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ON CONSTRUCTION OF THE SMALLEST ONE-SIDED
CONFIDENCE INTERVAL FOR THE DIFFERENCE

OF TWO PROPORTIONS

BY WEIZHEN WANG1

For any class of one-sided 1 − α confidence intervals with a certain
monotonicity ordering on the random confidence limit, the smallest inter-
val, in the sense of the set inclusion for the difference of two proportions of
two independent binomial random variables, is constructed based on a direct
analysis of coverage probability function. A special ordering on the confi-
dence limit is developed and the corresponding smallest confidence interval
is derived. This interval is then applied to identify the minimum effective dose
(MED) for binary data in dose-response studies, and a multiple test procedure
that controls the familywise error rate at level α is obtained. A generalization
of constructing the smallest one-sided confidence interval to other discrete
sample spaces is discussed in the presence of nuisance parameters.

1. Introduction. We first focus on an important case, the binomial distrib-
ution. Let X be a binomial random variable with n trials and a probability of
success p1, denoted by Bin(n,p1), and let Y be another independent Bin(m,p0).
Their probability mass functions and cumulative distribution functions are denoted
by pX(x;p1, n), pY (y;p0,m), FX(x;p1, n) and FY (y;p0,m), respectively. The
goal of this paper is to construct the optimal one-sided 1−α confidence interval of
form [L(X,Y ),1] for p1 −p0 and to discuss its application and a generalization to
other discrete sample spaces. This type of interval is important when one needs to
establish that p1 is larger than p0 by a certain amount. An immediate application
is in a clinical trial where the goal is to determine if a treatment is “better” than a
control with binary responses.

There are two general criteria used to evaluate the performance of a confidence
interval:

(i) The accuracy: maintain the coverage probability function of the confidence
interval at least 1 − α, that is,

P(p1,p0)

(
L(X,Y ) ≤ p1 − p0 ≤ 1

) ≥ 1 − α ∀p1,p0 ∈ [0,1].(1)

Any interval satisfying (1) is called a one-sided 1 − α confidence interval for
p1 − p0. In general, there is no disagreement on criterion (i). When it is hard
to implement (1), an approximate 1 − α confidence interval is employed.
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(ii) The precision: minimize the “size” (e.g., the length) of the confidence in-
terval within a certain class of intervals.

Researchers do have different opinions on how to define an interval with the
“minimum size.” For two 1 − α confidence intervals, C1(X,Y ) and C2(X,Y ), the
most natural way to claim C1(X,Y ) no worse than C2(X,Y ) is that

C1(x, y) is a subset of C2(x, y) for all sample points (x, y).(2)

We call this the set inclusion criterion, proposed in Wang (2006), and an equiva-
lent version was given in Bol’shev (1965). The superiority of C1 over C2 is easy
to check because no expectation computation is involved. Under this criterion,
for a specified class of 1 − α intervals, we should search for the smallest 1 − α

confidence interval, which is equal to the intersection of all intervals in the class,
provided that the intersection also belongs to the class.

For the case of the one-sided interval, the smallest interval in a class is equiv-
alent to the shortest interval which has the shortest length on all sample points in
that class. For the case of the two-sided interval, the smallest implies the shortest;
however, the shortest does not necessarily imply the smallest. Also the smallest in-
terval has a clear interpretation. Therefore, we use the terminology, “the smallest
interval.”

The existence of the smallest interval depends on the class of intervals from
which we search for the smallest. In this paper, we propose two restrictions on the
class:

(a) one-sided 1 − α confidence interval;
(b) a certain monotonicity on the confidence limit L(X,Y ) for all sample

points.

We will show the existence of the smallest interval and give its construction under
these two restrictions. There were successful efforts for the case of a single pro-
portion p1 based on one observation X where there exists a natural ordering on the
lower limit L(X): L(x1) ≤ L(x2) if x1 ≤ x2, and there is no nuisance parameter.
The smallest one-sided 1 − α confidence interval for p1 was derived indepen-
dently by Bol’shev (1965) and Wang (2006). However, when there exists nuisance
parameter, the result on the smallest one-sided confidence interval is very limited.
Bol’shev and Loginov (1966) partially generalized Bol’shev’s method (1965) to
the case with nuisance parameter(s). Their construction is based on some function
of X, Y and p1 − p0 but not under condition (b). As we show later, for differ-
ent orderings on L(X,Y ), the corresponding smallest intervals are different. So
the interval following Bol’shev and Loginov’s method for p1 − p0 cannot be the
smallest.

The confidence interval was proposed by Laplace in 1814, and its definition only
involves the coverage probability as shown in (1). However, the interval construc-
tion based on the coverage probability is not among the major methods currently
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used in practice. For example, Casella and Berger (1990), summarized five meth-
ods for the construction: the inversion of a family of tests; the pivotal quantities; a
stochastic nonincreasing (or nondecreasing) distribution family with a single para-
meter, Bayesian intervals; invariant intervals, etc. The first is a general but indirect
method because of inverting tests. During the inversion process, it is not easy to see
how the interval is obtained. The other four need assumptions on the distribution
under the study. For example, the second assumes the existence of pivotal quanti-
ties which is not true for binomial distributions. Being a major statistical inference
procedure, the confidence interval deserves a direct method which is based on the
analysis of coverage probability and needs mild or no assumptions on the distri-
bution for its construction. However, it does need an assumption, restriction (b),
on the sample space. The development of such a method is one goal of our paper.
More importantly, this method can generate the smallest interval in many classes
of intervals in the presence of nuisance parameter(s).

