
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

1993

Model integration and a theory of models

Dolk, Daniel R.

Elsevier Science Publishers B.V.

Decision Support Systems 9 (1993) 51-63
North-Holland

http://hdl.handle.net/10945/48627

Decision Support Systems 9 (1993) 51-63 51
North-Holland

Model integration and a theory of models

Daniel R. Dolk
Nat,al Postgraduate School, Monterey, CA 93943, USA

Jeffrey E. Kottemann
The Unicersity of Michigan, Ann Arbor, MI 48109, USA

Model integration extends the scope of model manage-
ment to include the dimension of manipulation as well. This
invariably leads to comparisons with database theory. Model
integration is viewed from four perspectives: Organizational,
definitional, procedural, and implementational. Strategic
modeling is discussed as the organizational motivation for
model integration. Schema and process integration are exam-
ined as the logical and manipulation counterparts of model
integration corresponding to data definition and manipula-
tion, respectively. A model manipulation language based on
structured modeling and communicating structured models is
suggested which incorporates schema and process integration.
The use of object-oriented concepts for designing and imple-
menting integrated modeling environments is discussed. Model
integration is projected as the springboard for building a
theory of models equivalent in power to relational theory in
the database community.

Keywords: Model integration, Schema integration, Process in-
tegration, Structured modeling, Communicating
sequential processes, Integrated modeling environ-
ments.

I. Introduction

Model managem6nt research has been active
for roughly a decade now and it's not stretching
the truth to say that, during this period, model
management has been model definition. Great
effort and progress have been made in developing
general model representations ~ in the form of
executable modeling languages which lend them-
selves to computer manipulation. Structured
modeling [15], logic modeling [26], and graph-
grammars [22] are examples of model representa-
tion formalisms which have advanced the field
significantly.

This concentration on representation has been
a necessary and fruitful step in the evolution of
model management. Model definition alone,
however, is not sufficient to support a holistic
view of model management. The equivalent of a
viable calculus or algebra is also a necessary, but
missing, part which allows us to think systemati-
cally about how to manipulate models once a
suitable representation has been achieved.

Model integration provides a practical ap-
proach to thinking about 'modeling in the large'
which forces our attention beyond the scope of
definition to include operations upon models as
well. Model integration is not a formal notion but
rather a useful concept, which may be considered
as another analogy of data management. In the
same manner we are now accustomed to view

Daniel R. Dolk is Associate Professor of Information Systems
in the Department of Administrative Sciences at the Naval
Postgraduate School in Monterey, CA. Since receiving his
Ph.D. in Management Information Systems from The Univer-
sity of Arizona in 1982, his research has focused primarily on
model management and decision support systems. He has
published extensively in this area in journals such as Commu-
nications of the ACM, IEEE Transactions on Software Engi-
neering, Interfaces, and Decision Support Systems. He is cur-
rently Associate Editor for ORSA Journal on Computing,
Information Systems Research, and Journal of Database Ad-
ministration, and is a member of the ACM, IEEE Computer
Society, and TIMS.
Correspondence to: Daniel R. Dolk, Naval Postgraduate School
(AS/DK) Monterey, CA 93943-5000 USA.

Jeffrey E. Kottemann is Associate Professor of Computer
Information Systems in the School of Business Administration
at The University of Michigan. He received his Ph.D. in
Management Information Systems from The University of
Arizona and has published articles in Communications of the
ACM, Decision Sciences, Decision Support Systems, Information
Systems, Journal of MIS, MIS Quarterly, Omega: The Interna-
tional Journal of Management Science, Organizational Behavior
and Human Decision Processes, and Research Adt,ances in
Computers and Social Science. His current research interests
include devising principles and techniques for the develop-
ment of large-scale information systems and modeling systems
as well as assessing the effects of computer-based decision
support technologies on decision makers' performance and on
their performance beliefs.
1 The terms 'model definition' and 'model representation' are

used synonymously throughout this paper.

0167-9236/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

52 D.R. Dolk, J.E. Kottemann / Model integration

files in a DBMS as application-independent, inte-
grable resources (via joins, for example), we can
think of models as sharable resources which can
be combined in ways unanticipated by their origi-
nal developers. Although 'models as data' is old
hat by now, examining model integration from a
database analogy perspective nevertheless yields
the following insights:

(1) Database theory (at least relational theory)
is not sufficient to build an equivalent theory of
models which includes model integration. Al-
though data management philosophy has pro-
vided a convenient metaphor for model manage-
ment, database theory has been as frequently
confounding as enlightening. Part of the reason
for this is that the focus of model management is
on the schema rather than on the relation.

(2) All roads lead to object-oriented environ-
ments for implementation of integrated modeling
environments. This is not surprising since models
are complex data structures requiring complex
manipulations. However, object-oriented is not a
substitute for a theory which encompasses model
manipulation as well as representation.

