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Implementable Algorithm for
Stochastic Optimization Using

Sample Average Approximations1

J. O. Royset2 and E. Polak3

Abstract. We develop an implementable algorithm for stochastic
optimization problems involving probability functions. Such problems
arise in the design of structural and mechanical systems. The algorithm
consists of a nonlinear optimization algorithm applied to sample
average approximations and a precision-adjustment rule. The sample
average approximations are constructed using Monte Carlo simula-
tions or importance sampling techniques. We prove that the algorithm
converges to a solution with probability one and illustrate its use by
an example involving a reliability-based optimal design.

Key Words. Stochastic optimization, sample average approximations,
Monte Carlo simulations, reliability-based optimal designs.

1. Introduction

A wide range of engineering decisions is subject to uncertainties
caused by insufficient information about the system properties, the random
occurrence of events such as earthquakes or explosions, the inaccurate rep-
resentation of the real-world system by mathematical models, etc. In such
situations, reliability-based optimization can be used as a decision-support
tool.
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The reliability-based optimal design problem takes the form

(P ) min
x∈X

{
c0(x)+

∑
k∈K

ck(x)pk(x)|pk(x)≤ p̂k, k∈K
}
, (1a)

where the design variables are denoted by x∈X⊂R
n and the failure prob-

abilities pk(x), k∈K={1,2, . . . ,Kg}, are given by the m-dimensional inte-
grals

pk(x)=
∫

Fk(x)

ϕm(u)du, k∈K, (1b)

with ϕm : R
m → R being the m-dimensional standard normal probability

density function and Fk(x)⊂R
m being a failure domain. Furthermore, ck :

R
n → R, k ∈ {0,1, . . . ,Kg}, are continuously differentiable functions, with

c0(·) describing the initial cost and ck(·), k>1, the cost associated with the
kth failure mode. The values p̂k are predefined bounds on the failure prob-
abilities.

Problems of the form P are difficult to solve for at least two reasons.
First, rarely pk(·) can be evaluated exactly; hence, approximations are usu-
ally needed. Second, pk(·), k ∈K, and their approximations can be non-
smooth.

In the engineering literature, we find several approaches for solving
problem P. These approaches include the use of response surface
techniques (Ref. 1), surrogate functions (Ref. 2), and first-order approx-
imations to the failure probability (Refs. 3–5). These approaches work
satisfactorily under certain conditions, but are not proved to converge to
a solution of problem P.

Problems of the form P are special cases of stochastic optimiza-
tion problems (see e.g. Refs. 6–7). The two main techniques for solv-
ing stochastic optimization problems are stochastic quasigradient methods
(Refs. 8–12) and sample average approximations (Refs. 13–19).

Stochastic quasigradient methods are not applicable to problems
involving failure probability constraints. In principle, such constraints can
be removed by including penalty terms or barrier terms in the objec-
tive function. However, the details of such an approach do not appear
to have been worked out. Additionally, Ref. 19 reports that stochastic
quasigradient methods are less robust numerically than sample average
approximations due to the difficulty of selecting an efficient stepsize. Thus,
stochastic quasigradient methods do not appear to be a good choice for
solving reliability-based optimal design problems of the form P.
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The results available for sample average approximations include the
fact that the minimizers and minimum values of sample average approxi-
mations converge to a minimizer and minimum value of the original prob-
lem, respectively, as the number of samples goes to infinity. Techniques for
checking whether a given design is sufficiently close to stationarity or opti-
mality can be found in Refs. 17 and 19 and, for the case of deterministic
constraints, in Ref. 18. These results provide guidance for the selection of
one or more approximating problems to be solved using some optimiza-
tion algorithm.

In this paper, we develop a new implementable algorithm for the
solution of problem P based on sample average approximations. Under
certain assumptions, we show that both the failure probability and the
corresponding sample average approximations are smooth. The sample
average approximations give rise to a sequence of smooth approximating
problems corresponding to gradually larger sample sizes. Rather than pick-
ing a particularly accurate approximation problem to solve, we use a much
more efficient diagonalization technique, which consists of starting out
with a coarse approximation and then proceeding recursively as follows.
One applies a nonlinear programming algorithm to the current approxi-
mation until a precision-adjustment test indicates that it is time to move
on to a higher-precision approximation whose solution is initiated with
the last iterate of the preceding nonlinear programming calculation, i.e., a
warm start. Hence, a reasonably good design is obtained before numeri-
cally costly approximations are required. We show that the algorithm con-
verges to a local solution with probability 1 and illustrate its behavior with
a numerical example.

2. Definition of the Failure Domain

In accordance with common practice in structural and mechanical
engineering (see e.g. Ref. 20), we express the uncertainties in engineering
design by means of a time-invariant probabilistic model defined in terms
of an m-dimensional vector V of random variables. Failures of a struc-
ture are defined in terms of limit-state functions Gk : R

n × R
m → R, k ∈

K. It is theoretically and computationally convenient to introduce a bijec-
tive transformation of realizations v of the random vector V into realiza-
tions u of a standard normal random vector U. Such transformations can
be defined under weak assumptions when the probability distribution of
V is continuous. For a given design vector x, let Tx : R

m → R
m denote

this transformation. Replacing v by T −1
x (u), gives the equivalent limit-state

functions gk : Rn×R
m→R, k∈K, defined by
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gk(x, u)=Gk(x, T −1
x (u)).

The failure domain Fk(x) associated with the kth limit-state function
is then defined by

Fk(x)={u∈R
m|gk(x, u)≤0}. (2)

Before we proceed, we adopt the following notation. For any set A⊂
R
m, we define the indicator function

IA(u)=1, whenever u∈A,
IA(u)=0, otherwise.

The components of vectors are given by superscripts; i.e.,

a= (a1, a2, . . . , aq)∈R
q .

Note that, in this notation,

pk(x)=
∫ ∞

−∞
. . .

∫ ∞

−∞
IFk(x)(u)ϕm(u)du

1 . . . dum, k∈K. (3)

3. Properties of the Failure Probability

A sufficient condition for the failure probability to be continuous is
found in Ref. 21.

Assumption A1. We assume that, for each k∈K,

(i) the limit-state function gk(·, ·) is continuous,
(ii) M({u ∈ R

m|gk(x, u) = 0}) = 0, for all x ∈ R
n, where

M(S)= ∫
S
ϕm(u)du, for any set S⊂R

m.

Theorem 3.1. See Ref. 21. If Assumption A1 is satisfied, then the
failure probabilities pk(·), k∈K, defined in (1b) and (2), are continuous.

