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Abstract
Despite advances and options available in gene therapy for HIV-1 infection, its application in the
clinical setting has been challenging. Although published data from HIV-1 clinical trials show safety
and proof of principle for gene therapy, positive clinical outcomes for infected patients have yet to
be demonstrated. The cause for this slow progress may arise from the fact that HIV is a complex
multi-organ system infection. There is uncertainty regarding the types of cells to target by gene
therapy and there are issues regarding insufficient transduction of cells and long-term expression.
This paper discusses state-of-the-art molecular approaches against HIV-1 and the application of
these treatments in current and ongoing clinical trials.

Background
In 1983, a new virus was first isolated and associated with
acquired immune deficiency syndrome (AIDS) [1]. Subse-
quently, scientists classified it as a Lentivirus belonging to
the family Retroviridae and named it human immunodefi-
ciency virus (HIV) [2]. HIV infection not only causes phys-
ical debility but also has negative social implications [3-
7]. During the later stages of HIV infection, patients
develop AIDS, presenting with severely depleted CD4+ T-
cell counts (<200 cells per microliter of blood) along with
a myriad of opportunistic infections. According to the
Joint United Nations Programme on HIV/AIDS, approxi-
mately 30 million people have lost their lives since the
identification of the first AIDS patients in 1980. The glo-
bal number of HIV-positive patients is around 39.5 mil-
lion as of December 2006. There was an estimated average
of 2.9 million deaths and 4.3 million new cases in 2006
[8].

Why consider gene therapy as a treatment modality?
Despite thousands of researchers worldwide working on a
cure for HIV infection, none of the modalities have been
completely successful. Currently, four classes of anti-retro-
viral drugs are available: nucleoside/nucleotide analogs,
non-nucleoside reverse transcriptase inhibitors, protease
inhibitors, and fusion (or entry) inhibitors. These drugs,
used in various combinations to treat HIV, form what is
known as highly active antiretroviral therapy (HAART).
However, HAART is expensive, has high toxicity rates, and
must be administered lifelong, i.e. it is not curative. In
addition to the above problems, the rate of emergence of
resistant strains is high post-HAART. In studies conducted
in the United States and Europe, over 50% of patients
experienced virologic failure (viremia) while on antiretro-
viral therapy, and approximately 80% of these patients
showed drug resistant HIV genotypes [9,10]. One long-
term study found that by six years, approximately 80% of
patients had their medications switched repeatedly due to
drug resistance, resulting in an overall cumulative failure
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rate of 38% [11], placing these patients in danger of
exhausting their treatment options [12]. Transmission of
drug resistant HIV mutants is also an increasing problem.
In a study among newly infected individuals, 14% of
patients were infected with HIV that already had one or
more key drug resistance mutations [13]. For these rea-
sons, there is an increasing urgency to find a cure for HIV
infection.

With the advent of the molecular and genetic age of med-
icine, research to create gene therapy for HIV has been on
the rise. Since the 1980's, researchers have explored the
possibility of using gene therapy to cure HIV-positive
patients. In 1988, David Baltimore used the term 'intrac-
ellular immunization' to describe this treatment approach
[14]. Initial in vitro experiments were successful and now
scientists are applying some of these methods in clinical
trials.

Strategies for inhibiting HIV
Figure 1 is a schematic representation of the life cycle of
HIV showing the various stages at which genetic therapy
could be applied. Therapy could also be aimed at any one
of the many target cells for HIV infection in vivo, including
immune cells such as CD4+ and CD8+ T cells, dendritic
cells, monocytes, macrophages, hematopoietic stem cells
(HSCs), brain cells, and other cells from the gastrointesti-
nal tracts that could serve as host cells for HIV. Since T
cells are the major cell population implicated in HIV
infection and its progression to AIDS, making these cells
immune to infection is a very important aspect of therapy.
Even more desirable are the HSCs. These self-replicating
progenitor cells give rise to all other members of the lym-
phoid and myeloid lineages and have the capability of
repopulating the immune system with a potentially HIV-
resistant phenotype.

