
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

2016-04-19

A scale-independent, noise-resistant dissimilarity for

tree-based clustering of mixed data

Buttrey, Samuel E.

http://hdl.handle.net/10945/48615

NPS-OR-16-003

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

A SCALE-INDEPENDENT, NOISE-RESISTANT
DISSIMILARITY FOR TREE-BASED CLUSTERING OF

MIXED DATA

by

Samuel E. Buttrey
Lyn R. Whitaker

April 19, 2016

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704�0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704�0188), 1215 Je�erson Davis Highway, Suite 1204, Arlington, VA 22202�4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR
FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD�MM�YYYY) 2. REPORT TYPE 3. DATES COVERED (From � To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8�98)
Prescribed by ANSI Std. Z39.18

03-25-2016 Technical Report 09-01-2015 to 03-25-2016

A SCALE-INDEPENDENT, NOISE-RESISTANT DISSIMILARITY FOR
TREE-BASED CLUSTERING OF MIXED DATA

Samuel E. Buttrey, Lyn R. Whitaker

Naval Postgraduate School
Monterey, CA 93943 NPS-OR-16-003

None

Approved for public release; distribution is unlimited

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number:N/A.

Clustering techniques divide observations into groups.Current techniques usually rely on measurements of dissimilarities between
pairs of observations, between pairs of clusters, and between an observation and a cluster.For numeric variables, these dissimilarity
measurements often depend on the scaling of the variables, are changed by monotonic transformations, and do not provide for
selection of “important" variables. In our scheme, we fit a set of regression or classification trees with each variable acting in turn
as the “response" variable.Points are “close" to one another if they tend to appear in the same leaves of these trees.Trees with poor
predictive power are discarded.Therefore, “noise" variables will often appear in none of the trees and have no effect on the clustering.
Because our technique uses trees, the dissimilarities are unaffected by linear transformations of the numeric variables and resistant
to monotonic ones and to outliers.Categorical variables are included automatically and missing values handled in a natural way.We
demonstrate the performance of this technique by using these dissimilarities to cluster some well-known data sets to which noise has
been added.

Unclassified Unclassified Unclassified UU 30

i

Samuel Buttrey

831-656-3035

inter-point distance, mixed data, clustering

THIS PAGE INTENTIONALLY LEFT BLANK

ii

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Ronald A. Route James H. Newman
President Provost

The report entitled “A Scale-Independent, Noise-Resistant Dissimilarity for Tree-Based
Clustering of Mixed Data” was not funded by an outside agency.

Further distribution of all or part of this report is authorized.

This report was prepared by:

Samuel E. Buttrey Lyn R. Whitaker

Reviewed by: Released by:

Patricia A. Jacobs, Chairman Jeffrey D. Paduan
Department of Operations Research Dean of Research

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

Executive Summary

Clustering techniques divide observations into groups. Current techniques usually rely
on measurements of dissimilarities between pairs of observations, between pairs of clus-
ters, and between an observation and a cluster. For numeric variables these dissimilarity
measurements often depend on the scaling of the variables, are changed by monotonic
transformations, and do not provide for selection of “important" variables. In our scheme
we fit a set of regression or classification trees with each variable acting in turn as the
“response" variable. Points are “close" to one another if they tend to appear in the same
leaves of these trees. Trees with poor predictive power are discarded. Therefore, “noise"
variables will often appear in none of the trees and have no effect on the clustering. Because
our technique uses trees, the dissimilarities are unaffected by linear transformations of the
numeric variables and resistant to monotonic ones and to outliers. Categorical variables
are included automatically and missing values handled in a natural way. We demonstrate
the performance of this technique by using these dissimilarities to cluster some well-known
data sets to which noise has been added.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

1 Introduction

1.1 The Clustering Problem
In the usual clustering problem, we have p measurements on each of n observations, with
the measurement for the i-th observation denoted by xi = (xi1, xi2, . . . , xip). We will write
x[j] for the n−vector of measurements for variable j, so that x[j] = (x1k, x2k, . . . , xnk). The
entire set of measurements will be denoted by X.