A sufficient condition for the failure probability to be continuously
differentiable becomes apparent when the equation gk(x, u) = 0 can be
solved uniquely in terms of one of the components of u. In Assumption
A2 below, this solution is denoted by hk and is clearly a function of x and
the other components of u. Before we proceed with a precise statement, we
adopt the following notation. For any u∈R

m, let

(u1, ū)=u, with u1 ∈R and ū= (u2, u3, . . . , um)∈R
m−1.
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Assumption A2. We assume that, for each k∈K,

(i) there exists a function hk : Rn×R
m−1 →R such that, for all x ∈

R
n and ū∈R

m−1, gk(x, (hk(x, ū), ū))=0,
(ii) for all x ∈R

n and ū∈R
m−1, ∂gk(x, (hk(x, ū), ū))/∂u

1 �=0,
(iii) the limit-state function gk(·, ·) is continuously differentiable.

Assumption A2 is satisfied in many practical applications. For example,
Assumption A2(i) holds when

gk(x, u)= g̃k(x, ū)+f (x)u1,

with g̃k(·, ·) some function and f (x)>0 for all x ∈R
n.

In Assumptions A1 and A2, the statements are required to hold for
all x ∈ R

n. However, it is sufficient that these statements hold on a suffi-
ciently large subset of the design space containing all relevant designs.
Since the characterization of such a subset is application dependent, for
generality, we have adopted stronger assumptions than needed typically in
practice.

In the following, we denote the standard normal cumulative distribu-
tion function by �(·), i.e.,

�(α)=
∫ α

−∞
ϕ1(a)da. (4)

Theorem 3.2. Suppose that Assumption A2 holds.

(i) If α<hk(x, ū) implies gk(x, (α, ū))<0, then pk(·) is continuously
differentiable and

pk(x)=
∫ ∞

−∞
. . .

∫ ∞

−∞
�(hk(x, ū))ϕm−1(ū)du

2 . . . dum, (5a)

∇pk(x)=−
∫ ∞

−∞
. . .

∫ ∞

−∞
ϕ1(hk(x, ū))

∇xgk(x, (hk(x, ū), ū))
∂gk(x, (hk(x, ū), ū))/∂u1

×ϕm−1(ū)du
2 . . . dum. (5b)

(ii) If α>hk(x, ū) implies gk(x, (α, ū))<0, then pk(·) is continuously
differentiable and

pk(x)=
∫ ∞

−∞
. . .

∫ ∞

−∞
�(−hk(x, ū))ϕm−1(ū)du

2 . . . dum, (5c)

∇pk(x)=
∫ ∞

−∞
. . .

∫ ∞

−∞
ϕ1(hk(x, ū))

∇xgk(x, (hk(x, ū), ū))
∂gk(x, (hk(x, ū), ū))/∂u1

×ϕm−1(ū)du
2 . . . dum. (5d)



162 JOTA: VOL. 122, NO. 1, JULY 2004

Proof. First, consider (i). It follows from (3), Assumption A2(i), and
(4) that

pk(x)=
∫ ∞

−∞
. . .

∫ ∞

−∞

∫ ∞

−∞
IFk(x)(u)ϕm(u)du

1du2 . . . dum

=
∫ ∞

−∞
. . .

∫ ∞

−∞

∫ hk(x,ū)

−∞
ϕm(ū)du

2 . . . dum

=
∫ ∞

−∞
. . .

∫ ∞

−∞
�(hk(x, ū))ϕm−1(ū)du

2 . . . dum. (6a)

Since g(·, ·) is continuously differentiable and ∂gk(x, (hk(x, ū), ū))/∂u
1 �= 0

by Assumption A2, hk(·, ·) is also continuously differentiable with

∇xhk(x, ū)=− ∇xgk(x, (hk(x, ū), ū))
∂gk(x, (hk(x, ū), ū))/∂u1

. (6b)

Hence, from (6a) and (6b), and from the fact that the differentiation and
integration operators can be interchanged, we obtain (5b). Item (ii) follows
by the same arguments as above.

In Ref. 12, we find a result similar to Theorem 3.2. It is shown in
Ref. 12 that the failure probability is continuously differentiable when the
random variables V are bounded. The result in Ref. 12 holds also when
gk(·, ·) is a nonsmooth function of the form

gk(x, u)=maxj∈Jk φk,j (x, u),

with φk,j (·, ·) being smooth and Jk being a set of finite cardinality
In the following, we assume without loss of generality that (5a) and

(5b) hold, but not (5c) and 5(d). If the assumption of item (ii) in Theo-
rem 3.2 holds, we can transform always the problem into a case satisfying
the assumption of item (i) in Theorem 3.2 by replacing u1 by −u1 in the
definition of gk(·, ·).

4. Algorithm

We derive an algorithm for solving problem P in two steps. In the
first step, we use sampling techniques to estimate the failure probability.
This gives rise to a family of approximating problems, which is increas-
ingly accurate as the number of sample points increases. In the second
step, we develop an adaptive precision adjustment rule and incorporate it
in a diagonalization type algorithm, which we show to converge to local
solutions of problem P in (1a).
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4.1. Approximation Result. The Monte Carlo simulation estimates of
(5a) and (5b) are

pk,N(x)= (1/N)
N∑
j=1

�(hk(x, ūj )), (7a)

∇pk,N(x)=−(1/N)
N∑
j=1

ϕ1(hk(x, ūj ))
∇xgk(x, (hk(x, ūj ), ūj ))
∂gk(x, (hk(x, ūj ), ūj ))/∂u1

,

(7b)

where ū1, ū2, . . . , ūN are realizations of a collection of independent stan-
dard normal (m-1)-dimensional random vectors Ū1, Ū2, . . . , ŪN .

Instead of generating sample points according to a standard normal
distribution, as in (7a) and (7b), we can sample according to other prob-
ability distributions. This approach leads to importance sampling, which
tends to improve the failure probability estimates by concentrating the
samples in the most relevant region. A typical selection of a sampling dis-
tribution is a (non-standard) normal distribution. In this paper, we use a
normal random vector with mean vector µ ∈ R

m−1 and variance-covari-
ance matrix σ I, σ >0, where I is the (m−1)× (m−1) identity matrix. The
importance sampling estimates of (5a) and (5b) are

pk,N(x;µ,σ)= (1/N)
N∑
j=1

�(hk(x, σ ūj +µ)) ϕm−1(σ ūj +µ)
ϕm−1(ūj )/σ

m−1
, (8a)

∇pk,N(x;µ,σ)=− (1/N)
N∑
j=1

ϕ1(hk(x, σ ūj +µ))

× ∇xgk(x, (hk(x, σ ūj +µ),σ ūj +µ))
∂gk(x, (hk(x, σ ūj +µ),σ ūj +µ))/∂u1

× ϕm−1(σ ūj +µ)
ϕm−1(ūj )/σ

m−1
, (8b)

where we have used the fact that σ ū+µ is a normal random vector with
mean vector µ and variance-covariance matrix σ I. Note that, for σ = 1
and µ=0, (8a) and (8b) simplify to (7a) and (7b). For µ �=0, the samples
are not centered at the origin, but hopefully in a more relevant region.

