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Abstract. This article discusses univariate density estimation in situations when the sample (hard
information) is supplemented by “soft” information about the random phenomenon. These situations
arise broadly in operations research and management science where practical and computational rea-
sons severely limit the sample size, but problem structure and past experiences could be brought in. In
particular, density estimation is needed for generation of input densities to simulation and stochastic
optimization models, in analysis of simulation output, and when instantiating probability models. We
adopt a constrained maximum likelihood estimator that incorporates any, possibly random, soft in-
formation through an arbitrary collection of constraints. We illustrate the breadth of possibilities by
discussing soft information about shape, support, continuity, smoothness, slope, location of modes,
symmetry, density values, neighborhood of known density, moments, and distribution functions. The
maximization takes place over spaces of extended real-valued semicontinuous functions and therefore
allows us to consider essentially any conceivable density as well as convenient exponential transforma-
tions. The infinite dimensionality of the optimization problem is overcome by approximating splines
tailored to these spaces. To facilitate the treatment of small samples, the construction of these splines
is decoupled from the sample. We discuss existence and uniqueness of the estimator, examine consis-
tency under increasing hard and soft information, and give rates of convergence. Numerical examples
illustrate the value of soft information, the ability to generate a family of diverse densities, and the
effect of misspecification of soft information.
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1 Introduction

It is recognized that statistical estimates can be improved greatly by including contextual information
to supplement the information derived from data. We refer to the contextual information as soft
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Research Office under grant numbers 00101-80683, W911NF-10-1-0246 and W911NF-12-1-0273. The authors thank the
referees for insightful comments, Drs. R. Sood and D. Singham for carrying out a part of the numerical tests, and Prof.
N. Sukumar for invigorating discussions.
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information, in contrast to hard information derived from observations (data). In this article, we
consider univariate probability density estimation exploiting, in concert, hard and soft information.
Although our development, theoretical and numerical, makes no distinction based on sample size, not
surprisingly, it is when the sample size is small that this fusion of hard and soft information plays
a crucial role in producing quality estimates. We limit the scope to densities of random variables
with distributions that are absolutely continuous with respect to the Lebesgue measure on a bounded
interval.

The need for estimating probability density functions is prevalent across operations research and
management science. For example, an essential step in simulation analysis and stochastic optimization
is the generation of probability densities for input random variables; see for example [11, 27, 5]. Density
estimation is also needed when populating probability models and when analyzing simulation output
beyond their typical first and second moments. In all these situations, however, the sample available
is typically extremely small due to practical and computational limitations. One is usually forced
to restrict the attention to parametric families of densities. In this paper, we provide the theoretical
foundations of an alternative approach that brings in soft information about problem structure and past
experiences to obtain reasonable nonparametric density estimates even for very small sample sizes. The
approach has been successfully applied in the context of simulation output analysis [65], uncertainty
quantification [58], as well as estimation of errors in forecasts for commodity prices [74] and electricity
demand [26]; see also [55].

A natural and widely studied approach to density estimation is to adopt an M-estimator with addi-
tional constraints to account for soft information. We continue this tradition by defining an estimator
that is an optimal solution of a constrained maximum likelihood problem. An appealing property of
such estimators is that for any sample size, an estimate is the best possible within the class of allowable
functions according to the given criterion (likelihood).

We trace the consideration of soft information in terms of shape constraints at least back to [31, 32].
More recent studies of univariate log-concave densities include [35, 37, 71, 48, 23, 2], with computational
comparisons in [60]; see also the review [72] and, in the case of multivariate densities, e.g., [12, 13].
Convexity and monotonicity restrictions are examined in [34, 46] and monotonicity, monotonicity and
convexity, U-shape, as well as unimodality with known mode are studied in [47, 46]. Unimodal functions
are also covered in [54, 36], with the former covering U-shape as well. Monotone, convex, and log-concave
densities are dealt with in [6]. Studies of k-monotone densities include [3, 28, 4]. Densities given as
monotone transformations of convex functions are examined in [61]. Convex formulation of a collection
of shape restrictions is discussed in [49, 50]. We refer to the recent dissertation [22] and the discussion in
[13] for a more comprehensive review and to [44] for the related context of shape-restricted regression.

Although these studies address important cases, there is no overarching framework that allows for a
comprehensive description of soft information formulated by a large variety of constraints. Initial work
in this direction is found in [73], which deals with parametric nonlinear least-squares regression subject
to a finite number of smooth equality and inequality constraints. That paper examines the asymptotics
of the least-squares estimator using the convergence theory of constrained optimization, specifically epi-
convergence. In the context of constrained maximum likelihood estimation, [21] establishes consistency
of an estimator through a functional law of large numbers and epi-convergence. The latter work is an
immediate forerunner to the present paper.

Having adopted a nonparametric constrained maximum likelihood framework, we face technical
challenges along two axes. First, one needs to deal with constrained optimization problems. Of course,
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in principle, constraints can be handled through penalties and regularizations; see for example [30, 16,
43, 39, 64, 67] and more recently [25, 69, 40, 41, 45, 42, 7]. However, the equivalence and interpretations
of such reformulations depends on the successful selection of multipliers and penalty parameters which
is far from trivial in practice, especially in the case of multiple constraints. In fact, poor selection
of these multipliers and parameters may cause computational challenges due to ill-conditioning of the
resulting optimization problem as well as significant deterioration of the quality of the resulting density
estimate. Moreover, it becomes unclear in what sense, if any, an estimator is “best” when an otherwise
natural criterion such as likelihood is mixed with nonzero penalty terms; see [21] for further discussion.
It is also possible to devise specialized algorithms such as the iterative convex minorant algorithm
[35, 37] to account for certain constraints or modify “unconstrained” estimators such as those based
on kernels; [36] handles unimodality, [6] considers monotonicity, convexity, and log-concavity, and [15]
aims to reduce the number of modes; see [75, 53] for computational tools. Again, it is unclear in what
sense, if any, such estimates are “best” in the case of finite samples. Moreover, it is challenging to
generalize these approaches to handle other types of soft information. We direct the reader to [68] and
references therein for treatments of kernel estimators including a discussion of optimality.

The second challenge with a nonparametric constrained maximum likelihood framework is the
infinite-dimensionality of the resulting optimization problem. Naturally, there is a computational need
to consider families of approximating densities characterized by a finite number of parameters. The
method of sieves [33, 29, 10] provides a framework for constructing, typically, finite-dimensional ap-
proximating subsets that are gradually refined as the sample size grows and that in the limit is dense
in a function space of interest. However, difficulties arise from three directions. First, with our focus
on small sample sizes, the linkage between sample size and sieves becomes untenable. Second, in order
to allow for the possibility of discontinuous densities and exponential transformations, we choose as un-
derlying space the extended real-valued lower or upper semicontinous functions, but neither is a linear
space. Consequently, the mathematically inbred tendency to obtain a finite-dimensional approximation
by relying on a well-chosen finite basis is problematic; see for example [18, 45] for such an approach
based on splines. Third, despite progress towards handling shape restrictions on sieves (see for example
[20, 19, 17, 49, 50]), there is no straightforward way of handling a comprehensive set of soft information.

In this paper, as in [21], we consider an arbitrarily constrained maximum likelihood estimator for
densities. We appear to be the first to consider such general constraints (soft information) in the
context of nonparametric density estimation. The soft information might even be random, i.e., the soft
information may not be known a priori but is realized with the sample. We give concrete formulations
of the constrained maximum likelihood problem in the case of soft information about support bounds,
semicontinuity, continuity, smoothness, slope information and related quantities, monotonicity, log-
concavity, unimodality, location of modes, symmetry, bounds on density values, neighborhood of known
density, bounds on moments, and bounds on cumulative distribution functions. We allow for any

combination of these, and essentially any other constraint too.
We overcome the technical difficulty caused by constraints through the theory of constrained op-

timization, specifically epi-convergence, and therefore avoid tuning parameters related to penalties
and regularization. With the exception of the preliminary work [21], this paper is the first to utilize
epi-convergence to analyze constrained density estimators. We overcome the difficulty of infinite di-
mensionality through the use of a new class of splines, epi-splines [57], which are highly flexible, allow
for discontinuities, and enable convenient exponential transformations. Here, for the first time, the
theoretical foundations for using epi-splines in density estimation are laid out. In contrast to sieves,
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epi-splines can be constructed independently of the sample and therefore handles small sample sizes
naturally. The precursor [21] relies on a finite approximation of L2 by Fourier coefficients. In this paper,
we consider the spaces of extended real-valued semicontinuous functions, exponential transformations,
and epi-spline approximations.

The reliance on epi-convergence and epi-splines allow us to view the constrained maximum likeli-
hood problem as an approximation of a limiting optimization problem involving the actual probability
density, correct soft information, and the full space of semicontinuous functions; we reference [52] for
a related study in the context of regression utilizing graphical convergence. Consequently, we not only
approximate a certain function space or deal with finite sample size, but study the approximation of the
whole estimation process as formulated by the limiting optimization problem. The approach facilitates
the examination of families of estimators such as those that are near-optimal solutions of a constrained
maximum likelihood problem.

Our primary motivation is to obtain reasonable estimates in situations with little hard information
and we provide a consistency result as soft information is refined, quantify finite sample errors, and
present a small computational study to motivate the estimator in that regard. Still, we also establish
consistency and quantify asymptotic rates, as hard information is refined, under general constraints.

We focus exclusively on univariate densities that vanish beyond a compact interval of the real
line. Although most of the results extend to the unbounded case and higher dimensions, technical
issues will then become prominent and obscure the treatment of arbitrary random constraints and the
supporting epi-spline approximations. Moreover, with a small sample, tail behavior can only come in
via soft information, which is easily handled by our framework but omitted here for simplicity; a few
experimental results can be found in [66].

The paper proceeds in §2 by defining the constrained maximum likelihood estimator, summarizing
the underlying approximation theory, which is based on [57], and discussing existence and uniqueness.
Section 3 exemplify the breadth of soft information that can be included and §4 provides consistency,
asymptotics, and finite sample error results. A small collection of numerical examples are featured in
§5. The paper is summarized in §6.

2 Exponential Epi-Spline Estimator

This section formulates a constrained maximum likelihood problem and presents a finite-dimensional
approximation. We discuss existence, uniqueness, and computations. The section also includes the
prerequisite approximation results.

2.1 Constrained Likelihood Maximization and Epi-Spline Approximations

We consider a random variable X, with −∞ < l ≤ X ≤ u <∞ a.s. and a distribution that is absolutely
continuous with respect to the Lebesgue measure, an iid sample X1,X2, . . . ,Xn, and a possibly random
set Fn that accounts for soft information about the density of X; see §3 and §5 for concrete examples.
Realizations of Fn are subsets of allowable functions on [l, u]. The randomly constrained maximum
likelihood problem takes the form:

(Pn) : fn ∈ argmax

n
∏

i=1

e−f(Xi) such that f ∈ Fn ⊂ F ,

∫ u

l
e−f(x)dx = 1,
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where “argmax” denotes the set of optimal solutions and F is the space of extended real-valued lower
semicontinuous (lsc) functions f : [l, u] → IR = IR ∪ {−∞,∞} excluding f ≡ ∞, or alternatively
the space of extended real-valued upper semicontinuous (usc) functions f : [l, u] → IR now excluding
f ≡ −∞. The density estimator then takes the form

e−fn(·), with fn a solution of (Pn).