The object of clustering is to separate the observations into groups – “clusters" – such that
the observations within each cluster are similar in terms of their measurements, and that the
clusters are different one from another. The number of clusters, an important parameter,
will generally not be known. The literature is extensive. The seminal book of Hartigan [1]
collected much of the theory and practice up until that time. The book by Kaufman and
Rousseeuw [2] proposed a set of algorithms, many of which have been implemented in
the R statistical environment [3]. Clusters are often modeled as arising from a mixture
distribution; the more recent book by Mirkin [4] describes this approach (chapter 6) and
gives a good overview of the theory being brought to bear on clustering.

1.2 Measuring Dissimilarity
A crucial part of most clustering algorithms is the measuring of the proximity between two
items (where “item" can refer to an individual observation or to a cluster). Most clustering
algorithms measure proximity by dissimilarities (or as similarities) between items. Some
require that dissimilarities be distances. In many cases it makes sense to separate the
dissimilarity measurement from the clustering algorithm, and with a couple of exceptions
we will do that here. Treating choice of dissimilarity measurement and clustering algorithm
separately is not, it should be said, universal. For example, the recent comprehensive article
by Andreopoulous et. al [5] compares 40 clustering algorithms in the context of biomedical
research, without specifically defining how these algorithms measure dissimilarity.

A dissimilarity measure can reasonably be expected to have the following qualities:

1. It should incorporate both numeric and categorical variables, including ordinal and
asymmetric binary ones;

2. It should be insensitive to linear scalings of numeric variables (say, re-expression in

1

different units);
3. It should permit the incorporation of variable-specific weights, so that some variables

can be made more influential in the dissimilarity measurement than others – in
particular, it should permit some weights to be set to zero, if the corresponding
variable is merely noise;

4. It should detect the common situation where two variables contain identical, or almost
identical, information and prevent those variables from being double-counted in the
dissimilarity, and, more generally, should adjust for correlation among variables;

5. It should be insensitive to extreme outliers in the data, either detecting them or at
least keeping them from exerting undue influence on dissimilarites;

6. It should be able to operate in the presence of missing data; and
7. It should be straightforward to compute, even in large data sets.

The first item is one of the the prime motivations behind our effort. Dissimilarities for
numeric data start with the ordinary Euclidean distance and are widely used. Similarly,
substantial effort has gone into developing dissimilarities for purely categorical data. Some
of this work is summarized in Boriah, Chandola and Kumar [6]. Of the many possible
flavors of dissimilarities, an indicator of mismatch is often used when clustering categorical
data. It should be noted that binary categoricals are substantially less daunting than those
with many categories. A number of authors have sought to construct dissimilarities for
“mixed” data – that is, data with both categorical and numerical variables. For example,
Ahmad and Dey [7] extend the widely-used k-means algorithm to mixed data by treating
numerical and categorical variables separately. McCane and Albert [8] describe measures
for mixed data that adjust for inter-variable correlation (our point 4) above. As other authors
often do, however, their algorithm assumes that all categories are equidistant from one
another, an assumption which seems generally too strong.

Points 2 and 3 above overlap substantially. In many applications, scaling and weighting are
both implemented with a specific multiplier. For our purposes, “scaling” is applied so as to
counteract the effects of linear scaling – e.g. changes in units – whereas “weighting” aims
to perform variable selection by down-weighting or omitting variables which should not
contribute to the dissimilarity. Often scaling can be done automatically, as in the Gower
dissimilarity we describe below. Weighting is more difficult. Sometimes this can be done
with the help of subject-matter experts; other approaches seek to estimate weights so as

2

to optimize some criterion regarding, for example, cluster “quality.” We will describe one
such effort below.

Missing values are always an issue in real data. When these are rare, almost any reasonable
approach can be applied. It is common to omit observations which have anymissing entries.
When missing values are widespread, though, this prescription can lead to the omission of
large chunks of data. It is important that a dissimilarity measure be able to handle missing
values gracefully.

The final point also deserves mention. A number of clustering algorithms begin by comput-
ing all n(n− 1)/2 pairwise dissimilarities or distances among observations. In modern-day
analysis, however, we might expect data sets with millions of rows, thousands of columns,
and dozens or perhaps hundreds of clusters. Computing, storing, and using all pairwise
distances is a computational burden best avoided. For this paper, our concern is focused on
computing dissimilarities, rather than on the clustering mechanism, but it is important to
be aware that clustering algorithms need to be able to operate on large data sets.