The statistical estimators corresponding to the estimates in (8a) and
(8b) are given by

p∗
k,N(x;µ,σ)= (1/N)

N∑
j=1

ϕ1(hk(x, σ Ūj +µ)) ϕm−1(σ Ūj +µ)
ϕm−1(Ūj )/σ

m−1
(9a)
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∇p∗
k,N (x;µ,σ)=− (1/N)

N∑
j=1

ϕ1(hk(x, σ Ūj +µ))

× ∇xgk(x, (hk(x, σ Ūj +µ),σ Ūj +µ))
∂gk(x, (hk(x, σ Ūj +µ),σ Ūj +µ))/∂u1

× ϕm−1(σ Ūj +µ)
ϕm−1(Ūj )/σ

m−1
. (9b)

In the following, we use the abbreviation w.p.l for the statement “with
probability one”.

Theorem 4.1. Let Assumptions A1, A2(i) hold and let the sampling
parameters in (9a) be either µ= 0 and σ = 1 (Monte Carlo) or µ∈ R

m−1

and σ > 1 (importance sampling). For every κ > 0 and bounded set S ⊂
R
n, there exists a constant C1 ∈ (0,∞) such that, for all x ∈ S,N ∈ N =

{1,2,3, . . . }, and k∈K,
|p∗
k,N (x;µ,σ)−pk(x) |≤C1(logN)κ+1/2/

√
N, w.p.1. (10)

Proof. According to Theorem 37 in Ref. 22, we need to show only
that

�(hk(x, σ Ū +µ))ϕm−1(σ Ū +µ)/(ϕm−1(Ū)/σ
m−1)−pk(x)

has zero mean and bounded variance. The expectation of p∗
k,N (x;µ,σ) is

E[p∗
k,N (x;µ,σ)]=E

[
�(hk(x, σ Ū +µ)) ϕm−1(σ Ū +µ)

ϕm−1(Ū)/σ
m−1

]
, (11a)

where Ū is a standard normal (m−1)- dimensional random vector. By the
use of conditioning and a change of variables, we obtain from (11a) that

E[p∗
k,N(x;µ,σ)]

=
∫ ∞

−∞
. . .

∫ ∞

−∞
E

[
�(hk(x, σ Ū +µ)) ϕm−1(σ Ū +µ)

ϕm−1(Ū)/σ
m−1

| Ū = ū
]

×ϕm−1(ū)du
2 . . . dum

=
∫ ∞

−∞
. . .

∫ ∞

−∞
�(hk(x, σ ū+µ)) ϕm−1(σ ū+µ)

ϕm−1(ū)/σ
m−1

×ϕm−1(ū)du
2 . . . dum

=
∫ ∞

−∞
. . .

∫ ∞

−∞
�(hk(x, (ū))ϕm−1(ū)du

2 . . . dum

=pk(x). (11b)
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Clearly,

E[�(hk(x, σ Ū +µ))ϕm−1(σ Ū +µ)/(ϕm−1(Ū)/σ
m−1)−pk(x)]=0. (11c)

Next, we consider the variance. If µ=0 and σ =1, then

ϕm−1(σ ū+µ)/(ϕm−1(ū)/σ
m−1)=1

If µ∈R
m−1 and σ >1, then there exists a constant C ∈ [1,∞) such that

ϕm−1(σ ū+µ)/(ϕm−1(ū)/σ
m−1)≤C, for all ū∈R

m−1.

Hence,

Var
[
�(hk(x, σ Ū +µ)) ϕm−1(σ Ū +µ)

ϕm−1(Ū)/σ
m−1

−pk(x)
]

=E
[(
�(hk(x, σ Ū +µ)) ϕm−1(σ Ū +µ)

ϕm−1(Ū)/σ
m−1

−pk(x)
)]

≤C2 +1, (11d)

for all x∈S and k∈K. Now, the result follows by Theorem 37 in Ref. 22.

We can define a class of approximations to problem P in terms of the
sampling estimator in (9a). For any N ∈ N,µ∈ R

m−1, and σ > 0, let the
approximating problems P∗

N be

(P∗
N)min

x∈Rn

{
c0(x)+

kg∑
k=1

ck(x)p∗
N(x;µ,σ) |

P∗
N(x;µ,σ)≤ p̂k, k∈K,x ∈X

}
. (12)

The deterministic problem corresponding to P∗
N is denoted PN and

is defined by (12) with P∗
k,N (x;µ,σ) replaced by pk,N (x;µ,σ). For the

remainder of the paper, we assume that the subset X⊂ R
n [see problem

P in (1a)] are given by

X={x ∈R
n |fj (x)≤0, j ∈J }, (13)

where

fj : Rn→R, j ∈J ={1,2, . . . , Jf }, (14)

are deterministic, continuously differentiable, constraint functions. Also,
let N ⊂ N be an infinite sequence of strictly increasing integers. Under a
constraint qualification, we state our asymptotic approximation result.
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Assumption A3. For each x∈�, there exist a direction d ∈R
n and an

ε0>0 such that, for all ε∈ (0, ε0], xε=x+εd satisfies fj (xε)<0 for all j ∈J
and pk(xε)< p̂k for all k∈K.

Theorem 4.2. Let Assumptions A1, A2(i), and A3 hold. If {x̂∗
N }NεN

is a sequence of global solutions of {P ∗
N }NεN , then every accumulation

point of {x̂∗
N }NεN is a global solution of problem P with probability 1.

Proof. See the Appendix.

Note that results similar to the one in Theorem 4.2 can be found in
Refs. 13, 15. 19.

4.2. Implementable Algorithm Under Assumptions A1 and A2, prob-
lem P is a smooth nonlinear program with stationary points defined by
the Fritz John conditions (see e.g. Ref.23). We find it convenient to express
those conditions by means of a nonpositive, continuous, optimality func-
tion θ : R

n→R, defined by

θ(x)=−min
ν∈�

{∑
k∈K

νk[ψ(x)+ −pk(x)+ p̂k]

+
∑
j∈J

νj+Kg
[
ψ(x)+ −fj (x)

]

+(1/2δ)
∥∥∥∥∥∥
∑
k∈K

νk∇pk(x)+
∑
j∈J

νj+Kg∇fj (x)

+νKg+Jf+1∇f0(x)

∥∥∥2 +νKg+Jf+1γψ(x)+
}

(15)

with the parameters γ, δ>0 and

f0(x)= c0(x)+
∑
k∈K

ck(x)pk(x), (16)

ψ(x)=max
{

max
k∈K

{
p̂k(x)− p̂k

}
, max
j∈J

fj (x)

}
, (17)

�=
{
ν ∈R

Kg+Jf+1

∣∣∣∣∣∣
Kg+Jf+1∑

i=1

νi =1,

νi ≥0,∀i ∈{1,2, . . . ,Kg +Jf +1
}}
, (18)



JOTA: VOL. 122, NO. 1, JULY 2004 167

ψ(x)+ =max {0,ψ(x)} . (19)

Theorem 4.3. (See Ref. 23). Let Assumption A2 hold. If x̂ ∈R
n is a

local minimizer for problem P , then x̂ satisfies the Fritz. John conditions
and θ(x̂)=0.