These spaces of functions under considerations are large enough to capture essentially all densities
on [l, u] including, of course, those with discontinuities. Moreover, the ability to handle f(x) = ∞
ensures that exp(−f(x)) = 0 and, therefore, the exponential transformation in (Pn) does not eliminate
the possibility of vanishing densities at points in [l, u]. If f(x) = −∞, then exp(−f(x)) = ∞, which
obviously can at most occur for x in a set of (Lebesgue) measure zero if exp(−f) is a density. The
exponential transformation (see [30, 16] for early use of such transformations and [61] for a broader
treatment) automatically ensures that exp(−f(·)) is nonnegative and explicit constraints for that pur-
pose are redundant. In addition, some types of soft information are more easily formulated for f than
for h = exp(−f(·)); see examples in §3. Since we approximate lsc (usc) functions by the piecewise
polynomial epi-splines, to be discussed shortly, further motivation for the exponential transformation
is provided by the fact that many of the common densities are indeed exponential transformations of
polynomials. We observe that the lsc and usc functions are measurable and consequently the integral
in (Pn) is well-defined, but possibly infinite.

It is clear that a solution fn of (Pn) generates a density exp(−fn(·)) that, regardless of the sample
size, possesses the properties embedded in Fn, which presumably are the properties of the actual density
(see Theorems 4.2 and 4.4 and Section 5.4 for a discussion of misspecification). Moreover, it will be a
best possible density in terms of the maximum likelihood criterion and the set of allowable densities.

In view of the above formulation and discussion, we are unable to build on the extensive literature
on sieves and follow a different path. We instead introduce a new class of functions called exponential

epi-splines from which we can construct approximations independently of the sample. They allow us
to substitute for the infinite-dimensional (Pn), a finite-dimensional problem, guaranteed to generate a
solution that approximates, to any desired level of accuracy, a solution of (Pn).

We start by defining the central building block of our approximation framework; see [57] for details.
A basic epi-spline is a function given in terms of an order p ∈ IN0 := {0} ∪ IN , where IN := {1, 2, ...}
and a mesh m := {mk}

N
k=0, with mk−1 < mk, k = 1, 2, ..., N , that partitions its domain [m0,mN ] in N

open subintervals, where on each subinterval the basic epi-spline is a polynomial of degree p.
Our focus on small samples and the use of highly flexible candidate densities in (Pn) and its epi-

spline-based approximations can easily lead to overfitting. This might give the impression that the mesh
m will become an important tuning parameter. However, since tuning the mesh might be challenging
and easily could have become the subject of arbitrary decisions, we take another approach. We recall
that (Pn) is the actual problem of interest and the estimator is exp(−fn), with fn being one of its
solutions. Since such a solution is not directly available, our effort is directed towards obtaining an
approximation through a “discretization” of the space F . The mesh should therefore be selected fine
enough to allow epi-splines to adequately approximate the underlying space F of lsc (usc) functions, or
possibly subsets of continuous or continuously differentiable functions, if such restrictions are warranted.
With this perspective, it becomes Fn that needs to be appropriately defined to ensure that (Pn) has
reasonable solutions that avoid overfitting, among other things. Since we allow for arbitrary constraints,
there are usually several ways soft information can be brought in to ensure reasonable solutions, which
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leads to flexibility for the analyst; see §5 for examples. In most of the paper, we therefore assume that
the mesh m is fixed and sufficiently fine.

Obviously, basic epi-splines are structurally related to polynomial splines, widely used in engineering
and statistical applications [70, 18, 45], as both are piecewise polynomial functions. However, basic epi-
splines are more flexible, with continuity not required at mesh points, and they can approximate any
extended real-valued semicontinuous function (see Theorem 2.4 below). The formal definition is stated
next.

2.1 Definition (basic epi-spline and associated mesh). A (basic) epi-spline s : [m0,mN ] ⊂ IR → IR
with mesh m = {mk}

N
k=0 and mesh-grade |m| := max1≤k≤N (mk −mk−1) is of order p ∈ IN 0 if on each

subinterval (mk−1,mk) for k = 1, . . . , N , s is polynomial of degree p.
The family of all such epi-splines is denoted by e-splp(m).

Exponential transformations of epi-splines result in exponential epi-splines:

2.2 Definition (basic exponential epi-spline). The family of (basic) exponential epi-splines of order
p ∈ IN0 with mesh m = {mk}

N
k=0, denoted by x-splp(m), consists of functions h : [m0,mN ] → IR of the

form h = e−s, where s ∈ e-splp(m).

Since this paper deals with basic epi-splines and exponential epi-splines exclusively, we systematically
drop “basic” from now on. The approximation of (Pn), relying on (exponential) epi-splines then takes
the following form (after the customary switch to log-likelihood):

(Pn
p,m) : sn ∈ argmin

1

n

n
∑

i=1

s(Xi) such that s ∈ Sn ⊂ e-splp(m),

∫ mN

m0

e−s(x)dx = 1,

where Sn is the formulation and possibly approximation of soft information in terms of epi-splines. In
this paper, we therefore examine

hn := e−sn(·), with sn a solution of (Pn
p,m),

which is our approximation of exp(−fn). We refer to hn as the exponential epi-spline estimator.
Throughout the paper we make the assumption that the support [l, u] of the true density is a subset of
[m0,mN ].

It is clear from the definition that every s ∈ e-splp(m), with mesh m = {mk}
N
k=0, is uniquely defined

by (p + 2)N + 1 parameters†. Consequently, (Pn
p,m) is equivalent to a finite-dimensional optimization

problem, usualy easily solved by standard algorithms. The next subsection provides the justification
for approximating (Pn) by (Pn

p,m). We note that this approximation is carried out for computational
reasons, as a means to overcome the infinite dimensionality of (Pn). The hard and soft information are
considered fixed.

†There are N subintervals (mk−1,mk) each with a polynomial of degree p. This gives N(p+1) parameters. In addition,
there are N + 1 mesh points on which an epi-spline is freely defined (unless continuity is imposed) as motivated in §2.3,
which leads to an additional N + 1 parameters. We note that the mesh m is fixed.
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g dlρ(f, g)

ρ
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x̌
∗ = (x∗

,α
∗)

d(x̌, epi f)

d(x̌, epi g)

Figure 1: Examples of dlρ(f, g) for epi f and epi g with different overlaps

2.2 Approximation Results

Approximations of extended real-valued semicontinuous functions by epi-splines rely on the refinement
of the mesh as made precise in the next definition. This subsection is based on [57].

2.3 Definition (infinite refinement). Given the interval [l, u], one refers to a sequence of meshes
{mν}ν∈IN , with mν =

{

l = mν
0 ,m

ν
1 , . . . ,m

ν
Nν = u

}

, as an infinite refinement if their mesh-grade
|mν | → 0.

It is clear from classical spline theory that continuous functions can be approximated by polynomial
splines. We need to go beyond continuous functions to extended real-valued semicontinuous functions.
We rely on the epi-topology and hypo-topology (sometimes called the Attouch-Wets topologies), which
are reviewed here for completeness; see [56, §7.I] for details. For any l < u ∈ IR, we denote by
lsc-fcns

(

[l, u]
)

the set of all lsc functions f : [l, u] → IR excluding f ≡ ∞. For any two functions, f
and g, in this space, the epi-distance dl, is defined by dl(f, g) :=

∫∞
0 dlρ(f, g)e

−ρdρ, where dlρ(f, g) :=

max‖x̌‖≤ρ |d(x̌, epi f)−d(x̌, epi g)| and d(x, S) := infy∈S ‖x−y‖ for S ⊂ IR2, with ‖z‖ := (
∑

i z
2
i )

1/2 and

epi f := {x̌ = (x, α) ∈ IR2 | f(x) ≤ α} being the epigraph of f and similarly for epi g; see Figure 1 for
an illustration. When the metric is defined in terms of the epi-distance, it generates the epi-topology on
lsc-fcns([l, u]): (lsc-fcns([l, u]), dl) is a Polish (complete separable metric) space [56, Theorem 7.58], [1,
§5]. A sequence of functions f ν in lsc-fcns

(

[l, u]
)

epi-converge to f if their epigraphs set-converge, i.e.,
in the sense of taking Painlevé-Kuratowski limits [56, §7.B], which by [56, Theorem 7.58] takes place if
and only if dl(f ν , f) → 0.

When dealing with usc functions, usc-fcns
(

[l, u]
)

, now excluding the function ≡ −∞, after observing
that hypograph of a function f , hypo f :=

{

(x, α)
∣

∣ f(x) ≥ α
}

is just a mirror image of the epigraph
of −f , one can mimic the definitions and constructions described for lsc functions to set up the hypo-

distance dlhypo(f, g) := dl(−f,−g), between any two functions f and g and generate the hypo-topology

which again makes (usc-fcns([l, u]), dlhypo) a Polish space. A sequence of functions f ν hypo-converge to
f if −f ν epi-converge to −f . The relationship between epi- and hypo-convergence and other modes
are convergence in the present context is examined below; see also [56, Chapters 4 & 7] and [57] for
broader treatments.

Since the supremum of an usc function on a compact set is attained, the consideration of usc densities
naturally arises in applications where the subsequent use of the densities involves maximization, such
as for the purpose of finding their modes. Similarly, the lsc densities is the natural class to consider
in the context of subsequent minimization. We next state an approximation results for exponential
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epi-splines.

2.4 Theorem (lsc and usc dense approximations [57]). For any p ∈ IN0 and {mν}ν∈IN , an infinite
refinement of [l, u], under the hypo-topology,

(

⋃

ν∈IN

x-splp(mν)

)

⋂

usc-fcns([l, u]) is dense in {e−s | s ∈ lsc-fcns([l, u])}

and under the epi-topology,

(

⋃

ν∈IN

x-splp(mν)

)

⋂

lsc-fcns([l, u]) is dense in {e−s | s ∈ usc-fcns([l, u])}.

Consequently, for a sufficiently fine mesh and regardless of the order, exponential epi-splines provide
arbitrarily accurate approximations of exp(−f(·)), f ∈ lsc-fcns([l, u]) and f ∈ usc-fcns([l, u]). In the
remainder of the paper, we therefore mainly focus on (Pn

p,m) for fixed p and m.

2.3 Computations, Existence, and Uniqueness

We now turn to a convenient representation of epi-splines, also given in [57], which plays an essential role
in computations and analysis. This leads to a finite-dimensional optimization problem for computing
the estimator hn, which we then analyze.