1.3 Organization
The rest of the paper proceeds as follows. In the next section, we describe our proposal
for measuring dissimilarities between observations in mixed data. Our dissimilarities are
insensitive to affine transformation and indeed resistant to non-linear monotonic ones.
They also provide for automatic variable selection. Our approach handles missing data and
outliers automatically and cleanly. The next section also describes two dissimilarities that
will act as competitors: the Gower dissimilarity and random forest dissimilarity. Section 3
describes our implementation of our dissimilarity measures, the data sets that will be used
as input to the dissimilarity measurements, and the clustering algorithms that are used once
the dissimilarities are computed. We also describe how we measure the performance of any
particular combination of dissimilarity and clustering algorithm. Section 4 presents results
and, finally, Section 5 gives our conclusions and directions for future exploration.

2 Dissimilarities
In this section, we describe our proposals for measuring dissimilarities, first mentioned
in Buttrey [9]. Our scheme involves using classification and regression trees, and so we

3

consider also, as a competitor, the random forest proximity of Breiman [10]. Finally, we
describe the widely-used dissimilarity of Gower [11].

2.1 The TreeClust Dissimilarities
In our scheme, which we call treeClust, we capitalize on many of the advantages of classifi-
cation and regression trees (Breiman et. al [12]) to produce a dissimilarity and, from that, a
clustering that is oblivious to any affine scaling (and, indeed, resistant in some sense to any
monotone transformation) of any or all of the variables. Categorical and numeric variables
are combined and weighted in an obvious way, and it is possible to detect and omit large
numbers of “noise" variables.

The central idea of our approach is this: two observations are similar if they tend to fall
in the same leaves of classification or regression trees. A regression or classification tree
needs a response variable, though, and in the clustering problem there is no such thing. So
we create p trees, one for each variable where each variable in turn serves as the response
variable, with the others acting as predictors. Trees corresponding to categorical variables
will be classification trees and numeric variable trees will be regression trees. We use
cross-validation to “prune" each tree to an “optimal" size. That is, we select the size for
which the cross-validated error rate is minimized.

A tree built with a noise variable as the response will often have an optimal size of 1. Such
a tree classifies every observation into the same leaf, and therefore contributes nothing to
our dissimilarity computations. At the same time, noise variables will rarely be chosen as
splitting variables in other trees. So some variables will never enter the clustering either as
response or as predictor: those variables are ignored entirely. Of course, we hope that all
noise variables, and no others, will be excluded in this way. A tree is unaffected by a linear
scaling of the response, or by any monotonic transformation of a predictor, so the entire
scheme is insensitive to linear scaling. A non-linear transformation of a variable affects
only the tree built with that variable as a response, not any of the trees in which it acts as a
predictor.

After the trees are built, a simple measure of dissimilarity between two observations is the
number of trees in which those observations fall into different leaves. Let the label of the
leaf of the tth tree into which the ith observation falls be denoted by Lt (i). Then we measure

4

the dissimilarity between observations i and j by

d(i, j) =
p∑

t=1

0 if Lt (i) = Lt (j)
dt (i, j) if Lt (i) , Lt (j)

, (1)

taking all dt (i, j) = 1 initially to construct our first dissimilarity d1. We note that d1 and
its extensions are not metric on the set of observations with the original variables. Two
different observations i and j, not equal, can fall in the same leaf for every tree giving
d1(i, j) = 0. But d1 is metric for the observations measured with the p categorical variables
indicating leaf membership for the p trees.

The advantages of this approach include the advantages of trees generally. Their insentivity
to affine transformation is automatically reflected in the d1 dissimilarity. Trees are easy to
build, even in the presence of missing values, and being local-type models they are resistant
to outliers.

Furthermore, the p or fewer trees in any data set can be built independently. This allows a
straightforward parallelization of many of the necessary computations.

As an extension, we also propose a second dissimilarity d2(i, j). This measurement takes
into account the relative “strength” of the various trees. Each reponse variable starts with a
quantification of its variability in the form of deviance, computed at the tree’s root (that is,
using all the response values). Deviance is measured by the sum of squares of deviations
from the mean for a numeric response variable, and by the usual multinomial deviance for
a categorical one. After the tree is built, we compute the sum of deviances in its leaves.
A tree’s strength can be measured by the ratio of the change in deviance between root and
leaves to the deviance at the root. We denote this ratio, which will be between zero and 1,
by q. A tree with a large q is presumably better able to help cluster individual observations.
Two observations that land in different leaves of such a “good" tree might be judged to
be more dissimilar than two observations landing in different leaves of a “bad" tree. In
this approach, each tree gets a weight based on how big its q is compared to the largest q

observed across all trees. That is, we set dt
2(i, j) = 0 when observations i and j fall in the

same leaf of tree t, and otherwise to qt/maxk (qk).

