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Model integration extends the scope of model manage- 
ment to include the dimension of manipulation as well. This 
invariably leads to comparisons with database theory. Model 
integration is viewed from four perspectives: Organizational, 
definitional, procedural, and implementational. Strategic 
modeling is discussed as the organizational motivation for 
model integration. Schema and process integration are exam- 
ined as the logical and manipulation counterparts of model 
integration corresponding to data definition and manipula- 
tion, respectively. A model manipulation language based on 
structured modeling and communicating structured models is 
suggested which incorporates schema and process integration. 
The use of object-oriented concepts for designing and imple- 
menting integrated modeling environments is discussed. Model 
integration is projected as the springboard for building a 
theory of models equivalent in power to relational theory in 
the database community. 

Keywords: Model integration, Schema integration, Process in- 
tegration, Structured modeling, Communicating 
sequential processes, Integrated modeling environ- 
ments. 

I. Introduction 

Model managem6nt research has been active 
for roughly a decade now and it's not stretching 
the truth to say that, during this period, model 
management has been model definition. Great  
effort and progress have been made in developing 
general model representations ~ in the form of 
executable modeling languages which lend them- 
selves to computer manipulation. Structured 
modeling [15], logic modeling [26], and graph- 
grammars [22] are examples of model representa- 
tion formalisms which have advanced the field 
significantly. 

This concentration on representation has been 
a necessary and fruitful step in the evolution of 
model management. Model definition alone, 
however, is not sufficient to support a holistic 
view of model management. The equivalent of a 
viable calculus or algebra is also a necessary, but 
missing, part which allows us to think systemati- 
cally about how to manipulate models once a 
suitable representation has been achieved. 

Model integration provides a practical ap- 
proach to thinking about 'modeling in the large' 
which forces our attention beyond the scope of 
definition to include operations upon models as 
well. Model integration is not a formal notion but 
rather a useful concept, which may be considered 
as another analogy of data management. In the 
same manner we are now accustomed to view 
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files in a DBMS as application-independent, inte- 
grable resources (via joins, for example), we can 
think of models as sharable resources which can 
be combined in ways unanticipated by their origi- 
nal developers. Although 'models as data' is old 
hat by now, examining model integration from a 
database analogy perspective nevertheless yields 
the following insights: 

(1) Database theory (at least relational theory) 
is not sufficient to build an equivalent theory of 
models which includes model integration. Al- 
though data management philosophy has pro- 
vided a convenient metaphor for model manage- 
ment, database theory has been as frequently 
confounding as enlightening. Part of the reason 
for this is that the focus of model management is 
on the schema rather than on the relation. 

(2) All roads lead to object-oriented environ- 
ments for implementation of integrated modeling 
environments. This is not surprising since models 
are complex data structures requiring complex 
manipulations. However, object-oriented is not a 
substitute for a theory which encompasses model 
manipulation as well as representation. 

We will discuss model integration from four 
different dimensions: Organizational, defini- 
tional, procedural, and implementation. Initially, 
we take an organizational perspective to argue 
that effective strategic planning requires the inte- 
gration of models developed for specific func- 
tional and operational applications. From a tech- 
nical perspective, we view model integration in 
two dimensions: Definitional and procedural in 

accordance with the classical dichotomy of pro- 
gramming languages (functional languages ex- 
cepted). Definitional integration corresponds to 
schema integration while procedural integration 
corresponds to process synchronization. Each of 
these is surveyed in detail. Taking an implemen- 
tation perspective, we discuss the system require- 
ments of an integrated modeling environment 
(IME) which supports these technical concepts 
Of model integration, and note the applicability 
of object-oriented concepts. We summarize by 
considering the theoretical perspective and sug- 
gest that research is needed to develop model 
integration from a loose federation of database- 
related and programming language-related con- 
cepts into a robust theory of models which unifies 
model definition and manipulation. 

2. Organizational dimension: Strategic modeling 

The utility of modeling has all too often been 
circumspect in organizations because of the tech- 
nological barriers models present and the subse- 
quent reluctance of management to use them. 
This is an ongoing battle which is continually 
being fought by the operations research commu- 
nity and to which model management can make 
genuine contributions by improving the accessibil- 
ity and comprehensibility of models. 