A sufficient condition for uniform convergence of (8b) to (5b) follows.

Assumption A4. For every bounded set S⊂R
n, there exists constants

C2,C3 ∈ (0,∞) such that

|∂gk(x, (hk(x, ū), ū))/∂xi |≤C2 and |∂gk(x, (hk(x, ū), ū))/∂u1|≥C3,

for all x ∈S, ū∈R
m−1, k∈K, and i ∈{1,2, . . . , n} .

Assumption A4 can be difficult to check in practice. However, cases
such as

g(x, u)= g̃(x, ū)+f (x)u1,

with f (x)>0 for x∈R
n and bounded random variable V, satisfy Assump-

tion A4.

Theorem 4.4. Let Assumptions A2, A4 hold and let the sampling
parameters in (9b) be either µ= 0 and σ = 1 (Monte Carlo) or µ∈ R

m−1

and σ >1 (importance sampling). For every κ >0 and bounded set S⊂R
n,

there exists a constant C4 ∈ (0,∞) such that, for all x ∈ S, N ∈ N, and
k∈K,

‖∇p∗
k,N (x;µ,σ)−∇pk(x)‖≤C4(logN)κ+1/2/

√
N, w.p.1. (20)

Proof. The result follows by the same arguments as in the proof of
Theorem 4.1.

We formulate an algorithm model for solving problem P , which
makes use of an algorithm map AN :Rn→R

n. For a given number of sam-
ple points N , recursive use of the algorithm map AN will compute a sta-
tionary point of PN . Any algorithm map satisfying an assumption stated
below can be combined with the algorithm model to generate an imple-
mentable algorithm.

The algorithm model considers the sequence of approximating prob-
lems {PN }N∈N . At a given number of sample points N ′, the algo-
rithm model computes iterates that approach a stationary point of the
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approximating problem PN ′ . When the current iterate is sufficiently close
to a stationary point for PN ′ , as determined by a test described below, the
number of sample points is increased to N ′′ >N ′. The algorithm model
then continues by computing iterates that approach a stationary point of
PN ′′ until the test again determines that the number of sample points must
be increased. The last iterate of the previous approximation level is used
as a warm start for the next approximation level. The iterates generated
by the algorithm model gradually get closer and closer to a stationary
point of the current approximating problem before the number of sam-
ple points is increased. In essence, the algorithm model computes approxi-
mating solutions to a sequence of approximating problems {PN }N∈N with
higher and higher precision as the number of iterations increases. Such a
diagonalization scheme is substantially more efficient than choosing a sin-
gle high-precision approximation and solving that directly.

Before we describe the algorithm model, we must establish additional
notation and state the assumption about the algorithm map. Let

FN(x
′, x ′′;µ,σ)=max

{
f0,N (x

′′;µ,σ)−f0,N (x
′;µ,σ)−γψN(x ′;µ,σ)+,

ψN(x
′′;µ,σ)−ψN(x ′;µ,σ)+

}
, (21a)

f0,N (x
′;µ,σ)= c0(x)+

∑
k∈K

ck(x)pk,N (x;µ,σ), (21b)

ψN(x;µ,σ)=max
{

max
k∈K

{
pk,N (x;µ,σ)− p̂k

}
,max
j∈J

fj (x)

}
, (21c)

ψN(x;µ,σ)+ =max {0,ψN(x;µ,σ)} , (21d)

with γ >0 being a constant.

Assumption A5. Let µ∈R
m−1 and σ >0 be the sampling parameters

in (8a) and (8b). For any N≥N0, N0 some integer, let AN :Rn→R
n be an

algorithm map for PN with the property that, for every x ∈ R
n such that

θ(x)<0, there exist ρx >0, Nx ∈N, and δx >0 such that

FN(x
′, x′′;µ,σ)≤−δx, (22)

for all N ≥Nx , x′′ ∈AN(x′), and x′ satisfying ‖x−x′‖≤ρx .

Algorithm 4.1. Algorithm Model for Solving Problem P .

Parameters. k > 0, η > 0, γ > 0, and either (µ = 0, σ = 1) or (µ ∈
R
m−1, σ >1).
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Data. N0 ∈ N, x1 ∈ R
n, an infinite sequence ū1, ū2, ū3, . . . of gen-

erated realizations of independent standard normal (m− 1)-
dimensional random vectors Ū1, Ū2, Ū3, . . . , and an infinite
set N of strictly increasing positive integers.

Step 0. Set i=1.
Step 1. Compute the smallest Ni ∈ N and the corresponding xi+1

such that Ni ≥Ni−1, xi+1 =ANi (xi), and

FNi (xi, xi+1;µσ)≤−η(logNi)κ+1/2/
√
Ni. (23)

Step 2. Replace i by i+1, and go to Step 1.

Proposition 4.1. Let Assumptions A2 and A5 hold. Consider Algo-
rithm 4.1.

(i) If xi ∈ R
n is not stationary , i.e., θ(xi) < 0, then there exists a

finite Ni ∈N such that (23) is satisfied.
(ii) Whenever Algorithm 4.1 constructs an infinite sequence {xi}∞i=1

that has an accumulation point x̂, the accompanying sequence
{Ni}∞i=1 diverges to infinity, i.e., Ni →∞, as i→∞.

Proof. See the Appendix.

Theorem 4.5. Let Assumptions A2, A5 hold and assume that Algo-
rithm 4.1 has constructed a bounded sequence {xi}∞i=1 with accumulation
point x̂. Then, x̂ is a stationary point for problem P, i.e., θ(x̂)=0.

Proof. See the Appendix.

In particular, the Polak-He algorithm map (see Section 2.6 of Ref.
23), given by

AN(x)=x+λN(x;µ,σ)hN(x;µ,σ), (24a)

can be used in Algorithm 4.1, where λN(x;µ,σ) is the Armijo stepsize,

λN(x;µ,σ)=max
k∈N

{
βk|FN(x, x+βkhN(x;µ,σ);µ,σ)

≤ βkαθN(x;µ,σ)
}
, (24b)

with parameters α∈ (0,1], β ∈ (0,1), and for some parameters γ, δ>0,

θN(x;µ,σ)=−min
ν∈�

{∑
k∈K

νk
[
ψN(x;µ,σ)+ −pk,N (x;µ,σ)+ p̂k

]
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+
∑
j∈J

νj+Kg
[
ψN(x;µ,σ)+ −fj (x)

]

+(1/2δ)
∥∥∥∥∥
∑
k∈K

νk∇pk,N (x;µ,σ)

+
∑
j∈J

νj+Kg∇fj (x)+νKg+Jf+1∇f0,N (x;µ,σ)
∥∥∥∥∥∥

2

+ νKg+Jf+1γψN(x;µ,σ)+
}
, (24c)

and where the search direction is

hN(x;µ,σ)=−(1/δ)

×
(∑
k∈K

ν̂k∇pk,N (x;µ,σ)

+
∑
j∈J

ν̂j+kg∇fj (x)+ ν̂kg+Jf+1∇f0,N (x;µ,σ)

 , (24d)

with ν̂= (ν̂1, . . . , ν̂Kg+Jf+1) being any solution of (24c). The parameter γ
in (24c) must be set equal to the value of the algorithm parameter γ in
Algorithm 4.1. The Polak-He algorithm map satisfies Assumption A5.