The rest of the paper is organized as follows. In Section 2, we specify appropri-
ate classes of intervals, and in each class the smallest one-sided 1 − α confidence
interval for p1 − p0 is constructed. In Section 3, we carefully identify a special
class of interval and then derive the corresponding smallest interval. An example
is given to illustrate the procedure. In Section 4, we apply the interval in Section 3
to detect the minimum effective dose (MED), an important issue in clinical trials.
A step-down test procedure is obtained with the familywise error rate controlled at
level α. In Section 5, we generalize the construction on the smallest one-sided con-
fidence interval to other discrete sample spaces, and a Poisson distribution example
is discussed. Some closing remarks are given in Section 6. A confidence interval
with 0 confidence level is of no interest, so we assume 0 ≤ α < 1 throughout the
paper.

2. The smallest one-sided confidence interval. Recall X ∼ Bin(n,p1) and
Y ∼ Bin(m,p0). Let � = p1 − p0 be the parameter of interest and p0 be the nui-
sance parameter. Let

S = {z = (x, y) : 0 ≤ x ≤ n,0 ≤ y ≤ m,x and y are integers}(3)

be the sample space. We use z and (x, y) interchangeably. Also the parameter
space H = {(p1,p0) : 0 ≤ p1,p0 ≤ 1} can be rewritten as

H = {(�,p0) :p0 ∈ D(�) for each � ∈ [−1,1]},(4)

where

D(�) =
{ [0,1 − �], if � ∈ [0,1],

[−�,1], if � ∈ [−1,0).
(5)

The interval class that contains the smallest one-sided interval for � is given below.
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DEFINITION 1. For any given ordered partition {Cj }k0
j=1 of S, define a class

of one-sided 1 − α confidence intervals for �;

B = {[L(Z),1] :L(z) is constant on Cj

and L(z) ≥ L(z′) for z ∈ Cj , z
′ ∈ Cj+1,∀j}.

Since L(z) is a constant on Cj , we define L(Cj ) = L(z) for any z ∈ Cj .

REMARK 1. Any given ordered partition of S defines an ordering on the lower
confidence limit. So we say: search for the smallest one-sided 1 − α confidence
interval that is monotone with respect to the ordered partition {Cj }k0

j=1, or simply
search for the smallest interval under the ordered partition. On the other hand,
an ordered partition can be obtained by any given function L(Z) as follows. Let
{lj }k0

j=1 be a sequence of strictly decreasing numbers in j that contains all possible
values of L(Z). Then define Cj = {z ∈ S :L(z) = lj } for 1 ≤ j ≤ k0.

DEFINITION 2. A confidence interval [LS(Z),1] in B is the smallest if it is a
subset of any intervals in B; that is, for any [L(Z),1] in B, L(z) ≤ LS(z),∀z ∈ S.

Definition 2 is adopted from Wang (2006). The smallest interval, if it exists,
is the best in the strongest sense, and automatically minimizes the false coverage
probability and the expected length among all intervals in B. Next, we prove the
existence and provide the construction of the smallest interval in B.

THEOREM 1. Assume α ∈ [0,1). For a given ordered partition {Cj }k0
j=1 of S

and any z ∈ Cj , let

fj (�) = min
p0∈D(�)

P (Sc
j )

(6)
= min

p0∈D(�)

∑
(x,y)∈Sc

j

pX(x;p0 + �,n)pY (y;p0,m),

where Sj = ⋃j
i=1 Ci , and let

Gz = {� ∈ [−1,1] :fj (�
′) ≥ 1 − α,∀�′ < �}.(7)

Define

LS(z) =
{

supGz, if Gz �= ∅,

−1, otherwise.
(8)

Then:

(1) [LS(Z),1] ∈ B;
(2) [LS(Z),1] is the smallest in B.
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REMARK 2. As pointed out in Corollary 1 in Wang (2006), the lower limit
L(x, y) is “the smallest θ (θ = � in our case here) where p(x; θ) (= pX(x;n,�+
p0)pY (y;m,p0) in our case here) is used to compute the coverage probability.”
Therefore, in order to obtain the largest L(x, y), we should exclude the term
pX(x;n,� + p0)pY (y;m,p0) from the coverage probability when � is as large
as possible while keeping the coverage probability at least 1 − α. This is achieved
by implementing (6)–(8) where (6) provides the minimal (respect to p0) coverage
probability (as a function of �) for the desired interval up to LS(z), (7) assures
its coverage probability no smaller than 1 − α and (8) guarantees that LS(z) is the
largest.

REMARK 3. Note that fj , Gz and LS , defined in (6)–(8), depend on z

through Cj . Let lj = LS(z) for z ∈ Cj .