A variety of viral or cellular components could serve as tar-
gets for anti-HIV gene therapy. Targeting viral factors is
currently the most prevalent method. A major problem
with this strategy is that HIV can quickly form resistant
strains to these genetic modifications due to high muta-
tion rates. Targeting cellular factors makes the occurrence
of resistant strains less likely but raises the issues of
adverse effects on normal cell function. HIV receptors and
co-receptors are attractive targets, but there have been
recent reports of liver toxicity with CCR5 antagonists in
HIV-infected patients [15]. A summary of the main anti-
viral approaches is as follows:

Protein-based strategies
A. Introduction of suicide genes
Cells modified with suicide genes for negative selection.
Generally, suicide genes code for enzymes that convert an
inactive drug to a toxic form, allowing for the potential

killing of the modified cells. The idea of using suicide
genes was made popular as a potential approach for treat-
ing cancer. As an anti-HIV strategy this method was tried
in vitro as proof-of-concept in a study that used a retrovi-
rus to transduce autologous CD8+ cells from HIV-infected
patients; the suicide gene was thymidine kinase expressed
as a fusion protein with hygromycin phosphotransferase
[16]. As with other gene therapy approaches, specific tar-
geting of desired HIV-infected cell populations would
present a challenge for this approach to be successful in
vivo.

B. Transdominant negative proteins
Mutations in a specific gene expressed in a dominant fash-
ion where the mutant protein can interfere with the func-
tion normally carried out by the parent gene product. If
the protein is multimeric, the nonfunctional protein can
multimerize with the normal protein and the resultant
complex is functionally inactive. Thus, the dominant neg-
ative protein can have a strong inhibitory effect on the
normal protein formation or function. Examples of this
are HIV-1 Gag mutants [17] and Rev M10 [18]. Rev M10
was the first transdominant negative protein used in clin-
ical trials; it is a dominant negative mutant capable of
binding the Rev Responsive Element (RRE) and has the
capability of forming multimers [18].

C. Chimeric receptors
CD4/CD3 chimeric receptor called CD4ζ. The CD4ζ has
the extracellular and transmembrane domains of the CD4
antigen and the intracytoplasmic domain of the CD3 T
cell receptor. The extracellular portion binds HIV, while
the cytoplasmic portion initiates a signaling cascade simi-
lar to the one initiated by the normal T-cell receptor (TCR)
binding with HIV [19]. Thus, engagement of CD4ζ with
HIV results in the generation of an HIV-specific T cell
response. CD4ζ-modified T lymphocytes inhibit viral rep-
lication in T cells and macrophages in vitro [20] and medi-
ate killing of HIV-infected T cells [19].

D. Intracellular HIV-1 specific single chain antibodies (SFv)
These antibodies bind to viral proteins intracellularly and
block their action, e.g. anti-Rev SFv [21] and anti-gp120
SFv [22].

RNA-based strategies
A. RNA decoys
Small RNA molecules containing essential cis-acting ele-
ments that bind trans-acting proteins. They function by
luring away trans-acting proteins from their true target
sequence. When expressed at high levels, they can success-
fully compete against viral cis-acting sequences that are
indispensable for viral replication [23,24].
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B. Ribozymes
Small RNA molecules also called 'catalytic RNAs'. They
cleave the target RNA at specific sequences. The binding
arms of the ribozyme molecule determine the specific
cleavage sites. Ribozymes can target critical sites such as
gag [25], tat [26], and U5 [27].

C. Antisense RNA
Antisense RNA is single-stranded RNA bearing comple-
mentary nucleotide sequences to a target RNA. It pairs
with the target RNA forming a double-stranded RNA
structure that either blocks translation or becomes a target
for degradation in the cell. Attractive targets for this type

of therapy are gag and other conserved regions of HIV
[28].

D. RNA interference (RNAi)
Small interfering RNAs (siRNA) are double-stranded RNA
sequences, approximately 22 base pairs in length that
bind cellular mRNAs in a sequence-specific manner and
cleave them at the center of the complementary region.
They achieve this through a series of steps involving the
recruitment of RNAi factors, formation of an RNA-
induced silencing complex (RISC), unwinding of the
siRNA, and activation of RISC [29]. Short hairpins RNAs
(shRNAs) can also induce gene silencing [30]; a ribonu-
clease III type protein called Dicer cuts off the loop of the

