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Abstract

An algorithm for reliability-based optimal design is developed using sampling techniques for estimating the failure probability. The

algorithm applies a new method for sensitivity calculations of the failure probability. Initially, the estimates of the failure probability are

coarse. As the algorithm progresses towards an optimal design, the number of sample points is increased in an adaptive way leading to better

estimates of the failure probability. The algorithm is proven to converge to an optimal design. The applicability of the algorithm is shown in

an example from the area of highway bridge design.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we discuss problems arising in reliability-

based optimal design of structures. Such problems are

characterized by the presence of functions representing the

failure probabilities of one or more structural systems and

their components. Reliability-based optimal design is

computationally, but also theoretically, challenging. A

particular source of difficulty is the construction of

approximating expressions for the failure probability that

can be used in conjunction with some optimization

algorithm.

In the areas of applied mathematics and operations

research, there is a large literature dealing with various

optimization problems arising in decision making under

uncertainty. Such problems are referred to as stochastic

optimization problems. Two techniques for solving

reliability-based optimal design problems, as well as more

general stochastic optimization problems, are stochastic

quasi-gradient methods [3,7,10,27,43] and sample average

approximations [13,14,16,17,25,38,39].

Stochastic quasi-gradient methods employ various

approximation techniques to compute search directions in

an iterative scheme for finding an optimal design. These

methods are not directly applicable to problems involving

failure probability constraints, but they can handle problems

with failure probabilities in the objective function. For

deterministic constraints, the implementation of the sto-

chastic quasi gradient methods may require numerically

costly approximations to such operations as gradient

projection.

A sample average approximation problem is constructed

by replacing the failure probabilities in the original

reliability-based optimal design problem by corresponding

Monte Carlo sampling estimates. The results associated

with such approximations give asymptotic properties of

minimizers of sample average approximation problems as

the number of samples goes to infinity, and error estimates

for finite sample sizes. These results provide guidance for

the selection of one or more approximation problems to be

solved using some optimization algorithm. Using sample

average approximations, Royset and Polak [36] develop the

theoretical basis for a new implementable algorithm for

reliability-based optimal design. The algorithm will be

discussed in detail below.

Stochastic quasi-gradient methods and sample average

approximations have been used rarely for solving

reliability-based optimal design problems arising in engin-

eering, and specialized approaches have been developed.

These approaches include the use of response surface

techniques [9], surrogate functions [42], stochastic linear

programming [26], first-order approximations to the failure
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probability [6,19,35], and the use of probabilistic models

resulting in manageable expressions for the failure prob-

ability [29,30]. In the specialized approaches, the resulting

optimization problems are typically solved using standard

linear or nonlinear optimization algorithms. An exception to

this trend is Ref. [35], which solves semi-infinite optimiz-

ation problems. These specialized approaches may work

satisfactorily under certain conditions, but are not proved to

converge to a solution of the original design problem. For

example, the approach in Ref. [35] is known to converge to

a solution of a first-order approximation of the reliability-

based optimal design problem, but the scheme for improv-

ing the first-order solution is based on heuristics.

Engineering efforts to use gradient-free optimization

techniques can be found in Refs. [2,4,15,31]. These

techniques tend to converge rather slowly, particularly in

the case of many design variables. Studies focusing on

applications of reliability-based optimal design techniques

include Refs. [20–22,41]. See Ref. [37] for a more

comprehensive review of the literature.

In view of the rapid development of computers, the high

computational cost traditionally associated with sample

average approximations may diminish. Hence, it appears

that sample average approximations, with its potential for

high-accuracy solutions of reliability-based optimal design

problems, may prove to be an attractive alternative to

existing specialized approaches in engineering applications.

In this paper, we discuss the application of the new

algorithm constructed in Ref. [36], which uses a sampling

technique to estimate the failure probability and incorpor-

ates such estimates with a standard nonlinear optimization

algorithm. The algorithm is illustrated with an example

from highway bridge design. We also present a new

sensitivity formula for the failure probability, which is of

importance in structural reliability analysis.

2. Definition of failure probability

In accordance with common practice [5], we express the

failure probability of a structure by means of a time-

invariant probabilistic model defined in terms of an

m-dimensional vector V of random variables. Let x be an

n-dimensional vector of deterministic design variables, e.g.

member sizes, amount of steel reinforcement, or parameters

in the distribution of V: Failure of the structure is defined in

terms of K limit-state functions Gkðx; vÞ; k [ K ¼

{1; 2;…;K}; where v is a realization of the random vector

V: The limit-state functions Gkðx; vÞ describe the perform-

ance of the structure with respect to specific requirements.

It is theoretically and computationally convenient to

introduce a bijective transformation of realizations v of

the random vector V into realizations u of a standard

normal random vector U: Such transformations can be

defined under weak assumptions when the probability

distribution of V is continuous. For a given design

vector x; let TxðvÞ be this transformation. Replacing v by

T21
x ðuÞ; gives the equivalent limit-state functions gkðx;uÞ;

where gkðx; uÞ ¼ Gkðx; T
21
x ðuÞÞ:

A limit-state function gkðx;uÞ; together with the rule that

gkðx;uÞ # 0 is defined as failure and gkðx;uÞ . 0 is defined

as safe, is referred to as a component. A component may or

may not be associated with a physical member or a

particular failure mode of the structure.

For any positive integer q; we denote the q-dimensional

Euclidean space with Rq: Let components of vectors be

given by subscripts, i.e. any vector a ¼ ða1; a2;…; aqÞ; and

let wmð·Þ denote the m-dimensional standard normal

probability density function.

We define the kth component failure probability by the

m-dimensional integral

pkðxÞ ¼
ð1

21
· · ·

ð1

21
IFkðxÞ

ðuÞwmðuÞdu1· · ·dum;

k [ K;

ð1Þ

where IFkðxÞ
ðuÞ is the indicator function, which is equal to

one on the failure domain

FkðxÞ ¼ {u [ Rmlgkðx; uÞ # 0} ð2Þ

and zero elsewhere, i.e. IFkðxÞ
ðuÞ ¼ 1 whenever u [ FkðxÞ

and IFkðxÞ
ðuÞ ¼ 0 otherwise.