Every s ∈ e-splp(m), with m = {mk}
N
k=0, is uniquely represented by an epi-spline parameter

r := (s0, ..., sN , a1, ..., aN ), sk ∈ IR, k = 0, ..., N, ak ∈ IRp+1, k = 1, ..., N,

such that for any x ∈ [m0,mN ],
s(x) := 〈cp,m(x), r〉,

where 〈z, z′〉 :=
∑

i ziz
′
i and cp,m : [m0,mN ] → IR(p+2)N+1 is defined by

cp,m(x) :=

{

(~0N+1+(p+1)(k−1), 1, xk, x
2
k, ..., x

p
k ,
~0(p+1)(N−k)), if x ∈ (mk−1,mk), k = 1, ..., N

(~0k, 1,~0N−k+(p+1)N ), if x = mk, k = 0, ..., N,

with xk = x−mk−1 and ~0k denoting the k-dimensional zero vector, k ∈ IN , and ~00 being a term that
is omitted. This representation of an epi-spline s lets the first N + 1 components in the vector r be
the values of s on m. The remaining (p+ 1)N components are divided into N blocks of (p+ 1)-tuples,
each of which gives the coefficients of the polynomial defining s on intervals of the form (mk−1,mk).
Specifically, ak = (ak,0, ak,1, ..., ak,p) is such that

s(x) =

p
∑

i=0

ak,i(x−mk−1)
i, for x ∈ (mk−1,mk), k = 1, 2, ..., N.

Since the first N +1 components of r determine the value of an epi-spline only on m, which consists of
a finite number of points, we refer to the remaining (p+1)N components of r as the essential epi-spline
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parameter and write r = (rmesh, ress), with rmesh ∈ IRN+1 and ress ∈ IR(p+1)N , to indicate this partition
of r. Correspondingly, we let cp,m = (cmesh, cess).

Since the value of a density at a finite number of points is immaterial for the characterization of
the corresponding probability distribution, it may at first appear unnecessary to specify the value of
an exponential epi-spline e−〈cp,m(·),r〉 on m. Instead of determining r = (rmesh, ress), one could simply
focus on ress and this is certainly the case for continuous exponential epi-splines. However, in the
discontinuous case the situation is more subtle. Since we consider functions in lsc-fcns([l, u]), which are
defined on the whole [l, u], their approximations should also be defined on the whole [l, u]. In addition,
we would like to handle soft information such as bounds on the values of a density estimate at particular
points, including at m. Hence, we find it most convenient to consider the value of epi-splines at the
mesh independently and proceed with the more general framework involving rmesh.

We note that convergence in the epi-spline parameter is equivalent to uniform convergence of the
corresponding exponential epi-splines and, under a restriction to usc functions, also to convergence in
the hypo-distance. Specifically, if hν , h0 ∈ x-splp(m), with m = {mk}

N
k=0, h

ν = e−sν = e−〈cp,m(·),rν〉,

and h0 = e−s0 = e−〈cp,m(·),r0〉, then the following hold [57]:

rν → r0 ⇐⇒ hν → h0 uniformly on [m0,mN ]

=⇒ dl(−hν ,−h0) → 0 ⇐⇒ dl(sν , s0) → 0.

Moreover, if hν , h0 are usc, then also

hν → h0 uniformly on [m0,mN ] ⇐= dl(−hν ,−h0) → 0.

We observe that since the hypo-distance does not distinguish between a function and its usc regu-
larization (see Proposition 7.4 in [56]), uniform convergence cannot generally be implied from hypo-
convergence, even for exponential epi-splines.

We next deal with existence and uniqueness of the estimator hn = exp(−sn(·)) and consider a
computational convenient equivalent form of (Pn

p,m) using the representation s = 〈cp,m(·), r〉. We
consider a realization of (Pn

p,m) with X1, ...,Xn replaced by observed values x1, . . . , xn, and Sn is now
a realization of the random constraint set. Since the meaning is clear from the context, we denote
realizations also by (Pn

p,m). We let Rn ⊂ IR(p+2)N+1 be the set of epi-spline parameters corresponding
to the set of epi-splines Sn, i.e.,

Rn := {r ∈ IR(p+2)N+1 | 〈cp,m(·), r〉 ∈ Sn};

for example, if Sn = e-splp(m), then Rn = IR(p+2)N+1. When incorporating soft information, Rn and
Sn become more restrictive as we see in §3. We let both the random set and its realizations be denoted
by Rn. We also let

Rn
I :=

{

r ∈ Rn

∣

∣

∣

∣

∫ mN

m0

e−〈cp,m(x),r〉dx = 1

}

.

As stated next, (Pn
p,m) is equivalent to the finite-dimensional problem:

(P̃n
p,m) : min

r∈Rn
I

1

n

n
∑

i=1

〈cp,m(xi), r〉.

Clearly, a realization x1, . . . xn and Sn generates a realization (Pn
p,m) as well as a corresponding realiza-

tion (P̃n
p,m).

9



2.5 Theorem (computing estimates). Given p and m = {mk}
N
k=0, for every corresponding realizations

(Pn
p,m) and (P̃n

p,m), one has

(i) If sn ∈ e-splp(m) is optimal for (Pn
p,m), then there exists an rn ∈ IR(p+2)N+1 optimal for (P̃n

p,m)
with sn = 〈cp,m(·), rn〉.

(ii) If rn ∈ IR(p+2)N+1 is optimal for (P̃n
p,m), then sn = 〈cp,m(·), rn〉 is optimal for (Pn

p,m) and the
exponential epi-spline estimator

hn(x) =

{

e−〈cp,m(x),rn〉, x ∈ [m0,mN ]

0, otherwise.

(iii) If Rn
I is nonempty and Rn is compact, then (P̃n

p,m) has an optimal solution.

Proof: The equivalence of (P̃n
p,m) and (Pn

p,m) follows directly from the representation s = 〈cp,m(·), r〉.

The existence of an optimal solution of (P̃n
p,m) follows trivially from the continuity of the involved

functions and the compactness of Rn.

While the objective function in (P̃n
p,m) is linear, Rn

I may be nonconvex. Hence, (P̃n
p,m) could pos-

sess local minimizers that are not globally optimal, increasing the complexity of solving the problem
numerically. We see in §3 that Rn is often a polyhedron or at least convex. Hence, the main difficulty
in (P̃n

p,m) is associated with the integral constraint. However, under broad conditions stated next, that
constraint can be relaxed as utilized in other contexts earlier (see for example [34]). These conditions
essentially imply that r can be improved whenever the corresponding function integrates to a number
less than one.

2.6 Definition A realization (P̃n
p,m) is said to be loosely constrained if for every r ∈ Rn with

∫mN

m0
e−〈cp,m(x),r〉dx < 1, there exists r′ ∈ Rn

I with
∑n

i=1〈cp,m(xi), r′ − r〉 < 0.

The following Proposition 2.8 and §3 provide examples of loosely constrained realizations. We give an
immediate consequence next.

2.7 Proposition Suppose that a realization (P̃n
p,m) is loosely constrained. Then, that realization and

the corresponding relaxed problem

(rlxPn
p,m) : min

r∈Rn

1

n

n
∑

i=1

〈cp,m(xi), r〉 such that

∫ mN

m0

e−〈cp,m(x),r〉dx ≤ 1

have identical sets of optimal solutions. Moreover, if Rn is convex, then (rlxPn
p,m) is a convex problem.

In Theorem 4.7 below we show that even beyond loosely constrained realizations, the consideration of
(rlxPn

p,m) is justified. In view of the preceding discussion and results, it is clear that the exponential epi-
spline estimator is computationally tractable by means of well-developed convex optimization algorithms
in many practical situations and by means of nonlinear programming algorithms in even more situations.
In some cases, for example when Rn is polyhedral, some further computational benefits may arise from
utilizing the following reformulation, which is valid under additional assumptions; see §3 for examples.
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The next result also gives a sufficient condition for a realization (P̃n
p,m) to be loosely constrained. We

use the notation ~1p,N to indicate the ((p + 2)N + 1)-dimensional vector consisting of zeros, except at
entries 1 through N + 1 as well as entries N + 2 + (k − 1)(p + 1), k = 1, 2, ..., N , where it is unity.

2.8 Proposition A realization (P̃n
p,m) for which every r ∈ Rn and β ∈ IR satisfy r + β~1p,N ∈ Rn, is

loosely constrained and its set of optimal solutions is identical to that of the corresponding penalized
problem

(pnlPn
p,m) : min

r∈Rn

1

n

n
∑

i=1

〈cp,m(xi), r〉+

∫ mN

m0

e−〈cp,m(x),r〉dx.

Moreover, if Rn is convex, then (pnlPn
p,m) is a convex problem.

Proof: We consider corresponding realizations (P̃n
p,m) and (pnlPn

p,m) and let r ∈ Rn satisfy
∫mN

m0
e−〈cp,m(x),r〉dx = γ < 1. For r′ = r + (log γ)~1p,N ,

∫ mN

m0

e−〈cp,m(x),r′〉dx =
1

γ

∫ mN

m0

e−〈cp,m(x),r〉dx = 1. (1)

Moreover,
∑n

i=1〈cp,m(xi), r′ − r〉 =
∑n

i=1〈cp,m(xi), (log γ)~1p,N 〉 = n log γ < 0. Since r′ ∈ Rn by assump-
tion, (P̃n

p,m) is loosely constrained by Definition 2.6.
We next consider the penalized problem. For any r ∈ Rn, let

fn(r) =
1

n

n
∑

i=1

〈cp,m(xi), r〉+

∫ mN

m0

e−〈cp,m(x),r〉dx

and let r̂ ∈ Rn be arbitrary. Since every epi-spline is piecewise polynomial and therefore integrates on
[m0,mN ] to a finite number, there exists a γ ∈ (0,∞) such that

∫mN

m0
e−〈cp,m(x),r̂〉dx = γ. By assumption,

r̂ + (log γ)~1p,N ∈ Rn and, following the same argument as in (1),

∫ mN

m0

e−〈cp,m(x),r̂+(log γ)~1p,N 〉dx = 1.

Consequently, r̂+(log γ)~1p,N is feasible in (P̃n
p,m). Suppose that rn is optimal for (P̃n

p,m). It follows that

rn also minimizes fn on Rn
I because this problem deviates from (P̃n

p,m) only by the constant one in the
objective function. Using an argument similar to that of Lemma 2.3 in [34], we find that

fn(r̂)− fn(rn)

=
1

n

n
∑

i=1

〈cp,m(xi), r̂ + (log γ)~1p,N 〉 − log γ +

∫ mN

m0

e−〈cp,m(x),r̂〉dx− fn(rn)

= fn(r̂ + (log γ)~1p,N )− log γ − 1 + γ − fn(rn)

≥ − log γ − 1 + γ,

where the inequality follows from the fact that rn is optimal and r̂ + (log γ)~1p,N is feasible in (P̃n
p,m).

Since − log γ − 1 + γ > 0 for γ ∈ (0,∞), γ 6= 1, we find that every r ∈ Rn with
∫mN

m0
e−〈cp,m(x),r〉dx 6= 1

11



has fn(r) > fn(rn) and consequently cannot minimize fn on Rn. The first conclusion then follows.
Convexity of (pnlPn

p,m) follows directly from the convexity of the integral term.

In general, one cannot expect a unique optimal solution of a realization (P̃n
p,m), and consequently a

unique exponential epi-spline estimate, due to the flexibility in the choice of values of the epi-spline on
a mesh that is not a subset of the sample realization x1, x2, ..., xn. In fact, if the first N +1 components
of the epi-spline parameter r are not constrained by Rn, then there is an infinite number of optimal
solutions whenever one exists. The next result shows that when these values are uniquely determined
by the essential epi-spline parameter, uniqueness may still be achieved. Such a dependence on the
essential epi-spline parameter is manifest, for example, in the case of continuous epi-splines used when
dealing with densities known to be continuous.