PROOF OF THEOREM 1. To prove (1), first, it is clear that LS(z) is a constant
on each Cj due to Remark 3. Secondly, suppose LS(z) < LS(z′) for z ∈ Cj and
z′ ∈ Cj+1 for some j . Then LS(z′) > −1. Notice

fj (�) ≥ fj+1(�) ≥ 1 − α ∀� < LS(z′).
So LS(z′) ∈ Gz due to (7) and LS(z′) ≤ LS(z) due to (8). A contradiction is con-
structed. So LS(z) ≥ LS(z′) for z ∈ Cj and z′ ∈ Cj+1 for all j . Thirdly, consider
the coverage probability function of [LS(Z),1]: hS(�,p0) = P(LS(Z) ≤ �). Let

h(�) = min
p0∈D(�)

hS(�,p0).

We need to show h(�) ≥ 1 − α on [−1,1]. Note that [−1,1] is partitioned as
[l1,1] ∪ (

⋃k0−1
j=1 [lj+1, lj )) where lj is given in Remark 3. For � ∈ [l1,1], notice

LS(z) ≤ � for all z ∈ S. Then

h(�) = min
p0∈D(�)

P (S) = 1 ≥ 1 − α.

For � ∈ [lj+1, lj ) for any 1 ≤ j ≤ k0 − 1, notice LS(z) ≤ � for any z ∈ Sc
j . Then

h(�) ≥ min
p0∈D(�)

P (Sc
j ) = fj (�) ≥ 1 − α

by (7). Thus [LS(Z),1] ∈ B.
To prove (2), suppose [LS(Z),1] is not the smallest. Then there exists an in-

terval [L∗(Z),1] in B and a point z∗ ∈ Cj for some j with LS(z∗) < L∗(z∗). Let
l∗i = L∗(z) for z ∈ Ci for i = 1, . . . , k0. Then lj < l∗j . Let h∗(�,p0) be the cover-
age probability of the interval [L∗(Z),1]. For any � ∈ I = [lj , l∗j ) (not an empty
interval), we have

1 − α ≤ h∗(�,p0) = P
(
L∗(Z) ≤ �

) ≤ P(Sc
j+1) ≤ P(Sc

j ).(9)

The second inequality holds because {z :L∗(z) ≤ �} is contained in Sc
j+1 when

� ∈ I . Therefore, fj (�) = minp0∈D(�) P (Sc
j ) ≥ 1 − α on interval I which con-

tradicts (8). �
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PROPOSITION 1. For any one-sided 1 − α confident limit L(Z) with 0 ≤
α < 1,

min
z∈S

L(z) = −1.(10)

PROOF. Suppose c = minz∈S L(z) > −1. Pick a point (�0,p00) = ((−1 +
c)/2,1) in the parameter space. Note �0 < L(z) for any z ∈ S; then

P(�0,p00)

(
L(Z) ≤ �0

) = 0 < 1 − α

which contradicts the fact that [L(Z),1] is of level 1 − α. �

EXAMPLE 1. Consider the case of n = 4,m = 1 and a predetermined ordered
partition of S given by the well-known z-test statistic,

Z(x, y) = p̂1 − p̂0√
p̂1(1 − p̂1)/n + p̂0(1 − p̂0)/m

,

following Remark 1 where p̂1 = x/n and p̂0 = y/m, and 0/0 def= 0, +/0 def= ∞ and

−/0 def= −∞. Then this ordered partition {CZT
j } and its associated smallest 95%

confidence interval [LZT(Z),1] are reported in Table 1.
For the purpose of illustration, we determine LZT(3,0) here. Consider

f2(�) = min
p0∈D(�)

(
1 − pX(4;4,� + p0)pY (0;1,p0)

− pX(3;4,� + p0)pY (0;1,p0)
)
.

Since f2(−1) = 1, LZT(3,0) is equal to −0.345, the smallest solution of f2(�) =
1 − α with α = 0.05. This can be done numerically by calculating f2(�) at each
� in the order of � = −1,−0.999,−0.998, . . . with an increment of 0.001, for

TABLE 1
Different ordered partitions and their associated smallest 95% intervals when n = 4 and m = 1

j CZT
j Z LZT(z) j CZ

j LA(CZ
j ) LZ(z) j CI

j LI (z)

1 (4, 0) ∞ −0.095 1 (4, 0) 1 −0.095 1 (4, 0) −0.095
2 (3, 0) 3.464 −0.345 2 (3, 0) 0.394 −0.345 2 (3, 0) −0.345
3 (2, 0) 2.000 −0.562 3 (2, 0) 0.089 −0.562 3 (2, 0) −0.562
4 (1, 0) 1.155 −0.756 4 (4, 1) 0 −0.950 4 (1, 0) −0.756
5 (4, 1) 0 −0.950 – (0, 0) 0 – 5 (4, 1) −0.757

(0, 0) 0 – 5 (1,0) −0.106 −0.950 6 (3, 1) −0.770
6 (3, 1) −1.155 −0.950 6 (3, 1) −0.606 −0.950 7 (2, 1) −0.902
7 (2, 1) −2.000 −0.950 7 (2, 1) −0.911 −0.950 8 (0, 0) −0.950
8 (1, 1) −3.464 −0.987 8 (0, 1) −1 −1 9 (1, 1) −0.987
9 (0, 1) −∞ −1 5 (1, 1) −1.106 −1 10 (0, 1) −1
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example, until f2(�) is always greater than 1 − α. Therefore, the last value of
� = −0.345 is the smallest solution.