Schematic representation of the life cycle of HIV and the various steps at which anti- HIV gene therapy could be applied with key viral target proteins in parentheses: (1) HIV-1 attachment and binding (Env, gp120); (2) HIV-1 entry (Env, gp41); (3) Reverse transcription (reverse transcriptase and Vif); (4) Transport of HIV-1 DNA into the nucleus and integration with cellu-lar DNA (Vpr, matrix, integrase)Figure 1
Schematic representation of the life cycle of HIV and the various steps at which anti- HIV gene therapy could be applied with 
key viral target proteins in parentheses: (1) HIV-1 attachment and binding (Env, gp120); (2) HIV-1 entry (Env, gp41); (3) 
Reverse transcription (reverse transcriptase and Vif); (4) Transport of HIV-1 DNA into the nucleus and integration with cellu-
lar DNA (Vpr, matrix, integrase). (5) Transcription of the HIV-1 proviral genome to produce both spliced and unspliced HIV-1 
RNAs (Tat); (6) Transport of HIV-1 transcripts to cytoplasm (Rev); (7) HIV-1 gene expression and posttranslational modifica-
tion of HIV-1 proteins (Gag, Gag-Pol, and Env polyproteins, Vif, and Nef). (8) HIV-1 virion assembly and morphogenesis within 
the cell (all virion proteins). (9) Release and maturation of the immature virion into a completely infectious particle (protease, 
Vpu, and Nef).
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hairpin to form an intracellular siRNA. To date, small
interfering RNAs have been used in vitro to target viral
genes like tat and rev [31] and cellular genes like CCR5
[32] with great success.

Protein and nucleic acid-based strategies
Aptamers
In general, aptamers refer to short RNA, DNA, or protein
sequences that bind a variety of specific target molecules,
including nucleic acids and proteins. Small RNA aptamers
have shown success in vitro against HIV Rev [33,34] and
reverse transcriptase [35]. Aptamers can be used in con-
junction with other therapies, such as ribozymes [35].

Application of bench-side treatment strategies to bedside
The early success of in vitro studies paved the way for clin-
ical trials. All the above-mentioned strategies for gene
therapy have shown good anti-HIV activity in vitro. How-
ever, not all of them have been tested in clinical trials. As
reported in the literature, the trials conducted to date have
used a suicide gene (HyTK), transdominant negative pro-
teins (Rev M10, TdRev, or huM10), a chimeric receptor
(CDζ), an RNA decoy (RRE), and ribozymes (anti-tat/vpr
ribozyme and tat ribozyme, RRz2). A trial using siRNA
was started recently and the results have not yet been pub-
lished in literature. Following is an account of these clini-
cal trials and their results (see Table 1 for summary).

Protein-based approaches used in the clinic
In 1996, Riddell et al. published one of the earliest trials,
involving the use of a suicide gene [16]. This study
enrolled six HIV-seropositive patients. Autologous CD8+ T
cells were genetically modified using a retrovirus-medi-
ated gene transfer technique. The retrovirus, designated
HyTK, comprised the hygromycin phosphotransferase
gene (Hy) and the herpes virus thymidine kinase gene
(TK) as a fusion gene under the control of the murine
leukemia virus (MLV) long terminal repeat (LTR). Hygro-
mycin was used to positively select for transduced autolo-
gous cells in vitro prior to infusion into the patient.
Ganciclovir could have been used, if necessary, to nega-
tively select (kill) the transduced cells in the patient. In
four increasing doses, researchers transfused autologous
HyTK-transduced CD8+ cells at 14-day intervals. There
were no significant side effects. However, five of six
patients developed a CTL response to the foreign protein
and thus rejected the modified CD8+ cells, which cleared
in response to each subsequent transfusion. The results of
this trial suggested other strategies that would make mod-
ified cells less susceptible to the immune response and
thus inspired further research [16].

In the same year, Woffendin et al. published the results of
a pilot trial involving a transdominant negative protein
approach [36]. For genetic modification of CD4+ T cells,

they used Rev M10 and a deletion mutant of Rev M10,
which showed no antiviral activity. Woffendin and col-
leagues transduced the T cells using a non-viral vector and
showed that following transfusion, there was a preferen-
tial survival of Rev M10 modified CD4+ T-cells, as com-
pared to cells that received the mutant. They also detected
Rev M10 until 2 months post-infusion. Though there was
increased survival of Rev M10-expressing cells, the overall
numbers of transduced cells were low in vivo [36].

