T and C is a lift circuit of H(G), then

either T \ C has two connected components, no more than one of which is homeomorphic to

a disk, or T \ C is homeomorphic to a disk; furthermore, T \ C
(1) has two connected components if and only if C is a balanced circle or C is the union

of two unbalanced circles C1 and C2 with i(~C1) = ±i(~C2), and

(2) is homeomorphic to a disk if and only if C is the union of two unbalanced circles C1

and C2 with ~C1 · ~C2 = ±1.

Proof. The collection of 2-cells F(G) is a collection of open polygons whose boundary

edges are identified in distinct pairs with the edges of G which then yields a torus. Each

e∗ ∈ E(G∗) represents an identification of one distinct pair of boundary edges of faces f1

and f2 (which are not necessarily distinct) with the edge e ∈ E(G). The action of removing

e∗ from G∗ is thus equivalent to removing the identification of the boundary edges of

f1 and f2 with e ∈ E(G) (i.e., removing e∗ from G∗ is equivalent to cutting the torus

along e from G). Also, if X∗ ⊆ E(G∗), then each connected component K∗:G∗ of G∗ \X∗
will correspond to a connected component, TK , say, obtained by cutting the torus along

X ⊆ E(G); furthermore TK is constructed from the faces of F(G) corresponding to the

vertices of K∗:G∗, with the boundary identifications represented by the edges of K∗. Since

a 2-cell is the only surface with boundary (up to homeomorphism) that has trivial first

homology group, TK will be a 2-cell if and only if K∗ is a balanced subgraph of H(G∗).
This, together with Theorem 3.1 and Proposition 3.6, implies our desired results.

4. Bias matroid duality from topological duality

Theorem 4.1. If G is 2-cell embedded in the torus, then B∗(H(G)) = B(H(G∗)).

Proof. First, rk(B(H(G))) + rk(B(H(G∗))) = |E(G)| follows from the same argument as

in the first paragraph of the proof of Theorem 3.1.

Second, let C be a circuit of B(H(G)) and let D∗ be a circuit of B(H(G∗)). A circuit

C ′ in a bias matroid B(G,L) is also a circuit in the lift matroid L(G,L), except when

C ′ consists of two vertex-disjoint unbalanced circles in a connecting path (called a loose

handcuff ). In this case C ′ is the union of a circuit in L(G,L) along with a connecting

path. Thus we may use the exact same arguments as in the proof of Theorem 3.1 to show

that |E(C)∩E(D)| 6= 1, except when either C or D∗ is a loose handcuff. In the case where

either C or D∗ is a loose handcuff let CL and D∗L be the unique lift circuits contained in

C and D, respectively. By Theorem 3.1, |E(CL) ∩ E(DL)| 6= 1. So we may now conclude



Matroid Duality from Topological Duality 527

that |E(C) ∩ E(D)| 6= 1 unless |E(CL) ∩ E(DL)| = 0. Without loss of generality we split

the remainder of the proof into the following three cases where, in each one, C is a loose

handcuff and |E(CL) ∩ E(DL)| = 0: in Case 1, D∗ is a balanced circle; in Case 2, D∗
contains two circles D∗1 and D∗2 for which i(~D∗1) 6= ±i(~D∗2); in Case 3, D∗ contains two circles

D∗1 and D∗2 for which i(~D∗1) = ±i(~D∗2). In each of the three cases, write C = C1 ∪ C2 ∪ γ in

which CL = C1∪C2 and γ is the connecting path of the loose handcuff. By Lemma 3.4(1),

i(~C1) = ±i(~C2).

Case 1: Since D is a balanced circle, D bounds a disk in the torus. Since |E(CL) ∩
E(DL)| = 0, both endpoints of the path γ are not in the interior of the disk bounded

by D. Thus |E(γ) ∩ E(D)| is even, whence |E(C) ∩ E(D)| is even. In particular, |E(C) ∩
E(D)| 6= 1.