Figure 1 shows a hypothetical example of a tree of the sort that might be built in our scheme.

5

Figure 1: Example tree, showing node numbers (small circles) and deviances

Large ovals show the deviances of each node, while small circles indicate the leaf numbers.
Then, under our first measure, observations i and j will have dissimilarity dt

1(i, j) = 0 for
this tree if they fall in the same leaf, and 1 otherwise. The second measure requires knowing
the maximum q for any of the trees. Suppose that maximum is 0.80. The tree in Figure 1
exhibits a q of 0.47, that being the ratio of the root deviance of the sum of deviances in the
leaves, 4,700, to the deviance at the root, 10,000. So the tree in Figure 1 would contribute
0.47/0.80 = 0.59 when two observations fall in different leaves, and 0 otherwise. The overall
dissimilarity measure d2(i, j) is then the sum of contributions from each of the individual
trees.

In a third dissimilarity, observations in the same leaf continue to have dissimilarity 0. The
dissimilarity between two observations for a particular tree depends on how far apart they
are. In Figure 1, two observations falling in leaves 14 and 15 seem much closer together
than two falling in leaves 2 and 15. We imagine minimally pruning the tree until the two
observations fall in the same leaf. The dissimilarity between two observations is then the
ratio of the increase in deviance associated with the pruning to the original tree’s decrease
in deviance.

For example, observations in leaves 14 and 15 would be in the same leaf if those two
leaves were pruned back to leaf 7. The tree resulting from that pruning operation would
have deviance 4,900, so those two observations would have a dissimilarity of (4, 900 −
4, 700)/(10, 000 − 4, 700) = 0.038 for this tree. Observations in leaves 2 and 15 would
only be in the same leaf if the tree were pruned back to the root, an operation which would

6

produce a tree with deviance 10000. So those two observations would have dissimilarity
(10, 000−4, 700)/(10, 000−4, 700) = 1.0 for this tree, and the overall dissimilarity measure
d3(i, j) is then the sum of the contributions from the set of trees. Our fourth dissimilarity
uses the d3 dissimilarities, together with the tree-specific weights described above for d2. In
our example, where the maximum q was 0.80, the weight for the tree in the figure was 0.59.
Two observations maximally far apart on that tree contribute dissimilarity 0.59 for this tree,
whereas observations in leaves 14 and 15 would receive a contribution of 0.59 × 0.038.

Missing values can cause problemswithmany algorthms. Trees are robust to missing values
in the predictors; it is easy to devise schemes for use in tree construction and prediction for
observations that are missing some predictors. For example, we might take advantage of
surrogate splits for missing predictors. When missing values are present in the response, the
usual approach is to omit those observations from the tree-construction phase. However,
it is still possible to make predictions for every variable on the entire data set. In our
examples, we have removed missing values for ease of comparison across methods, but our
code handles data sets with missing values.

2.2 Random Forest and Other Tree-Based Methods
Random forests were introduced in Breiman [10] as a ensemble technique for regression and
classification. However, the software manual (Breiman and Cutler [13]) notes that the set
of trees produced by this technique provide a natural way to measure proximities between
two observations, even those of mixed variable type. The data are augmented by simulated
data whose marginal distributions match the data, but whose variables are independent.
The random forest is built on the combined data where the response variable takes value 1
for the original observations and 0 for the simulated observations. Proximity is measured
by counting the number of times two observations fall in the same leaves. Dividing this
number by twice the number of trees and setting each observation’s proxmity with itself
to 1 yields a proxmity measure that Brieman recommends for clustering. In practice we
subtract that measure from 1 to yield a dissimilarity. That dissimilarity was put to the test
by Shi and Horvath [14], who note that the corresponding dissimilarity measure is, like our
treeClust measure, invariant to affine transformation and robust with regard to outliers.

We note that other clustering approaches have been based on trees. Fisher [15] proposes us-

7

ing trees as part of a scheme to categorize items, an approach called “conceptual clustering.”
It appears to be specifically relevant to categorical predictors arranged in a natural hierarchy.
Ooi [16] uses trees to partition the feature space as a step towards density estimation, which
is related to clustering, and Smyth et. al [17] cluster using multivariate regression trees with
principal component and factor scores. The latter two approaches are intended for numeric
data.