Models are also underutilized because the or- 
ganizational perspective from which they are de- 
veloped is often too limited, that is, at the func- 

~NAGEMENT /~ MODEL 

Strategic / Mfg-.Dist-> ~ Model 
Planning/Econ->Fin~Integrati°n 

Control / Aggregate ~ Model 
/ Mktg, Mig, etc ~Aggregation 

Operations / MktgMfg ~ Ec~ Fin ~ Individual 
/ ~ Models 

ORGANIZATIONAL FUNCTION 

Fig. 1. Organizational view of modeling by management activity and function. 
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tional, operational level rather than at the control 
and strategic levels. Models developed at the 
operational level tend to stand in isolation and 
frequently don't provide the necessary informa- 
tion for organization-wide planning. For example, 
a production model developed without considera- 
tion of the organization's accounting model may 
maximize total output when it makes more sense 
to minimize unit cost. As one moves up the 
organizational pyramid, modeling requirements 
must evolve towards strategic objectives which, in 
turn, will place greater emphasis upon model 
aggregation and integration (fig. 1). 

Consider a firm which has developed the fol- 
lowing independent models (this example has 
been adapted from [3]): 
(1) an econometric marketing model which fore- 

casts demand in terms of sales volume for a 
product for the next fiscal year; 

(2) a discrete event simulation manufacturing 
model which estimates the required expense 
to produce enough of the product to meet a 
specified demand; 

(3) a transportation model which determines the 
minimal cost of distributing the product to 
customers; 

(4) a pricing model which calculates a price for a 
product given demand volume, and produc- 
tion and distribution expenses; and 

(5) a financial model which determines the rev- 
enues and net income from sales of the prod- 
uct given demand volume, manufacturing and 
distribution expenses, and product price. 

The relatively narrow view of a model devel- 
oped at the operational level is often unable to 
provide, or contribute to, the broader sensitivity 
analysis demanded by upper management. Sup- 
pose management asks the question "what effect 
will replacing two machines in the production 
process have on net income?", or alternatively, 
"what will happen to revenues if demand for our 
product softens as a result of decreased spending 
by the Department of Defense?" No single model 
can provide the desired information. A response 
to these 'what if' queries requires linking and 
running several or all of the models. Figure 2 

initial price 

~price 

m _ expense I_ &PRICE ~d_expense 
-i 

price [price' 
[ -- -- ~ price 
| Conve[ge?| . } 

m expense I YES~ PrN~e I 
-- "~price' l 
volume i [d expense | 

&FIN ~- ] 

prlce := 
(price' + 
price)/2 

net income revenue 

Fig. 2. Logical connection between independent models (adapted from [3]). 
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shows how these models might be interconnected 
conceptually by having the outputs of one serve 
as the inputs to another. Price computation is 
shown as an iterative process which will require 
multiple passes through the first four models to 
achieve convergence. 

Another ramification of building models from 
strictly a functional or operational perspective is 
that each model is likely to be developed as a 
standalone tool in a separate software environ- 
ment using different languages. For example, the 
marketing model may be developed in SAS, the 
production model in Simscript, the transportation 
and pricing models in GAMS, and the financial 
model in a spreadsheet. These separate software 
environments with their unique languages further 
isolate models from one another and restrict their 
integrability and potential utility. In order to sat- 
isfy the sensitivity analyses above, four different 

modeling environments and languages must 
somehow be linked. This represents a formidable 
programming challenge which may very well be 
prohibitively complex and expensive to imple- 
ment. The following sections discuss the founda- 
tions of an integrated modeling environment 
(IME) which can overcome this technological bar- 
rier to model integration. 

3. Definitional dimension: Schema integration 

There are two dimensions which must be con- 
sidered in the process of model integration: defi- 
nitional (model representation) and procedural 
(model manipulation). Definitional integration 
involves the logical linking of similar model rep- 
resentations whereas procedural integration con- 
cerns the linking of processes to form operators 

&MKT &MFG 

i j% 
P/a/ u/a/ v/a/ 

r " , , /  
PROD/pe/ PROD/pe/ 

&MKT DEMAND ESTIMATION 

PROD /pe/ There is a certain PRODUCT. 

P(PROD) /a/ : Real+ The PRODUCT has a unit PRICE. 

V(P) /f/ ; 800000 - 44000 * P The PRODUCT has a sales 
VOLUME given by a certain linear demand function in 
terms of PRICE. 

&MFG MANUFACTURING 

PROD /pe/ There is a certain PRODUCT. 

U(PROD) /a/ : Real+ The PRODUCT has a UNIT COST of 
manufacture, exclusive of fixed manufacturing expenses. 

V(PROD} /a/ : Real+ The PRODUCT has a sales VOLUME. 

E(U,V) /f/ ; 1000000 + U * V The total MANUFACTURING 
EXPENSE for the product is fixed manufacturing expenses 
plus UNIT COST times VOLUME. 