Trying to improve upon this trial, they conducted another
pilot study in which they transduced CD4+ cells with Rev
M10, but this time they used retroviral vectors instead of
a nonviral vector [37]. They detected Rev M10 for an aver-
age of 6 months post-infusion. In addition, cells trans-
duced with Rev M10 survived longer than those
transduced with the negative control vector. There were
no detectable immune responses to the 'foreign proteins'
(Rev M10 or MLV gp70 envelope protein). Though these
studies with Rev M10 showed an improved efficacy of
gene delivery with a retroviral vector, there was no effect
on the patients' viral loads [37].

In 2002, Kang et al. published the results of another trial
that used a transdominant negative mutant Rev protein
(TdRev) [38]. This study had only two subjects. Both were
HIV positive and had malignancies. One had leukemia
and the other had refractory Hodgkin's lymphoma. Four-
teen days prior to receiving gene therapy, the researchers
stopped their cyclosporine and HAART medications. Six
days prior to gene therapy, the patients received fludarab-
ine-cyclophosphamide containing regimen (non-myelo-
ablative) for five days and then cyclosporine and HAART
was restarted. Each patient had an HIV negative sibling
who was an HLA-compatible donor for bone marrow
cells. The donor underwent blood apheresis followed by
isolation of CD34+ cells. The cells were genetically modi-
fied by using either TdRev or a control vector encoding
human GP91phox. Following transplantation with these
modified CD34+ syngeneic cells, the patients developed
CMV antigenemia, which was treated. By day 96 post-
transplantation, both patients showed 100% transfer of
either gene into lymphoid and myeloid lineages. Both
patients developed acute graft versus host reaction beyond
day 100, which was successfully treated. The patient with
Hodgkin's disease died 12 months after transplantation
due to relapse of the disease unrelated to any complica-
tion of the gene therapy [38]. In a follow-up paper pub-
lished by the same group, the second patient showed
persistence of TdRev at three years post-treatment and
continued to be in remission. However, this might be due
to the effect of HAART and not TdRev alone [39].

A 2005 study involving the transdominant negative pro-
tein approach was focused on the pediatric age group of
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HIV-positive patients [40]. Two children were enrolled in
this study, a nine-year-old and an eight-year-old who were
both on HAART. CD34+ bone marrow cells from the par-
ticipants were transduced with two retroviral vectors, one
encoding a "humanized" dominant negative REV protein
(huM10) and one encoding an internal control for gene
marking (FX) that is not translated. A humanized protein
is one in which the codon usage has been optimized for
mammalian expression. Following infusion of the modi-
fied cells, huM10 and FX could be detected in peripheral
blood mononuclear cells (PBMC) for 1–3 months. Dur-
ing a two-year follow-up period, levels of huM10 and FX
expression dropped to at or below the limit of detection.
In one patient, during a period of non-compliance to
HAART regimen, PBMCs containing huM10 reappeared
suggesting a selective increase in survival for PBMCs con-
taining huM10 during periods of high viral loads [40].

Using a chimeric receptor approach, Walker et al. (2000)
investigated the effect of CD4ζ-modified syngeneic T-cells
in HIV-positive patients [41]. The study was conducted
using sets of twins, one of whom was HIV-positive and the
other HIV-negative. The HIV-negative twin acted as the

donor for syngeneic T-cells (either CD8+ or CD4+), while
the HIV-positive twin was the recipient. T cells from the
donor were genetically modified ex vivo to express CD4ζ
and then transfused into the recipient twin. The study was
performed in two phases.

In the first phase, 27 patients were enrolled and received
one to six cell infusions every eight weeks. Three patients
received 107 modified cells, while the remaining 24
patients were randomly assigned to four groups, receiving
either 108, 109, or 1010 modified cells or 1010 unmodified
cells. The researchers observed that one of three subjects
receiving 107 cells and four of six subjects receiving 108

cells showed low levels of CD4ζ expression. In three of
these five CD4ζ-positive patients, CD4ζ was no longer
detected after one to three days, but in two of them, CD4ζ
could be detected for up to 2 and 24 weeks, respectively.
In 11 of 12 patients receiving higher doses and multiple
infusions of modified CD8+ cells, CD4ζ could be detected
for up to 15 to 40 weeks post-infusion [41].