We will discuss model integration from four
different dimensions: Organizational, defini-
tional, procedural, and implementation. Initially,
we take an organizational perspective to argue
that effective strategic planning requires the inte-
gration of models developed for specific func-
tional and operational applications. From a tech-
nical perspective, we view model integration in
two dimensions: Definitional and procedural in

accordance with the classical dichotomy of pro-
gramming languages (functional languages ex-
cepted). Definitional integration corresponds to
schema integration while procedural integration
corresponds to process synchronization. Each of
these is surveyed in detail. Taking an implemen-
tation perspective, we discuss the system require-
ments of an integrated modeling environment
(IME) which supports these technical concepts
Of model integration, and note the applicability
of object-oriented concepts. We summarize by
considering the theoretical perspective and sug-
gest that research is needed to develop model
integration from a loose federation of database-
related and programming language-related con-
cepts into a robust theory of models which unifies
model definition and manipulation.

2. Organizational dimension: Strategic modeling

The utility of modeling has all too often been
circumspect in organizations because of the tech-
nological barriers models present and the subse-
quent reluctance of management to use them.
This is an ongoing battle which is continually
being fought by the operations research commu-
nity and to which model management can make
genuine contributions by improving the accessibil-
ity and comprehensibility of models.

Models are also underutilized because the or-
ganizational perspective from which they are de-
veloped is often too limited, that is, at the func-

~NAGEMENT /~ MODEL

Strategic / Mfg-.Dist-> ~ Model
Planning/Econ->Fin~Integrati°n

Control / Aggregate ~ Model
/ Mktg, Mig, etc ~Aggregation

Operations / MktgMfg ~ Ec~ Fin ~ Individual
/ ~ Models

ORGANIZATIONAL FUNCTION

Fig. 1. Organizational view of modeling by management activity and function.

D.R. Dolk, J.E. Kottemann / Model integration 53

tional, operational level rather than at the control
and strategic levels. Models developed at the
operational level tend to stand in isolation and
frequently don't provide the necessary informa-
tion for organization-wide planning. For example,
a production model developed without considera-
tion of the organization's accounting model may
maximize total output when it makes more sense
to minimize unit cost. As one moves up the
organizational pyramid, modeling requirements
must evolve towards strategic objectives which, in
turn, will place greater emphasis upon model
aggregation and integration (fig. 1).

Consider a firm which has developed the fol-
lowing independent models (this example has
been adapted from [3]):
(1) an econometric marketing model which fore-

casts demand in terms of sales volume for a
product for the next fiscal year;

(2) a discrete event simulation manufacturing
model which estimates the required expense
to produce enough of the product to meet a
specified demand;

(3) a transportation model which determines the
minimal cost of distributing the product to
customers;

(4) a pricing model which calculates a price for a
product given demand volume, and produc-
tion and distribution expenses; and

(5) a financial model which determines the rev-
enues and net income from sales of the prod-
uct given demand volume, manufacturing and
distribution expenses, and product price.

The relatively narrow view of a model devel-
oped at the operational level is often unable to
provide, or contribute to, the broader sensitivity
analysis demanded by upper management. Sup-
pose management asks the question "what effect
will replacing two machines in the production
process have on net income?", or alternatively,
"what will happen to revenues if demand for our
product softens as a result of decreased spending
by the Department of Defense?" No single model
can provide the desired information. A response
to these 'what if' queries requires linking and
running several or all of the models. Figure 2

initial price

~price

m _ expense I_ &PRICE ~d_expense
-i

price [price'
[-- -- ~ price
| Conve[ge?| . }

m expense I YES~ PrN~e I
-- "~price' l
volume i [d expense |

&FIN ~-]

prlce :=
(price' +
price)/2

net income revenue

Fig. 2. Logical connection between independent models (adapted from [3]).

54 D.R. Dolk, J.E. Kottemann / Model integration

shows how these models might be interconnected
conceptually by having the outputs of one serve
as the inputs to another. Price computation is
shown as an iterative process which will require
multiple passes through the first four models to
achieve convergence.

Another ramification of building models from
strictly a functional or operational perspective is
that each model is likely to be developed as a
standalone tool in a separate software environ-
ment using different languages. For example, the
marketing model may be developed in SAS, the
production model in Simscript, the transportation
and pricing models in GAMS, and the financial
model in a spreadsheet. These separate software
environments with their unique languages further
isolate models from one another and restrict their
integrability and potential utility. In order to sat-
isfy the sensitivity analyses above, four different

modeling environments and languages must
somehow be linked. This represents a formidable
programming challenge which may very well be
prohibitively complex and expensive to imple-
ment. The following sections discuss the founda-
tions of an integrated modeling environment
(IME) which can overcome this technological bar-
rier to model integration.

3. Definitional dimension: Schema integration

There are two dimensions which must be con-
sidered in the process of model integration: defi-
nitional (model representation) and procedural
(model manipulation). Definitional integration
involves the logical linking of similar model rep-
resentations whereas procedural integration con-
cerns the linking of processes to form operators

&MKT &MFG

i j%
P/a/ u/a/ v/a/

r " , , /
PROD/pe/ PROD/pe/

&MKT DEMAND ESTIMATION

PROD /pe/ There is a certain PRODUCT.

P(PROD) /a/ : Real+ The PRODUCT has a unit PRICE.

V(P) /f/ ; 800000 - 44000 * P The PRODUCT has a sales
VOLUME given by a certain linear demand function in
terms of PRICE.

&MFG MANUFACTURING

PROD /pe/ There is a certain PRODUCT.

U(PROD) /a/ : Real+ The PRODUCT has a UNIT COST of
manufacture, exclusive of fixed manufacturing expenses.