It is well known that a 1−α confidence interval can generate a family of level-α
tests and vice versa. Interval [LS(Z),1] in Theorem 1 can be used for this purpose
for the following family of hypotheses:

H0(δ) :� ≤ δ vs. HA(δ) :� > δ,(11)

where δ ∈ [−1,1]. For any given δ, the rejection region,

RS(δ) = {z ∈ S :LS(z) > δ},(12)

defines a level-α test for (11). For the ordered partition {Cj }k0
j=1 of S, let

j (δ) = max{j :LS(Cj ) > δ};
or j (δ) = 0, if LS(C1) ≤ δ. Then

RS(δ) =
j (δ)⋃
j=1

Cj

due to LS(Cj+1) ≤ LS(Cj ) and the definition of j (δ). On the other hand,
[LS(Z),1] can also be obtained by inverting tests as follows. For an ordered parti-
tion {Cj }k0

j=1, consider a level-α rejection region of form
⋃s(δ)

j=1 Cj for some non-
negative integer s(δ) for hypothesis H0(δ) given in (11) with a fixed δ where

s(δ) = max

{
n ≤ k0 : sup

(�,p0)∈H0(δ)

P

(
n⋃

j=1

Cj

)
≤ α

}
.(13)

So (
⋃s(δ)

j=1 Cj)
c, the complement of

⋃s(δ)
j=1 Cj , is the acceptance region. For a sam-

ple point Z = z, let

CT (z) =
{
δ ∈ [−1,1] : z ∈

(
s(δ)⋃
j=1

Cj

)c}
.(14)

Then [LS(Z),1] equals CT (Z) as shown in Theorem 2 below. However, we lose
the intuition given in (6)–(8) during this inversion process.

THEOREM 2. CT (Z) belongs to the interval class B given in Definition 1, and

[LS(Z),1] = CT (Z).(15)

PROOF. First, for any sample point z, if � ∈ CT (z) and �′ ∈ [�,1], then
s(�′) ≤ s(�) following (13) and (14). Therefore, �′ ∈ CT (z), and CT (z) is a
confidence interval for �. Second, the coverage probability of CT (Z)

P
(
� ∈ CT (Z)

) = P
(
z :� ∈ CT (z)

) = P

(
z ∈

(
s(�)⋃
j=1

Cj

)c)
≥ 1 − α
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following (13) for any given (�,p0). So CT (Z) is of level 1 − α. Third, let
CT (z) = [LT (z),1]. (i) It is clear that LT (z) is constant on each Ci ; (ii) Pick z1 ∈
Ci , any δ1 ∈ CT (z1) and z2 ∈ Ci+1. Since z1 ∈ (

⋃s(δ1)
j=1 Cj)

c, we have s(δ1) < i.

Thus s(δ1) < i + 1 and z2 ∈ (
⋃s(δ1)

j=1 Cj)
c, and we conclude that δ1 ∈ CT (z2).

Therefore, LT (Ci) is nonincreasing in i for 1 ≤ i ≤ k0. So CT (Z) belongs to the
interval class B. This implies [LS(Z),1] ⊂ CT (Z) following Theorem 1.

Now we only need to prove

[LS(Z),1] ⊃ CT (Z)
(= [LT (Z),1]).(16)

Without loss of generality, assume LS(Cj ) is strictly decreasing in j . Otherwise
we redefine a new ordered partition {C′

j }, by merging those Cj s on which LS(Cj )

does not change so that LS(C′
j ) is strictly decreasing. Suppose (16) is not true.

Then let j0 be the smallest positive integer so that LT (Cj0) < LS(Cj0). Pick

δ0 ∈ (max{LT (Cj0),LS(Cj0+1)},LS(Cj0)). Note
⋃s(δ0)

j=1 Cj = {z :LT (z) ≤ δ0}c =⋃j0−1
j=1 Cj . So

s(δ0) = j0 − 1.(17)

On the other hand,

1 − α ≤ inf
(�,p0)∈H0(δ0)

P
(
LS(Z) ≤ �

) ≤ inf
(�,p0)∈H0(δ0)

P
(
LS(Z) ≤ δ0

)

= 1 − sup
(�,p0)∈H0(δ0)

P

( j0⋃
j=1

Cj

)
.

Due to (13), s(δ0) ≥ j0, which contradicts (17). Then, (16) is true, as well
as (15). �

REMARK 4. When applying Theorem 1, our intention is not to generate the
optimal interval among all possible orderings, but to improve or modify a given in-
terval [L(Z),1] which has a level 1 −α or approximately 1 −α, to be the smallest
1 − α interval. To achieve this, one forms an ordered partition for S following Re-
mark 1 using the given function L(Z), then derives the smallest interval [LS(Z),1]
following Theorem 1.