Fig. 3. Structured model genus graphs and associated schemas for the marketing and manufacturing models [16]. 
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which subsequently manipulate these integrated 
representations. These two dimensions will be 
considered in turn in the next two sections. 

A necessary prerequisite for model integration 
is that models be cast in some lingua franca so 
that they may eventually be joined. A large part 
of model management research has been devoted 
to the development of formal model representa- 
tion schemes that facilitate this. Structured mod- 
eling [15], logic modeling [26], and graph gram- 
mars [22] are three such formalisms. Structured 
modeling shares a common ancestry with the data 
modeling approaches underlying database man- 
agement, particularly the entity-relationship 
model [8). Structured modeling goes well beyond 
entity-relationship, however, and has particular 
relevance to applications in operations research 
and management science. Logic modeling origi- 
nates largely from artificial intelligence concepts 
and relies (usually) on first order logic-not only 
for representation of models, but for manipula- 

tion as well. As a result, the dichotomy between 
definition and procedure is less of a problem with 
this approach. Graph grammars provide a graph- 
based paradigm for model representation which 
is especially effective for node-arc problems such 
as network analysis. This approach is also in 
concert with the trend toward graphical user in- 
terfaces which now earmark contemporary oper- 
ating system environments. 

These three approaches to model definition 
are as much complementary as they are compet- 
ing formalisms (see [7]). We will initially use 
structured modeling to demonstrate definitional 
integration but will discuss contributions to model 
integration from logic modeling and graph gram- 
mars as well. We assume the reader has some 
familiarity with structured modeling; consult 
[15,17] for more details. 

To illustrate integration at the definitional 
level, we provide simple examples of the market- 
ing and manufacturing models discussed in Sec- 

&MKT MFG 

z / f /  ,c v / K /  

T 

PROD/pe/ 

&MKT MFG Integrated DEMAND ESTIMATION and MANUFACTURING 
model. 

&MKT DEMAND ESTIMATION 

PROD /pe/ There is a certain PRODUCT. 

P(PROD) /a/ The PRODUCT has a unit PRICE. 

V(P) /f/ ; 800000 - 44000 * P The PRODUCT has a 
sales VOLUME given by a certain linear demand func- 
function in terms of PRICE. 

&MFG MANUFACTURING 

U(PROD) /a/ : Real+ The PRODUCT HAS A UNIT COST of 
manufacture, exclusive of fixed manufacturing 
expenses. 

E(U,V) /f/ ; 1000000 + U * V The total MANUFACTURING 
EXPENSE for the product is fixed manufacturing 
expenses plus UNIT COST times VOLUME. 

Fig. 4. Structured model genus graph and schema for integrated marketing and manufacturing model. 
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tion 2, represent them as structured models, and 
then integrate them as described in [16]. Figure 3 
shows structured model genus graphs and 
schemas for the two models. 

The genus graphs probably provide the most 
intuitive medium for understanding how to inte- 
grate these two models, so we will describe the 
major steps involved in the integration process 
from this perspective: 
(1) identify places where the graphs can be 

'joined'; 
(2) 'join', the graphs; 
(3) modify the resultant graph to maintain struc- 

tural consistency; 
(4) regenerate the associated relational schemata 

for ((4) storing the model's elemental detail 
(data). 

The first step is perhaps the most important 
one in model integration. Identifying commonali- 
ties between models where they can eventually be 
'joined' is the problem of variable correspondence 
as we describe in the section about procedural 
integration. This involves discerning which com- 
ponents of models are really the same or which 
components can be made the same by simple 
transformations. In our-simple example, PROD 
(product) and V (sales volume) appear in both 
models although V is a calculated quantity in the 
&MKT model and a simple attribute in the 
&MFG model. 

Variable correspondence can be considerably 
complex. Assume, for example, that the volume 
in the &MKT model is expressed in units whereas 
the volume in the &MFG model is in 100's of 
units. The integration process must be able to 
recognize this and make the necessary conver- 
sions to the underlying elemental detail to ensure 
that the integrated model is dimensionally consis- 
tent. Structured modeling has no features to sup- 
port this critical aspect of integration. Typing 
schemes to support model integration are dis- 
cussed below. 

Assuming that PROD and V are resolved to 
be the same entities, this suggests a 'join' which 
substitutes the &MKT genus graph for the 
PROD ~ V link in the &MFG genus graph (fig. 
4). Once two models have been 'joined' graphi- 
cally, its then necessary to check whether the 
integrated model satisfies the structural proper- 
ties of a structured model. This requires that we 
look at the new model schema. 