V(PROD} /a/ : Real+ The PRODUCT has a sales VOLUME.

E(U,V) /f/ ; 1000000 + U * V The total MANUFACTURING
EXPENSE for the product is fixed manufacturing expenses
plus UNIT COST times VOLUME.

Fig. 3. Structured model genus graphs and associated schemas for the marketing and manufacturing models [16].

D.R. Dolk, J.E. Kottemann /Model integration 55

which subsequently manipulate these integrated
representations. These two dimensions will be
considered in turn in the next two sections.

A necessary prerequisite for model integration
is that models be cast in some lingua franca so
that they may eventually be joined. A large part
of model management research has been devoted
to the development of formal model representa-
tion schemes that facilitate this. Structured mod-
eling [15], logic modeling [26], and graph gram-
mars [22] are three such formalisms. Structured
modeling shares a common ancestry with the data
modeling approaches underlying database man-
agement, particularly the entity-relationship
model [8). Structured modeling goes well beyond
entity-relationship, however, and has particular
relevance to applications in operations research
and management science. Logic modeling origi-
nates largely from artificial intelligence concepts
and relies (usually) on first order logic-not only
for representation of models, but for manipula-

tion as well. As a result, the dichotomy between
definition and procedure is less of a problem with
this approach. Graph grammars provide a graph-
based paradigm for model representation which
is especially effective for node-arc problems such
as network analysis. This approach is also in
concert with the trend toward graphical user in-
terfaces which now earmark contemporary oper-
ating system environments.

These three approaches to model definition
are as much complementary as they are compet-
ing formalisms (see [7]). We will initially use
structured modeling to demonstrate definitional
integration but will discuss contributions to model
integration from logic modeling and graph gram-
mars as well. We assume the reader has some
familiarity with structured modeling; consult
[15,17] for more details.

To illustrate integration at the definitional
level, we provide simple examples of the market-
ing and manufacturing models discussed in Sec-

&MKT MFG

z / f / ,c v / K /

T

PROD/pe/

&MKT MFG Integrated DEMAND ESTIMATION and MANUFACTURING
model.

&MKT DEMAND ESTIMATION

PROD /pe/ There is a certain PRODUCT.

P(PROD) /a/ The PRODUCT has a unit PRICE.

V(P) /f/ ; 800000 - 44000 * P The PRODUCT has a
sales VOLUME given by a certain linear demand func-
function in terms of PRICE.

&MFG MANUFACTURING

U(PROD) /a/ : Real+ The PRODUCT HAS A UNIT COST of
manufacture, exclusive of fixed manufacturing
expenses.

E(U,V) /f/ ; 1000000 + U * V The total MANUFACTURING
EXPENSE for the product is fixed manufacturing
expenses plus UNIT COST times VOLUME.

Fig. 4. Structured model genus graph and schema for integrated marketing and manufacturing model.

56 D.R. Dolk, J.E. Kottemann / Model integration

tion 2, represent them as structured models, and
then integrate them as described in [16]. Figure 3
shows structured model genus graphs and
schemas for the two models.

The genus graphs probably provide the most
intuitive medium for understanding how to inte-
grate these two models, so we will describe the
major steps involved in the integration process
from this perspective:
(1) identify places where the graphs can be

'joined';
(2) 'join', the graphs;
(3) modify the resultant graph to maintain struc-

tural consistency;
(4) regenerate the associated relational schemata

for ((4) storing the model's elemental detail
(data).

The first step is perhaps the most important
one in model integration. Identifying commonali-
ties between models where they can eventually be
'joined' is the problem of variable correspondence
as we describe in the section about procedural
integration. This involves discerning which com-
ponents of models are really the same or which
components can be made the same by simple
transformations. In our-simple example, PROD
(product) and V (sales volume) appear in both
models although V is a calculated quantity in the
&MKT model and a simple attribute in the
&MFG model.

Variable correspondence can be considerably
complex. Assume, for example, that the volume
in the &MKT model is expressed in units whereas
the volume in the &MFG model is in 100's of
units. The integration process must be able to
recognize this and make the necessary conver-
sions to the underlying elemental detail to ensure
that the integrated model is dimensionally consis-
tent. Structured modeling has no features to sup-
port this critical aspect of integration. Typing
schemes to support model integration are dis-
cussed below.

Assuming that PROD and V are resolved to
be the same entities, this suggests a 'join' which
substitutes the &MKT genus graph for the
PROD ~ V link in the &MFG genus graph (fig.
4). Once two models have been 'joined' graphi-
cally, its then necessary to check whether the
integrated model satisfies the structural proper-
ties of a structured model. This requires that we
look at the new model schema.

The result of the graphical 'join' is reflected in
the model schema by first concatenating the two
schemas, dropping the superfluous PROD para-
graph in &MFG and then deciding which of the
V paragraphs to retain. In this scenario, V is an
output of the marketing model which serves as an
input to the &MFG model (see fig. 2), so V as
calculated in &MKT is what we need to retain.
Therefore we drop the in paragraph in the &MFG
module from the integrated schema which now
constitutes a valid structured model schema (fig.
4).