2.9 Proposition Suppose that corresponding realizations (P̃n
p,m) and (rlxPn

p,m) have Rn convex,
{x1, ..., xn} ∩m = ∅, and satisfy the condition:

(rmesh, ress), (r
′
mesh, r

′
ess) ∈ R

n, with ress = r′ess, implies rmesh = r′mesh.

Then, the following hold:

(i) If an optimal solution r of the realization (rlxPn
p,m) is in Rn

I , then there are no other optimal
solutions.

(ii) The realization (pnlPn
p,m) has at most one optimal solution.

Proof: We start by showing strictly convexity of the integral term as a function of the essential epi-
spline parameters. Given m = {mk}

N
k=0, we define ψ : IR(p+1)N → IR and ϕ : [m0,mN ]× IR(p+1)N → IR

by

ψ(ress) :=

∫ mN

m0

ϕ(x, ress)dx, with ϕ(x, ress) := e−〈cess(x),ress〉.

For all x ∈ [m0,mN ] and ress, r
′
ess ∈ IR(p+1)N , twice differentiation with respect to the second argument

in ϕ gives that
〈r′ess,∇

2ϕ(x, ress)r
′
ess〉 = 〈cess(x), r

′
ess〉

2e−〈cess(x),ress〉 ≥ 0.

Suppose that r′ess 6= 0. Then, there exists a k̂ ∈ {1, 2, ..., N} such that 〈cess(x), r
′
ess〉 is a polynomial

in x for x ∈ (mk̂−1,mk̂) with not all coefficients zero. Hence, there exists a subset of (mk̂−1,mk̂) with
positive Lebesgue measure on which 〈cess(x), r

′
ess〉 6= 0 and

∫ mN

m0

〈cess(x), r
′
ess〉

2e−〈cess(x),ress〉dx > 0. (2)

Since the dominated convergence theorem implies that the left-hand side of (2) equals 〈r′ess,∇
2ψ(ress)r

′
ess〉,

we find that ψ is strictly convex by the second-order condition for convexity.
We let ψ̃ = (1/n)

∑n
i=1〈cess(x

i), ·〉+ ψ(·), which is therefore also strictly convex.
We first consider (ii). Suppose for the sake of a contradiction that there exist r = (rmesh, ress) 6=

r′ = (r′mesh, r
′
ess) that both are optimal for the realization (pnlPn

p,m), with optimal value v∗. Since
{x1, ..., xn} ∩ m = ∅, the objective function in this problem depends only on the essential epi-spline
parameter and, in fact, ψ̃(ress) = ψ̃(r′ess) = v∗. We consider two cases.

12



a) Suppose that ress = r′ess, but then rmesh = r′mesh by assumption and we contradict the hypothesis
that r 6= r′.

b) Suppose that ress 6= r′ess. Since ψ̃ is strictly convex, there exists a unique minimizer r′′ess of ψ̃ over
the convex hull of ress and r

′
ess. Moreover, there exists an α ∈ (0, 1) such that r′′ess = αress + (1− α)r′ess

and ψ̃(r′′ess) < v∗. By the convexity of Rn, r′′ = (αrmesh + (1 − α)r′mesh, r
′′
ess) ∈ Rn and its objective

function value in (pnlPn
p,m) is ψ̃(r′′ess) < v∗, which contradicts the optimality of v∗.

Second, we focus on (i). Suppose that r = (rmesh, ress) ∈ Rn
I is optimal for the realization (rlxPn

p,m).
We consider two cases.

a) Suppose that
∫mN

m0
e−〈cp,m(x),r′〉dx ≥ 1 for all r′ ∈ Rn. Then by strict convexity of ψ, there exists

a unique minimizer r′′ess of ψ on {r′′′ess ∈ IR(p+1)N | (r′′′mesh, r
′′′
ess) ∈ Rn for some r′′′mesh ∈ IRN+1}. However,

r′′ess = ress because ψ(ress) = 1. Another optimal solution for the realization (rlxPn
p,m) would thus have

essential epi-spline parameter identical to ress. However, by assumption, such a solution would then
also be identical to r in the remaining components, which implies it coincides with r.

b) Suppose that there exists r′ ∈ Rn such that
∫mN

m0
e−〈cp,m(x),r′〉dx < 1. Then, the Slater constraint

qualification is satisfied and there exists a multiplier λ ≥ 0 such that the realization (rlxPn
p,m) has the

same set of optimal solutions as the problem

min
r∈Rn

1

n

n
∑

i=1

〈cp,m(xi), r〉+ λ

∫ mN

m0

e−〈cp,m(x),r〉dx. (3)

Repeating the arguments that lead to (ii), with (3) in place of the realization (pnlPn
p,m), shows that

there are no other optimal solutions of the realization (rlxPn
p,m) than r.

3 Soft Information

We implement soft information about the density under consideration in the estimation problem (P̃n
p,m)

through the set Rn, which can be any, possibly random, subset of IR(p+2)N+1. It is observed empirically
and also illustrated in §5 that soft information tends to improve density estimates. In this section,
we give a soft consistency theorem that, in part, explains these observations. We also give examples
of constraints for specific instances of soft information. We start, however, with a convenient result
regarding the Kullback-Leibler divergence.

Let dKL(h||g) denote the Kullback-Leibler divergence from a density h to a density g defined on

IR, i.e., dKL(h||g) :=
∫∞
−∞ h(x) log h(x)

g(x)dx. Here and below we make the standard interpretation that

β1 log(β1/β2) = 0 when β1 = 0 regardless of the value of β2 ∈ IR and β1 log β1/β2 = ∞ when β1 > 0
and β2 = 0. An immediate consequence of the definition of the divergence is the following result, which
facilitates formulation of certain soft information as well as theoretical results below.

3.1 Proposition Suppose h and e−s are densities with s = 〈cp,m(·), r〉 ∈ e-splp(m), m = {mk}
N
k=0.

Then,

dKL(h||e
−s) =

〈
∫ mN

m0

cp,m(x)h(x)dx, r

〉

+

∫ ∞

−∞
(log h(x))h(x)dx.
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If in addition h = e−s′ with s′ = 〈cp,m(·), r′〉 ∈ e-splp(m), then

dKL(h||e
−s) =

〈
∫ mN

m0

cp,m(x)h(x)dx, r − r′
〉

.

The next theorem is a direct consequence of Proposition 3.1.

3.2 Theorem (soft consistency). If the true density h0 = e−〈cp,m(·),r0〉, with r0 ∈ Rn and there exists a
ρ > 0 such that ‖r− r′‖ ≤ ρ for all r, r′ ∈ Rn, then the estimate hn,ρ obtained from solving a realization
(P̃n

p,m) satisfies

dKL(h
0||hn,ρ) ≤

∥

∥

∥

∥

∫ mN

m0

cp,m(x)h0(x)dx

∥

∥

∥

∥

ρ.

Moreover, for any fixed n, if ρ→ 0, then hn,ρ → h0 uniformly on [m0,mN ].

An effective strategy for improving exponential epi-spline estimates is therefore to reduce the size of
Rn, of course, without eliminating the true epi-spline parameter.

We next illustrate the wide range of soft information that is easily included within the exponential
epi-spline framework‡.

Support bounds and mesh. The choice of mesh m = {mk}
N
k=0 accounts for support bounds and m0

and mN should, ideally, correspond to the lower and upper bounds of the support of the true density,
respectively. If these are unknown, conservative values could be used as our ability to approximate
extended real-valued functions does not rule out the possibility of vanishing densities on [m0,mN ], even
for the exponentially transformed kind. In practice, m0 and mN can be selected such that the observed
sample is well within [m0,mN ]. The mesh is often selected to be uniform, but the methodology offers
much flexibility and soft information about possible locations of discontinuities, for example, could lead
to other choices. Consequently, the mesh is selected essentially independently of the sample and one
should simply focus on having a mesh that is sufficiently fine to allow epi-splines to approximate the
underlying functions with a sufficient accuracy. Of course, some restrain on mesh refinement might be
imposed by computational considerations. The number of decision variables in the resulting optimiza-
tion problem grows linearly in N .

Semi-continuity, continuity and smoothness. It is straightforward to ensure usc, lsc, continuity,
and various degrees of differentiability through linear constraints; see [58] for details. The inclusion
of such constraint will keep a problem loosely constrained as the sufficient condition for being loosely
constrained in Proposition 2.8 is satisfied.

We recall that the epi-spline parameter is of the forms

r = (s0, s1, ..., sN , a1,0, a1,1, ..., a1,p, a2,0, a2,1, ..., a2,p, ...., aN,0, aN,1, ..., aN,p),

where the first N + 1 components specify the value of the epi-spline at the mesh points m0, m1, ...,
mN and the remaining N blocks of p + 1 components give the polynomial of order p in each interval

‡Naturally, with the possibility of including incorrect soft information, there is a need for validation. Although impor-
tant, we limit the discussion of this topic to Theorems 4.2, 4.4, and 4.7 as well as §5.4; see for example [63] and [9] for
tests in related contexts.
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(mk−1,mk), k = 1, 2, ..., N .

Slope information. The quantity
∫∞
−∞ h′(x)2/h(x)dx is a “measure of smoothness” that is easily

expressed in terms of the epi-spline parameter, but upper and lower bounds on this expression result
in undesirable nonconvex constraints. However, an alternative “normalization,” which also squares the
denominator, results in a convex constraint. Specifically, if h = e−〈cp,m(·),r〉, then

∫ ∞

−∞
(h′(x)/h(x))2dx =

N
∑

k=1

∫ mk

mk−1

(

p
∑

i=1

iak,i(x−mk−1)
i−1

)2

dx.

An upper bound on this quantity results is a convex constraint. In some application, one may also seek
bounds at x ∈ (mk−1,mk) by restricting

h′(x)/h(x) = −〈c′p,m(x), r〉 = −

p
∑

i=1

iak,i(x−mk−1)
i−1

and/or

h′′(x)/h(x) = −

p
∑

i=2

i(i− 1)ak,i(x−mk−1)
i−2 +

(

p
∑

i=1

iak,i(x−mk−1)
i−1

)2

.

Upper and lower bounds on the first quantity result in linear constraints and upper bounds on the
second quantity gives a quadratic convex constraint. The constraints could be imposed at any num-
ber of values of x, but we note that if p = 2 and the density is log-concave, as describe below, and
continuously differentiable, then lower bounds on h′(x)/h(x) at m1, m2, ..., mN suffices to ensure that
the constraints are satisfied for all x ∈ [m0,mN ]. Similarly, an upper bound on h′(x)/h(x) needs only
be imposed at m0, m1, ..., mN−1. The inclusion of the pointwise constraints keep a problem loosely
constrained as the sufficient condition for being loosely constrained in Proposition 2.8 is satisfied. We
observe that constraints on h′(x)/h(x) is an effective way of controlling the “tails” near m0 and mN .

Monotonicity. We achieve a nondecreasing (nonincreasing) density by imposing nonnegativity (non-
positivity) on h′(x)/h(x) for all x ∈ (mk−1,mk), k = 1, 2, ..., N as well as

sk−1 ≥ (≤)ak,0, sk ≤ (≥)

p
∑

i=0

ak,i(mk −mk−1)
i, k = 1, 2, ..., N.