Proposition 4.2. Let Assumptions A2 and A4 hold. For any N ∈ N,

let the algorithm map AN(·) be defined by one iteration of the Polak-
He algorithm, i.e., (24a), with (24b)-(24d), applied to PN , with the same
values of the parameters α,β, σ, γ for all N ∈ N. Then, AN(·) satisfies
Assumption A5; i.e., for every x ∈ R

n such that θ(x)< 0, there exist ρx >
0, Nx ∈N, and δx >0 such that

FN(x
′, x′′;µ,σ)≤−δx, (25)

for all x′′ ∈AN(x′), N ≥Nx, and x′ satisfying ‖x−x′‖≤ρx .

Proof. See the Appendix.

Note that the one-dimensional root-finding problem in the evaluation
of pk,N(·) and ∇pk,N(·) usually cannot be solved exactly in finite comput-
ing time. Hence, Step 1 of Algorithm 4.1 may be considered as a con-
ceptual step. We could have introduced an additional precision parame-
ter that ensures gradually better accuracy in the root finding as Algorithm
4.1 progresses, or we would have prescribed a rule saying that the root
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finding algorithm (e.g., the secant method) should terminate after kNi iter-
ations for some k>0. This would have lead to an implementable algorithm
with the same behavior as Algorithm 4.1. For simplicity of the presen-
tation above, we have not included this issue in the discussion. In fact, the
issue of root finding is not problematic in practice. One-dimensional root-
finding problems can be solved in a few iterations with high accuracy
using standard algorithms. Hence, the root-finding problem can be solved
with a fixed precision for all iterations in Algorithm 4.1 giving a negligible
error.

5. Numerical Example

Consider a short structural column with a rectangular cross section
of dimensions b and h and material yield strength Y , which is subjected
to biaxial bending moments M1,M2 and axial force Pa . Assuming an elas-
tic perfectly plastic material, the reliability of the column is defined by the
limit-state function

G(x, v)=1− 4m1

bh2y
− 4m2

b2hy
− ( pa

bhy
)2, (26)

where v = (m1,m2, pa, y) ∈ R
4 denotes a realization of the random vec-

tor V = (M1,M2, Pa, Y ) and x = (b, h) ∈ R
2 denotes the vector of design

variables. Since Kg = 1, we have simplified the notation by dropping the
subscript k. We assume that M1,M2, Pa, Y are statistically independent
lognormal random variables with means 250 kNm,125 kNm, 2500 kN, 40
MPa respectively and coefficients of variation 0.3, 0.3, 0.2, 0.1 respectively.

Suppose that the column is to be designed for minimum cross-
sectional area A=bh, subject to the failure probability constraint

p(x)≤0.00134990

and deterministic constraints

b,h≥0 and 0.5≤b/h≤2.

Hence,

c0(x)=bh, ck(x)=0, k∈K,
f1(x)=−b, f2(x)=−h, f3(x)=b/h−2, f4(x)=1/2−b/h

in (1a).
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As required by Assumption A2(i), we select to solve the equations
g(x, u)= 0 for the standardized random variable corresponding to m1. In
Algorithm 4.1, we used the algorithm parameters

κ=0.0001, η=0.0001, γ =2.

Note that smaller η implies that the test in (23) becomes easier to pass.
Hence, smaller η results in an initially slower increase in the number of
sample points. Additionally, we select the sampling parameters to be

µ= (2,2,−1), σ =1.01,

where the sampling density has been shifted into the negative range for
the resistance variable and the positive range for the load variables. The
parameters in the Polak-He algorithm map are selected to be

α=0.5, β=0.8, δ=1.

The initial number of sample points is N0 =1000 and the consecutive num-
ber of sampling points are given by the set

N =
{

103,5 ·103,2.5 ·104,1.25 ·105,6.25 ·105,3.125 ·106, . . .
}
.

We do not specify N beyond 3.125 · 106, because we plan to terminate the
calculations when the number of sample points is about to be increased
beyond 3.125 ·106.

Algorithm 4.1 is implemented using Matlab (Ref. 24) with the
QP-solver quadprog and the example is run on a 1.7 GHz laptop
computer. The calculations are terminated after 108 iterations of Algo-
rithm 4.1. Results after various number of iterations are summarized
in Table 1, where estimates of the failure probabilities using both Ni
and N∗ =3.125 · 106 number of samples are given. The estimates after
3.125 · 106 samples have a coefficient of variations of less than 0.5%. The
convergence of the iterates xi and of the objective function c0(xi) and
the increase of the number of sample points Ni are shown in Figures 1–3
respectively.

We see from Table 1 and Figures 1–3 that the number of sample
points Ni is initially small but increases as less progress is made towards
the solution of the approximating problems. In fact, most iterations are
performed on problems involving 5000 or fewer samples (i=68 and i=95
correspond to the last iterates with Ni =1000 and Ni =5000 respectively).
This illustrates a significant advantage of Algorithm 4.1: Coarse estimates
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Fig. 1. Convergence in the iterates xi .

of the failure probabilities are used until a reasonably good design is
obtained. Using this design as a warm start, it is necessary only to per-
form a few iterations with high-precision, computationally expensive, esti-
mates of the failure probabilities to obtain an optimal design. Because of
the long computing time needed for iterations with Ni = 3.125 · 106, it is
practically impossible to run this example with a constant sample size of
Ni =3.125 ·106 for all i ∈N.

It is also seen that the value of the objective function may increase
slightly when the number of sample points is increased. This occurs
because the failure probability is reestimated using a large number of sam-
ple points.

6. Conclusions

We have developed an implementable algorithm for the solution of
stochastic optimization problems based on sample average approximations.
The algorithm is illustrated by an example from the area of structural
design. Our algorithm is shown to converge to a solution of the problem
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Fig. 2. Convergence in the objective C0(xi ).

with probability one under fairly general conditions. The algorithm uses
an adaptive scheme to control the precision of the failure probability esti-
mates, which reduces the computing time significantly. Initially, only a
small number of sample points is used to estimate the failure probability
by means of simulation techniques. As the algorithm progresses toward a
solution, the number of sample points is increased to obtain a high-qual-
ity solution.