Generally, a collection of components and a rule for

determining which combinations of component failures

constitute a system failure are referred to as a structural

system. This study focuses on optimization problems

involving component failure probabilities.

3. Problem statement

The reliability-based optimal design problem with

component failure probabilities is denoted P and it takes

the form

P¼ min
x[Rn

c0ðxÞþ
XK
k¼1

ckðxÞpkðxÞlpkðxÞ# p̂k;k[K; x[X

( )
;

ð3aÞ

where

X¼{x[RnlfjðxÞ#0; j[J}; ð3bÞ

with fjðxÞ; j[J¼{1;2;…;J}; being real-valued determi-

nistic, continuously differentiable, constraint functions,

and ckðxÞ; k[{0;1;…;K}; are real-valued continuously

differentiable cost functions describing the initial cost c0ð

xÞ and the cost ckðxÞ associated with the failure of the

kth component. The values p̂k; k[K; are pre-defined

bounds on the failure probabilities. The objective

function in P can be interpreted as the initial cost plus

the expected cost of failure, when expected costs of

failure of the components are additive. Hence, P defines
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the problem of minimizing the initial cost plus the

expected cost of failure subject to reliability and

deterministic constraints.

The difficulty associated with solving P is two-fold. First,

the failure probabilities cannot be computed exactly and,

hence, must be approximated. Second, expressions, if they

exist, for the gradients of the failure probabilities and their

approximations are difficult to obtain. Hence, a direct

application of a standard nonlinear optimization algorithm

is not possible. In the following, we use the theoretical

results in Ref. [36] to overcome these difficulties.

4. Gradient of the failure probability

We show that the failure probability, as defined in Eq.

(1), can be rewritten in a form that leads to a formula for the

gradient of the failure probability. In this section, we

consider only one limit-state function. Hence, we drop the

subscript k:

Suppose that the limit-state function gðx; uÞ is sufficiently

‘nice’ such that we can solve, either analytical or

numerically, the equation

gðx;uÞ ¼ 0 ð4aÞ

for one of the components of u: Without loss of generality,

we assume that we can solve for u1: Let the remaining

components in u be denoted �u; i.e. u ¼ ðu1; �uÞ: We denote

the solution of Eq. (4a) by hðx; �uÞ: Hence, we have that

gðx; ðhðx; �uÞ; �uÞÞ ¼ 0: ð4bÞ

For a given design x; suppose Eq. (4b) holds for all

�u [ Rm21: Then, we can rewrite the failure probability in

the following way:

pðxÞ ¼
ð1

21
· · ·

ð1

21

ð1

21
IFðxÞðuÞwmðuÞdu1du2· · ·dum

¼
ð1

21
· · ·

ð1

21

ðhðx; �uÞ

21
wmðuÞdu1du2· · ·dum

¼
ð1

21
· · ·

ð1

21
Fðhðx; �uÞÞwm21ð �uÞdu2· · ·dum; ð5aÞ

where Fð·Þ is the standard normal cumulative distribution

function, i.e.

FðaÞ ¼
ða

21
w1ðaÞda: ð5bÞ

In the derivation of Eq. (5a), we assumed that the failure

domain is located in the negative direction of u1; see

Fig. 1. If the failure domain is located in the positive

direction of u1; as in Fig. 2, then we obtain

pðxÞ ¼
ð1

21
· · ·

ð1

21

ð1

21
IFðxÞðuÞwmðuÞdu1du2· · ·dum

¼
ð1

21
· · ·

ð1

21

ð1

hðx; �uÞ
wmðuÞdu1du2· · ·dum

¼
ð1

21
· · ·

ð1

21
Fð2hðx; �uÞÞwm21ð �uÞdu2· · ·dum: ð5cÞ

In the derivations of Eqs. (5a) and (5c), we assumed that,

given an x; for each �u we could find a unique function

hðx; �uÞ such that Eq. (4b) holds for all �u [ Rm21:

Clearly, this may not always be the case as Fig. 3

illustrates. In Fig. 3, it is not possible to find a

component (either u1 or u2) for which to solve Eq. (4a).

However, we expect that for many practical cases we can

find at least one component of u for which to solve Eq.

(4a) uniquely, at least for �u in a sufficiently large ball

around the origin. Due to the rapid decay of the standard

normal probability density function, points further away

from the origin will not contribute significantly to the

integral in Eqs. (5a) and (5c) and can be ignored in

an approximating approach. In the case of a limit-

state function of the form gðx;uÞ ¼ ~gðx; �uÞ þ f ðxÞu1; with

Fig. 1. Failure domain in negative u1 direction.

Fig. 2. Failure domain in positive u1 direction.
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f ðxÞ . 0; i.e. linear in one of the components of u, it is

particularly trivial to see that we can solve for a

component. In this case, hðx; �uÞ ¼ 2~gðx; �uÞ=f ðxÞ: Note

that even if there is no component of u for which we can

solve Eq. (4a), there may exist a rotational transform-

ation in Rm (i.e. the u-space) that leads to a new limit-

state function with the desired properties. Rotational

transformations do not change the problem due to the

rotationally invariant property of the standard normal

probability density function. If a suitable limit-state

function cannot be obtained by means of a rotational

transformation, which is the case in Fig. 3, the following

approximating approach can always be used. Let e . 0

be a constant. We define a new limit-state function

gpðx; ðu; umþ1ÞÞ ¼ gðx;uÞ þ eumþ1; ð5dÞ

where gðx;uÞ is the original limit-state function and umþ1 is

an auxiliary variable. Then, we can solve gpðx; ðu; umþ1ÞÞ ¼ 0

for umþ1 for all x and u: The auxiliary variable umþ1 can be

interpreted as a realization of a standard normal random

variable Umþ1; with eUmþ1 being the ‘random error’ in the

limit-state function gðx;uÞ: In applications, it is difficult to

determine a reasonable joint distribution function for V when

additional randomness is introduced by Umþ1; as in Eq. (5d).