EXAMPLE 1 (Continued). The most commonly used one-sided interval for �

in practice is the following z-interval:

[LA(z),1] def= [
p̂1 − p̂0 − zα

√
p̂1(1 − p̂1)/n + p̂0(1 − p̂0)/m,1

]
,(18)

where zα is the upper αth percentile of the standard normal distribution. Its cover-
age probability can be much less than the nominal level 1−α. We follow Remark 4
to modify this interval by generating an ordered partition of S, denoted by {CZ

j }.
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Then the smallest 1 − α interval, denoted by [LZ(Z),1], based on this partition is
derived following Theorem 1 and is reported in Table 1 for the case in Example 1.
Note CZ

1 = (1,1) instead of (0,1) which is intuitively incorrect. Therefore, interval
[LZ(Z),1] is not recommended.

Is it possible to improve the smallest interval from a given ordered partition?
Yes, especially when there exists a finer partition than the given one as stated be-
low. See such an example in Table 1 where LI (Z) ≥ LZT(Z) ≥ LZ(Z). Each CI

j ,
given in the second-to-last column of Table 1, contains a single sample point which
implies that {CI

j } is a finest partition of S.

PROPOSITION 2. For two ordered partitions P = {Cj }k0
j=1 and P ∗ = {C∗

j }k∗
0

j=1
of the sample space S, suppose each Cj is a subset of C∗

i(j) for some i(j) where
i(j) is a nondecreasing function in j (i.e., P is a finer partition than P ∗). Let
[LS(Z),1] and [L∗

S(Z),1] be the smallest 1 − α confidence intervals under or-
dered partitions P and P ∗, respectively. Then

L∗
S(Z) ≤ LS(Z) ∀z ∈ S.(19)

PROOF. The proof is trivial if one notices that any ordering on L(Z) by P ∗ is
also an ordering by P . Then the claim follows Theorem 1. �

3. An ordering on the confidence limits. Which ordered partition of S pro-
vides an interval that cannot be uniformly improved? Roughly speaking, by Theo-
rem 1, we prefer an ordering on L(z) (= L(x, y))

that yields a large smallest solution of fj (�) = 1 − α for all j s.(20)

Due to Proposition 2, each set in the partition would contain only one point. Be-
cause of the specialty of binomial distributions, L(x, y) should satisfy:

(1) L(x1, y) ≤ L(x2, y) for x1 ≤ x2; and
(2) L(x, y1) ≥ L(x, y2) for y1 ≤ y2.

Let BB denote the class of all one-sided 1−α intervals for � satisfying (1) and (2).
We will search for optimal intervals, perhaps admissible ones, from BB in this
section.

It is clear that L(n,0) must be the largest among all L(x, y)s and the second
largest L(x, y) should be achieved at either (n − 1,0) or (n,1) or both (if n = m).

We, by induction, construct an ordered partition of S, denoted by {CB
j }kB

0
j=1, that

satisfies (1) and (2) and starts at point (n,0) as follows:
Step 1: Let CB

1 = {(n,0)}, m1 = 1 and m0 = 0 because L(n,0) is the largest
among all L(x, y)s. So CB

1 = {(xi, yi)}m1
i=m0+1 where (x1, y1) = (n,0).
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Step 2: Suppose, by induction, {CB
j }kj=1 are available for some positive integer k

where

CB
j = {(xi, yi)}mj

i=mj−1+1

for some nonnegative integers m0,m1, . . . ,mk satisfying:

(I) L(x, y) is constant on CB
j ;

(II) L(xmj−1, ymj−1) ≥ L(xmj
, ymj

) for each j ≤ k.

Now we determine CB
k+1. Let Sk = ⋃k

j=1 CB
j and let Nk be the “neighbor” set

of Sk , that is,

Nk = {(x, y) ∈ S : (x, y) /∈ Sk; (x + 1, y) ∈ Sk or (x, y − 1) ∈ Sk}.
Due to (1) and (2), some points in Nk are disqualified to be in CB

k+1. To exclude
these points, let NCk be the “candidate” set within Nk satisfying

NCk = {(x, y) ∈ Nk : (x + 1, y) /∈ Nk and (x, y − 1) /∈ Nk}.(21)

Therefore, CB
k+1 must be a subset of NCk , and a point selected from NCk auto-

matically guarantees (1) and (2). For each point z0 = (x0, y0) in NCk , consider

fz0(�) = min
p0∈D(�)

P
(
({z0} ∪ Sk)

c)
= min

p0∈D(�)

∑
z∈({z0}∪Sk)

c

pX(x;p0 + �,n)pY (y;p0,m).

Let

Ez0 = {� ∈ [−1,1] :fz0(�
′) ≥ 1 − α,∀�′ < �}(22)

and

Lo(z0) =
{

supEz0, if Ez0 �= ∅,
−1, otherwise.

(23)

Define

CB
k+1 =

{
z ∈ NCk :Lo(z) = max

z0∈NCk

Lo(z0)
}

and(24)

mk+1 = mk + the number of elements in CB
k+1.(25)

Note that CB
k+1 may contain more than one point especially when n = m. By induc-

tion, an ordered partition {CB
j = {zi}mj

i=mj−1+1}
kB

0
j=1 for S with some positive integer

kB
0 is constructed. Therefore, the smallest one-sided 1 − α confidence interval un-

der this ordered partition, denoted by [LS(Z),1], is constructed for estimating �

following Theorem 1.
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REMARK 5. Ez0 and Gz (fz0 and fj , Lo and LS ) are defined in a similar way.