The result of the graphical 'join' is reflected in 
the model schema by first concatenating the two 
schemas, dropping the superfluous PROD para- 
graph in &MFG and then deciding which of the 
V paragraphs to retain. In this scenario, V is an 
output of the marketing model which serves as an 
input to the &MFG model (see fig. 2), so V as 
calculated in &MKT is what we need to retain. 
Therefore we drop the in paragraph in the &MFG 
module from the integrated schema which now 
constitutes a valid structured model schema (fig. 
4). 

Structured modeling was developed partly to 
provide more information about a model than 
previous 'black box' representations that show 
only model inputs and outputs. Structured model- 
ing does not deal with inputs or outputs explicitly 
since these can be viewed as application-depen- 
dent designations. Nevertheless it is often useful 
for variable correspondence determination to 
know which variables are inputs and/or  outputs. 
Output variables in structured modeling will usu- 
ally be designated as either variable attribute (va) 
or function ( f )  elements. Model inputs usually 
will be fixed attribute (a) elements although it's 
conceivable that primitive entity (pe) elements 
could also be inputs. 

The last step in the integration process is 
determining the resultant relational schemata 
from the new schema. Structured model genus 
graphs form functional dependency graphs which 
can be translated into relational schemata in third 
normal form. The relational schemata for the 
original marketing and manufacturing models and 
the integrated model are as follows 

(1) &MKt: PROD(prod_id, p, v); 
(2) &MFG: PROD(prod_id, u, v, e); 
(3) &MKT_MFG: PROD(prod_id, p, u, v, e). 

Notice that, in this case, the schemata corre- 
sponding to the integrated model could be formed 
as a view joining prod _id of the original relations 
(assuming they were named differently, of course). 

As we suggested above, model integration in- 
troduces the need for typing schemes and inheri- 
tance schemes to facilitate variable correspon- 
dence. In general, one may need rather extensive 
knowledge about a variable's type in order to 
resolve two variables and subsequently integrate 
their associated models. This has led to some 
interesting research in typing schemes to support 



D.R. Dolk, J.E. Kottemann / Model integration 57 

model integration. Bradley and Clemence [4,5] 
have developed a concept hierarchy typing calcu- 
lus which assigns units, dimensions, and concepts 
to model variables. If two variables are similar in 
these three attributes, then they can be used to 
'join' models, perhaps through some intermediate 
transformations. 

In the domain of logic modeling a similar 
effort is underway. Quiddity is an approach to 
typing which is broader in scope than the concept 
hierarchy but with the same objectives for model 
integration [1]. By defining the quiddity of vari- 
ables, their similarity and mergeability can be 
determined and implemented, if possible. 

It is tempting to view model integration as a 
direct corollary of the relational join. This is a 
naive approach, however. The appropriate 
database analogy for definitional integration is 

not the relational join but rather schema integra- 
tion. In other words, definitional integration in- 
volves 'joining' at the conceptual model level 
rather than at the relational level. This in turn 
requires development of typing and inheritance 
schemes, much like the work currently being done 
in object-oriented databases [32]. 

4. Procedural dimension: Process integration 

Definitional integration is only one side of the 
integration coin. Even if we can find robust ways 
to integrate the logical description of models, the 
question still remains of how we manipulate this 
newly created object called an integrated model. 
As the previous section indicated, we are not 
dealing with so tidy a world as relational theory 

PROCESS INTEGRATED_MODEL 

# Declare models. 
MODEL &MKT, &MFG, &DIST, &PRICE, &FIN 

# Prompt user for initial price. 
PROMPT('Price?', PRICE) 
REPEAT UNTIL DONE 

# Marketing model is SAS econometric model. 
&MKT.PRICE = PRICE 
SOLVE &MKT USING SAS 

# Variable correspondence..units in manufacturing 
# model are in 100's. 

&MFG.VOLUME = &MKT.VOLUME * i00 
&DIST.VOLUME = &MKT.VOLUME 

# Manufacturing model is a Simscript DEVS model. 
# Transportation model is GAMS optimization model. 
# &MFG and &DIST can be run in parallel. 