Hence, this approach is usually approximate. For a

reasonably accurate approximation, e must be scaled

properly. We recommend setting e p sg; where s2
g is the

first-order approximate variance of gðx1;UÞ at some initial

design x1 and realization up; i.e. s2
g ¼ Var½gðx1;u

pÞ þ k7ugð

x1;u
pÞ;U 2 upl�: The realization up can be set equal to the

closest point to the origin on the surface {ulgðx1;uÞ ¼ 0}:

In view of Eqs. (5a) and (5c), we see that the gradient of

the failure probability exists under fairly general conditions

and is given by

7pðxÞ ¼2
ð1

21
· · ·

ð1

21
w1ðhðx; �uÞÞ

�
7xgðx; ðhðx; �uÞ; �uÞÞ

›gðx; ðhðx; �uÞ; �uÞÞ=›u1

wm21ð �uÞdu2· · ·dum; ð6aÞ

when the failure domain is located in the negative direction

of u1; see Fig. 1, and

7pðxÞ ¼
ð1

21
· · ·

ð1

21
w1ðhðx; �uÞÞ

7xgðx; ðhðx; �uÞ; �uÞÞ

›gðx; ðhðx; �uÞ; �uÞÞ=›u1

�wm21ð �uÞdu2· · ·dum; ð6bÞ

when the failure domain is located in the positive direction

of u1; see Fig. 2. In Eqs. (6a) and (6b), we have used the fact

that

7xhðx; �uÞ ¼ 2
7xgðx; ðhðx; �uÞ; �uÞÞ

›gðx; ðhðx; �uÞ; �uÞÞ=›u1

; ð6cÞ

and that differentiation and integration operators can be

interchanged. Clearly, we must assume that the limit-state

function is differentiable with respect to x and u1:

In Ref. [43], we find similar expressions for the gradient

of the failure probability for the case with bounded random

variables V: Since unbounded random variables can be

approximated by bounded random variables, the result in

Ref. [43] implies that a lower bound for any failure

probability is differentiable. The result in Ref. [43] also

holds for parallel systems, i.e. the case where the failure

domain is given by FðxÞ ¼
T

k[K {u [ Rmlgkðx;uÞ # 0}:

In the following, we assume without loss of generality

that the failure domain is located in the negative direction of

u1; i.e., that Eqs. (5a) and (6a) hold.

5. Approximation results

In this section, we use sampling techniques to estimate

the integrals (5a) and (6a). This gives rise to approximating

problems, which are increasingly accurate as the number of

sample points increases.

The Monte Carlo estimates of Eqs. (5a) and (6a) are

given by the expressions

pk;NðxÞ ¼
1

N

XN
j¼1

Fðhkðx; �ujÞÞ; ð7aÞ

7pk;NðxÞ ¼ 2
1

N

XN
j¼1

w1ðhkðx; �ujÞÞ
7xgkðx; ðhkðx; �ujÞ; �ujÞÞ

›gkðx; ðhkðx; �ujÞ; �ujÞÞ=›u1

;

ð7bÞ

where �u1; �u2;…; �uN are realizations of a collection of

independent standard normal ðm 2 1Þ-dimensional random

vectors �U1; �U2;…; �UN ; N is the number of sample points,

and the subscript k is reintroduced to indicate the

component. Hence, hkðx; �uÞ is the solution with respect to

u1 of the equation gkðx;uÞ ¼ 0:

Instead of generating sample points according to a

standard normal distribution, as in Eqs. (7a) and (7b), we

can sample according to other probability distributions. This

approach leads to importance sampling, which tends to

improve the failure probability estimates by concentrating

Fig. 3. Irregular failure domain.
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the samples in the most relevant region. A typical selection

of sampling distribution is a normal distribution. In this

paper, we use a normal random vector with mean vector

mk [ Rm21 and variance–covariance matrix skI; sk . 0;

where I is the ðm 2 1Þ £ ðm 2 1Þ unit matrix. The

importance sampling estimates of Eqs. (5a) and (6a) are

given by the expressions

pk;Nðx;mk;skÞ

¼
1

N

XN
j¼1

Fðhkðx;sk �uj þ mkÞÞ
wm21ðsk �uj þ mkÞ

wm21ð �ujÞ=s
m21
k

; ð8aÞ

7pk;Nðx;mk;skÞ ¼2
1

N

XN
j¼1

w1ðhkðx;sk �uj þmkÞÞ

�
7xgkðx;ðhkðx;sk �uj þmkÞ;sk �uj þmkÞÞ

›gkðx; ðhkðx;sk �uj þmkÞ;sk �uj þmkÞÞ=›u1

�
wm21ðsk �uj þmkÞ

wm21ð �ujÞ=s
m21
k

; ð8bÞ

where we have used the fact that sk �uþmk is a normal

random vector with mean vector mk and variance–

covariance matrix skI: Note that for sk ¼ 1 and mk ¼ 0;

Eqs. (8a) and (8b) simplify to Eqs. (7a) and (7b). For mk – 0;

the samples are not centered at the origin, but, hopefully, in

a more relevant region. The selection of the sampling

parameters sk and mk is discussed in Section 6.

The expressions in Eqs. (7b) and (8b) give estimates of

the sensitivity of the failure probability with respect to

certain parameters x: These formulas are of significant

interest in structural reliability analysis. It is clear that the

standard estimate [5]
PN

j¼1 IFkðxÞ
ðujÞ=N of pkðxÞ cannot lead

to similar sensitivity results because of the nonsmoothness

of the indicator function.

The convergence of the Monte Carlo simulation and

importance sampling estimates to the failure probability and

its gradient, as N !1; is well-known [32,34]. To be able to

prove convergence of the algorithm below, we need a

uniform bound on the rate of convergence. In Ref. [36], we

show by means of Ref. [34] that such a uniform bound exists

under the assumption that the limit-state functions are

sufficiently ‘nice’. The precise mathematical statement of

this assumption follows:

Assumption 1. We assume that for each component k [ K

(i) there exists a unique real-valued function hkðx; �uÞ

such that for all x [ Rn and �u [ Rm21;

gkðx; ðhkðx; �uÞ; �uÞÞ ¼ 0;

(ii) the limit-state function gkðx;uÞ is continuously

differentiable with respect to x and u1;

(iii) for every bounded set S , Rn there exist

constants C1;C2 [ ð0;1Þ such that k7xgkð

x; ðhkðx; �uÞ; �uÞÞk # C1 and l›gkðx; ðhkðx; �uÞ; �uÞÞ=

›u1l $ C2 for all x [ S and �u [ Rm21:

In Assumption 1(i), we assume that Eq. (4a) is solvable

for a unique u1; which we discussed above. Item (ii) states

that the limit-state functions are assumed to be sufficiently

smooth, which is often the case in practical applications. If a

particular model results in nonsmooth limit-state functions,

a re-modelling is sometimes possible. See Ref. [12] for a

comprehensive discussion of gradients of limit-state func-

tions. In Assumption 1(iii), we assume that the gradients

with respect to x of the limit-state functions are bounded and

that the partial derivatives with respect to u1 are bounded

away from zero. The latter is motivated by Eq. (6c).