In the second phase of the Walker et al. trial, 33 patients
were enrolled, 25 from the previous phase and 8 new par-

Table 1: Summary of results of clinical trials

Target cells Vector Transgene Anti-HIV method Results

CD8+ Retrovirus HyTk Introduction of suicide gene CTL response cleared modified cells [16].
CD4+ Gold-particle-mediated Rev M10 Transdominant negative protein Detected Rev M10 until 2 months post infusion, 

preferential survival [36].
CD4+ Retrovirus Rev M10 Transdominant negative protein Detected Rev M10 until 6 months post infusion, 

preferential survival [37].
CD4+ Retrovirus TdRev and/or anti-sense TAR Transdominant negative proteins 

and anti-sense RNA
Anti-HIV genes consistently detected for >100 weeks in 
six of six patients. Preferential survival of transduced cells 
during a period of high viral load in one patient [47].

CD34+ Retrovirus TdRev Transdominant negative protein One patient died due to relapse to Hodgkin's disease. In 
second patient, detected vector in the progeny for >3 
years, remission of leukemia and good viral load control 
achieved by administering HAART that cannot be 
attributed to gene therapy [38,39].

CD34+ Retrovirus huM10 Transdominant negative protein huM10 could be detected in peripheral blood 
mononuclear cells (PBMC) for 1–3 months and then 
dropped to at or below the limit of detection over a two 
year follow-up period. Preferential survival of transduced 
cells during a period of high viral load in one patient [40].

CD4+ Retrovirus CD4ζ Chimeric receptor Decrease of greater than 0.5 log mean in rectal tissue-
associated HIV RNA for at least 14 days, detected CD4ζ 
in 1–3% of PBMCs at 8 weeks [42]

CD4+ Retrovirus CD4ζ Chimeric receptor Good expression of CD4ζ for at least 24 weeks in all 
patients; no difference between control and study group 
[43].

CD4+ and CD8+ Retrovirus CD4ζ Chimeric receptor In 11 of 12 patients who received higher doses of modified 
CD8+ cells (109 or 1010), CD4ζ could be detected post-
infusion for at least 15–40 weeks when they received 
additional infusions of modified cells. The group receiving 
IL-2 along with modified CD8+ cells showed a higher 
persistence of CD4ζ as compared to the group receiving 
no IL-2. In patients who received modified CD8+ and 
CD4+ cells, the cells were detected in the peripheral blood 
for at least 1 year post-infusion [41].

CD34+ Retrovirus (RRE) decoy RNA decoy RRE-decoy-containing leukocytes could be isolated from 
peripheral blood even 1 year post-infusion but the 
numbers were extremely low [44].

CD4+ Retrovirus RRz2 Ribozyme Over a 4 year period, PBMCs containing both RRz2 and 
LNL6 were consistently detected [46].

CD34+ Retrovirus tat/vpr ribozyme Ribozyme Vector was detected in naïve T cells for >3 years; no 
correlation between changes in viremia or CD4+ T cell 
counts with vector expression or its detection in any cell 
type [45].
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ticipants [41]. Of these, three did not receive any cell infu-
sions. Patients received modified CD8+ cell infusions
either alone or with IL-2. The group receiving IL-2 with the
modified CD8+ cells showed higher levels of persistence
of CD4ζ as compared to the group receiving no IL-2 sup-
plementation. In order to test whether the IL2 was substi-
tuting for HIV-specific CD4+ T-cell help, 17 of the 30
participants received modified CD4+ cells along with
modified CD8+ cells in a second series of infusions. Mod-
ified CD8+ and CD4+ cells were detected in the peripheral
blood of these 17 patients for at least one year post-infu-
sion, indicating that co-administration of the CD4+ cells
may have increased survival of the modified CD8+ cells
[41].