SOLVE CONCURRENTLY &MFG USING SIMSCRIPT AND 
&DIST USING GAMS 

# Variable correspondence between &MFG and &PRICE 
# and &DIST and &PRICE. 

&PRICE.VOLUME = &MFG.VOLUME 
&PRICE.EXPENSE = &MFG.EXPENSE + &DIST.EXPENSE 

# Pricing model is GAMS optimization model. 
SOLVE &PRICE USING GAMS 

# Test for price convergence. 
IF FAIL IN TESTCONVERG.SV 

PRICE = (PRICE + &PRICE.PRICE) / 2 
ELSE 

# Variable correspondence between &PRICE, 
# &DIST, &MFG and &FIN models. 

&FIN.PRICE = &PRICE.PRICE 
&FIN.VOLUME = &MFG.VOLUME 
&FIN.EXPENSE = &MFG.EXPENSE + &DIST.EXPENSE 

# Finance model is spreadsheet model. 
SOLVE &FIN USING LOTUS123 
DONE 

ENDIF 
END REPEAT 

Fig. 5. Process model for integrating solvers. 
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with its properties of completeness and transitive 
closure. What  then are the counterparts of rela- 
tional algebra and calculus which apply to model 
manipulation? This section attempts to lay a 
groundwork for this issue. 

One of the tenets of model definition is that 
representation and manipulation are separable 
functions. For example, a model representation 
should be as independent as possible from any 
solver(s) which eventually may act upon it. This is 
vital to the ultimate comprehensibility of models. 
In the optimization world, model representation 
has traditionally been tightly bound to the data 
structures required by solution algorithm soft- 
ware. This has resulted in models remaining rela- 
tively inaccessible to the decision makers for 
whom they were intended to benefit. 

The separation of the modeling world into 
representations and solvers has significant ramifi- 
cations for model integration. If we connect two 
or more models at the logical level, we need to 
determine the corresponding action at the solver 
level. For example, consider a situation where we 
have separate transportation models for eastern 
and western regions and we want to integrate 
them into a national transportation model. In this 
case, which is one primarily of model aggregation 
or homogeneous integration, the solver will be 
exactly the same for the national model as for 
each of the regional models. Only the logical 
schemas have to be integrated. 

Our example from Section 2, on the other 
hand, requires a more complex approach. In this 
case, the notion of using the same solver for the 
integrated model can be rejected out of hand 
because the models are fundamentally of such 
different types. What makes more sense in multi- 
paradigmatic, or heterogeneous integration, is to 
concatenate each of the model 's  solvers in roughly 
the same way as their schemas in order to derive 
an integrated solver. This solver is, in fact, noth- 
ing more than a process which controls the indi- 
vidual processes corresponding to each model 's  
solver. Figure 5 indicates how this might be ac- 
complished in a hypothetical language which we 
can think of as a model manipulation language 
(MML). Our assumption here is that we have 
structured model schemas for each of the five 
models (&MKT, &MFG, &TRANSP,  &PRICE,  
and &FIN respectively), and a corresponding li- 
brary of solvers which can be invoked via a 

SOLVE command. For the time being, we will 
also assume that the &MKT and &MFG models 
are more complex than shown in Section 3, al- 
though the variable correspondence will remain 
the same. 

There are several aspects of this MML process 
that bear mentioning: 
(1) models are the basic objects being manipu- 

lated; 2 
(2) variable correspondence is handled explicitly, 

for example the conversion of V O L U M E  in 
&MKT from units to 100's of units in &MFG. 
This process can be done automatically with 
an appropriate  typing scheme [5]; 

(3) SOLVE executes a process which solves a 
model, for example, the statement "SOLVE 
&MKT USING SAS" when executed, would 
invoke the SAS program; 

(4) SOLVE implies an underlying transformation 
which converts the elemental detail tables 
(the model 's  data) to the appropriate  data 
structures for the specified solver. For exam- 
ple, solving & P R I C E  requires that elemental 
detail tables be converted to GAMS format 
before the GAMS program is executed; 

(5) the order of processes is important. &MKT 
must be executed before &MFG since &MFG 
requires as input the V O L U M E  output from 
&MKT; 

(6) processes may be run in parallel. The 
"SOLVE C O N C U R R E N T L Y  &PRICE .. .  
&TRANSP"  command is meant  to indicate 
that these two models could be solved in 
parallel, perhaps in two separate windows. 

The MML in fig. 5 is a simplified version of a 
model integration control language (MICE) pro- 
posed by Kot temann and Dolk [24]. Besides vari- 
able correspondence and sequentiality, the MICL 
supports model (process) synchronization as well. 
Synchronization occurs when two concurrent pro- 
cesses must exchange variables during their re- 
spective executions. For example if the pricing 
model were geographically sensitive and the 
transportation model were price sensitivel it may 
be necessary for the & P R I C E  and &TRANSP 

2 There are a number of manipulations which can be per- 
formed on models besides solve, e.g., evaluate, retrieve, 
modify, create, etc. For the purposes of this discussion, 
however, we will restrict the scope to the solve operation 
only. Extension of the concepts to other operations is 
straightforward. 
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solvers to exchange information at specified in- 
tervals during their respective executions (after 
every recalculation of a basis, say). This is a more 
complex form of model integration and solver 
interdependence, but one which occurs fre- 
quently in dynamic models such as discrete event 
simulation. Synchronization also requires demon 
constructs which act as dynamic interrupts during 
process execution to alert other processes that a 
certain status has been achieved (e.g., a new basis 
has been recalculated). An example of an MICL 
for econometric modeling is discussed in [12]. 