2.3 Gower’s Dissimilarity
Many of the issues associated with constructing dissimilarities are addressed by Gower’s
coefficient [11]. As implemented in the function daisy() in the cluster package [18]
in the R statistical environment [3], the Gower dissimilarity for mixed data starts with a
measurement of dissimilarity between two observations i and j for a single variable k. In this
implementation, numeric distances are scaled by the variable’s range, so that each numeric
variable’s contribution is between 0 and 1, and each categorical variable’s contribution is
exactly 0 or 1:

dk
G (i, j) =

|xik − x j k |

max x[k] −min x[k]
when x[k] is numeric,

=

1 if xik , x j k

0 if xik = x j k

when x[k] is categorical.

Then the different contributions are combined in a weighted sum, with an adjustment for
missing values and for asymmetric binary variables. Specifically, daisy() computes the
weighted mean

dG (i, j) =

∑p
k=1 wkδk (i, j)dk

G (i, j)∑p
k=1 wkδk (i, j)

(2)

where, as before, the set of wk serves to weight each variable separately. The quantites
δk (i, j) serve two purposes. First, δk (i, j) is set to 0 if either xik or x j k is missing; this
ensures that the denominator of dG (i, j) is set correctly when variables are missing. Second,
if variable x[k] is specified to be an asymmetric binary one, then δk (i, j) gets the value 0
if xik = x j k = 0. Across a set of asymmetric binary variables, two observations’ mutual
dissimilarity is given by the proportion of times they both have the value 1, among all the
times either one has a 1.

8

2.4 Variable Selection
The weights in the Gower dissimilarity are often taken to be 1 for every variable, but a
number of researchers have considered how weights might be automatically chosen in the
clustering context. Friedman and Muelman [19] seek to optimize a criterion on aggregated
sums of Euclidean distances within clusters by selecting weights and cluster memberships
simultaneously. Witten and Tibshirani [20] propose another, simpler optimization that they
have included in the R package sparcle [21]. We include two algorithms from this package
in our comparison (see Section 3.4) to compare the relative variable selection strategies.

3 Data and Algorithms

3.1 Implementing the TreeClust Dissimilarities
Our approach is implemented in an R package called treeClust that can be downloaded
from the CRAN repository, cran.r-project.org. Trees are built using the rpart
package [22]. The user supplies a data set and an indicator that takes values 1 to 4,
depending on whether dissimilarity d1, d2, d3 or d4 is preferred.

3.2 Data Sets
In this section, we describe the data sets on which we evaluate our algorithm. A number of
measures are available by which the quality of a clustering solution can be evaluated, each
of which inevitably has strengths and weaknesses. We have circumvented the problem of
evalation to some extent by choosing data sets in which the “true” classifications are known.
Then we measure the clustering solution’s quality by Cramér’s V , which is the usual χ2

measure of association for the two-way table, scaled to produce a number between 0 and 1.
Specifically, when that measure has value χ2 from a table computed from n observations
with r rows and c columns, we have

V =

√
χ2

n min(r − 1, c − 1)
, (3)

although we note that in some references the square root is omitted.

Cramér’s V will be small when the cluster labels do not follow class labels well, and close

9

to 1 when most clusters correspond to classes and vice versa. The measure does depend on
the true number of classes, though, and so is not something that will be useful to compare
across different data sets.

Although the correct number of classes is clearly known in these cases, that information
might not correspond directly to the “correct" number of clusters. For example, in an optical
digit recognition task there should be at least one cluster of observations corresponding to
each digit. However, handwritten 7’s, for example, come in at least two styles (one with a
horizontal line across the vertical staff, and one without); some 2’s have a loop at the base
and others do not, and so on. For purposes of evaluating the clustering algorithms, then, we
computed Cramér’s coefficient both when the algorithm was asked to find k clusters (where
k is the number of distinct class labels) and also 2k clusters.

All of our data sets are available at the UC Irvine Machine Learning Repository (Bache
and Lichman, [23]). We have chosen one in which all of the variables are numeric, one in
which they are all categorical, and one with mixed variables.