In the same year that Walker et al. reported their findings,
Mitsuyasu and fellow researchers published the results of
a similar chimeric receptor study [42]. Patients enrolled in
this study were receiving anti-retroviral therapy (ART) and
had viral loads between 1,000 and 100,000 copies/ml and
CD4+ T cell counts greater than 50 per microliter. Follow-
ing cell infusions, patients were followed for eight weeks.
Eleven patients received CD4ζ-modified T cells along with
IL-2, and thirteen patients received CD4ζ-modified T cells
alone. In contrast to the previous study by Walker et al.,
administration of IL-2 did not increase the survival of the
modified T cells. However, an increase in cell number was
observed at eight weeks post-infusion; an average increase
of 73 CD4+ cells per microliter was observed in the group
receiving IL-2 as compared to the group that did not
receive IL-2. They detected CD4ζ in 1 to 3% of the periph-
eral blood mononuclear cells (PBMCs) at eight weeks and
0.1% at one year post-infusion. CD4ζ-modified T-cells
were also isolated from bulk rectal tissue and/or lamina
propria lymphocytes in five of five patients at 14 days and
two of three patients at one year, showing good tissue dis-
tribution. In addition, there was a transient decrease of
greater than 0.5 log mean in rectal tissue-associated HIV
RNA for at least 14 days [42].

Encouraged by data from this trial, the same group con-
ducted a phase II randomized trial of CD4ζ gene-modi-
fied versus unmodified T cells in adult male HIV-positive
patients in 2002 [43]. All participants were on combina-
tion ART. In 37 patients, there were no measurable viral
loads (<50 copies per ml). In three patients, low levels
were detected (53, 57 and 65 copies per ml). Only 40 of
42 enrolled patients proceeded to receive the study treat-
ment. The researchers found good expression of CD4ζ for
at least 24 weeks in all patients. However, no significant
difference was found between patients receiving gene
therapy versus the control group when the six following
parameters were analyzed: plasma viral load, HIV co-cul-
ture on PBMCs, blood HIV DNA, rectal biopsy DNA, rec-
tal biopsy RNA, and blood CD4+ cell count [43].

RNA-based approaches used in the clinic
A clinical trial involving RNA decoys was conducted in a
pediatric population using an RRE decoy to modify
CD34+ bone marrow cells. Kohn et al. (1999) showed that
retroviral mediated CD34+ cell transduction had no signif-
icant adverse effects and that leukocytes containing an
RRE decoy could be isolated from peripheral blood, even
one year post-infusion; however, the numbers of trans-
duced cells were extremely low [44]. Four HIV-positive
patients, three teenagers, and one eight-year-old were
enrolled in this pilot study. Bone marrow cells positive for
CD34 were isolated from these patients and transduced
with Moloney murine leukemia (MoMuLV) vector virus
carrying the RRE decoy sequences. No change in the HIV
viral load was observed among the participants [44].

In 2004, Amado et al. demonstrated long-term mainte-
nance of a therapeutic transgene in a phase I clinical trial
involving ribozymes [45]. They used MoMLV vector virus
transduction of CD34+ HSCs for introduction of a
ribozyme targeted to highly conserved regions in the HIV-
1 tat and vpr genes. Ten patients participated in the study
and researchers could detect the vector in naïve T cells for
up to three years, the last time-point evaluated. There was
an average increase of 10 CD4+ T cells per microliter from
the beginning of the trial until the third year. In six
patients, viral loads decreased by an average of 2.25 logs.
Three patients had undetectable viral loads. One patient
showed an increase of one log. The researchers found no
correlation between the changes in viremia or CD4+ T cell
counts with vector expression or detection in any cell type.
However, during this trial, all patients were on ART, and
the researchers attribute the changes in viral load as well
as the cell numbers to individual viral susceptibility to
ART [45].

More recently in 2005, Macpherson et al. published the
results of a phase I clinical trial on ribozymes involving
identical twins with discordant HIV status [46]. Again,
one twin acted as the donor (HIV-negative) and the other
was the recipient (HIV-positive) of genetically engineered
CD4+ T cells expressing a ribozyme. Specifically, the cells
were transduced with an anti-HIV-1 tat ribozyme (RRz2)
and a control LNL6 retroviral vector (for cell marking).
Patients were followed initially for 24 weeks and then at
regular intervals over a 4-year period. PBMCs containing
both RRz2 and LNL6 were detected consistently. How-
ever, the effect of this therapy on HIV-1 viral load or the
CD4 count was not specifically addressed.