The basic argument here is that solvers are 
processes and therefore solver integration re- 
quires process integration. This places us squarely 
in the bailiwick of operating systems theory where 
several formalisms based on message passing have 
been developed for process coordination. Com- 
municating sequential processes (CSP) [21] is one 
such formalism which has been adapted to solver 
integration [24]. Generative communication [6] is 
a 'lazy' form of message passing where model 
outputs are not targeted to any specific process, 
as in CSP, but instead are stored in common 
areas which can be accessed by all processes 
when needed. Concurrent Prolog is a logic-ori- 
ented counterpart  that allows dynamic communi- 
cation between Prolog processes, and which could 
implement model integration within logic model- 
ing environments [31]. 

The process view of model integration is a 
significantly different perspective from the 
schema integration approach. Whereas the latter 
provides a logical view of model structure, the 
former corresponds to more traditional 'black 
box' model representations which emphasize in- 
puts and outputs as opposed to the interrelation- 
ships of variables. The alert reader may be won- 
dering at this point what the connection between 
schema and process integration is, and whether 
or when we need each. For example, since the 
integrated solver of fig. 5 requires solving the 
individual models, why do we need an' integrated 
schema? Isn't it the individual models which are 
of interest in this case? 

A plausible response to this question was 
hinted at before. Integrated schemas are proba- 
bly more appropriate for the homogeneous case 
where the same model solver will be used for the 
integrated model as for the constituent models. 
Process integration, on the other hand, may be 

more  suitable for multiparadigmatic modeling 
where the models and their associated solvers are 
heterogeneous.  Another  distinction between 
schema and solver integration is that we are 
dealing at a higher level of abstraction with the 
latter. The model is the basic object of inquiry for 
solvers whereas the model variable is the basic 
unit in schemas. Thus, it appears, that as a coun- 
terpart to variable typing for schema integration, 
we may need the notion of a model type for 
solver integration. A model type would determine 
which solvers could be applied to an instance of a 
model schema. When two models of the same, or 
inherited type, are to be integrated, then schema 
integration is appropriate; otherwise solver inte- 
gration is desirable. 

One of the themes running through this paper 
is the limitation of the "modelbase as extended 
database" analogy. We have seen, for example, at 
the schema integration level that joining models 
is more complex than joining relations. Transitive 
closure and relational completeness do not apply 
because the appropriate kernel of scrutiny is the 
conceptual model rather than the relation. Simi- 
larly, we see that process integration is also not 
conducive to manipulation by relational calculus 
or algebra, and requires more dynamic for- 
malisms such as those which underlie operating 
systems and programming language design. Al- 
though we would like a theory comparable in 
richness to relational algebra and calculus for 
manipulating models, the database arena might 
not be the place to look. Indeed, in the next 
section, we take the natural step of suggesting the 
object-oriented paradigm for implementing an 
IME which supports both schema and solver inte- 
gration, and we note that attempts to devise 
algebras for object manipulation have been un- 
successful as well. 

5. Implementa t ion  dimension:  Object-oriented in- 
tegrated model ing  env ironments  3 

The concept  of  an IME which can handle 
mode l s  as flexibly as DBMS's  handle data is an 

3 IME is being used here in the same sense that 'model 
management system' has been used in other contexts. We 
prefer IME because it encompasses a broader notion of 
integration; not just integration of models and data but 
integration of software tools (DBMS, GUI, solvers, etc.) as 
well [ 18]. 
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appealing prospect. In this respect, database 
analogies seem apropos, with model definition as 
the counterpart of data definition and model 
integration the equivalent of data manipulation. 
As discussed before, however, direct database 
analogies can be misleading. We review briefly 
the requirements which model integration imply 
for an IME and suggest possible blueprints to 
building such a system. 

One way of looking at IME requirements is to 
determine the extent to which model integration 
can be automated. For example, if we want to 
integrate two or more model schemas, what sup- 
port can an IME provide? A necessary condition 
is a common model definition formalism and 
associated language such as structured modeling 
and SML [19] in which schemas over a wide class 
of models can be created and linked. An associ- 
ated requirement is that transformation facilities 
be available to convert other model representa- 
tions to this common definition formalism. This 
would provide interfaces to other external model- 
ing systems such as AMPL [14], for example, and 
would allow modelers familiar with these systems 
to work comfortably within the IME. 