3.2.1 Seeds
The seeds data set [24] concerns 210 wheat seeds from three varieties. There are seven
predictors, all numeric, on quite different scales, with standard deviations ranging from
0.0006 to 8.5. The three varieties are represented by 70 examples each.

3.2.2 Credit Approval
The credit approval data set describes attributes of 690 borrowers. There are fifteen
predictors, six numeric, four binary, and five that are categorical with more than two levels.
We removed any observation with missing values; the final data set had 653 observations
in two classes.

3.2.3 Splice
Thefinal data set, more fully named “Molecular Biology (Splice-JunctionGene Sequences)”
at the repository, describes junctions on sequences of DNA. The problem is to determine
whether particular sites on the sequences represent junctions of one sort or another, or no
junction at all. There are three classes, the third having about twice as many members as

10

the other two. Each variable is categorical, containing the letters A, C, T, or G in each
observation. A small number of observations containing other letters are deleted, resulting
in a data set with 3, 175 rows and 60 columns. The junction, if there is one, is located “in
the middle of” the window formed by the 60 measurements.

3.3 Adding Noise
For each data set we test the ability of our algorithm by adding fifteen and fifty variables
of random noise to the original data. In order to present noise that “looks plausible,” each
of our noise variables consists of one of the variables from the original data, selected at
random, with its values permuted. The data sets with 50 noise variables are constructed by
adding 35 more noise variables to the data sets with 15 noise variables.

Table 1 summarizes the data sets used: “Rows" and “Cols" give the number of rows and
columns in the data set (not counting the column giving the correct classification); “Type"
is “Numeric,” “Categorical" or “Mixed”; and “Classes" gives the true number of classes in
the data (which may not, as noted, be the correct number of clusters).

Table 1: Data sets used
Name Rows Cols Type Classes
Seeds 210 8 Numeric 3
Seeds + 15 noise 210 23 Numeric 3
Seeds + 50 noise 210 58 Numeric 3
Credit 653 15 Mixed 2
Credit + 15 noise 653 40 Mixed 2
Credit + 50 noise 653 65 Mixed 2
Splice 3190 60 Categorical 3
Splice + 15 noise 3190 75 Categorical 3
Splice + 50 noise 3190 110 Categorical 3

3.4 Clustering Algorithms
Each of our data sets is used to produce six dissimilarity measures: the newly proposed
d1, d2, d3, and d4 measures, the random forest (RF) dissimilarity, and that of Gower. Each
dissimilarity measure was employed in two widely-used algorithms, “Pam” and “Agnes,”
which are described briefly below. In the all-numeric Seeds data, we also used k-means,
Pam, and Agnes on both the original data and on the data when each column is scaled by its

11

range. This scaling is intended as an analog to Gower’s dissimilarity. In addition we used
the “Sparse Hierarchical” algorithm ofWitten and Tibshirani [20] (see below) on every data
set and the “Sparse K-means” algorithm from the same paper on the all-numeric data set.
The algorithms used were:

K-means In this algorthm, the number of clusters k is specified in advance and an initial
set of cluster centers chosen at random. Observations are assigned to the nearest
cluster; cluster centers are updated; and the process repeats until convergence. The
traditional k-means clustering as implemented in [3] can only accept data in the form
of a numeric matrix or data frame, so we use it only on the all-numeric Seeds data
set. Distance is Euclidean. No scaling is performed by the algorithm, so we run
it twice, once with the original, unscaled data, and then again with the data where
each variable has been scaled by its range. We allow 100 random starting points for
each run and up to 500 iterations; other than that we use the function’s default values.
K-means has proven to be very useful in all-numeric data sets in which little scaling
is needed, like, for example, optical digit recognition and natural computer vision
tasks.

Pam The partitioning around medoids (Pam) algorithm is described in Kaufman and
Rousseeuw [2]. It operates in a manner similar to that of k-means, but using medoids,
a multidimensional analog to the median. It allows for pre-computed dissimilarities
and is therefore suited to categorical or mixed, as well as numeric, data. We use the
implementation in R’s cluster library [18]. We use all of the algorthm’s default
values in our runs. As with k-means, we use Euclidean distance with both the orig-
inal and scaled data for the Seeds data set. We also use Pam with the inter-point
dissimilarity matrices computed by daisy() using the original data (that is, with
Gower dissimilarities), with the random forest dissimilarities and with the treeClust
dissimilarities.