The algorithm that we presented may require a large number of eval-
uations of the limit-state functions and their gradients. In particular, this is
the case for problems involving small failure probabilities. Hence, the algo-
rithm is not applicable to problems with limit-state functions that compu-
tationally are extremely costly to evaluate. In such cases, different types
of approximation must be introduced (see e.g. Ref.2). For computationally
inexpensive limit-state functions, the algorithm appears to be efficient, par-
ticularly when the importance sampling option is utilized. In view of the
increasing speed of computers and the possibility for parallel processing,
we except the algorithm to be applicable in the near future to problems
with moderately costly limit-state functions.
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Fig. 3. Increase in the number of sample points Ni.

Table 1. Results for design of rectangulr column.

i xi c0(xi ) pNi (xi ) Ni pNi

1 (1.00000, 1.00000) 0.25232 0.00003293 1000 0.00000000
68 (0.35658, 0.55134) 0.19660 0.00134986 1000 0.00134639
95 (0.32461, 0.60303) 0.19575 0.00135009 5000 0.00129693
99 (0.31920, 0.61259) 0.19554 0.00134986 2.5 ·104 0.00129693

103 (0.31549, 0.61919) 0.19535 0.00134988 1.25 ·105 0.00135338
106 (0.31331, 0.62359) 0.19538 0.00134985 6.25 ·105 0.00134129
108 (0.31293, 0.62423) 0.19534 0.00134987 3.125 ·106 0.00134987

7. Appendix: Proofs

Proof of Theorem 4.2. Let ū1, ū2, ū3, . . . be an infinite sequence of
generated realizations of the independent standard normal (m−1)-dimen-
sional random vectors Ū1, Ū2, Ū3, . . .. By Theorem 4.1, for every bounded
set S ⊂ R

n and κ > 0, there exists a constant CS <∞ such that, for all
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N ∈N and x ∈S,

|pk,N(x;µ,σ)−pk(x)|≤CS(logN)κ+1/2/
√
N. (27a)

Hence we proceed now in a deterministic setting. For any N ∈N and µ∈
R
m−1, σ >0, let

�N ={x ∈X|pk,N(x;µσ)≤ p̂k, k∈K} . (27b)

In view of Theorems 3.3.2 and 3.3.3 in Ref.23, we need only to show that
two conditions hold:

(i) For every x ∈�={x ∈X|pk(x)≤ p̂k ∈K}, there exists a sequence
{xN }N∈N , with xN ∈�N, such that xN →N x as N→∞ and lim
supN→∞pk,N(xN ;µ,σ)≤pk(x) for all k∈K.

(ii) For every infinite sequence {xN }N∈L, such that xN ∈ �N for
all N ∈ L and xN →L x as N → ∞ we have that x ∈ � and
lim infN→∞pk,N(xN ;µ,σ)≥pk(x) for all k∈K.

First consider (i). Let x ∈ � be arbitrary. By Assumption A3 and
(27a), arg minx′∈�N ‖x′ − x‖ �= 0 for sufficiently large N . Hence, we can
define xN ∈ arg minx′∈�N ‖x′ − x‖ for all N ∈N without loss of generality.
For the sake of a contradiction, suppose that xN �→N x as N→∞. Then,
there exists a δ >0 such that ||xN −x ||≥ δ for all N ∈N . By Assumption
A3, there exists x̂ ∈ R

n such that || x̂ − x ||<δ and fj (x̂) < 0 for all j ∈ J
and pk(x̂)<p̂k for all k∈K. By (27a), there exists an N̂ ∈N such that, for
all N > N̂,N ∈ N , we have that x̂ ∈�N, which is a contradiction. Hence,
xN →N x as N →∞. By Theorem 3.1 pk(.) is continuous. Consequently,
it follows from (27a) that

|pk,N(xN ;µ,σ)−pk(x) | ≤ |pk,N(xN ;µ,σ)−pk(xN) |
+ |pk(xN)−pk(x) |→N 0, (28a)

as N → ∞. Hence, the first part of the proof is complete. Next consider
(ii). Let {xN }N∈L be an infinite sequence, with N ⊂ N and the properties
that xN ∈�N for all N ∈L and xN →L x as N → ∞. Hence, using (28a),
we have that

pk(x)= limpk,N(xN ;µ,σ)≤0. (28b)

It follows that x ∈�. This completes the proof.
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Proof of Proposition 4.1. First, consider (i). By Assumption A5, there
exist Nxi ,∈N and δxi >0 such that

FN(xi, x
′′;µ,σ)≤−δxi , (29a)

for all x′′ ∈ AN(xi) and N ≥ Nxi ,N ∈ N . Since (logN)κ+1/2/
√
N → 0 as

N→∞, there exists N ′ ≥Nxi , such that, for all N ≥N ′,N ∈N , and xi+1 ∈
AN(xi),

FN(xi, xi+1;µ,σ)≤−δxi ≤−η(logN)κ+1/2/
√
N. (29b)

Hence, we see that (23) is satisfied with N ≥N ′.
Next, consider (ii). For the sake of a contradiction, suppose that the

monotone increasing sequence {Ni}∞i=1 is bounded. Then, there exists an
i0 ∈ N such that Ni =Ni0 <∞ for all i ≥ i0. To simplify the notation, let
N∗ =Ni0 . Then, by the test in (23),

FN∗(xi, xi+1;µ,σ)≤−η(logN∗)κ+1/2/
√
N∗, (29c)

for all i≥ i0. Since it follows from (21a) that

ψN∗(xi+1;µ,σ)−ψN∗(xi;µ,σ)+
≤FN∗(xi, xi+1;µ,σ)≤−η(logN∗)κ+1/2/

√
N∗, (29d)

for all i≥ i0, we conclude from (29d) that there must exist an i1 ≥ i0 such
that ψN∗(xi,µ, σ )≤0 for all i≥ i1. Hence for all i≥ i1,ψN∗(xi,µ, σ )+ =0;
therefore, in view of (21a) and (29c),

f0,N∗(xi+1;µ,σ)−f0,N∗(xi;µ,σ)
≤FN∗(xi, xi+1;µ,σ)≤−η(logN∗)κ+1/2/

√
N∗, (29e)

for all i ≥ i1. Hence, we conclude that f0,N∗(xi;µ,σ)→ −∞ as i → ∞.
Since by continuity f0,N∗(xi,µ, σ )→L f0,N∗(x̂;µ,σ) as i→∞, where L⊂
N is such that xi→L x̂ as i→∞, we have a contradiction. Hence, we must
have that Ni →∞ as i→∞.