Again, simplifications arise, for example, if p = 2 and the density is log-concave. Then, it suffices to
impose that ak,1 + 2ak,2(mk −mk−1) ≤ 0 (ak,1 ≥ 0), k = 1, 2, ..., N . Again, a problem remains loosely
constrained after the inclusion of these constraints.

Log-concavity. We recall that h = e−〈cp,m(·),r〉 is log-concave if and only if 〈cp,m(·), r〉 is convex. This
condition is ensured if 〈cp,m(·), r〉 is (i) continuous, (ii) for k = 1, 2, ..., N − 1, its left derivatives at mk

is no larger than its right derivative, i.e.,

p
∑

i=1

iak,i(mk −mk−1)
i−1 ≤ ak+1,1, k = 1, 2, ..., N − 1,
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and (iii) on each (mk−1,mk), k = 1, 2, ..., N , 〈cp,m(·), r〉 is convex, i.e.,

p
∑

i=2

i(i− 1)ak,i(x−mk−1)
i−2 ≥ 0, k = 1, 2, ..., N, x ∈ (mk−1,mk).

Here, the obvious interpretations are required when p = 0, 1. The latter condition simplifies to ak,2 ≥ 0,
k = 1, 2, ..., N , when p = 2. Hence, in that case, the condition of log-concavity requires only a finite
number of linear constraints. Again, the problem remains loosely constrained.

Unimodality and locations of modes. We implement soft information about unimodality of a
continuous density by designating one mesh point mk′ as the mode, and then constraining the density
to be increasing and decreasing on (mk′−1,mk′) and (mk′ ,mk′+1), respectively, and nondecreasing on
[m0,mk′) and nonincreasing on (mk′ ,mN ]. Solving the resulting estimation problem gives a candidate
density. The process is repeated for alternative mode locations mk, k = 0, 1, ..., N , k 6= k′, and the
density with the largest likelihood is retained as the estimate. The same result is obtained by solving
a single augmented problem involving N + 1 binary variables. K-modality is achieved similarly by
partitioning [m0,mN ] into K intervals, with each having a unimodal constraint. The process must be
repeated for each partition of interest. To specify that certain mk are modes is achieved by ensuring
that the density is increasing and decreasing on (mk−1,mk) and (mk,mk+1), respectively.

Symmetry. We ensure symmetry by designating a point of symmetry mk and then solving only for
the upper half of the density on [mk,mN ], with trivial changes to the likelihood function and integral
constraint. The process is repeated for each possible symmetry point. Again, auxiliary binary variables
would obtain the same effect within one augumented formulation.

Bounds on density values. It is straightforward to impose pointwise upper and lower bounds hmax(x)
and hmin(x) on the value of h(x) = e−〈cp,m(x),r), with 0 < hmin(x) ≤ hmax(x) <∞. It suffices to set

− log hmin(x) ≥

p
∑

i=0

ak,i(x−mk−1)
i ≥ − log hmax(x) for x ∈ (mk−1,mk)

and
− log hmin(x) ≥ sk ≥ − log hmax(x) for x = mk, k = 0, 1, ..., N.

While these constraints are linear, they do not satisfy the assumption of Proposition 2.8. However, if
only the lower bound h(x) ≥ hmin(x) is imposed, the resulting problem remains loosely constrained.

Kullback-Leibler divergence and the Bayesian paradigm. Proposition 3.1 provides a convenient
form of implementing soft information about a reference density href . In a Bayesian-like paradigm,
suppose that we seek a density that is “near” href , which for example could correspond to the posterior
mean obtained through Bayes theorem. Then, a constraint

dKL(h
ref ||e−〈cp,m(·),r〉) ≤ ϕ(n), (4)

indeed ensures that the estimate hn is within ϕ(n) of href as measured by the Kullback-Leibler diver-
gence. If href resulted from Bayes theorem, then these constraints allow for some flexibility to explore

16



densities near the one prescribed by a classical Bayesian approach. In view of Proposition 3.1, this
constraint is linear in r and thus easily implementable. Here, ϕ : IN 0 → [0,∞) is the cognitive content

of the reference density href and should satisfy ϕ(0) = 0, limn→∞ ϕ(n) = ∞, and be increasing since
an increasing sample size should place gradually less emphasis on href . Of course, if ϕ(n) = 0, then
(P̃n

m,p) simply returns href , or a density that deviates at most on m. If ϕ(n) = ∞, then no information
about the reference density is included. While technically not correct in the sense of classical Bayesian
statistics, one can also view href as a “prior” density and the resulting density hn obtained from (P̃n

m,p)

as the “posterior” density. Of course, a constraint dKL(h
ref ||e−〈cp,m(·),r〉) ≥ κ, for some κ > 0 is also

easily implementable, and could be relevant in contexts where a “diversity” of densities is sought. For
example, one may be concerned with the validity of the soft information imposed in an initial estimate
of a density and seek a set of alternative densities that are some distance away from the original esti-
mate; see §5.2 for an example.

Bounds on moments. Soft information may result in constraints on the j-th moment of the form
µmin
j ≤

∫mN

m0
xje−〈cp,m(x),r〉dx ≤ µmax

j , where µmin
j , µmax

j ∈ IR, µmin
j ≤ µmax

j are given constants. The
right-most inequality results in a convex constraint in r, while the left-most in a nonconvex constraint.

Bounds on cumulative distribution functions. Suppose that the cumulative distribution function
of h = e−〈cp,m(·),r〉 at γ ∈ [m0,mN ] must lie between the lower bound pmin and the upper bound pmax.
This results in the two convex constraints

∫ γ
m0
e−〈cp,m(x),r〉dx ≤ pmax and

∫mN

γ e−〈cp,m(x),r〉dx ≤ 1−pmin.

4 Consistency, Asymptotics, and Error Bounds

Being concerned, from now on, with asymptotics, we again view (Pn
p,m) to be a random optimization

problem, i.e.,

(Pn
p,m) : min

s∈Sn

1

n

n
∑

i=1

s(Xi) such that

∫ mN

m0

e−s(x) dx = 1;

whose random elements are the variablesX1, . . . ,Xn and the random set Sn; we still designate a solution
by sn which is now, itself, a random epi-spline. To achieve consistency, derive asymptotics and other
results, we view {(Pn

p,m)}∞n=1, for given m and p, as a sequence of random optimization problems that
under quite general assumptions converges in some sense to a limiting optimization problem, whose
optimal solution recovers a true density h0 ∈ x-splp(m), as the sample size n → ∞. We note that
the restriction to x-splp(m) for given m and p is justified by Theorem 2.4, but we also discuss the
consideration of densities beyond this broad class; see Theorem 4.4 below.

We define the “approximation” of a density h by an exponential epi-spline as follows.

4.1 Definition (Kullback-Leibler projection). For any density h on IR and family e-splp(m), m =
{mk}

N
k=0, the Kullback-Leibler projection of h on e-splp(m) is the set

Sp,m(h) := argmin
s∈e-splp(m)

dKL(h||e
−s) such that

∫ mN

m0

e−s(x)dx = 1. (5)

If the minimization is further constrained by s ∈ S ⊂ e-splp(m), then we denote the set of optimal
solutions by SS

p,m(h) and refer to it as the Kullback-Leibler projection relative to S.
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We see that Sp,m(h) is the set of epi-splines that gives the “closest” exponential epi-spline densities to
h in the sense of the Kullback-Leibler divergence. It is well known that dKL(h||g) ≥ 0 for all densities
h and g, and that dKL(h||g) = 0 if and only if h = g, except possibly on a set of Lebesgue measure
zero. Hence, if a density h = e−s ∈ x-splp(m), m = {mk}

N
k=0, then s ∈ Sp,m(h) and all s̃ ∈ Sp,m(h) are

identical to s (Lebesgue) almost everywhere on [m0,mN ]. Since s and s̃ are polynomials of order p on
each open interval (mk−1,mk), k = 1, 2, ..., N , they must be identical possibly except on m.

Suppose that h0 = e−s0 ∈ x-splp(m),m = {mk}
N
k=0, is the density of a random variable X0, which

we aim to estimate. Then, for any s ∈ e-splp(m), dKL(h
0||e−s) = E{log h0(X0)} + E{s(X0)}. Hence,

there is a constant term (with respect to s) in the objective function of (5) that can be dropped and
we reach the fact that every optimal solution of

(P 0
p,m) : min

s∈e-splp(m)
E{s(X0)} such that

∫ mN

m0

e−s(x)dx = 1 (6)

is identical to s0, except possibly on m. Consequently, if the family x-splp(m) under consideration
contains the true density h0, then (P 0

p,m) recovers h0 or a member in its “equivalence class.”
In contrast to (Pn

p,m), we refer to (P 0
p,m) as the true problem. Intuitively, if s0 ∈ Sn and n is

large, the problem (Pn
p,m) approximates the true problem in some sense and one would hope that the

corresponding optimal solutions are close. We next formalize this observation, which implies strong
consistency of the estimator hn = e−sn obtained from solving (Pn

p,m).

4.2 Theorem (consistency). Suppose that the true density h0 = e−s0 , with s0 = 〈cp,m(·), r0〉 ∈
e-splp(m) and m = {mk}

N
k=0, (P

n
p,m) is derived by independent sampling from h0, and {sn}∞n=1 is a

sequence of optimal solutions of (Pn
p,m), with epi-spline parameters {rn}∞n=1.

If limRn exists a.s.§ and is deterministic, then every accumulation point r∞ of {rn}∞n=1 satisfies

〈cp,m(·), r∞〉 ∈ SS∞

p,m(h0) a.s.,

where S∞ = {s ∈ e-splp(m) | s = 〈cp,m(·), r〉, r ∈ limRn}.
Moreover, regardless of whether Rn has a limit, if there exists a sequence {r̂n}∞n=1, with r̂

n ∈ Rn

for all n, such that r̂n → r0 a.s., then the following hold a.s.

(i) The accumulation point r∞ also satisfies 〈cp,m(·), r∞〉 ∈ Sp,m(h0).

(ii) The essential epi-spline parameter subvector of r∞ is identical to the essential epi-spline parameter
subvector of r0.

(iii) If rn →K r∞ along a subsequence K, then 〈cp,m(·), rn〉 →K s0 and e−〈cp,m(·),rn〉 →K h0 uniformly
on [m0,mN ], possibly except on m.

Proof: Since X0 ∈ [m0,mN ] a.s., cp,m(X0) is a random vector with finite moments. By the law of
large number (1/n)

∑n
i=1 cp,m(Xi) → E{cp,m(X0)} a.s. Let r̂0 ∈ IR(p+2)N+1 be arbitrary. Then, for

any sequence r̂n → r̂0,
〈

1

n

n
∑

i=1

cp,m(Xi), r̂n

〉

→
〈

E{cp,m(X0)}, r̂0
〉

a.s..

§Limits of sets are here taken in the sense of Painlevé-Kuratowski [56, §7.B] and the probability space is that induced
by {(Pn

p,m)}∞n=1.
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For any R ⊂ IR(p+2)N+1, we define δR(r) := 0 if r ∈ R and δR(r) := ∞ otherwise. Moreover, let
R∞

I := {r ∈ limRn |
∫mN

m0
e−cp,m(x),r〉dx = 1}. If r̂0 ∈ R∞

I , then

lim inf

〈

1

n

n
∑

i=1

cp,m(Xi), r̂n

〉

+ δRn
I
(r̂n) ≥ 〈E{cp,m(X0)}, r̂0〉+ δR∞

I
(r̂0) a.s.