From (24), the ordered partition {CB
j }kB

0
j=1 tends to yield a large Lo(z), which re-

sults in a short interval compared with other partitions. More precisely, LS(CB
j )

equals the largest possible value provided that LS(CB
1 ), . . . ,LS(CB

j−1) are de-

termined. However, different from (Gz, fj ,LS) that depends on z through CB
j ,

(Ez0, fz0,Lo) depends on each individual z0. If CB
j always contains a single point

for any j , then, for z ∈ CB
j , LS(z) equals the largest of Lo(z0)s in the previous

step, and we have the following result.

PROPOSITION 3. For ordered partition {CB
j } and interval [LS(Z),1] con-

structed in steps 1 and 2, if each CB
j contains only one sample point (i.e.,

mj = mj−1 + 1 for all j s), then [LS(Z),1] is admissible in BB . That is, for an
interval [L(Z),1] ∈ BB , if LS(z) ≤ L(z) for any z ∈ S, then LS(z) = L(z) for any
z ∈ S.

PROOF. Suppose the claim is not true. Note each CB
j containing only one

point, and let j0 be the smallest positive integer so that LS(CB
j0

) < L(CB
j0

). Let {Cj }
be the associated ordered partition for [L(Z),1]. Then CB

j = Cj for any j < j0.
Therefore, Cj0 is a subset of NCj0−1 given in (21) due to conditions (1) and (2).
Noting (24), we conclude LS(CB

j0
) ≥ L(CB

j0
). A contradiction is constructed. �

Conditions (1) and (2) were first proposed in Barnard (1947) and called the
“C” condition. He constructed an optimal rejection region for a hypothesis testing
problem,

H0(0) :� ≤ 0 vs. HA(0) :� > 0,

a special case of (11) for δ = 0, using a special ordering on S. This ordering sat-
isfies conditions (1) and (2), and the corresponding ordered partition {Cj }k0

j=1 is
generated by induction starting at C1 = (n,0). Also, for given C1, . . . ,Cj0−1 with

a positive integer j0 (≤k0), Cj0 is chosen so that supp0∈D(0) P (
⋃j0

j=1 Cj) is mini-
mized. So Barnard’s ordering is similar to ours, except that he focused on � = 0,
but we deal with all � ∈ [−1,1]. Pointed out by Martin Andres and Silva Mato
(1994), Barnard’s test is the (overall) most powerful existing test for comparing
two independent proportions.

EXAMPLE 1 (Continued). Now construct the smallest 95% confidence inter-

val with partition {CB
j }kB

0
j=1. First CB

1 = {(4,0)} following step 1, and LS(4,0) =
−0.095 by solving

f1(�) = min{p0∈D(�)}
(
1 − pX(4;4,� + p0)pY (0;1,p0)

) = 0.95
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because f1 now is nonincreasing in �. In step 2, N1, the neighbor set of S1(= CB
1 ),

is equal to {(3,0), (4,1)}, and NC1 = N1. Following (23),

Lo(3,0) = −0.345, Lo(4,1) = −0.527.

Thus CB
2 = {(3,0)} by (24). In step 3, three sets are needed, S2, N2 and NC2, and

are given below in the sample space S. Note here NC2 �= N2.

x

y 0 1 2 3 4

1 – – – N2 N2, NC2

0 – – N2, NC2 S2 S2

Again, for each point in NC2, we have Lo(2,0) = −0.561,Lo(4,1) = −0.527,

following (23). Then CB
3 = {(4,1)} by (24). The rest of the interval construction

is given in Table 2. Following Remark 5, since each CB
j contains a single point,

LS(z) on CB
j is equal to the largest Lo(z0) in the previous step and is reported in

the last column of Table 2, and the construction is complete at the 10th (= kB
0 )

step. This interval is admissible in BB due to Proposition 3. However, if compared
with interval [LI (Z),1] in Table 1, neither uniformly dominates the other.

TABLE 2

The details of the construction of partition {CB
j }k

B
0

j=1 when n = 4 and m = 1

j CB
j Nj NCj , Lo(z0) LS(CB

j )

1 (4,0) (3,0), (4,1) (3,0), (4,1) −0.095
−0.345, −0.527

2 (3,0) (2,0), (3,1), (4,1) (2,0), (4,1) −0.345
−0.561, −0.527

3 (4,1) (2,0), (3,1) (2,0), (3,1) −0.527
−0.578, −0.752

4 (2,0) (1,0), (2,1), (3,1) (1,0), (3,1) −0.578
−0.757, −0.752

5 (3,1) (1,0), (2,1) (1,0), (2,1) −0.752
−0.770, −0.902

6 (1,0) (0,0), (1,1), (2,1) (0,0), (2,1) −0.770
−0.950, −0.902

7 (2,1) (0,0), (1,1) (0,0), (1,1) −0.902
−0.950, −0.987

8 (0,0) (0,1), (1,1) (1,1) −0.950
−0.987

9 (1,1) (0,1) (0,1) −0.987
−1

10 (0,1) −1



THE SMALLEST ONE-SIDED INTERVAL 1239

4. Identifying the minimum effective dose. Suppose we have a sequence
of independent binomial random variables Xi ∼ Bin(ni,pi) for i = 1, . . . , k and
Y ∼ Bin(m,p0). The goal here is to identify the smallest positive integer i0 so that
pi > p0+δ for any i ∈ [i0, k], where δ is some predetermined nonnegative number.
Each pi is the proportion of patients who show improvement using a drug at dose
level i. A large i associates with a large dose level, and p0 is the proportion for the
control group. Then i0 is called the minimum effective dose (MED). Finding the
MED is important since high doses often turn out to have undesirable side effects.