Lastly, Morgan et al. (2005) published data from a clinical
trial involving anti-sense RNA in conjunction with a trans-
dominant negative protein [47]. This study employed 10
pairs of twins. Like the earlier study involving twins with
discordant HIV status, one twin served as the donor (HIV-
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negative) and the second twin as the recipient (HIV-posi-
tive). Lymphocytes from the donors were transduced to
express a control gene (neo gene) or anti-HIV gene(s); a
transdominant mutant Rev protein (TdRev) was used
alone or with an anti-sense element directed against the
HIV-1 TAR sequence on the same construct. Polymerase
chain reaction demonstrated increased survival of modi-
fied lymphocytes in the initial weeks post-infusion in 9 of
10 recipients. In six of six recipients followed for approxi-
mately two years, T cells containing anti-HIV genes could
be consistently detected and there was preferential sur-
vival of modified cells in one patient during a period of
high HIV load [47].

Conclusion
Early promising results on the treatment of adenosine
deaminase-severe combined immunodeficiency (ADA-
SCID) by using gene therapy in the early 1990s [48] led
the scientific community to apply the same principle to a
host of other diseases, including HIV/AIDS. In vitro studies
quickly demonstrated the feasibility of such approaches
and preclinical and clinical trials were started later in the
same decade. However, it was soon realized that a cure for
HIV was far from easy. As many studies demonstrated,
there were no serious adverse effects of the therapy, but
neither was there any decrease of patients' viral loads.
There was also the problem of transduction efficiency,
and transduced cells had only transient expression of the
transgene. Moreover, there was no consensus on target
genes and methodology.

Despite some discouraging results from clinical trials,
gene therapy for HIV is still a very promising approach.
Scientists are already overcoming the problems of insuffi-
cient gene transduction by using novel constructs [49] or
by switching to lentiviral-mediated transduction [50,51].
The first clinical trial using lentiviral vectors in HIV-posi-
tive patients began in 2001, and results will be forthcom-
ing [52]. The recent clinical studies by Podsakoff et al. and
Morgan et al. in 2005 support the hypothesis that anti-
HIV genes confer a survival advantage to modified lym-
phocytes [40,47], especially under conditions of high HIV
titers, thus offering a potential benefit to infected individ-
uals.

Other promising strategies for the near future include the
use of siRNAs and fusion proteins to deliver these mole-
cules [53-55]. Early HIV regulatory genes like tat and rev
could be susceptible targets for siRNA because genes
encoding late structural proteins are dependent on Tat
and Rev protein expression [56]. Scherer et al. showed that
tat- and rev-specific siRNAs were more effective at inhibit-
ing HIV-1 replication than multiple siRNAs targeting env
[57]. Other research groups have demonstrated success in
vitro by targeting Gag or HIV receptors with siRNA

[58,59]. Song et al. (2005) took advantage of the nucleic
acid binding properties of protamine and fused it to the
heavy chain Fab fragment of an anti-HIV Env antibody to
deliver siRNA to HIV-infected cells [54].

According to von Laer et al. (2006), antiviral genes that
inhibit the processes of reverse transcription and integra-
tion potentially offer significant therapeutic benefit [60].
They based their prediction on mathematical models,
which analyzed the effects of genetically modified T cells
on viral replication and T cell kinetics. This strategy could
include targeting cellular factors involved in these enzy-
matic processes. Developing siRNAs that target reverse
transcriptase and integrase genes themselves have poten-
tial to be effective anti-HIV therapies. Although these
genes code for late protein products, inhibition of these
genes could create defective virus particles incapable of
initiating subsequent replication cycles.

While the initial achievements using siRNA against HIV
have employed transient expression systems, stable sys-
tems have been reported and offer hope for long-term effi-
cacy [30,53,61-65]. The specificity of siRNAs reduces the
potential side effects of gene therapy but, on the other
hand, it increases the possibility of making a virus par-
tially or completely resistant to siRNA with the slightest
mutation [66-69]. The strategy of simultaneously target-
ing several conserved regions of HIV using multiple differ-
ent siRNAs could potentially overcome this problem of
viral escape.

In conclusion, gene therapy is a very attractive method for
treating HIV-positive patients. The approaches under-
taken so far have yielded encouraging results from a safety
efficacy standpoint. Future efforts should focus on
improving transduction efficiencies and long-term expres-
sion and on optimizing cellular targets in order to achieve
the desired therapeutic benefits, which include decreasing
viral loads, increasing or sustaining high CD4+ T cell
counts, and improving immune function in HIV-infected
individuals.
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