Even with a common internal model represen- 
tation, it is unreasonable to expect a system to do 
the entire process of model schema integration 
without some human intervention. Some steps 
can be reasonably achieved automatically, how- 
ever. For example, identification of synonyms 

(variables with the same semantics) and 
homonyms (variables with the same names but 
different semantics) is possible if there is a suffi- 
ciently powerful variable typing scheme such as 
concept hierarchy or quiddity in effect. The act of 
'joining' models can be done as well, both at the 
graphical and schema levels. In the case of struc- 
tured modeling, an IME could also inform the 
modeler of schema errors and inconsistencies ex- 
isting in the ' joined' schema. Once a semantically 
and syntactically correct integrated schema was 
developed, the IME could then generate the new 
relational schemata and offer the modeler the 
choice of creating these new relations explicitly or 
building views from existing relations. 

From a process integration perspective, an 
IME supporting 'automatic integration would fa- 
cilitate the conversion of a process diagram such 
as fig. 2 into the integrated solver of fig. 5. The 
degree to which this can be done fully automati- 
cally depends on the complexity of the model 
integration, particularly with respect to the diffi- 
culty of the variable correspondence involved and 
the degree of process synchronization required. 
Muhanna and Pick [29] have implemented such a 
system under a simplified set of assumptions 
which minimizes these difficulties. Their SYMM 
system supports a graphical interface for repre- 
senting the model integration (similar to fig. 2), 
but there is no associated model manipulation or 
control language. In the general case, as we've 

Table 1 
IME requirements for supporting model integration and selected references 

IME requirement Relevant research 

Uniform internal model definition scheme capable of Geoffrion [15,17], Jones [22], Lee and Krishnan [26] 
representing many classes of models. 

Conversion of external model definition schemes into 
internal scheme 

Robust typing and inheritance at both the variable 
and model level. 

Model manipulation language based on message passing 
to support solver integration. 

Model solution libraries with transformation routines 
for conversion of internal data structures to solver data 
structures. 

Graphical user interfaces and views for supporting 
model definition and integration. 

DBMS tools for model management. 

Maturana [28], Bhargavs and Kimbrough [2], 
Chari and Krishnan [7] 

Bradley and Clemence [4], Bhargava et al. [1], 
Liang [25] 

Muhanna and Pick [29], Kottemann and Dolk [24] 

Eck et al. [13], Maturana [28], Ramirez et al. [30] 

Jones [23), Muhanna and Pick [29], Ma et al. [27], 
Greenberg and Murphy [20] 

Dolk [11], Desai [10] 
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shown in Section 4, some form of model manipu- 
lation language will be necessary, and useful, for 
specifying this form of model integration. 

At the tool level, IMEs clearly require graphi- 
cal user interfaces for specifying and integrating 
models, whether at the schema or the process 
level. Jones [23], for example, has developed a 
graph-based modeling system wherein model rep- 
resentation and integration are done entirely at a 
graphical level. Again, however, the user is re- 
sponsible for ensuring proper variable correspon- 
dence across models. The DBMS is also a vital 
tool needed by an IME for handling the complex 
data manipulation that earmarks large scale mod- 
eling and model integration. Finally, we should 
note that improvements in operating systems over 
the years may very well provide some of the 
model integration features we've been discussing. 
For example the Mach version of Unix, which is 
the host operating system for the NeXT com- 
puter, provides advanced process communication 
capabilities which cQuld be adapted as the basis 
for a message passing MML. 

Table 1 summarizes some of the major re- 
quirements for an IME which result from model 
integration. It's interesting to note that most of 
the research has been directed towards model 
definition with only tentative forays into the 
model manipulation area. One anticipated bene- 
fit from thinking in a mode[ integration context is 
that the scope of model management research 
will broaden to include this dimension. 

Another  reason that model manipulation has 
been largely ignored can be traced to the 'object- 
oriented'  phenomenon. Numerous authors have 
recognized the applicability of this design 
methodology to model management and the asso- 
ciated benefits of models as objects, solvers bound 
to these models, and inheritance hierarchies. This 
has probably done as much harm as good in the 
advancement of model management research. 
Object-oriented approaches are too often used as 
an implementation panacea for sweeping difficult 
conceptual and theoretical problems under the 
rug. Model integration is one such problem. 