Structured modeling was developed partly to
provide more information about a model than
previous 'black box' representations that show
only model inputs and outputs. Structured model-
ing does not deal with inputs or outputs explicitly
since these can be viewed as application-depen-
dent designations. Nevertheless it is often useful
for variable correspondence determination to
know which variables are inputs and/or outputs.
Output variables in structured modeling will usu-
ally be designated as either variable attribute (va)
or function (f) elements. Model inputs usually
will be fixed attribute (a) elements although it's
conceivable that primitive entity (pe) elements
could also be inputs.

The last step in the integration process is
determining the resultant relational schemata
from the new schema. Structured model genus
graphs form functional dependency graphs which
can be translated into relational schemata in third
normal form. The relational schemata for the
original marketing and manufacturing models and
the integrated model are as follows

(1) &MKt: PROD(prod_id, p, v);
(2) &MFG: PROD(prod_id, u, v, e);
(3) &MKT_MFG: PROD(prod_id, p, u, v, e).

Notice that, in this case, the schemata corre-
sponding to the integrated model could be formed
as a view joining prod _id of the original relations
(assuming they were named differently, of course).

As we suggested above, model integration in-
troduces the need for typing schemes and inheri-
tance schemes to facilitate variable correspon-
dence. In general, one may need rather extensive
knowledge about a variable's type in order to
resolve two variables and subsequently integrate
their associated models. This has led to some
interesting research in typing schemes to support

D.R. Dolk, J.E. Kottemann / Model integration 57

model integration. Bradley and Clemence [4,5]
have developed a concept hierarchy typing calcu-
lus which assigns units, dimensions, and concepts
to model variables. If two variables are similar in
these three attributes, then they can be used to
'join' models, perhaps through some intermediate
transformations.

In the domain of logic modeling a similar
effort is underway. Quiddity is an approach to
typing which is broader in scope than the concept
hierarchy but with the same objectives for model
integration [1]. By defining the quiddity of vari-
ables, their similarity and mergeability can be
determined and implemented, if possible.

It is tempting to view model integration as a
direct corollary of the relational join. This is a
naive approach, however. The appropriate
database analogy for definitional integration is

not the relational join but rather schema integra-
tion. In other words, definitional integration in-
volves 'joining' at the conceptual model level
rather than at the relational level. This in turn
requires development of typing and inheritance
schemes, much like the work currently being done
in object-oriented databases [32].

4. Procedural dimension: Process integration

Definitional integration is only one side of the
integration coin. Even if we can find robust ways
to integrate the logical description of models, the
question still remains of how we manipulate this
newly created object called an integrated model.
As the previous section indicated, we are not
dealing with so tidy a world as relational theory

PROCESS INTEGRATED_MODEL

Declare models.
MODEL &MKT, &MFG, &DIST, &PRICE, &FIN

Prompt user for initial price.
PROMPT('Price?', PRICE)
REPEAT UNTIL DONE

Marketing model is SAS econometric model.
&MKT.PRICE = PRICE
SOLVE &MKT USING SAS

Variable correspondence..units in manufacturing
model are in 100's.

&MFG.VOLUME = &MKT.VOLUME * i00
&DIST.VOLUME = &MKT.VOLUME

Manufacturing model is a Simscript DEVS model.
Transportation model is GAMS optimization model.
&MFG and &DIST can be run in parallel.

SOLVE CONCURRENTLY &MFG USING SIMSCRIPT AND
&DIST USING GAMS

Variable correspondence between &MFG and &PRICE
and &DIST and &PRICE.

&PRICE.VOLUME = &MFG.VOLUME
&PRICE.EXPENSE = &MFG.EXPENSE + &DIST.EXPENSE

Pricing model is GAMS optimization model.
SOLVE &PRICE USING GAMS

Test for price convergence.
IF FAIL IN TESTCONVERG.SV

PRICE = (PRICE + &PRICE.PRICE) / 2
ELSE

Variable correspondence between &PRICE,
&DIST, &MFG and &FIN models.

&FIN.PRICE = &PRICE.PRICE
&FIN.VOLUME = &MFG.VOLUME
&FIN.EXPENSE = &MFG.EXPENSE + &DIST.EXPENSE

Finance model is spreadsheet model.
SOLVE &FIN USING LOTUS123
DONE

ENDIF
END REPEAT

Fig. 5. Process model for integrating solvers.

58 D.R. Dolk, J.E. Kottemann / Model integration

with its properties of completeness and transitive
closure. What then are the counterparts of rela-
tional algebra and calculus which apply to model
manipulation? This section attempts to lay a
groundwork for this issue.

One of the tenets of model definition is that
representation and manipulation are separable
functions. For example, a model representation
should be as independent as possible from any
solver(s) which eventually may act upon it. This is
vital to the ultimate comprehensibility of models.
In the optimization world, model representation
has traditionally been tightly bound to the data
structures required by solution algorithm soft-
ware. This has resulted in models remaining rela-
tively inaccessible to the decision makers for
whom they were intended to benefit.

The separation of the modeling world into
representations and solvers has significant ramifi-
cations for model integration. If we connect two
or more models at the logical level, we need to
determine the corresponding action at the solver
level. For example, consider a situation where we
have separate transportation models for eastern
and western regions and we want to integrate
them into a national transportation model. In this
case, which is one primarily of model aggregation
or homogeneous integration, the solver will be
exactly the same for the national model as for
each of the regional models. Only the logical
schemas have to be integrated.