Case 2: Since i(~D∗1) 6= ±i(~D∗2), there exist j and k such that ~Cj · ~D∗k is odd, which

cannot happen when |E(CL)∩E(DL)| = 0. Thus this case does not occur when |E(CL)∩
E(DL)| = 0.

Case 3: Since i(~D∗1) = ±i(~D∗2) and |E(CL)∩E(DL)| = 0, we deduce that each ~D∗j ·~C1 = 0.

Thus i(~D∗1) = ±i(~D∗2) = ±i(~C1) = ±i(~C2). By Theorem 3.7, CL separates the torus into

two connected components, call them T1 and T2, both of whose boundaries are the two

vertex-disjoint circles C1 and C2. Without loss of generality, the connecting path γ is

contained in T1 with its endpoints connecting the boundary components C1 and C2. Since

|E(CL) ∩ E(DL)| = 0, each circle D∗1 and D∗2 and is contained in either T1 or T2. We

separate the remainder of the proof into three subcases: in Case 3.1, D∗1 and D∗2 are both

contained in T1; in Case 3.2, D∗1 and D∗2 are both contained in T2; and in Case 3.3, D∗1 is

contained in T1 and D∗2 is contained in T2. In all three of these subcases, let Cγ be a circle

formed by connecting the endpoints of γ in T2. Since Cγ intersects each of C1 and C2

transversely at one point, ~Cγ · ~C1 = ±~Cγ · ~C2 = ±1; furthermore, since there can only be

one relatively prime pair of integers, up to negation, satisfying this dot product relation,

the homology class of ~Cγ is uniquely determined, up to negation.

Case 3.1: Here ~Cγ · ~D∗1 = ±~Cγ · ~D∗2 = ±1. Thus, since D∗1 and D∗2 are both contained in

T1,
∑2

j=1 |E(γ) ∩ E(Dj)| > 2. Thus |E(C) ∩ E(D)| > 2.

Case 3.2: Since γ is contained in T1, γ ∩ D∗L = ∅. Thus E(C) ∩ E(DL = ∅. Now either

D = DL or D has a connecting path of γ∗D . If D = DL, then we are done; otherwise, since

γ∗D has both endpoints in T1, |γ∗D ∩ C| 6= 1. Thus |E(C) ∩ E(D)| 6= 1.

Case 3.3: In this case, D∗1 and D∗2 must be vertex-disjoint. Thus D is a loose handcuff with

connecting path γ∗D that has one endpoint in T1 and the other in T2. Thus |γ∗D ∩ CL| > 1.

Just as for CL, D∗L separates the torus into two connected components, T′1 and T′2, say.

Since D∗1 is contained in T1 and D∗2 is contained in T2, one can show that C1 is contained

in T′j and C2 is contained in T′k , for j 6= k. Thus the connecting path γ has one endpoint in

T′1 and the other in T′2. Hence |γ ∩D∗L| > 1 and |E(C)∩E(D)| > |γ∗D ∩CL|+ |γ ∩D∗L| > 2.

Theorem 4.2. If G is 2-cell embedded in the torus, then B∗(A(G)) = B(A(G∗)).
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Proof. First, rk(B(A(G))) + rk(B(A(G∗))) = |E(G)| follows from the same argument as

in the first paragraph of the proof of Theorem 3.1.

Second, if C is a bias circuit of A(G) and D∗ is a bias circuit of A(G∗), then we can

show that |C ∩ D| 6= 1 by the same arguments as in the proof of Theorem 4.1, because

a bias circuit in A(G) is a bias circuit in H(G) unless it is a balanced circle. In the case

where C is a balanced circle, i(~C) ·(1, 1) is even but i(~C) 6= 0. This implies that |C∩D∗L| > 2

unless D∗ is a balanced circle in A(G). But when D is a balanced circle, this implies that

C and D∗ are both lift circuits. Thus |C ∩ D∗| 6= 1.

5. Concluding remarks

Similar matroid duality results should also hold for connected graphs that are 2-cell

embedded in the Klein bottle. For duality results coming from graphs embedded in

surfaces S of negative Euler characteristic, new matroids of rank |V (G)| + d 2−χ(S)
2
e need

to be identified.
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