Since R∞
I = limRn

I , it is closed. Consequently, if r̂0 6∈ R∞
I , then the previous inequality holds with

infinity on both sides. Next, suppose that r̂0 ∈ IR(p+2)N+1 is arbitrary. If r̂0 6∈ R∞
I , then

lim sup

〈

1

n

n
∑

i=1

cp,m(Xi), r̂n

〉

+ δRn
I
(r̂n) ≤ 〈E{cp,m(X0)}, r̂0〉+ δR∞

I
(r̂0) = ∞ a.s.

If r̂0 ∈ R∞
I , then, since R∞

I = limRn
I , there exists a sequence r̂n → r̂0 with r̂n ∈ Rn

I for all n.
Consequently,

〈

1

n

n
∑

i=1

cp,m(Xi), r̂n

〉

+ δRn
I
(r̂n) → 〈E{cp,m(X0)}, r̂0〉+ δR∞

I
(r̂0) a.s.

Epi-convergence of 〈(1/n)
∑n

i=1 cp,m(Xi), ·〉 + δRn
I

to 〈E{cp,m(X0)}, ·〉 + δR∞
I

a.s. then follows by
Proposition 7.2 in [56] and the first conclusions by Theorem 7.31 of [56] and the fact that r̂ ∈
argminr〈E{cp,m(X0)}, r〉+ δR∞

I
if and only if 〈cp,m(·), r̂〉 ∈ SS∞

p,m(h0).
We next turn to the second part of the theorem. Since the additional assumption implies that Rn

becomes arbitrary close to r0 a.s., item (i) follows by a similar argument as above. Items (ii) and (iii)
are conclusions from the discussion following Definition 4.1.

The first part of Theorem 4.2 shows that regardless of the soft information, which may even exclude

the true density, the resulting exponential epi-splines tend to one that is as “close” as possible to
the true density under the given constraints as the sample size increases. Specifically, the epi-splines
computed from {(Pn

p,m)}∞n=1 tend to a point in the Kullback-Leibler projection, relative to the soft
information constraint set, of the true density on the class of epi-splines under consideration. We refer
to [24, 14, 44] for related results on model misspecfication. The second part shows that if the true
density is not excluded by the soft information, then {(Pn

p,m)}∞n=1 eventually yields the true density, or
possibly a closely related one that deviates at most on m.

The preceding results deal with the case when the true density can be exactly represented by an
exponential epi-spline. If the true density is outside the class under consideration, one cannot expect to
tend to the true density even if the sample size goes to infinity. However, as we see next, if two densities
are close in the hypo-distance, then their Kullback-Leibler projections on e-splp(m) must also be close
in some sense. We will see that this has a direct consequence on the quality of density estimates when
the true density is outside the class of exponential epi-splines. Before the main theorem, we give an
intermediate result.

4.3 Proposition Suppose that fn : IR → [0,∞], f0 : IR → [0,∞] are Lebesgue integrable on every
compact subset of IR and dl(−fn,−f0) → 0. Then, for every compact set X ⊂ IR,

∫

X fn(x)dx →
∫

X f0(x)dx.
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Proof: The restrictions of fn and f0 to X, denoted by fnX and f0X , satisfy dl(−fnX ,−f
0
X) → 0. Conse-

quently, An
X := {(x, x0) ∈ X × [0,∞) | fnX(x) ≥ x0} → A0

X := {(x, x0) ∈ X × [0,∞) | f0X(x) ≥ x0} in
the Painlevé-Kuratowski sense. Since the Lebesgue measures of An

X and A0
X are identical to

∫

X f
n(x)dx

and
∫

X f
0(x)dx, respectively, the conclusion follows.

4.4 Theorem (stability of Kullback-Leibler projection). Suppose that densities hn, h0 on [l, u] satisfy
dl(−hn,−h0) → 0. If rn is such that 〈cp,m(·), rn〉 ∈ Sp,m(h

n) for m = {mk}
N
k=0 with m0 = l, mN = u,

then every accumulation point of {rn}∞n=1 is the epi-spline parameter of some s0 ∈ Sp,m(h0).

Proof: Following a similar argument as in Proposition 2.8, we see that the equality constraints in
the problems defining Sp,m(hn) and Sp,m(h

0) can be replaced by inequality. Consequently, every
sn ∈ Sp,m(hn) is of the form sn = 〈cp,m(·), rn〉, with rn ∈ argminr ψ

n(r) + δI(r), where ψn(r) :=
〈
∫mN

m0
cp,m(x)hn(x)dx, r〉 and δI(r) := 0 if

∫mN

m0
e−〈cp,m(x),r〉dx ≤ 1 and δI(r) := ∞ otherwise. Similarly,

every s0 ∈ Sp,m(h0) is of the form s0 = 〈cp,m(·), r0〉, where r0 is a minimizer of ψ0 defined similar to
ψn, but with hn replaced by h0. Clearly, ψn + δI and ψ0 + δI are convex.

By Proposition 4.3,
∫

X h
n(x)dx →

∫

X h0(x)dx for any compact set X ⊂ [m0,mN ]. But since cp,m
is piecewise polynomial and [m0,mN ] is a bounded interval, we also have that for any k = 1, 2, ..., N ,

∫ mk

mk−1

cp,m(x)hn(x)dx→

∫ mk

mk−1

cp,m(x)h0(x)dx.

Hence, it follows by Proposition 7.2 and Theorem 7.53 in [56] that ψn + δI totally epi-converges to
ψ0 + δI . The result then is a consequence of Corollary 7.55 in [56].

If we take the densities hn in Theorem 4.4 to be exponential epi-splines, possibly defined on increas-
ingly fine meshes, Theorem 2.4 shows that these densities indeed can be made to approximate with
arbitrary accuracy any lsc or usc density h0 with appropriate choice of the mesh. Consequently, the
assumption of dl(−hn,−h0) → 0 in Theorem 4.4 holds and, combined with Theorem 4.2, we find that
for a fine mesh and a large sample size the resulting exponential epi-spline estimator is “close” to the
true density, even if that density is outside the class of exponential epi-splines.

“Convergence” in the Kullback-Leibler divergence is closely related to other modes of convergence
as stated next.

4.5 Proposition Suppose that densities hn, h0 ∈ x-splp(m), with hn = e−〈cp,m(·),rn〉, h0 = e−〈cp,m(·),r0〉,
rn = (rnmesh, r

n
ess), and r

0 = (r0mesh, r
0
ess). Then,

rn → r0 =⇒ dKL(h
0||hn) → 0 ⇐⇒ dKL(h

n||h0) → 0 =⇒ rness → r0ess.

Proof: We let rn = (rnmesh, r
n
ess) and r

0 = (r0mesh, r
0
ess). The implication rn → r0 =⇒ dKL(h

0||hn) → 0
follows directly from Proposition 3.1.

To show that dKL(h
0||hn) → 0 =⇒ rness → r0ess we observe that dKL(·||·) ≥ 0 and for any two

densities f, g on [m0,mN ], dKL(f ||g) = 0 if and only if f(x) = g(x) for Lebesgue almost every x ∈
[m0,mN ]. We therefore consider the problem minr∈R dKL(h

0||e−〈cp,m(x),r〉), with R = {r ∈ IR(p+2)N+1 |
∫mN

m0
e−〈cp,m(x),r〉dx = 1}, where r0 is a minimizer and in fact every minimizer must coincide with r0ess

in its last (p + 1)N components. In view of Proposition 3.1, the objective function in this problem
is linear and the single constraint is continuously differentiable. The first-order optimality condition
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for this problem and the fact that {r ∈ IR(p+2)N+1|
∫mN

m0
e−〈cp,m(x),r〉dx ≤ 1} is convex imply that the

hyperplane W = {r ∈ IR(p+2)N+1|dKL(h
0||e−〈cp,m(x),r〉) = 0} is a supporting hyperplane of R with r0ess

being the only (p + 1)N -dimensional vector ress that can be augmented by a β ∈ IRN+1 such that
{(β, ress)} = R ∩W . Since rn ∈ R and for sufficiently large n is arbitrarily close to W , we reach the
desired conclusion.

We realize that dKL(h
n||h0) → 0 =⇒ dKL(h

0||hn) → 0 by establishing that rness → r0ess whenever
dKL(h

n||h0) → 0 using a similar argument as above and then use Proposition 3.1.
We find that dKL(h

0||hn) → 0 =⇒ dKL(h
n||h0) → 0 by invoking that dKL(h

0||hn) → 0 =⇒ rness →
r0ess and Proposition 3.1.

Asymptotic normality of the distribution of the exponential epi-spline estimator and corresponding
moments may also hold when we limit the scope to the essential epi-spline parameters. As we see
from the discussion before Proposition 2.9, one cannot expect a unique estimator — a prerequisite
for asymptotic normality — unless the scope is limited in this manner¶. This focus on the essential
epi-spline parameter requires additional notation that we introduce next.

For any ress ∈ IR(p+1)N , let‖ H(ress) :=
∫mN

m0
〉cess(x), cess〈e

−〈cess(x),ress〉dx be the Hessian of the

function
∫mN

m0
e−〈cess(x),·〉dx at ress. We also let Σess be the variance-covariance matrix of cess(X

0), with

X0 distributed by the true density h0, and Σ(ress) := H(ress)
−1ΣessH(ress)

−1, where we note that
H(ress) is nonsingular by the argument in the proof of Proposition 2.9. For notational convenience,
we also let Σk(ress) be the (p + 1) × (p + 1) submatrix of Σ(ress) consisting of elements in columns
(k − 1)(p + 1) + 1, (k − 1)(p + 1) + 2, ..., (k − 1)(p + 1) + (p + 1) and the corresponding rows in the
latter matrix. These are the coefficients corresponding to interval (mk−1,mk). Moreover, let ress,k be
the subvector of components N+1+(k−1)(p+1)+1, ..., N+1+(k−1)(p+1)+(p+1) of ress, i.e., the
parameters that define the epi-spline in (mk−1,mk), and the corresponding subvectors of cess are denoted
by cess,k. Finally, we let µ

0
j :=

∫∞
−∞ xjh0(x)dx be the jth moment of the true density h0, N (0,Σ) denote

a zero-mean normal vector with variance-covariance matrix Σ, and →d convergence in distribution. We
are now ready to state an asymptotic result for an exponential epi-spline estimator, where we make the
assumption that the soft information is “clearly” correct, i.e., the true density corresponds to a point
in the interior of the sets Rn a.s. for sufficiently large n. Moreover, we assume that the true density is
an exponential epi-spline. Although this might at first appear restrictive, Theorem 2.4 shows that such
densities can approximate to an arbitrary level of accuracy essentially any density.