Agnes Agnes is a hierarchical clustering method which, like Pam, is implemented in R’s
cluster library. This algorithm starts by computing all pairwise dissimilarities – as
with Pam, the user can supply pre-computed ones – and progressively merges the two
closest items. The algorithm requires the user to specify what it means for clusters
to be close to one another; we used the default method, under which the dissimilarity
between two clusters is the average of all the dissimilarites between members of one

12

group and members of the other. This algorithm is used just as Pam is: directly on
the original and scaled data for the Seeds data, and with Gower, random forest, and
treeClust dissimilarities.

Sparse K-means Sparse k-means is one of the algorithms focused on variable selection
described in Witten and Tibshirani [20] (see Section 2.4). This algorithm has been
implemented in the sparcl package for R. It operates like k-means, but optimizes
over a set of weights, one for each column, using a lasso penalty to shrink the weights
towards zero, thereby removing some columns from the distance computation. The
penalty value can be provided by the user or selected by a permutation approach; we
used the latter approach with default values. This program requires a numeric data
matrix, since the variable selection takes place during the running of the algorithm,
not in the computation of dissimilarity. Therefore, as with standard k-means, we use
this algorithm only on the numeric Seeds data set. Since the algorithm imposes its
own scaling, we use the original (unscaled) data.

Sparse Hierarchical Sparse Hierarchical is the other of the algorithms from Witten and
Tibshirani [20]. This algorithm produces a hierarchical clustering like that of Agnes,
but using only a subset of variables. The program will accept a numeric data set,
but it also allows the user to specify pre-computed, component-wise dissimilarities
in the form of an n(n − 1)/2 × p numeric matrix, where the jth column specifies
all n(n − 1)/2 pairwise dissimilarities between observations on variable j. These
pre-computed dissimilarities are required in the case of categorical or mixed data;
we use the Gower dissimilarities for each variable. Clearly, this requirement will be
computationally troublesome when n is very large, but our data sets are small enough
to allow this algorithm to be run in every case. With the numeric data set, we pass the
data directly, in its original unscaled form. As with the sparse k-means algorithm, a
tuning parameter is chosen by a permutation algorithm using default settings when
the data is numeric. For mixed or categorical data, the permutation is unavailable, so
we manually set the tuning parameter to 1.5 and otherwise use default settings.

Table 2 shows the possible dissimilarity measurements (rows) and clustering (algorithms).
An “N” shows a combination that is only possible with all-numeric data; “X” shows
combinations that are possible with numeric, mixed or categorical data. The asterisk
indicates that the sparse algorithms provide their own scaling.

13

3.5 Randomness
There are three sources of randomness in our results. First, some of the algorithms are
inherently random, and can return different outputs for the same inputs. K-means and Pam
find local optima of a particular objective function, relying on a randomized initialization.
(For the former, as we have noted, we use multiple starting points so as to make finding
the global optimum more likely.) Agnes is not random, but the sparse methods select a
parameter through a permutation test.

A second source of randomness is in the computations of inter-point dissimilarities. For a
particular set of input data, the Euclidean distance and Gower dissimilarity are not random.
Our tree dissimilarities rely on cross-validation for pruning, so they are random, and so too
are the Random Forest dissimilarities, which rely on simulated data.

Finally, we have added random noise to our data sets in order to examine the different
approaches’ success in variable selection. This last piece of randomness is not directly of
value in comparing the approaches. So in our experiment we produced the data sets first and
saved them. We then ran each algorithm on each data set, with k and 2k clusters, using the
same starting data but a different random-number seed each time. Since the data remains
unchanged from run to run, variability we see in the results must be due to variability in the
distance computations or in the algorithms themselves.

4 Results
Tables 3, 4, and 5 show the average values of Cramér’s coefficient, multiplied by 100 for
readability, for 20 replications on each of the data sets, using k and 2k clusters, for each of

Table 2: Combinations of Measurements and Algorithms; �N� indicates nu-
meric only; �X� indicates numeric or mixed; blanks show untested combina-
tions; asterisks show that the sparse algorithms implement their own scaling.
Dissimilarity K-Means Pam Agnes Sparse KM Sparse Hier

Euclidean (original) N N N N* N*
Euclidean (scaled) N N N

Gower X X X*
Random Forest X X

TreeClust X X

14

the clustering techniques considered. In table 3, we have abbreviated “Noise” to “Ns” and
“Classes” to “C” to save space. The bold-face number in each row shows the highest value
of the Cramér coefficient achieved in that row.