Assumption 1(iii) can be difficult to check in practice.

However, it is mostly of theoretical importance and it does

not impose significant computational consequences. Special

cases such as gðx;uÞ ¼ ~gðx; �uÞ þ f ðxÞu1; with f ðxÞ . 0 for

all x [ Rn and bounded random variables V; can easily be

shown to satisfy Assumption 1(iii).

In Assumptions 1(i,ii), the statements are required to

hold for all x [ Rn: However, it is sufficient that these

statements hold on a sufficiently large subset of the design

space containing all relevant designs. Since the character-

ization of such a subset is application dependent, for

generality, we have adopted stronger assumptions than

typically needed in practice.

In Ref. [36], we show that under Assumption 1 the error

in the Monte Carlo simulation and importance sampling

estimates is bounded by a function of N; which is

independent of x and the generated samples. The bound is

not tight compared to statistical bounds [5], but statistical

bounds only state that the error is smaller than a given

number with a certain probability. In contrast, the bound

below is valid with probability one, which is needed in the

proof of convergence of our optimization algorithm.

Theorem 1 (Proof in Ref. [36]). Suppose that Assumption 1

holds, and that the sampling parameters in Eqs. (8a) and

(8b) are either mk ¼ 0 and sk ¼ 1 (Monte Carlo), or mk [
Rm21 and sk . 1 (importance sampling). Let pk;Nðx;mk;skÞ

and 7pk;Nðx;mk;skÞ be defined in terms of a generated

sequence of realizations �u1; �u2; �u3;… of independent

standard normal ðm 2 1Þ-dimensional random vectors �U1;
�U2; �U3;…

Then, for every constant k . 0 and bounded set S , Rn;

there exists a constant C [ ð0;1Þ such that

lpk;Nðx;mk;skÞ2 pkðxÞl # C
ðlog NÞkþ1=2ffiffiffi

N
p ; ð9aÞ

k7pk;Nðx;mk;skÞ2 7pkðxÞk # C
ðlog NÞkþ1=2ffiffiffi

N
p ð9bÞ

for all x [ S; N [ {1; 2; 3;…}; and k [ K:

Observe that the right-hand sides of Eqs. (9a) and (9b)

vanish as N !1: In Theorem 1, for technical reasons, we

needed to assume that sk . 1 whenever importance

sampling is used. This is not a severe restriction because

J.O. Royset, E. Polak / Probabilistic Engineering Mechanics 19 (2004) 331–343 335



the usual strategy in importance sampling is to shift the

‘center’ of the sampling distribution to a relevant region, i.e.

selecting an appropriate mk; and to keep sk ¼ 1: Hence, by

setting sk equal to, e.g. 1.01, we satisfy the theoretical

assumption with practically no change in the sampling

efficiency.

We can define a class of approximations to P in terms of

the sampling estimate in Eq. (8a). Let, for any N [
{1; 2; 3;…};mk [ Rm21; and sk . 0; k [ K; the approxi-

mating problems PN be given by

PN : min
x[Rn

(
c0ðxÞ þ

XK
k¼1

ckðxÞpk;Nðx;mk;skÞlpk;Nðx;mk;skÞ

# p̂k; k [ K; x [ X

)
: ð10Þ

Note that PN is not well-defined before a sequence �u1;

�u2;…; �uN of realizations of independent standard normal

ðm 2 1Þ-dimensional random vectors �U1; �U2;…; �UN is

determined.

6. Algorithm

We present an algorithm for solving P; which makes

use of a nonlinear optimization subroutine for solving

the approximating problems PN : The mathematical proof

of convergence of the algorithm can be found in Ref.

[36].

The algorithm is based on the principle of

‘moving targets’, which can best be explained by means

of Fig. 4. Consider the sequence of approximating

problems {PN}N[N; where N is an infinite sequence of

strictly increasing positive integers. For the sake of the

explanation, suppose that N ¼ {N 0;N 00;N 000;…}: The

algorithm starts from an initial design x1; marked with a

dot in Fig. 4, and applies the nonlinear optimization

subroutine to the problem PN 0 ; whose solution is denoted

x̂N 0 : As indicated by a solid arrow from x1 in Fig. 4, the

subroutine generates iterates that gradually get closer to

x̂N 0 : When the current iterate is sufficiently close to x̂N 0 ; as

determined by a precision-adjustment rule described

below, the number of sample points is increased from N 0

to N 00 . N 0: The subroutine then continues by computing

iterates that approach a solution of PN 00 until the rule again

determines that the number of sample points must be

increased to N 000: The solution of PN 00 is denoted x̂N 00 in Fig.

4. This process continues and the iterates generated by the

algorithm converge to the solution x̂ of P: The last iterate

of the previous approximation level is used as a ‘warm

start’ for the next approximation level. The iterates

generated by the algorithm gradually get closer and closer

to a solution of the current approximating problem before

the number of sample points is increased. Effectively, the

algorithm computes approximating solutions to a sequence

of approximating problems {PN}N[N with higher and

higher precision as the number of iterations increases.

The ‘moving target’ scheme is much more efficient than

choosing a large number of sample points Np and solving

the corresponding problem PNp : This strategy is illustrated

by the dashed arrow in Fig. 4. The dashed arrow

is shorter than the solid path, but each iteration is

computationally costly due to the large number of sample

points Np: In comparison, each iteration in our algorithm is

relatively inexpensive until the iterates are close to a

solution of P:

To be able to prove convergence of our algorithm, we

impose a requirement on the nonlinear optimization

subroutine. The precise mathematical statement of this

requirement can be found in Ref. [36]. The requirement

essentially ensures that a sequence generated by the

subroutine, when applied to PN ; has two properties: (i)

The sequence converges to a Karush–Kuhn–Tucker point

for PN : (ii) There is a guaranteed minimum progress towards

a Karush–Kuhn–Tucker point, which, for sufficiently large

N; is independent of N: In Appendix A, we present one well-

tested nonlinear optimization algorithm that satisfies this

requirement.