4.6 Theorem (asymptotics). Suppose that the true density h0 = e−s0 ∈ x-splp(m), with m =
{mk}

N
k=0, s

0 = 〈cp,m(·), r0〉, and r0 = (r0mesh, r
0
ess) is in the interior of the (set) inner limit of the

Rn a.s. If (Pn
p,m) is obtained by independent sampling from h0 and {sn}∞n=1 is a sequence of optimal

solutions of (Pn
p,m), with epi-spline parameters {rn = (rnmesh, r

n
ess)}

∞
n=1, and h

n = e−〈cp,m(·),rn〉 for all n,
then the following hold:

(i)
n1/2(rness − r0ess) →

d N (0,Σ(r0ess))

¶One could appeal to more sophisticated central limit theorems, such as those in [38], but additional conditions and
machinery is required and would require us to stray too far from our main theme.

‖We use 〉y, y〈 to denote the outer product yy⊤ for a column vector y.
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(ii) For x ∈ (mk−1,mk), k = 1, 2, ..., N ,

n1/2(hn(x)− h0(x)) →d N
(

0, e−2〈cess,k(x),ress,k〉〈cess,k(x),Σk(r
0
ess)cess,k(x)〉

)

.

(iii) For j ∈ IN , and setting w =
∫mN

m0
xjcess(x)e

−〈cp,m(x),r0〉dx, the moment estimator µnj =
∫mN

m0
xje−〈cp,m(x),rn〉dx satisfies

n1/2(µnj − µ0j) →
d N (0, 〈w,Σ(r0ess)w〉).

Proof: The law of large number gives that the objective function in (Pn
p,m) converges uniformly on

compact sets to that of (P 0
p,m) a.s. We recall that 〈cp,m(·), r0〉 is an optimal solution of (P 0

p,m) and, by
assumption, r0 is also in the interior of the (set) inner limit of the Rn a.s. Consequently, since (P 0

p,m)
does not involve a restriction Sn, the set of optimal solutions of (Pn

p,m) coincides with those of the
relaxation of (Pn

p,m) with Sn replaced by e-splp(m) for sufficiently large n. Let

(Pn
ess) : min

ress∈IR(p+1)N

1

n

n
∑

i=1

〈cess(X
i), ress〉+

∫ mN

m0

e−〈cess(x),ress〉dx,

where X1, X2, ..., Xn is the sample from h0. We deduce from Propositions 2.8 and 2.9 that (Pn
ess) and

the relaxation of (Pn
p,m) have unique optimal solutions a.s. and that they are equivalent in the sense

that they generate the same essential epi-spline parameter. Consequently, for sufficiently large n, the
optimal solution of (Pn

ess) is r
n
ess a.s.

Let X0 be a random variable with density h0 and

(P 0
ess) : min

ress∈IR(p+1)N
E{〈cess(X

0), ress〉}+

∫ mN

m0

e−〈cess(x),ress〉dx.

We deduce from Propositions 2.8 and 2.9 that an optimal solution of this problem is unique and coincides
with the essential epi-spline parameter r0ess of h

0.
Since (P 0

ess) and (Pn
ess) are strictly convex and unconstrained a.s., their unique optimal solutions

are equivalently characterized as the zeros of the objective function gradients. Since these gradients
converge uniformly on IR(p+1)N a.s. by the law of large numbers, and the corresponding Hessians are
identical and positive definite, item (i) follows directly from Theorem 4 of [51]. The next items follow
by a direct application of a Delta Theorem; see, for example, §7.2.7 in [62].

Although Theorem 4.6 provides rates of convergence, it excludes the possibility of soft information
in Rn influencing the estimates for large samples and, in addition, deals only with the essential epi-spline
parameter. We end the section by examining errors for a finite sample size under relaxed assumptions,
which leads to another rate of convergence result. However, the treatment requires us to focus on
ε-optimal solutions of (rlxPn

p,m), now viewed as a random optimization problem, which for any ε ≥ 0
are defined as

Rn
ε :=

{

r ∈ Rn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

〈cp,m(Xi), r〉 ≤ V n + ε,

∫ mN

m0

e−〈cp,m(x),r〉dx ≤ 1

}

,
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where the optimal value of (rlxPn
p,m) is

V n := inf
r∈Rn

1

n

n
∑

i=1

〈cp,m(Xi), r〉 such that

∫ mN

m0

e−〈cp,m(x),r〉dx ≤ 1.

The statements below deal with the difference between the true density h0 and hnε := e−〈cp,m(·),rnε 〉,
with rnε ∈ Rn

ε for ε > 0. In fact, a numerical method for solving a realization of (rlxPn
p,m) generates

an element of Rn
ε , and consequently also an estimate hnε , as such methods utilize finite precision and

various tolerances. Also let ρIB := {y | ‖y‖ ≤ ρ} in any Euclidean space, ∆p,m := maxl=0,1,...,p |m|l, and
d(x, S) := infy∈S ‖x− y‖ for x ∈ IRk, S ⊂ IRk.

4.7 Theorem (finite sample error). Suppose that the true density h0 ∈ x-splp(m), m = {mk}
N
k=0, with

epi-spline parameter r0, and (rlxPn
p,m) is derived by independent sampling from h0, has a nonempty

feasible set a.s., and Rn is closed and convex a.s. For any α > 0, ε > 0, ρ > max{−V n, d(r0,Rn
0 )}, and

some hnε = e−〈cp,m(·),rnε 〉, rnε ∈ Rn
ε ,

d(r0,Rn
ε ) > K and dKL(h

0||hnε ) >

∥

∥

∥

∥

∫ mN

m0

cp,m(x)h0(x)dx

∥

∥

∥

∥

K,

with probability at most 2(p + 1)Ne−2n(α/∆p,m)2 , where

K :=

(

1 +
4ρ

ε

)

[

α(ρ+ ‖r0‖)
√

(p+ 1)N +
(

1 + ∆p,m

√

(p + 2)N + 1
)

d(r0, Rn)
]

.

Proof: LetX0 be a random variable with density h0 andX1,X2, ...,Xn be the sample that generates
(Pn

p,m). We denote by cjp,m(X0) the components of cp,m(X0), j = 1, 2, ..., (p + 2)N + 1. For j =

1, 2, ..., N +1, cjp,m(X0) = 1 if X0 = mj−1 and c
j
p,m(X0) = 0 otherwise. Consequently, E{cjp,m(X0)} = 0

and, likewise, (1/n)
∑n

i=1 c
j
p,m(Xi) = 0 a.s. For j = N + 1 + (p + 1)(k − 1) + l + 1, l = 0, 1, ..., p,

k = 1, 2, ..., N , cjp,m(X0) = (X0−mk−1)
l ifX0 ∈ (mk−1,mk) and c

j
p,m(X0) = 0 otherwise. Consequently,

for j = N + 2, N + 3, ..., (p + 2)N + 1, cjp,m(X0) ∈ [0,∆p,m] a.s. and by Hoeffding’s inequality,

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

cjp,m(Xi)− E{cjp,m(X0)}

∣

∣

∣

∣

∣

≥ α

)

≤ 2e−2n(α/∆p,N )2

for every α ≥ 0. Moreover, Boole’s inequality gives, when taking advantage of the zero error for
j = 1, ..., N + 1, that

P





(p+2)N+1
⋃

j=1

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

cjp,m(Xi)− E{cjp,m(X0)}

∣

∣

∣

∣

∣

≥ α

}



 ≤ 2(p + 1)Ne−2n(α/∆p,m)2 .

Let ϕn : IR(p+2)N+1 → IR be defined by ϕn := (1/n)
∑n

i=1〈cp,m(Xi), ·〉 + δn(·) where δn(r) := 0 if
r ∈ Rn and

∫mN

m0
e−〈cp,m(x),r〉dx ≤ 1, and δn(r) := ∞ otherwise. Let ϕ0,n : IR(p+2)N+1 → IR be defined

by ϕ0,n := E{〈cp,m(X0), ·〉}+ δ0,n(·) where δ0,n(r) := 0 if
∫mN

m0
e−〈cp,m(x),r〉dx ≤ 1 and r is in the convex

hull of Rn and r0, and δ0,n(r) := ∞ otherwise.
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In view of the preceding results and definitions, for r − r0 ∈ ρIB, with ρ ∈ (0,∞),
∣

∣

∣

∣

∣

(1/n)

n
∑

i=1

〈cp,m(Xi), r〉 − E{〈cp,m(X0), r〉}

∣

∣

∣

∣

∣

≤ α(ρ+ ‖r0‖)
√

(p + 1)N

with at least probability 1 − 2(p + 1)Ne−2n(α/∆p,m)2 . Using this fact, Example 7.62 of [56] gives that
with the same probability,

dl+ρ (ϕ
n, ϕ0,n) ≤ α(ρ+ ‖r0‖)

√

(p + 1)N +
(

1 + ∆p,m

√

(p+ 2)N + 1
)

d(r0, Rn),

where dl+ρ is closely related to dlρ; see §7.I in [56]. Then, from Theorem 7.69 in [56], we deduce the first
result after realizing that r0 is an ε-optimal solution of minϕ0,n, where the additional factor 1 + 4ρ/ε
arises from that theorem. Proposition 3.1 yields the second conclusion.

Theorem 4.7 shows that there are two sources of error in the estimation process corresponding to
the two parts of K. The first source is sampling error, represented by the term involving α, which can
be made small by selecting a small α and this error is only exceeded with a small probability if nα2

is large. The second source is caused by d(r0, Rn), the distance between the true epi-spline parameter
and the constraint set Rn. Of course, if only appropriate soft information is included, then r0 ∈ Rn

and d(r0, Rn) = 0. Otherwise, incorrect specification of soft information induces a “bias” in the density
estimator. We note that Theorem 4.7 provides additional support for considering (rlxPn

p,m) also for
instances which are not loosely constrained. Even in such cases, (rlxPn

p,m) is guaranteed to generate a
density near the true density.

We recall the notion of “bounded in probability.” For a sequence of random variables {Y n}∞n=1, we
write Y n = Op(1) when for any ζ > 0, there exists a β ≥ 0 such that Prob(|Y n| > β) ≤ ζ for all n.

4.8 Corollary For sufficiently large n, suppose that the assumptions of Theorem 4.7 hold and d(r0, Rn)
= 0 a.s. Then,

n1/2dKL(h
0||hnε ) = Op(1) for some hnε = e−〈cp,m(·),rnε 〉, rnε ∈ Rn

ε .

Proof: Theorem 4.7 and the fact that d(r0, Rn) = 0 imply that for sufficiently large n

Prob(n1/2dKL(h
0||hnε ) > K ′αn1/2) ≤ 2(p+ 1)Ne−2n(α/∆p,m)2 ,

where K ′ =
∥

∥

∥

∫mN

m0
cp,m(x)h0(x)dx

∥

∥

∥ (1 + 4ρ/ε)(ρ + ‖r0‖)
√

(p+ 1)N . We let ζ > 0 and couple α and

n such that ζ = 2(p + 1)Ne−2n(α/∆p,m)2 , i.e., n = −∆2
m,p log(ζ/2(p + 1)N)/(2α2). Consequently,

Prob(n1/2dKL(h
0||hnε ) > β) ≤ ζ, where β := K ′(−∆2

m,p log(ζ/2(p + 1)N)/2)1/2 and the conclusion
follows.

In view of the preceding result, we see that the canonical rate of n−1/2 is obtained for the exponential
epi-spline estimator even if soft information is “active.”