Typically, the MED is to be found when Xi follows a normal distribution with
the comparison in proportions replaced by that in means. Thus, the assumption of
normality is an issue to be addressed. See, for example, Tamhane, Hochberg and
Dunnett (1996), Hsu and Berger (1999), Bretz, Pinheiro and Branson (2005) and
Wang and Peng (2008) for results under this setting. Now we search for the MED
with a binary response without such concern on the distribution; see Tamhane and
Dunnett (1999).

A sequence of hypotheses can be formulated to detect the MED as follows:

H0i : min
j≥i

{pj − p0} ≤ δ vs.

(26)
HAi : min

j≥i
{pj − p0} > δ, for i = 1, . . . , k,

which is similar to the one in Hsu and Berger (1999), page 471. It is clear that the
MED equals the smallest i for which HAi is true. Also H0i is decreasing in i, thus
C = {H0i : i = 1, . . . , k} is closed under the operation of intersection. Suppose a
level α nondecreasing (in i) rejection region Ri for H0i is constructed. Then, for
the multiple test problem for testing all null hypotheses in C , define a multiple test
procedure: assert HAi if Ri occurs. This procedure controls the familywise error
rate at level α following the closed test procedure by Marcus, Peritz and Gabriel
(1976).

Now we apply the interval derived in Section 3 to obtain a level α test for H0i .
Let LS,i(Xi, Y ) be the smallest one-sided 1 − α confidence interval for pi − p0
obtained in Section 3 before Remark 5. Define a rejection region for H0i :

Ri =
{
(x1, . . . , xk, y) : min

i≤j≤k
{LS,j (xj , y)} > δ

}
.(27)

THEOREM 3. The rejection region Ri is nondecreasing in i and is of level α

(<1) for H0i . Therefore, the multiple test procedure, which asserts not H0i (i.e.,
asserts HAi) if Ri occurs for any H0i ∈ C , controls the familywise error rate at
level α.

PROOF. First, it is trivial that Ri is nondecreasing in i. Secondly, for any
(p1, . . . , pk,p0) ∈ H0i , there exists an i∗ ∈ [i, k] satisfying pi∗ − p0 ≤ δ. Then
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P(pi∗ ,p0)(LS,i∗(Xi∗, Y ) > δ) ≤ P(pi∗ ,p0)(LS,i∗(Xi∗, Y ) > pi∗ − p0) when pi∗ −
p0 ≤ δ. Since P(pi∗ ,p0)(LS,i∗(Xi∗, Y ) > pi∗ − p0) ≤ α, we have

P(p1,...,pk,p0)(Ri) ≤ P(pi∗ ,p0)

(
LS,i∗(Xi∗, Y ) > δ

) ≤ α.

The rest of the theorem follows the closed test procedure by Marcus, Peritz and
Gabriel (1976) because Ri is nondecreasing and H0i is decreasing in i. �

REMARK 6. The multiple test procedure with rejection regions {Ri}ki=1 in (27)
is equivalent to the following step-down test procedure.

Step 1. If Rk does not occur, conclude that the MED does not exist and stop;
otherwise go to the next step.

Step 2. If Rk−1 does not occur, conclude the MED = k and stop; otherwise go
the next step.

...

Step k. If R1 does not occur, conclude the MED = 2 and stop; otherwise con-
clude the MED = 1 and stop.

REMARK 7. The proposed multiple test procedure is valid without the as-
sumption of p1 ≤ p2 ≤ · · · ≤ pk .

5. A generalization. Suppose a random vector X is observed from a discrete
sample space S with either finite or countable sample points, that is, S = {xi}bi=a

where −∞ ≤ a < b ≤ +∞. An ordered partition {Cj }dj=c on S is given for some
−∞ ≤ c ≤ d ≤ +∞. The probability mass function of X is given by p(x; θ) where
θ is the parameter vector belonging to a parameter space �, a subset of Rk . Sup-
pose θ = (θ, η) and

� = {θ :η ∈ D(θ) for each θ ∈ [A,B]},
where [A,B] is a given interval in R1(A and B may be ±∞, and the interval is
open when the corresponding ending is infinity), and D(θ) is a subset of Rk−1

depending on θ . Now we are interested in searching for the smallest one-sided
1 − α confidence interval of form [L(X),B] for θ under the ordered partition
{Cj }dj=c, i.e., L(x) is constant on each Cj and L(x) ≥ L(x′) for any x ∈ Cj and
x′ ∈ Cj ′ for any j ≤ j ′.