Before we describe the algorithm, we need to establish

some notation. Let

FNðx
0
; x00;m;sÞ ¼max{f0;Nðx

00;m;sÞ2 f0;Nðx
0;m;sÞ

2 gcNðx
0;m;sÞþ;cNðx

00;m;sÞ

2 cNðx
0;m;sÞþ}; ð11aÞ

whereg . 0isaconstant,m ¼ ðm1;…;mKÞ;s ¼ ðs1;…;sKÞ;

and

f0;Nðx;m;sÞ ¼ c0ðxÞ þ
XK
k¼1

ckðxÞpk;Nðx;mk;skÞ; ð11bÞ

cNðx;m;sÞ ¼max max
k[K

{pk;Nðx;mk;skÞ2 p̂k};max
j[J

fjðxÞ

� 	
;

ð11cÞ

and cNðx;m;sÞþ ¼max{0;cNðx;m;sÞ}: Note that

f0;Nðx;m;sÞ and cNðx;m;sÞ are the objective function

and the aggregated constraint function in PN ; respectively.Fig. 4. Moving targets.
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The function FNðx
0; x00;m;sÞ measures how much ‘better’

the design x00 is compared to x0: Suppose x0 is a feasible

design for PN : Then, cNðx
0;m;sÞ # 0 and, hence

FNðx
0
; x00;m;sÞ ¼max{f0;Nðx

00;m;sÞ2 f0;Nðx
0;m;sÞ;

cNðx
00;m;sÞ}: ð11dÞ

We see that if FNðx
0; x00;m;sÞ # 2v; with v being some

positive number, then the objective function in PN at x00

is reduced with at least the amount v compared to

the value at x0: Additionally, x00 is feasible for PN because

cNðx
00;m;sÞ # 2v:

Suppose that x0 is not a feasible design for PN : Then,

cNðx
0;m;sÞ . 0: When FNðx

0; x00;m;sÞ # 2v; the

constraint violation for PN at x00 is reduced with at

least the amount v compared to the value at x0 because

cNðx
00;m;sÞ2 cNðx

0;m;sÞ # 2v:

Our algorithm for solving P takes the following form.

Algorithm for solving P.

Parameters. Select k . 0; h . 0; g . 0; and either

(mk ¼ 0;sk ¼ 1) or ðmk [ Rm21;sk . 1Þ for all k [ K:

Data. An initial design x1 [ Rn; an infinite sequence �u1;

�u2; �u3;… of generated realizations of independent standard

normal ðm 2 1Þ-dimensional random vectors �U1; �U2; �U3;…;

and an infinite set N of strictly increasing positive integers.

Step 0. Set i ¼ 1 and N equal to the smallest number in N:

Step 1. Starting from xi; compute xp by performing one

iteration of a nonlinear optimization subroutine

applied to PN :

Step 2. If

FNðxi; x
p;m;sÞ # 2

hðlog NÞkþ1=2ffiffiffi
N

p ; ð12Þ

then set xiþ1 ¼ xp; Ni ¼ N; and go to Step 3.

Else, augment N to the smallest number in N
larger than N; and go to Step 1.

Step 3. Replace i by i þ 1; and go to Step 1.

In Ref. [36], we show that when using a suitable

subroutine (e.g. the one given in Appendix A), the algorithm

for solving P generates a sequence of designs {xi} converging

to a Karush–Kuhn–Tucker point. In fact, the algorithm is

shown to also converge to more general F: John points [33]. It

should be noted that the number of sample points is driven to

infinity as the algorithm progresses, i.e. Ni !1; as i !1:

In the absence of convexity, algorithms for solving

nonlinear optimization problems can typically only guar-

antee convergence to Karush–Kuhn–Tucker points, or

points satisfying some other first-order necessary optimality

condition. Karush–Kuhn–Tucker points are usually local

minimizers of the problem at hand.

In applications, the algorithm for solving P is always

terminated after a finite number of iterations. Various

stopping rules, such as “stop when the allocated time is

consumed” and “stop when Ni . 103;” can be used.

Advanced stopping rules and techniques for evaluating the

quality of a candidate solution can be found in Refs. [38,39],

and for the case with deterministic constraints, in Ref. [25].

The one-dimensional root finding problems in the

evaluation of pk;Nðx;mk;skÞ and 7pk;Nðx;mk;skÞ usually

cannot be solved exactly in finite computing time. One

possibility is to introduce an additional precision parameter

that ensures a gradually better accuracy in the root finding as

the algorithm progresses. Alternatively, we can prescribe a

rule saying that the root finding algorithm (e.g. the secant

method) should terminate after cNi iterations, with c some

constant. These alternatives lead to an implementable

algorithm with similar behavior as the algorithm described

above. For simplicity of the presentation, we have not

included the issue of root finding in the discussion. In fact,

this issue is not problematic in practice. One-dimensional

root finding problems can be solved in a few iterations with

close to floating-point accuracy using standard algorithms.

Hence, the root finding problem can be solved with a fixed

precision for all iterations in the algorithm for solving P

giving a negligible error compared to the one caused by the

sampling technique.