Having said this, it will perhaps appear contra- 
dictory to now claim that object-oriented environ- 
ments are promising implementation vehicles for 
IMEs. Nevertheless, the object-oriented paradigm 
has been shown as feasible and beneficial for 
building 1MEs. For example, Dempster  and Ire- 

land [9] have implemented a debt management 
system using the frame-based KEE TM environ- 
ment and Desai [10] has proposed implementing 
s tructured modeling representat ions in an 
object-oriented DBMS. Not surprisingly, the need 
for typing/ inheri tance schemes, message passing, 
and process coordination discussed in the previ- 
ous sections leads us directly into the object-ori- 
ented camp. We briefly describe our own pro- 
posal for an object-oriented 1ME which we call 
Communicating Structured Models (CSM). 

CSM is based upon structured modeling as the 
internal definition-medium, concept hierarchies 
as the variable and model typing scheme, and 
CSP as the process integration formalism. The 
basic idea is to develop an MML similar in struc- 
ture to the hypothetical example in fig. 5, which 
will exist as a shell around SML. CSML (Com- 
municating SML) will allow users to integrate 
models either schematically in the homogeneous 
case through graphical interfaces (similar to 
CASE tools) or procedurally in the multi-para- 
digmatic case through an appropriate language 
syntax. CSML must support at least the following 
features: 
(a) the basic structured programming constructs 

of sequence, selection, and iteration; 
(b) demons; 
(c) embedded SML statements for model defini- 

tion; 
(d) parallel execution of processes; 
(e) transformation operators to solver data struc- 

tures; 
(f) embedded SQL statements for data manipu- 

lation. 
In short, CSML would require many of the char- 
acteristics of a discrete event simulation program- 
ming language such as Simscript TM but with hooks 
to model schemas, solvers, and relational data as 
well. 

Implementation of CSML would itself consti- 
tute a significant software integration effort, un- 
doubtedly requiring some existing object-oriented 
environment as a foundation. This only reinforces 
the link between IMEs and object-oriented con- 
cepts. However, we reemphasize our view that 
object-oriented is primarily an implementation 
choice for building modeling environments rather 
than a substitute for model theory. Although we 
have taken pains to describe the challenges of 
model integration independent of any particular 
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implementat ion methodology,  it is very difficult 
to separate  the issues of  model  integrat ion from 
those of  object-or iented modeling.  One  of  the 
goals of  model  managemen t  research should be 
to take a fresh look at how to develop a more  
theoretical  foundat ion for model  integrat ion 
which avoids this confusion. 

6. Conclusions 

The purpose  of  this paper  has been to explore 
model  integrat ion as a vehicle for thinking about  
"model ing  in the large". This has served several 
useful purposes  by: 
(1) surveying the main aspects of  model  integra- 

tion, specifically schema and process integra- 
tion, 

(2) exposing limitations of  relational database 
theory as a paradigm for model  managemen t  
theory; 

(3) extending the scope of  current  model  man- 
agement  research beyond model  definition to 
include model  manipulat ion.  

The  dimensions of  model  integrat ion as de- 
scribed herein seem to lead us in one form or 
another  to object-or iented concepts  for imple- 
mentat ion.  This is quite natural  given the increas- 
ing symbiosis between models  and computers  in 
both the scientific and business worlds. However,  
this is somewhat  less than satisfying theoretically. 
If  we are to develop a theory of  models  which 
encompasses  definition and manipulat ion,  it will 
require answers to at least the following list of  
research questions: 
(1) Can a calculus or algebra be devised for par- 

ticular classes of  models  which exhibit the 
proper ty  of  .transitive closure as in the rela- 
tional model?  

(2) What  consti tutes a complete  set of  primitives 
for a model  manipulat ion language? 

(3) Is there a set of  necessary and sufficient 
abstract data  types and inheri tance hierar- 
chies for model ing?  

Much of  the development  of  compute r  lan- 
guages has been essentially constructivist in na- 
ture, that  is, a set of  requirements  is genera ted  
and a language is then built which a t tempts  to 
satisfy these requirements.  This was also the 
modus operandi  for database systems and lan- 
guages until development  of  the relational theory 

and model.  The  existence of  a strong theoretical  
foundat ion  nur tured  and s t rengthened the disci- 
pline of  database managemen t  significantly. 
Model  managemen t  research is now at about  the 
equivalent stage of  evolution with respect  to lan- 
guages. The  quest ion remains, will model  manip- 
ulation languages be built in a constructivist mode  
or will they evolve f rom an appropr ia te  theoreti-  
cal foundat ion?  This is a major  challenge for 
model  managemen t  and one for which the con- 
cept of  model  integrat ion provides invaluable 
perspective. 
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