Proof of Theorem 4.5. Let {xi}∞i=1 be an infinite sequence generated
by Algorithm 4.1 with accumulation point x̂. Suppose that {xi}∞i=1 ⊂ S,

where S⊂R
n is bounded. Let C1<∞ be a constant such that

|pk,N(x;µ,σ)−pk(x) |≤C1(logN)k+1/2/
√
N, (29f)

for all x ∈S. Similarly to (21a), (21b), (21c), we define

F(x′, x′′)=max
{
f0(x

′′)−f0(x
′)−γψ(x′)+,ψ(x′′)−ψ(x′)+

}
, (29g)
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where f0(·) and ψ(·) are defined in (17) and (18) respectively. Hence, there
exists a constant CS <∞ such that, for all N ∈N, i ∈N, and κ >0,

F(xi, xi+1)≤FN, (xi, xi+1;µ,σ)+CS(logNi)κ+1/2/
√
Ni. (30a)

Let κ∗ > 0 be the value of the parameter κ in Algorithm 4.1, Step 1.
Hence, because of the imposed condition (23), with κ replaced by κ∗, and
because of (30a),

F(xi, xi+1)≤−η(log Ni)
κ∗+1/2/√Ni +CS(logNi)κ+1/2/√Ni

=−(logNi)κ
∗+1/2

(
η−CS(logNi)κ−κ

∗)/√
Ni. (30b)

By Proposition 4.1 and (30b), it follows that, for each κ ∈ (0, κ∗), there
exists an iκ ∈N such that, for all i≥ iκ ,

F (xi, xi+1)≤0. (30c)

Consequently, if ψ(xi) > 0 for all i ≥ iκ , then it follows from the defi-
nition of F(xi, xi+1) that {ψ(xi)}∞i=iκ is a monotone decreasing sequence
with an accumulation point ψ(x̂). Therefore, it follows that ψ(xi)→ψ(x̂)

as i → ∞. Alternatively, if there exists i1 ≥ iκ such that ψ(x) ≤ 0, then
because of (30c) and the definition of F(xi, xi+1),ψ(xi)≤ 0 for all i ≥ i1
and {f0(xi)}∞i=i1 is a monotone decreasing sequence with an accumulation
point f0(x̂). Consequently, f0(xi)→f0(x̂) as i→∞.

Now, for the sake of a contradiction, suppose that θ(x̂)<0 and that
L⊂N is such that xi →L x̂ as i→∞ Then, by Assumption A5, there exist
an i2 ∈N and a δx̂ >0 such that, for all i ∈L, i≥ i2,

FNi (xi, xi+1;µ,σ)≤−δx̂ <0; (30d)

hence, because of (30a),

F(xi, xi+1)≤CS(logNi)κ+1/2/
√
Ni − δx̂ . (30e)

Since, by Proposition 4.1,

(logNi)κ+1/2/
√
Ni →0, as i→∞,

if follows from (30e) that there exists i3 ≥ i2 such that F(xi, xi+1)≤−δx̂/2
for all i ≥ i3, i ∈ L. But this contradicts the fact that, for κ ∈ (0, κ∗),
either ψ(xi)→ψ(x̂) as i→∞ or f0(xi)→f0(x̂) as i→∞. Hence, θ(x̂)=
0.
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Lemma 7.1. Let Assumptions A2 and A4 hold. Let µ ∈ R
m−1 and

σ >0 be the sampling parameters in (8a) and (8b). For every bounded set
S⊂R

n, there exists a constant CS <∞ such that, for x ∈S and κ >0,

| θ∗
N(x;µ,σ)− θ(x) |≤CS(logN)κ+1/2/

√
N, w.p.1, (31a)

where

θ∗
N(x;µ,σ)=− min

ν∈∑
{∑
k∈K

νk[ψ∗
N(x;µ,σ)+ −p∗

k,N (x;µ,σ)+ p̂k]

+
∑
j∈J

νj+Kg [ψ∗
N(x;µ,σ)+ −fj (x)]

+ (1/2δ) ||
∑
k∈K

νk∇p∗
k,N (x;µ,σ)

+
∑
j∈J

νj+Kg∇fj (x)+νKg+Jf+1∇f ∗
0,N (x;µ,σ) ||2

+ νKg+Jf+1γψ∗
N(x;µ,σ)+

}
, (31b)

with
f ∗

0,N (x;µ,σ)= c0(x)+
∑
k∈K

ck(x)p
∗
k,N (x;µ,σ), (31c)

ψ∗
N(x;µ,σ)=max

{
max
k∈K

{
p∗
k,N (x;µ,σ)− p̂k

}
,max
j∈J

fj (x)

}
, (31d)

ψ∗
N(x;µ,σ)+ =max

{
0,ψ∗

N(x;µ,σ)
}
. (31e)

Proof. Let ū1, ū2, ū3, . . . be an infinite sequence of generated real-
izations of the independent standard normal (m− 1)-dimensional random
vectors Ū1, Ū2, Ū3, . . . . By Theorems 4.1 and 4.4, for every bounded set
S⊂R

n and κ >0, there exist constants C1,C4<∞ such that, for all N ∈N
and x ∈S, (29f) and

||∇pκ,N(x;µ,σ)−∇pκ(x) ||≤C4(logN)κ+1/2/
√
N (31f)

hold. Hence, we can proceed now in a deterministic setting.
For every h∈R

n, let

ψ̃N (x, x+h;µ,σ)
=max

{−γψN(x;µ,σ)+ +〈∇f0,N (x;µ,σ), h〉,
max
k∈K

{
pk,N(x;µ,σ)− p̂k −ψN(x;µ,σ)+
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+〈∇pk,N(x;µ,σ), h〉
}
,

max
j∈J

{fj (x)−ψN(x;µ,σ)+ +〈∇fj (x), h〉}}

+δ ||h ||2 /2, (31g)

ψ̃(x, x+h)=max{−γψ(x)+ +〈∇f0(x), h〉,
max
k∈K

{pk(x)− p̂k −ψ(x)+ +〈∇pk(x), h〉},
max
j∈J

{fj (x)−ψ(x)+ +〈∇fj (x), h〉}}

+δ ||h ||2 /2. (31h)

Now, using (29f) and (31f), we obtain that there exists a constant CS <∞
such that, for all x ∈S and N ∈N,

|max
k∈K

{pk,N(x;µ,σ)− p̂k −ψN(x;µ,σ)+ +〈∇pk,N(x;µ,σ), h〉}
−max

k∈K
{pk(x)− p̂k −ψ(x)+ +〈∇pk(x), h〉} |

≤2C1(logN)κ+1/2/
√
N +C4(logN)κ+1/2 ||h ||/

√
N, (31i)

| (−γψN(x;µ,σ)+ +〈∇f0,N (x;µ,σ), h〉)
−(−γψ(x)+ +〈∇f0(x), h〉) |
≤γC1(logN)κ+1/2/

√
N +CS(logN)κ+1/2 ||h ||/

√
N. (31j)

Hence, for all h∈R
n, x ∈S, and N ∈N,

| ψ̃N (x, x+h;µ,σ)− ψ̃(x, x+h) |
≤max{γ,2}C1(logN)κ+1/2/

√
N

+max{C4,CS}(logN)κ+1/2 ||h ||/
√
N. (31k)