In realistic design examples, evaluations of the limit-

state functions and their gradients typically involve

computationally costly steps such as the solutions of

boundary value problems. It is therefore crucial to reduce

the number of sample points used in the algorithm for

solving P: Such reduction can be obtained by selecting

the sampling parameters mk and sk (see Eqs. (8a) and

(8b)) so that the samples are concentrated in the regions

with highest contributions to the estimates of the

integrals. To identify such regions can be hard, but one

possibility is to center the sampling density at the point

�up
kðxÞ; where up

kðxÞ ¼ ððu1Þ
p
kðxÞ; �u

p
kðxÞÞ is the closest point

to the origin on the limit-state surface {ulgkðx;uÞ ¼ 0};

i.e. up
kðxÞ is the design point for gkðx;uÞ [5]. Hence, �up

kðxÞ

is the vector containing all the components, except the

first one, of the design point for gkðx; uÞ:

A preliminary study of the accuracy of the estimation

technique (8a), with mk ¼ �up
kðxÞ is presented in Table 1. The

number of sample points needed to compute an estimate of

the failure probability with coefficient of variation of 0.05

using standard, crude Monte Carlo simulation (MC), i.e.PN
j¼1 IFkðxÞ

ðujÞ=N; standard importance sampling centered at

the design point (IP), our crude technique (7a), and our

focused technique (8a) are reported. In Eq. (8a), we

select mk ¼ �up
kðxÞ and sk ¼ 1: Two examples are con-

sidered. The first example (Linear) uses the limit-state

function gkðx;uÞ ¼ d 2
Pm

i¼1 ui with varying parameters d

and m: The second example (Initial Girder and Optimal
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Girder) used the nonlinear limit-state function associated

with flexure in the reinforced concrete girder described in

Section 7. ‘Initial’ and ‘Optimal’ refer to the initial and

optimal design, respectively, of the girder as found in

Section 7. It is seen from Table 1 that Eq. (8a), with mk ¼

�up
kðxÞ; requires significantly fewer sample points than

importance sampling (IP) to obtain the same accuracy.

However, it should be noted that Eq. (8a) generally requires

the solution of N one-dimensional root-finding problems,

with additional evaluations of the limit-state function.

Typically, it takes only a few additional evaluations of the

limit-state function to solve the root-finding problem with

sufficient accuracy. Even when this is taken into account,

Eq. (8a), with mk ¼ �up
kðxÞ; appears to be a reasonably

efficient technique for estimating the failure probability.

It should be noted that in Ref. [18], a rotational

transformation is used in conjunction with Eq. (7a) to

obtain a sampling technique which appears to be better than

importance sampling in many cases. The application of this

sampling technique in conjunction with the algorithm for

solving P appears to be problematic because the rotational

transformations may lead to violations of Assumption 1.

Hence, that sampling technique is not considered in this

paper.

As the algorithm for solving P progresses, the region with

the highest contribution to the integrals (8a) and (8b), and the

design points up
kðxiÞ may vary. Hence, the design points

should be re-estimated multiple times. Any scheme involving

a finite number of changes in the sampling parameters mk can

be used without affecting the convergence properties of the

algorithm for solving P: Other more advanced sampling

techniques, as found in Refs. [23,24,32,40], can potentially

be used in conjunction with the algorithm for solving P.

7. Design of reinforced concrete girder

Consider a highway bridge with reinforced concrete

girders of the type shown in Figs. 5 and 6. In this example, we

design one such girder using the material and load data from

Refs. [8,20]. The design variables are collected in the vector

x ¼ ðAs; b; hf ; bw; hw;Av; S1; S2; S3Þ [ R9
; ð13Þ

where As is the area of the tension steel reinforcement, b is the

width of the flange, hf is the thickness of the flange, bw is

the width of the web, hw is the height of the web, Av is the area

of the shear reinforcement (twice the cross-section area of a

stirrup), and S1; S2 and S3 are the spacings of shear

reinforcements in intervals 1, 2, and 3, respectively, see

Fig. 6. The random variables describing the loading and

material properties are collected in the vector

V ¼ ðfy; f
0
c;PD;ML;PS1;PS2;PS3;WÞ [ R8

; ð14Þ

where fy is the yield strength of the reinforcement, f 0c is the

compressive strength of concrete, PD is the dead load

excluding the weight of the girder, ML is the live load

moment, PS1;PS2 and PS3 are the live load shear forces in

intervals 1, 2, and 3, respectively, see Fig. 6, and W is the unit

weight of concrete. Following Ref. [20], all the random

variables are considered to be independent and normally

distributed with the means and coefficients of variation as

listed in Table 2. Let the girder length be Lg ¼ 18:30 m, and

the distance from the bottom fiber to the centroid of the

tension reinforcement be a ¼ 0:1 m, see Fig. 5.

The objective is to design the girder according to the

specifications in Ref. [1]. However, these specifications do

not lead to well-defined optimization problems for two

Table 1

Number of samples to estimate the failure probability with c.o.v 0.05

MC IP (7a) (8a)

Linear d ¼ 7:3566; m ¼ 10 44 000 980 20 000 330

Linear d ¼ 11:7606; m ¼ 10 4 000 000 1600 1 400 000 380

Linear d ¼ 16:4498; m ¼ 50 38 000 1100 30 000 620

Linear d ¼ 26:2974; m ¼ 50 3 700 000 1600 2 600 000 820

Initial girder 27 000 1200 18 000 470

Optimal girder 290 000 1500 190 000 550

Fig. 5. Cross-section of reinforced concrete girder.

Fig. 6. Reinforced concrete girder with shear reinforcement.
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reasons. First, some of the constraints specified by American

Association of State Highway and Transportation Officials

[1] are not continuous functions, but of the form f ðxÞ # 1

whenever hðxÞ # 0 and otherwise f ðxÞ # 2; where f ðxÞ and

hðxÞ are continuous functions. Second, hðxÞ may also depend

on the random variables of the problem. In the following, the

first difficulty is overcome by considering different cases. For

example, Case 1 has the constraints f ðxÞ # 1 and hðxÞ # 0;

while Case 2 has the constraints f ðxÞ # 2 and hðxÞ $ 0: The

optimal design for each case is found independently, and the

design with the smallest value of the objective function is our

solution. The second difficulty is overcome by replacing any

random variables in the definition of hðxÞ by their mean

values. The four cases corresponding to the different

specifications in Ref. [1] are defined in Ref. [37].