Our example from Section 2, on the other
hand, requires a more complex approach. In this
case, the notion of using the same solver for the
integrated model can be rejected out of hand
because the models are fundamentally of such
different types. What makes more sense in multi-
paradigmatic, or heterogeneous integration, is to
concatenate each of the model 's solvers in roughly
the same way as their schemas in order to derive
an integrated solver. This solver is, in fact, noth-
ing more than a process which controls the indi-
vidual processes corresponding to each model 's
solver. Figure 5 indicates how this might be ac-
complished in a hypothetical language which we
can think of as a model manipulation language
(MML). Our assumption here is that we have
structured model schemas for each of the five
models (&MKT, &MFG, &TRANSP, &PRICE,
and &FIN respectively), and a corresponding li-
brary of solvers which can be invoked via a

SOLVE command. For the time being, we will
also assume that the &MKT and &MFG models
are more complex than shown in Section 3, al-
though the variable correspondence will remain
the same.

There are several aspects of this MML process
that bear mentioning:
(1) models are the basic objects being manipu-

lated; 2
(2) variable correspondence is handled explicitly,

for example the conversion of V O L U M E in
&MKT from units to 100's of units in &MFG.
This process can be done automatically with
an appropriate typing scheme [5];

(3) SOLVE executes a process which solves a
model, for example, the statement "SOLVE
&MKT USING SAS" when executed, would
invoke the SAS program;

(4) SOLVE implies an underlying transformation
which converts the elemental detail tables
(the model 's data) to the appropriate data
structures for the specified solver. For exam-
ple, solving & P R I C E requires that elemental
detail tables be converted to GAMS format
before the GAMS program is executed;

(5) the order of processes is important. &MKT
must be executed before &MFG since &MFG
requires as input the V O L U M E output from
&MKT;

(6) processes may be run in parallel. The
"SOLVE C O N C U R R E N T L Y &PRICE .. .
&TRANSP" command is meant to indicate
that these two models could be solved in
parallel, perhaps in two separate windows.

The MML in fig. 5 is a simplified version of a
model integration control language (MICE) pro-
posed by Kot temann and Dolk [24]. Besides vari-
able correspondence and sequentiality, the MICL
supports model (process) synchronization as well.
Synchronization occurs when two concurrent pro-
cesses must exchange variables during their re-
spective executions. For example if the pricing
model were geographically sensitive and the
transportation model were price sensitivel it may
be necessary for the & P R I C E and &TRANSP

2 There are a number of manipulations which can be per-
formed on models besides solve, e.g., evaluate, retrieve,
modify, create, etc. For the purposes of this discussion,
however, we will restrict the scope to the solve operation
only. Extension of the concepts to other operations is
straightforward.

D.R. Dolk, J.E. Kottemann / Model integration 59

solvers to exchange information at specified in-
tervals during their respective executions (after
every recalculation of a basis, say). This is a more
complex form of model integration and solver
interdependence, but one which occurs fre-
quently in dynamic models such as discrete event
simulation. Synchronization also requires demon
constructs which act as dynamic interrupts during
process execution to alert other processes that a
certain status has been achieved (e.g., a new basis
has been recalculated). An example of an MICL
for econometric modeling is discussed in [12].

The basic argument here is that solvers are
processes and therefore solver integration re-
quires process integration. This places us squarely
in the bailiwick of operating systems theory where
several formalisms based on message passing have
been developed for process coordination. Com-
municating sequential processes (CSP) [21] is one
such formalism which has been adapted to solver
integration [24]. Generative communication [6] is
a 'lazy' form of message passing where model
outputs are not targeted to any specific process,
as in CSP, but instead are stored in common
areas which can be accessed by all processes
when needed. Concurrent Prolog is a logic-ori-
ented counterpart that allows dynamic communi-
cation between Prolog processes, and which could
implement model integration within logic model-
ing environments [31].

The process view of model integration is a
significantly different perspective from the
schema integration approach. Whereas the latter
provides a logical view of model structure, the
former corresponds to more traditional 'black
box' model representations which emphasize in-
puts and outputs as opposed to the interrelation-
ships of variables. The alert reader may be won-
dering at this point what the connection between
schema and process integration is, and whether
or when we need each. For example, since the
integrated solver of fig. 5 requires solving the
individual models, why do we need an' integrated
schema? Isn't it the individual models which are
of interest in this case?

A plausible response to this question was
hinted at before. Integrated schemas are proba-
bly more appropriate for the homogeneous case
where the same model solver will be used for the
integrated model as for the constituent models.
Process integration, on the other hand, may be

more suitable for multiparadigmatic modeling
where the models and their associated solvers are
heterogeneous. Another distinction between
schema and solver integration is that we are
dealing at a higher level of abstraction with the
latter. The model is the basic object of inquiry for
solvers whereas the model variable is the basic
unit in schemas. Thus, it appears, that as a coun-
terpart to variable typing for schema integration,
we may need the notion of a model type for
solver integration. A model type would determine
which solvers could be applied to an instance of a
model schema. When two models of the same, or
inherited type, are to be integrated, then schema
integration is appropriate; otherwise solver inte-
gration is desirable.