THEOREM 4. Assume α ∈ [0,1). For a given partition {Cj }dj=c of S and any
x ∈ Cj , let

fj (θ) = inf
η∈D(θ)

P (Sc
j ) = inf

η∈D(θ)

∑
z∈Sc

j

p(z; θ, η),(28)
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where Sj = ⋃j
i=c Ci and let

GGx = {θ ∈ [A,B] :fj (θ
′) ≥ 1 − α,∀θ ′ < θ}.(29)

Define

LG(x) =
{

supGGx, if GGx �= ∅,
A, otherwise.

(30)

Then [LG(X),B] is the smallest one-sided 1 − α confidence interval under parti-
tion {Cj }dj=c.

The proof is similar to Theorem 1 and is omitted.

EXAMPLE 2. Suppose one is interested in the difference, �, of two means, λ1
and λ2, of two independent Poisson random variables, X and Y . The sample space
S and the parameter space are

S = {(x, y) :x and y are nonnegative integers} and

H = {(�,λ2) :λ2 ∈ [0,+∞) if � ∈ [0,+∞);λ2 ∈ [−�,+∞) if � ∈ (−∞,0)},
respectively. One-sided 1 − α confidence intervals of form [L(X,Y ),+∞) for �

are of interest. Let FP (x;λ) be the cumulative distribution function of a Poisson
distribution with mean λ.

Different from the binomial case, there exists no fixed sample point on which
L(x, y) is the largest or the smallest. Lack of a starting or an ending point, a con-
struction of an ordered partition {Cj }dj=c of S by induction is difficult. Instead, we
show how to improve a naive interval [L1(X,Y ),∞) given below for �.

This interval is obtained combining two smallest one-sided intervals [L(X),

+∞) for λ1 and [0,U(Y )] for λ2, both of level
√

1 − α. Following Bol’shev
(1965), L(x) satisfies

1 − FP

(
x − 1;L(x)

) = 1 − √
1 − α for x > 0 and L(0) = 0,(31)

and U(y) satisfies

FP (y;u(y)) = 1 − √
1 − α.(32)

Then [L1(X,Y ),∞), where L1(X,Y )
def= L(X)−U(Y ), is a one-sided confidence

interval of level 1 − α for � = λ1 − λ2 because

P
(
L1(X,Y ) ≤ �

) ≥ P
(
L(X) ≤ λ1,U(Y ) ≥ λ2

) ≥ (√
1 − α

)2 = 1 − α.

It is clear that L1(x, y) satisfies (1) and (2) introduced at the beginning of Sec-
tion 3 because L(x) and U(y) are both increasing functions. Now we improve
[L1(X,Y ),+∞) by constructing LG(X,Y ) following Theorem 4 and Remark 4.

To illustrate the procedure, suppose (X,Y ) = (4,2) is observed and α = 0.05.
Following (31) and (32), we obtain L(4) = 1.094 and U(2) = 7.208, respectively,
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and L1(4,2) = −6.114. We need to determine LG(4,2) given in (30). Consider a
subset Sj of S on which L1(x, y) is no smaller than L1(4,2), that is,

Sj = {(x, y) ∈ S :L1(x, y) ≥ L1(4,2)} = {(x, y) ∈ S :x ≥ g(y)},
where, for each y,

g(y)
def= min{x ≥ 0 :L1(x, y) ≥ L1(4,2)}.

For example, g(0) = g(1) = 0, and g(3) = 7. Plug Sj into (28) and solve
LG(4,2) = −4.744 following (29) and (30). LG(4,2) is much larger than L1(4,2),
as is well expected.

6. Discussion. In this paper, we discuss how to derive the smallest confidence
interval under an ordered partition for a parameter in the presence of nuisance pa-
rameter(s) when the sample space is discrete. The interval construction is based on
a direct analysis on the coverage probability, and needs an ordering on the sample
points and mild assumptions (e.g., a discrete sample space) on the underlying dis-
tribution. The set inclusion criterion is employed for searching for good intervals
because it has a clear interpretation. Under this criterion, the smallest interval is
the best in the strongest sense provided its existence. It is well known that the ex-
istence of the best interval depends on the class of intervals from which the best is
searched. We successfully characterize such classes by (a) considering one-sided
1 − α confidence intervals and (b) requiring an ordering on the random confi-
dence limits. Bol’shev and Loginov (1966) did not construct the interval under
(b), so their method typically does not generate the smallest interval, while ours
does. Another application of the proposed method is to identify admissible confi-
dence intervals more efficiently. As an example, consider the case in Section 2. Let
[LS,C(X,Y ),1] be the smallest 1 − α confidence interval for p1 − p0 correspond-
ing to a partition {Cj }k0

j=1 of S. Then the class of 1 − α confidence intervals,

D = {[LS,C(X,Y ),1] :∀ partition of S},
is complete since for any 1 −α confidence interval [L(X,Y ),1] there exists an in-
terval [LS,C(X,Y ),1] in D so that [LS,C(x, y),1] is always a subset of [L(x, y),1]
for any (x, y) ∈ S. Although class D is not minimal, it contains finitely many el-
ements. One only needs to search for optimal intervals from D because it is com-
plete. Furthermore, one can apply Proposition 2 and conditions (1) and (2) in Sec-
tion 3 to search for optimal intervals from a much smaller subset, also complete
in BB , of D.
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