Suppose that the objective is to minimize the initial cost of

the reinforced concrete girder, subject to constraints on the

failure probabilities and deterministic constraints according

to Ref. [1]. Let Cs ¼ 50 and Cc ¼ 1 be the unit costs of

the steel reinforcement and concrete per cubic meter,

respectively. As in Ref. [20], we define the initial cost to be

c0ðxÞ ¼ 0:75CsLgAs þ CsnSAvðhf þ hw 2 aþ 0:5bwÞ

þ CcLgðbhf þ bwhwÞ; ð15Þ

where nS ¼ Lgð1=S1 þ 1=S2 þ 1=S3Þ=3 is the total number of

stirrups. In Eq. (15), the first term represents the cost of

the bending reinforcement. The factor 0.75 appears due to the

assumption that the total amount of bending reinforcement is

placed only within a length Lg=2 centered at the middle point

of the girder, and the remaining part is reinforced with 0:5As:

The second and third terms in Eq. (15) represent the costs of

shear reinforcement and concrete, respectively. Since we

only consider the initial cost, we set ckðxÞ ¼ 0 for k [ K in

Eq. (3a).

We assume that the girder can fail in four different modes

corresponding to bending stress in mid-span and shear stress

in intervals 1, 2, and 3. Conditions ensuring that the failure

probabilities in each mode are less than or equal to 0.001350

are included as constraints. The details about the corre-

sponding limit-state functions and 23 other deterministic

constraint can be found in Ref. [37]. It should be noted that

the limit-state functions are nonlinear, but given by explicit

expressions. The resulting reliability-based optimal design

problem is solved using the algorithm presented above, with

the nonlinear optimization subroutine given in Appendix A.

We select to solve the equations gkðx;uÞ ¼ 0 for the

standardized random variable corresponding to PD: In the

algorithm for solving P; we use the parameters k ¼ 0:0001;

h ¼ 0:01; and g ¼ 2: Note that smaller h implies that the

precision-adjustment rule in Eq. (12) becomes easier to

pass. Hence, smaller h results in an initially slower increase

in the number of sample points. The parameters in the

subroutine (see Appendix A) were selected to be aa ¼ 0:5;

ba ¼ 0:8; and da ¼ 1: The selected values of g; aa; ba; and

da are standard for this type of algorithms.

The set N ¼ {40; 200; 1000; 5000; 25 000;…}: Hence,

the algorithm uses initially 40 sample points, before the

number is increased to 200, 1000, etc. We do not specify N
beyond 25 000 because we plan to terminate the calculations

when the number of sample points is increased beyond

25 000.

Initially, the sampling parameters mk are determined by

performing five iterations of the iHLRF algorithm [44] for

finding the design point of gkðx; uÞ and setting mk equal to

the last iterate. The sampling parameters mk are updated for

each 25 iterations of the algorithm for solving P by

Table 2

Statistics of normal random variables

Variable Description Mean c.o.v.

fy Yield strength of reinforcement 413.4 £ 106 Pa 0.15

f 0c Compressive strength of concrete 27.56 £ 106 Pa 0.15

PD Dead load excluding girder 13.57 £ 103 N/m 0.20

ML Live load moment 929 £ 103 N m 0.243

PS1 Live load shear in interval 1 138.31 £ 103 N 0.243

PS2 Live load shear in interval 2 183.39 £ 103 N 0.243

PS3 Live load shear in interval 3 228.51 £ 103 N 0.243

W Unit weight of concrete 22.74 £ 103 N/m3 0.10

Table 3

Optimal design of reinforced concrete girder

i

1 368 425 472 495 562

As (m2) 0.010000 0.008916 0.008914 0.008935 0.008942 0.008954

b (m) 0.500 0.444 0.412 0.396 0.392 0.384

hf (m) 0.500 0.355 0.382 0.399 0.403 0.411

bw (m) 0.500 0.211 0.204 0.200 0.199 0.197

hw (m) 0.500 0.842 0.816 0.800 0.797 0.789

Av (m2) 0.0005000 0.0001586 0.0001644 0.0001659 0.0001668 0.0001685

S1 (m) 0.500 0.539 0.537 0.536 0.536 0.535

S2 (m) 0.500 0.221 0.227 0.229 0.229 0.230

S3 (m) 0.500 0.141 0.142 0.141 0.142 0.143

c0ðxiÞ 17.065 13.033 12.850 12.760 12.741 12.696
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performing five iterations of the iHLRF algorithm. The

parameters sk ¼ 1:01 are kept constant for all iterations and

limit-state functions.

The algorithm for solving P is implemented using Matlab

[28], with the QP-solver ‘quadprog’, and the example is run

on a 1.7 GHz laptop. The calculations are terminated after

562 iterations of the algorithm, when the algorithm is about

to increase the number of sample points beyond 25 000. The

design and corresponding cost after various number of

iterations are summarized in Table 3. The iterates i ¼ 368;

425, 472, and 495 correspond to the last iterates with Ni ¼

40; 200, 1000, and 5000, respectively.

Table 4 shows the computing time (CPU) needed to

reach the various iterations and the estimates of the failure

probabilities using both Ni and N* ¼ 25 000 number of

sample points with corresponding estimates of the coeffi-

cients of variation (c.o.v.). The convergence of the iterates

xi and the objective function c0ðxiÞ; and the increase in the

number of sample points Ni are shown in Figs. 7–9,

respectively.
We see from Table 4 and Figs. 7–9 that the number of

sample points Ni is initially small but increases as less

progress is made towards the solution of the approximating

problems. In fact, most iterations are performed on

problems involving only 40 sample points. This low number

of sample points does not give an accurate estimate of the

failure probabilities, but it is sufficient to direct the search

towards an optimal design. This illustrates a significant

advantage of the algorithm: Coarse estimates of the failure

probabilities can be used until a reasonably good design is

obtained. Using this design as a ‘warm start’, it is necessary

to perform only a few iterations with high-precision,

computationally expensive estimates of the failure prob-

abilities to obtain a nearly optimal design.