One of the themes running through this paper
is the limitation of the "modelbase as extended
database" analogy. We have seen, for example, at
the schema integration level that joining models
is more complex than joining relations. Transitive
closure and relational completeness do not apply
because the appropriate kernel of scrutiny is the
conceptual model rather than the relation. Simi-
larly, we see that process integration is also not
conducive to manipulation by relational calculus
or algebra, and requires more dynamic for-
malisms such as those which underlie operating
systems and programming language design. Al-
though we would like a theory comparable in
richness to relational algebra and calculus for
manipulating models, the database arena might
not be the place to look. Indeed, in the next
section, we take the natural step of suggesting the
object-oriented paradigm for implementing an
IME which supports both schema and solver inte-
gration, and we note that attempts to devise
algebras for object manipulation have been un-
successful as well.

5. Implementa t ion dimension: Object-oriented in-
tegrated model ing env ironments 3

The concept of an IME which can handle
mode l s as flexibly as DBMS's handle data is an

3 IME is being used here in the same sense that 'model
management system' has been used in other contexts. We
prefer IME because it encompasses a broader notion of
integration; not just integration of models and data but
integration of software tools (DBMS, GUI, solvers, etc.) as
well [18].

60 D.R. Dolk, ZE. Kottemann / Model integration

appealing prospect. In this respect, database
analogies seem apropos, with model definition as
the counterpart of data definition and model
integration the equivalent of data manipulation.
As discussed before, however, direct database
analogies can be misleading. We review briefly
the requirements which model integration imply
for an IME and suggest possible blueprints to
building such a system.

One way of looking at IME requirements is to
determine the extent to which model integration
can be automated. For example, if we want to
integrate two or more model schemas, what sup-
port can an IME provide? A necessary condition
is a common model definition formalism and
associated language such as structured modeling
and SML [19] in which schemas over a wide class
of models can be created and linked. An associ-
ated requirement is that transformation facilities
be available to convert other model representa-
tions to this common definition formalism. This
would provide interfaces to other external model-
ing systems such as AMPL [14], for example, and
would allow modelers familiar with these systems
to work comfortably within the IME.

Even with a common internal model represen-
tation, it is unreasonable to expect a system to do
the entire process of model schema integration
without some human intervention. Some steps
can be reasonably achieved automatically, how-
ever. For example, identification of synonyms

(variables with the same semantics) and
homonyms (variables with the same names but
different semantics) is possible if there is a suffi-
ciently powerful variable typing scheme such as
concept hierarchy or quiddity in effect. The act of
'joining' models can be done as well, both at the
graphical and schema levels. In the case of struc-
tured modeling, an IME could also inform the
modeler of schema errors and inconsistencies ex-
isting in the ' joined' schema. Once a semantically
and syntactically correct integrated schema was
developed, the IME could then generate the new
relational schemata and offer the modeler the
choice of creating these new relations explicitly or
building views from existing relations.

From a process integration perspective, an
IME supporting 'automatic integration would fa-
cilitate the conversion of a process diagram such
as fig. 2 into the integrated solver of fig. 5. The
degree to which this can be done fully automati-
cally depends on the complexity of the model
integration, particularly with respect to the diffi-
culty of the variable correspondence involved and
the degree of process synchronization required.
Muhanna and Pick [29] have implemented such a
system under a simplified set of assumptions
which minimizes these difficulties. Their SYMM
system supports a graphical interface for repre-
senting the model integration (similar to fig. 2),
but there is no associated model manipulation or
control language. In the general case, as we've

Table 1
IME requirements for supporting model integration and selected references

IME requirement Relevant research

Uniform internal model definition scheme capable of Geoffrion [15,17], Jones [22], Lee and Krishnan [26]
representing many classes of models.

Conversion of external model definition schemes into
internal scheme

Robust typing and inheritance at both the variable
and model level.

Model manipulation language based on message passing
to support solver integration.

Model solution libraries with transformation routines
for conversion of internal data structures to solver data
structures.

Graphical user interfaces and views for supporting
model definition and integration.

DBMS tools for model management.

Maturana [28], Bhargavs and Kimbrough [2],
Chari and Krishnan [7]

Bradley and Clemence [4], Bhargava et al. [1],
Liang [25]

Muhanna and Pick [29], Kottemann and Dolk [24]

Eck et al. [13], Maturana [28], Ramirez et al. [30]

Jones [23), Muhanna and Pick [29], Ma et al. [27],
Greenberg and Murphy [20]

Dolk [11], Desai [10]

D.R. Dolk, J.E. Kottemann / Model integration 61

shown in Section 4, some form of model manipu-
lation language will be necessary, and useful, for
specifying this form of model integration.

At the tool level, IMEs clearly require graphi-
cal user interfaces for specifying and integrating
models, whether at the schema or the process
level. Jones [23], for example, has developed a
graph-based modeling system wherein model rep-
resentation and integration are done entirely at a
graphical level. Again, however, the user is re-
sponsible for ensuring proper variable correspon-
dence across models. The DBMS is also a vital
tool needed by an IME for handling the complex
data manipulation that earmarks large scale mod-
eling and model integration. Finally, we should
note that improvements in operating systems over
the years may very well provide some of the
model integration features we've been discussing.
For example the Mach version of Unix, which is
the host operating system for the NeXT com-
puter, provides advanced process communication
capabilities which cQuld be adapted as the basis
for a message passing MML.