Next, let hN(x;µ,σ) be given by (24d) and let h(x) be given by

h(x)=− (1/δ)
(∑
k∈K

ν̂k∇pk(x)

+
∑
j∈J

ν̂j+Kg∇fj (x)+ ν̂Kg+Jf+1∇f0(x)


 , (31l)

where ν̂ = (ν̂l, . . . , ν̂Kg+Jf+1) is any solution of (16). Then, h(x) is
bounded for all x ∈ S, because it is defined as a linear combination of
bounded vector-valued functions. By the same argument and the fact that
(31f) holds, hN(x;µ,σ) is bounded for all x ∈S and N ∈N . From Theo-
rem 2.2.8 of Ref. 23, we have that

θN(x;µ,σ)= min
h∈Rn

ψ̃N (x, x+h;µ,σ), (31m)
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θ(x)= min
h∈Rn

ψ̃(x, x+h). (31n)

Hence, there exists C∗
S <∞ such that, for all x ∈R

n,

θ(x)≤ ψ̃(x, x+hN(x;µ,σ))
≤ ψ̃N (x, x+hN(x;µ,σ);µ,σ)
+ (max{γ,2}C1 +max{C4,CS} ||hN(x;µ,σ) ||)

×(logN)κ+1/2/
√
N

≤ θN(x;µ,σ)+C∗
S(logN)κ+1/2/

√
N, (31o)

θ(x)= ψ̃(x, x+h(x))
≥ ψ̃N (x, x+h(x);µ,σ)
− (max{γ,2}C1 +max{C4,CS} ||h(x) ||)(logN)κ+1/2

√
N

≥ θN(x;µ,σ)−C∗
S(logN)K+1/2

√
N. (31p)

This completes the proof.

Proof of Preposition 4.2. Let ū1, ū2, ū3, . . . be an infinite sequence of
generated realizations of the independent standard normal (m−1)-dimen-
sional random vectors Ū1, Ū2, Ū3, . . .. Let S be any bounded set in R

n with
corresponding constants C1,C4<∞ such that (29f) and (31f) hold for all
x ∈S and N ∈N. Hence, we can proceed now in a deterministic setting.

The search direction hN(x;µ,σ) is bounded for all x∈S, because it is
defined as a linear combination of bounded vector-valued functions [see
(24d) and (31f)]. The bound is independent of N due to (31f). By the
mean-value theorem, we obtain that

FN(x, x+λhN(x;µ,σ);µ,σ)
=max

{−γψN(x;µ,σ)+ +λ〈∇f0,N (x;µ,σ), hN(x;µ,σ)〉

+λ
∫ 1

0
〈∇f0,N (x+ sλhN(x;µ,σ);µ,σ)

−∇f0,N (x;µ,σ), hN(x;µ,σ)〉ds},
max
k∈K

{pk,N(x;µ,σ)− p̂k −ψN(x;µ,σ)+
+λ〈∇pk,N(x;µ,σ), hN(x;µ,σ)〉
+λ

∫ 1

0
〈∇pk,N(x+ sλhN(x;µ,σ);µ,σ)

−∇pk,N(x;µ,σ), hN(x;µ,σ)〉ds},

max
j∈J

{fj (x)−ψN(x;µ,σ)+ +λ〈∇fj (x), hN(x;µ,σ)〉
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+λ
∫ 1

0
〈∇fj (x+ sλhN(x;µ,σ))

−∇fj (x), hN(x;µ,σ)〉ds}
}
. (32a)

By (31f) and the fact that ∇pk,N (·;µ,σ) and ∇pκ(·) are uniformly contin-
uous on bounded sets, we have from (32a) that, for any ε >0, there exists
a λ0 ∈ (0,1] such that, for all λ∈ (0, λ0], x ∈S, and N ∈N,

FN(x, x+λhN(x;µ,σ);µ,σ)
≤max

{−γψN(x;µ,σ)+ +〈∇f0,N (x;µ,σ), hN(x;µ,σ)〉,
max
k∈K

{pkN (x;µ,σ)− p̂k −ψN(x;µ,σ)+
+〈∇pk,N(x;µ,σ), hN(x;µ,σ)〉,
max
j∈J

{fj (x)−ψN(x;µ,σ)+ +〈∇fj (x), hN(x;µ,σ)〉
}

+δ ||hN(x;µ,σ) ||2 /2+λ(ε− δ ||hN(x;µ,σ) ||2 /(2λ)). (32b)

Since hN(x;µ,σ) is bounded for all x ∈ S and N ∈ N, there exists a λ1 ∈
(0, λ0] such that

ε− δ ||hN(x;µ,σ) ||2 /(2λ)≤0, (32c)

for all λ∈ (0, λ1], x ∈S, and N ∈N. Hence, by using (31f) and (31l), it fol-
lows that

FN(x, x+λhN(x;µ,σ))−αλθN(x;µ,σ)
≤ (1−α)λθN(x;µ,σ)≤0, (32d)

for all λ ∈ (0, λ1], x ∈ S,N ∈ N, and algorithm parameter α ∈ (0,1]. Con-
sequently, for any x ∈ S, the Polak-He algorithm computes a stepsize
λN(x;µ,σ)≥βλ1. Hence, for any x′ ∈S and x′′ ∈AN(x′),

FN(x
′, x′′)≤αλN(x′;µ,σ)θN(x′;µ,σ)≤αβλ1θN(x

′;µ,σ). (32e)

Suppose that x̂ ∈ R
n is that θ(x̂) < 0. Since θ(·) is continuous (Theorem

2.2.8 in Ref. 23), there exists a ρ >0 such that

θ(x)≤ θ(x̂)/2, for all x ∈B(x̂, ρ)={x ∈R
n ||x− x̂ ||≤ρ}.

By Lemma 7.1, there exists a C<∞ such that

| θN(x;µ,σ)− θ(x) |≤C(logN)κ+1/2/
√
N, (32f)

for all x ∈B(x̂, ρ). Hence, for all x ∈B(x̂, p),

θN(x;µ,σ)≤ θ(x)+C(logN)k+1/2/
√
N. (32g)



JOTA: VOL. 122, NO. 1, JULY 2004 183

Since θ(·) is continuous and the right-hand side of (32f) vanishes as N→
∞, it follows from (32g) that there exists a ρ̂ ∈ (0, ρ] and an N̂ ∈ N such
that

θN(x;µ,σ)≤ θ(x̂), for all x ∈B(x̂, ρ̂) and N ≥ N̂ .

Let the bounded set S= B(x̂, p̂). Then, we conclude from (32e) that, for
all x′ ∈B(x̂, ρ̂),N ≥ N̂ , and x′′ ∈AN(x′),

FN(x
′, x′′)≤αβλ1θN(x

′;µ,σ)≤αβλ1θ(x̂)/4=−δx̂ <0. (32h)

This completes the proof.
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