5 Numerical Examples

We illustrate the exponential epi-spline estimator through a series of examples using a freely available
Matlab toolbox [59] that relies on the fmincon solver (Matlab 7.10.0); see also [8] for a corresponding
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R toolbox. The focus is on showing the effect of including various sources of soft information in the
context of small sample sizes. §5.1 shows estimates of an exponential density using 10 observation
and an increasing collection of soft information. §5.2 provides an alternative to the Bayesian paradigm
and demonstrates how a diverse family of densities can be generated. §5.3 examines the probability
density of customer time-in-service for a modified M/M/1 queue. §5.4 shows the effect of incorrect
soft information. The section ends with §5.5, where soft information about moments is examined for
increasing sample sizes. It is beyond the scope of the paper to include a comprehensive comparison
with alternative density estimators, which in any case have difficulties with incorporating an arbitrary
set of soft information. Occasionally, we simply contrast with kernel estimates using “ksdensity” in
Matlab, a Gaussian kernel, and default bandwidths, which are optimized in some sense for the normal
densities. These estimates can possibly be improved with better bandwidth and kernel choices. In all
cases, we use epi-splines of order 2 and if there is no soft information about support bounds, we set
m0 (mN ) to two sample-estimated standard errors below (above) the smallest (largest) sample point,
and use uniform meshes. The set Rn always includes the loose constraints −1000 ≤ r ≤ 1000. The
Gauss-Legendre quadrature rule with 20 points evaluates the integrals over each segment (mk−1,mk)
with high accuracy. We often assess the quality of an estimate hn of a density h0 by the mean-square
error (MSE)

∫∞
−∞(hn(x)− h0(x))2h0(x)dx. For additional numerical results we refer to [66, 58, 65, 57].

5.1 Value of Soft Information

We illustrate the effect of soft information in a simple example. For a true exponential density with
parameter λ = 1 (dotted black curves in Figure 2) and a sample of size 10 (see green stems), Figure 2
shows our exponential epi-spline estimates (solid red curves) under two classes of soft information: (a)
continuously differentiable, nonnegatively supported, and log-concave density and (b) also nonincreasing
density and a relative bound on the slope. The soft information about relative slope amounts to letting
the quantity hn′(x)/hn(x) be in the interval [−1, 0]. We observe that the exponential density h0 with
parameter λ = 1 has h0

′
(x)/h0(x) = −1 for all x ≥ 0.

For comparison, a kernel estimate, incorporating information about a nonnegative support, is dis-
played by dashed black curves. The exponential epi-spline estimates are obtained using a mesh with
N = 10. In Figure 2(a), MSE is 0.1144 and 0.3273 for exponential epi-spline and kernel estimates, re-
spectively. The kernel estimate reaches well above 4.5 near zero, though the plots are truncated for the
sake of clarity. Figure 2(b) shows the visually improved exponential epi-spline estimate with a reduced
MSE of 0.0416. The exponential epi-spline estimates miss the density peak at zero, but the present
sample provides few indications about such a peak and its capture will naturally be difficult. Still,
the exponential epi-spline estimate is both qualitatively and quantitatively close to the true density
elsewhere. The ability to incorporate various kinds of soft information along the lines illustrated here
offers the analyst a valuable tool for exploring assumptions and their consequences. One can attempt to
improve the kernel estimate using various bandwidth as well as truncation (see for example [68, p.19]).
The effect on bandwidth in the kernel estimate is illustrated in Figure 3(a), where the case with default
bandwidth (given in Figure 2(a)) is supplemented by estimates using bandwidth 0.15, 0.2625, 0.375,
0.4875, and 0.6. The combination of a nonnegative support and few data points make it nontrivial
to select an appropriate bandwidth and the estimates remain mostly qualitatively similar. In Figure
3(b) we remove the requirement of a nonnegative support. Again, the choice of bandwidth appears
challenging. However, truncation and renormalization of the portion of the density estimates to the left
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of the origin improves the situation; see the dashed blue lines in Figures 2(a), 2(b), and 3(a) that give
the resulting estimate when truncating the (default) density estimate in Figure 3(b) (black line).

5.2 Kullback-Leibler Divergence and the Bayesian Paradigm

Our framework provides an alternative to traditional Bayesian updating. In addition to the inclusion of
numerous types of soft information—which can be viewed as “prior” information—we may also directly
restrict (P̃n

m,p) to a neighborhood of a reference density href using (4). To illustrate the framework,
consider a reference (prior) density that is standard normal and a sample consisting of 10 points from
the same density; see Figure 4. We set N = 10 and restrict the search to continuously differentiable
densities. If no emphasis is placed on the reference density, i.e., ϕ(10) = ∞ in (4), then we obtain
the exponential epi-spline estimate marked with the red dotted line in Figure 4. As proximity to the
reference density is enforced more vigorously by setting ϕ(10) = 1, 0.1, and 0.01, we obtain the dashdot,
dashed, and solid lines, respectively, in Figure 4. The Kullback-Leibler divergence constraints dampen
the oscillations caused by the sample by a degree determined by ϕ(10), which in practice should be
selected based on the confidence in the correctness of the reference density.

A related situation arises when an analyst would like to generate multiple densities that span a
range of possibilities, for example to account in some manner for questionable soft information. For
example, when the estimated density is to be used as input in further simulation and optimization,
it may be prudent to consider a set of densities and possibly let planning be based on the worst
density in some sense. We illustrate this situation by returning to the exponential example of §5.1.
Suppose that the second density generated there (see Figure 2(b)) is considered plausible, but we
would like to also generate relevant alternatives. Retaining a restriction to continuously differentiable,
nonincreasing, and nonnegatively supported densities, we construct three alternatives by imposing (4)
with ≤ replaced by ≥ and right-hand side 0.1, 0.01, and 0.001, and href being the original estimate
in Figure 2(b). Consequently, we determine densities that are at least certain “distances” away from
the original estimate in the sense of Kullback-Leibler divergence, while still maximizing the likelihood
function of the sample. Figure 5 shows the results with the solid red line and dotted black line showing
the original estimate and true density as in Figure 2(b). The alternative densities are depicted with
dashed, dot-dashed, and dotted red lines for right-hand sides of 0.001, 0.01, and 0.1, respectively. We
observe that even though based on only 10 sample points, the original together with the alternative
densities provide a “diversified” set of densities near the true density well suited as input for further
studies.

5.3 Estimation of Queueing Model Output

Significant challenges arise when the density to be estimated is discontinuous. We illustrate this situ-
ation here by an example taken from [65]; see [57] for additional examples. Suppose that the random
variable of interest is the customer time-in-service of a modified M/M/1 queue with arrival rate λ = 1
and service rate µ = 1.5, but where 50% of customers who enter the system are held at a separate
station for two time units. Obviously, the true density is an equal mixture of the probability density
of the customer time-in-service without a separate station (an exponential density) and the same den-
sity shifted to the right by two time units, yielding a discontinuous density. Using a sample of size
n = 100, we aim to recover this density using a lower semicontinuous exponential epi-spline estimate
with N = 10.
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Figure 2: Exponential example: (a) continuously differentiable, nonnegative support, and log-concave,
(b) also nonincreasing and relative bounds on slope.
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Figure 3: Exponential example: Kernel estimates using varying bandwidth and (a) nonnegative support
and (b) unbounded support.
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Figure 5: Exponential Example: Diversification through Kullback-Leibler divergence.

29



Table 1 shows aggregated results across 100 meta-replications for a variety of soft information. The
first row of results shows MSE under no additional information beyond lower semicontinuity and bounds
on the second-order derivatives. The second row corresponds to a restriction of the slope to be in the
interval [−4, 0] and the third row assumes a nonnegative support. The last row incorporates bounds on
the slope, nonnegative support, and log-concavity of the upper tail. We show that the average MSE
(second column) decreases with increasing soft information and mostly also the standard deviation of
the MSE (third column).

Information Average MSE Standard Deviation

no additional info. 0.0045 0.0020
slope 0.0040 0.0016
lower support bound (lb) 0.0040 0.0021
slope, lb, and tail 0.0030 0.0017

Table 1: MSE of customer time-in-service for queueing model with various levels of soft information.

Figure 6 shows an instance corresponding to the last row in Table 1. The MSE of the exponential
epi-spline (red line) estimate is 0.0016. The exponential epi-spline estimate captures the essence of the
true density (dotted line) rather well.

5.4 Incorrect Soft Information

As given by Theorem 4.2, optimal solutions of (Pn
p,m) tend to a point in the Kullback-Leibler projection

of the true density h0 relative to the set constructed by the soft information as the sample size grows.
Consequently, in the presence of incorrect soft information that excludes h0, we achieve the density
“nearest” to h0 within the set of densities satisfying the (incorrect) soft information. We illustrate this
situation by considering a standard normal density and its exponential epi-splines estimates based on
N = 10. We adopt soft information about continuous differentiability and log-concavity. In addition,
we impose the incorrect constraint that the expected value must be no larger than −0.5. Figure 7(a)
shows the resulting exponential epi-spline estimate (solid red line) and the kernel estimate (dashed
black line) for n = 100. Figure 7(b) displays the corresponding results for n = 1000. We observe that
while the kernel estimator benefits from the larger sample size and obtains a nearly perfect estimate
for n = 1000, the unfortunate expectation constraint on the exponential epi-spline prevents it from
approaching the true density. However, we obtain a “normal-looking” density with a shifted mean of
−0.5.

5.5 Moment Information

We end the section by presenting a summary of results over a range of sample sizes for a normal density
with zero mean and standard deviation of two. We carry out 104 meta-replications and compute
average and standard deviation of the resulting MSE for both an exponential epi-spline estimate and
a kernel estimate. We use N = 20 and soft information that amounts to continuous differentiability,
log-concavity, and bounds on first and second moments that ensure estimates with moments within
20% of their correct values.
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Figure 6: Customer time-in-service density.
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Figure 7: Normal Example: Estimates for n = 100 (a) and n = 1000 (b) with incorrect constraint
∫mN

m0
xhn(x)dx ≤ −0.5.
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Figure 8: Average Normal Example: Average (a) and standard deviation (b) of MSE for exponential
epi-spline and kernel estimators for a range of sample sizes.
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Figure 8 gives the corresponding average and standard deviation of the MSE for a range of sample
sizes. We see that the exponential epi-splines estimates result in smaller MSE, on average. However,
the advantage decreases as the sample size grows as expected.

6 Conclusions

We have developed a constrained maximum likelihood estimator that incorporates any soft information
that might be available and therefore offers substantial flexibility for practitioners. In particular in
situations with few (hard) observations, soft information can be brought in and reasonable estimates
can be achieved with as little as 10 sample points. In simple but illustrative examples of estimating
exponential, normal, and mixture of exponential distributions, we construct new estimates under a
variety of soft information not commonly considered. The estimator requires the solution of an infinite-
dimensional optimization problem, which we carry out approximately utilizing exponential epi-splines.
The justification stems from the fact that exponential epi-splines can approximate to an arbitrary level of
accuracy practically any density. We show that optimization over exponential epi-splines often reduces
to convex programming. Our theoretical development establishes consistency, asymptotic normality,
and finite sample error of order O(n−1/2) under the assumption that the true density is an exponential
epi-spline.
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