Table 1 summarizes some of the major re-
quirements for an IME which result from model
integration. It's interesting to note that most of
the research has been directed towards model
definition with only tentative forays into the
model manipulation area. One anticipated bene-
fit from thinking in a mode[integration context is
that the scope of model management research
will broaden to include this dimension.

Another reason that model manipulation has
been largely ignored can be traced to the 'object-
oriented' phenomenon. Numerous authors have
recognized the applicability of this design
methodology to model management and the asso-
ciated benefits of models as objects, solvers bound
to these models, and inheritance hierarchies. This
has probably done as much harm as good in the
advancement of model management research.
Object-oriented approaches are too often used as
an implementation panacea for sweeping difficult
conceptual and theoretical problems under the
rug. Model integration is one such problem.

Having said this, it will perhaps appear contra-
dictory to now claim that object-oriented environ-
ments are promising implementation vehicles for
IMEs. Nevertheless, the object-oriented paradigm
has been shown as feasible and beneficial for
building 1MEs. For example, Dempster and Ire-

land [9] have implemented a debt management
system using the frame-based KEE TM environ-
ment and Desai [10] has proposed implementing
s tructured modeling representat ions in an
object-oriented DBMS. Not surprisingly, the need
for typing/ inheri tance schemes, message passing,
and process coordination discussed in the previ-
ous sections leads us directly into the object-ori-
ented camp. We briefly describe our own pro-
posal for an object-oriented 1ME which we call
Communicating Structured Models (CSM).

CSM is based upon structured modeling as the
internal definition-medium, concept hierarchies
as the variable and model typing scheme, and
CSP as the process integration formalism. The
basic idea is to develop an MML similar in struc-
ture to the hypothetical example in fig. 5, which
will exist as a shell around SML. CSML (Com-
municating SML) will allow users to integrate
models either schematically in the homogeneous
case through graphical interfaces (similar to
CASE tools) or procedurally in the multi-para-
digmatic case through an appropriate language
syntax. CSML must support at least the following
features:
(a) the basic structured programming constructs

of sequence, selection, and iteration;
(b) demons;
(c) embedded SML statements for model defini-

tion;
(d) parallel execution of processes;
(e) transformation operators to solver data struc-

tures;
(f) embedded SQL statements for data manipu-

lation.
In short, CSML would require many of the char-
acteristics of a discrete event simulation program-
ming language such as Simscript TM but with hooks
to model schemas, solvers, and relational data as
well.

Implementation of CSML would itself consti-
tute a significant software integration effort, un-
doubtedly requiring some existing object-oriented
environment as a foundation. This only reinforces
the link between IMEs and object-oriented con-
cepts. However, we reemphasize our view that
object-oriented is primarily an implementation
choice for building modeling environments rather
than a substitute for model theory. Although we
have taken pains to describe the challenges of
model integration independent of any particular

62 D.R. Dolk, J.E. Kottemann / Model integration

implementat ion methodology, it is very difficult
to separate the issues of model integrat ion from
those of object-or iented modeling. One of the
goals of model managemen t research should be
to take a fresh look at how to develop a more
theoretical foundat ion for model integrat ion
which avoids this confusion.

6. Conclusions

The purpose of this paper has been to explore
model integrat ion as a vehicle for thinking about
"model ing in the large". This has served several
useful purposes by:
(1) surveying the main aspects of model integra-

tion, specifically schema and process integra-
tion,

(2) exposing limitations of relational database
theory as a paradigm for model managemen t
theory;

(3) extending the scope of current model man-
agement research beyond model definition to
include model manipulat ion.

The dimensions of model integrat ion as de-
scribed herein seem to lead us in one form or
another to object-or iented concepts for imple-
mentat ion. This is quite natural given the increas-
ing symbiosis between models and computers in
both the scientific and business worlds. However,
this is somewhat less than satisfying theoretically.
If we are to develop a theory of models which
encompasses definition and manipulat ion, it will
require answers to at least the following list of
research questions:
(1) Can a calculus or algebra be devised for par-

ticular classes of models which exhibit the
proper ty of .transitive closure as in the rela-
tional model?

(2) What consti tutes a complete set of primitives
for a model manipulat ion language?

(3) Is there a set of necessary and sufficient
abstract data types and inheri tance hierar-
chies for model ing?

Much of the development of compute r lan-
guages has been essentially constructivist in na-
ture, that is, a set of requirements is genera ted
and a language is then built which a t tempts to
satisfy these requirements. This was also the
modus operandi for database systems and lan-
guages until development of the relational theory

and model. The existence of a strong theoretical
foundat ion nur tured and s t rengthened the disci-
pline of database managemen t significantly.
Model managemen t research is now at about the
equivalent stage of evolution with respect to lan-
guages. The quest ion remains, will model manip-
ulation languages be built in a constructivist mode
or will they evolve f rom an appropr ia te theoreti-
cal foundat ion? This is a major challenge for
model managemen t and one for which the con-
cept of model integrat ion provides invaluable
perspective.

References

[1] H. Bhargava, S. Kimbrough, and R. Krishnan, Unique
names violations: A problem for model integration,
ORSA Journal on Computing 3, 2 (1991) 107-120.