In this example, we let the algorithm continue for 67

iterations using accurate failure probability estimates (c.o.v.

of 0.008) until a highly accurate estimate of the optimal

design was obtained. In practice, the additional computing

time needed to obtain a highly accurate estimate of the

optimal design may not be available or the additional effort

may not be necessary. At iterations 472 and 495, the balance

between accuracy and computing time is suitable for

practical calculations. As seen from Table 4, those iterations

Table 4

Algorithm performance

i

1 368 425 472 495 562

Ni 40 40 200 1000 5000 25 000

CPU (s) 0 203 310 689 1790 14 600

p1;Ni
ðxi;m1;s1Þ 0.015412 0.001336 0.001342 0.001346 0.001347 0.001349

p2;Ni
ðxi;m2;s2Þ 0.000000 0.001336 0.001343 0.001346 0.001347 0.001349

p3;Ni
ðxi;m3;s3Þ 0.000000 0.001336 0.001342 0.001346 0.001347 0.001349

p4;Ni
ðxi;m4;s4Þ 0.000237 0.001336 0.001342 0.001346 0.001347 0.001349

c.o.v. pk;Ni
0.2 0.2 0.1 0.04 0.02 0.008

p1;Np ðxi;m1;s1Þ 0.014171 0.001266 0.001342 0.001362 0.001351 0.001349

p2;Np ðxi;m2;s2Þ 0.000000 0.001161 0.001176 0.001307 0.001315 0.001349

p3;Np ðxi;m3;s3Þ 0.000000 0.001147 0.001216 0.001354 0.001330 0.001349

p4;Np ðxi;m4;s4Þ 0.000277 0.001767 0.001402 0.001308 0.001358 0.001349

Fig. 7. Convergence in iterates xi: Fig. 8. Convergence in objective c0ðxiÞ:
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are reached only after 11 and 30 min. The corresponding

accuracy is quite good with coefficients of variation of 0.04

and 0.02 for the failure probabilities. As see from Table 4,

the designs after iterations 472 and 495 may slightly violate

the failure probability constraints pkðxÞ # 0:001 350: How-

ever, the estimates of the failure probabilities using N472 and

N495 sample points are less than the bound 0.001 350, which

in practice is considered sufficient.

8. Conclusions

We have developed an implementable algorithm for the

solution of reliability-based optimal design problems based

on Monte Carlo simulation and importance sampling. The

algorithm is illustrated by an example from the area of

highway bridge design. Contrary to existing algorithms, our

algorithm is proven to converge to a solution of the problem

with probability 1 under fairly general conditions. The

algorithm, with its use of sampling techniques, yields a

more accurate estimate of the optimal design than

algorithms based on first-order reliability approximations.

The algorithm uses an adaptive scheme to control the

precision of the failure probability estimates, which reduces

the computing time significantly. Initially, only a small

number of sample points is used to estimate the failure

probability. This low number results in inaccurate estimates

of the failure probability, but it is sufficient to direct the

search towards an optimal design. As the algorithm

progresses to a solution, the number of sample points is

increased to obtain a high-quality solution. The derivations

in this paper also led to a new sensitivity formula for the

failure probability. This result is of importance in structural

reliability analysis.

Our algorithm may require a large number of evaluations

of the limit-state functions and their gradients. Hence, the

algorithm is not applicable to problems with limit-state

functions that are computationally costly to evaluate. In such

cases, different types of approximations must be introduced

[42]. For computationally inexpensive limit-state functions,

the algorithm appears to be efficient, particularly when the

importance sampling option is utilized. In view of the

increasing speed of computers and the possibility for

parallel processing, we expect the algorithm to be applicable

to problems with moderately costly limit-state functions in

the near future.
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Appendix A

The Polak-He algorithm, see section 2.6 in Ref. [33], can

be used as a nonlinear optimization subroutine in the

algorithm for solving P: In Ref. [36], we show that the

Polak-He algorithm satisfies the necessary requirements for

the use as a subroutine. For completeness, we describe the

Polak-He algorithm in the specialized form needed when

solving PN :

For any positive integer N; sampling parameters mk [
Rm21 and sk . 0; and sequence of realizations �u1; �u2;…; �uN

of independent standard normal ðm 2 1Þ-dimensional ran-

dom vectors �U1; �U2;…; �UN ; we define one iteration of the

Polak-He algorithm starting from xi by the formula:

xp ¼ xi þ lðxiÞhðxiÞ; ðA1Þ

where the Armijo step-size is given by

lðxiÞ ¼ max
k[{1;2;3;…}

{bk
alFNðxi; xi þ bk

ahðxiÞ;m;sÞ

# bk
aaauðxiÞ}; ðA2Þ

with FNðxi; xi þ bk
ahðxiÞ;m;sÞ as in Eq. (11a), parameters

aa [ ð0; 1� and ba [ ð0; 1Þ; and, for some parameters g;

da . 0

uðxiÞ ¼ 2min
z[Z

zTbðxiÞ þ
1

2da

zTAðxiÞ
TAðxiÞz

� 	
; ðA3Þ

with

Z ¼

(
z [ RKþJþ1








XKþJþ1

l¼1

zl ¼ 1; zl $ 0;

l ¼ 1;…;K þ J þ 1

)
;

ðA4Þ

Fig. 9. Increase in number of sample points Ni:
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and (see Eq. (11c) for notation)

bðxiÞ ¼

gcNðxi;m;sÞþ

cNðxi;m;sÞþ 2 p1;Nðxi;m1;s1Þ þ p̂
1

..

.

cNðxi;m;sÞþ 2 pK;Nðxi;mK ;sKÞ þ p̂K

cNðxi;m;sÞþ 2 f1ðxiÞ

..

.

cNðxi;m;sÞþ 2 fJðxiÞ

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ðA5Þ

AðxiÞ
T ¼

7f0;Nðxi;m;sÞ
T

7p1;Nðxi;m1;s1Þ
T

..

.

7pK;Nðxi;mK ;sKÞ
T

7f1ðxiÞ
T

..

.

7fJðxiÞ
T

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

: ðA6Þ

Note that bðxiÞ is a ðK þ J þ 1Þ-vector and AðxiÞ is a n £

ðK þ J þ 1Þ matrix.

Finally, the search direction

hðxiÞ ¼ 2
1

da

AðxiÞẑ; ðA7Þ

where ẑ is any solution of Eq. (A5). The parameter g in Eq.

(A3) should be set equal to the value of the parameter g in

the algorithm for solving P: Note that the optimization

problem in Eq. (A3) is with respect to z with xi being fixed.

The problem in Eq. (A3) is a quadratic optimization

problem in z with positivity and one linear constraints.

Hence, it can be solved in a finite number of iterations by a

standard QP-solver such as ‘quadprog’ [28] or ‘issol’ [11].
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