[2] H. Bhargava, and S. Kimbrough, Model management: An
embedded languages approach, Forthcoming in Decision
Support Systems.

[3] R.W. Blanning, An entity-relationship approach to model
management, Decision Support Systems 2, 1 (March 1986)
65-72.

[4] G.H. Bradley, and R.D. Clemence, Jr., A type calculus
for executable modeling languages, IMA Journal of
Mathematics in Management 1, 4 (1987) 277-291.

[5] G.H. Bradley, and R.D. Clemence, Jr., Model integration
with a typed executable modeling language, Proceedings
of the Twenty-First Hawaii International Conference on
System Sciences III, IEEE Computer Society press (1988)
403-410.

[6] N. Carreiro, and D. Gelernter, Linda in context, Commu-
nications of the ACM 32, 4 (April 1989) 444-459.

[7] S. Chari, and R. Krishnan, Towards a logical reconstruc-
tion of structured modeling, Forthcoming in Decision
Support Systems.

[8] P.P.S. Chen, The entity-relationship model: Toward a
unified view of data, ACM Transactions on Database
Systems 1, 1 (1976)9-36.

[9] M.A.H. Dempster, and A.M. Ireland, Object-oriented
model integrate in a financial decision support system,
Forthcoming in Decision Support Systems.

[10] S. Desai, Are extensible database systems better than
relational database systems for model management? An-
derson Graduate School of Management, UCLA, Los
Angeles, CA (1991).

[11] D.R. Dolk, Model management and structured modeling:
The role of an information resource dictionary system,
Communications of the ACM 31, 6 (June 1988) 704-718.

[12] D.R. Dolk, and D.J. Kridel, An active modeling system
for econometric analysis, Forthcoming in Decision Sup-
port Systems.

[13] R. Eck, A. Philippakis, and R. Ramirez, Solver represen-
tation for model management systems, Proceedings of
the Twenty-Third Annual Hawaii International Confer-

D.R. Dolk, J.E. Kotternann / Model integration 63

ence on System Sciences II1, IEEE Computer Society
(1990) 474-483.

[14] R. Fourer, P.M. Gay, and B.W. Kernighan, A modeling
language for mathematical programming, Management
Science 36, 5 (May 1990) 519-554.

[15] A.M. Geoffrion, An introduction to structured modeling,
Management Science 33, 5 (May 1987) 547 588.

[16] A.M. Geoffrion, Reusing structured models via model
integration. Proceedings of the Twenty-Second Annual
Hawaii International, Conference on System sciences,
IEEE Computer Society (1989) 601 6ll .

[17] A.M. Geoffrion, The formal aspects of structured model-
ing, Operations Research 37, 1 (January-Februa~' 1989)
30-51.

[18] A.M. Geoffrion, Integrated modeling systems, Computer
Science in Economics and Management 2 (1989) 3-15.

[19] A.M. Geoffrion, SML: A model definition language for
structured modeling, Western Management Science In-
stitute, UCLA, Los Angeles, CA (November 19891.

[20] H.J. Greenberg, and F.H. Murphy, Views of mathemati-
cal programming models and their instances, University
of Colorado at Denver, Denver, CO (May 1991).

[21] C.A.R. Ltoare, Communicating sequential Processes
(Prentice-Hall, Englewood Cliffs, N J, 1985).

[22] C.V. Jones, An introduction to graph-based modeling
systems, Part 1: Overview, ORSA Journal of Computing
2,2(19911) 136 151."

[23] C.V. Jones, An integrated modeling environment based
on attributed graphs and graph-grammars, Forthcoming
in Decision Support Systems.

[24] J.E. Kottemann, and D.R. Dolk, Process-oriented model
integration, Proceedings of the Twenty-First Hawaii In-
ternational Conference on System Sciences Ill, (IEEE
Computer Society Press, 1988).

[25] T-P. Liang, Analogical reasoning and case-based learn-
ing in model management systems, Forthcoming in Deci-
sion Support Systems.

[26] R.M. Lee, and R. Krishnan, Logic as an integrated
modeling framework, Computer Science in Economics
and Management 2 (1989).

[27] P. Ma, F.tt. Murphy, and E.A. Stohr, Design of a graph-
ics interface for linear programming, Communications of
the ACM 32, 8 (1989) 996-11112.

[28] S. Maturana, Integration of a mathematical programming
solver into a modeling environment, Anderson Graduate
School of Management, UCLA, Los Angeles, CA (Oc-
tober 1988).

[29] W.A. Muhanna, and R.A. Picks, Composite models in
SYMM. Proceedings of the Twenty-First Hawaii Interna-
tional Conference on system sciences II1 (IEEE Com-
puter Society Press, 1988) 418-427.

[311] R.G. Ramirez, C. Ching, and R.D. St. Louis, lndepen-
denc and mappings in model-based decision support sys-
tems, Forthcoming in Decision Support Systems.

[3t] E. Shapiro, ed, Concurrent Prolog Collected Papers,
Volumes 1 and 2 (The MIT Press, 19871.

[32] M. Stonebraker, and G. Kemnitz, The POSTGRES next
generation database management system, Communica-
tions of the ACM 34. 111 (October 1991) 78-92.