Table 3: Results for Seeds Data, Expressed as 100 × Cramér's Coe�cient
Orig Scaled Gower Sparse

Ns C KM Ag Pa KM Ag Pa Ag Pa KM Hier
0 3 85.2 87.2 84.7 84.3 85.4 84.5 82.6 83.8 79.0 77.3
0 6 85.5 87.7 88.9 88.7 88.8 89.6 83.5 85.6 84.8 82.4

15 3 58.9 49.1 55.8 85.1 58.0 65.5 64.3 73.3 59.7 41.4
15 6 57.4 49.8 59.0 80.4 59.2 64.8 81.5 75.6 63.7 64.9
50 3 55.2 12.6 25.6 67.0 61.1 50.1 63.2 57.2 59.7 47.5
50 6 51.1 52.4 45.5 72.0 62.1 56.6 63.7 65.8 60.6 69.1

RandFor d1 d2 d3 d4
Ns C Ag Pa Ag Pa Ag Pa Ag Pa Ag Pa
0 3 84.1 84.6 76.0 85.0 76.3 84.4 68.9 76.6 68.4 76.6
0 6 87.6 87.0 82.6 83.5 83.7 83.3 82.4 85.3 82.4 85.0
15 3 72.0 58.2 72.6 81.7 66.9 80.1 76.6 76.9 69.0 76.6
15 6 77.1 68.7 83.6 83.2 83.6 83.1 81.0 82.2 81.1 85.2
50 3 51.2 32.5 73.5 80.2 67.4 81.3 72.2 76.9 67.7 76.6
50 6 60.3 41.5 83.8 83.4 83.7 83.0 80.4 80.3 80.7 85.1

We can see that in the all-numeric Seeds data, all of the approaches perform well on
the easiest task (no noise, six clusters). Here, Pam on the scaled data produces the largest
averageV , whereas with three clusters, Agnes on the original data has the edge. Interestingly
Agnes performs comparatively poorly when paired with the treeClust dissimilarity in the
three-cluster condition, and the “more complicated” d3 and d4 perform worse than their
simpler siblings. In the presence of moderate noise, all of the approaches except k-means
on the scaled data, and the treeClust dissimilarities, show degradation of performance.
In the presence of 50 noise variables, the treeClust dissimilarities show uniformly better
performance than any of the competitors. There was very little variability across the 20
trials for most of the methods, with the exception of the random forest dissimilarities and,
to a lesser extent, d3 under Pam.

In the credit data (table 4), Pam performs best with no noise, as well as with moderate noise
and four clusters (column Cl). In the presence of a lot of noise, though, its performance is
badly degraded. The combination of Pam and the treeClust dissimilarities performs well

15

under all conditions, but Agnes does poorly in all of the two-cluster configurations. This is
because that algorithm is more likely to create one cluster with only a few observations in
it. The Sparse Hierarchical algorithm experiences the same problem.

Table 4: Results for Credit Data, Expressed as 100 × Cramér's Coe�cient
Gower RandFor Sparse

Name Cl Ag Pa Ag Pa Hier
Credit 2 3.3 61.5 26.5 37.0 0.4
Credit 4 7.5 57.0 39.8 45.4 8.6
Credit + 15 2 0.4 45.2 17.8 20.2 0.4
Credit + 15 4 7.5 54.4 28.8 32.6 5.8
Credit + 50 2 0.4 1.0 3.5 9.8 0.0
Credit + 50 4 9.7 32.5 13.1 17.8 5.8

d1 d2 d3 d4
Name Cl Ag Pa Ag Pa Ag Pa Ag Pa
Credit 2 20.9 50.0 16.2 44.9 18.6 44.9 16.2 44.9
Credit 4 47.1 50.4 46.1 46.4 49.9 46.9 46.1 46.1
Credit + 15 2 19.8 46.7 16.2 44.9 16.4 45.4 16.2 44.9
Credit + 15 4 43.1 49.0 46.1 46.1 49.8 47.3 46.1 46.1
Credit + 50 2 11.3 45.9 16.2 44.9 18.5 45.3 16.2 44.9
Credit + 50 4 38.6 46.9 46.1 46.1 47.5 47.4 46.1 46.1

Table 5 gives the averages of 20 replications in the Splice data. In this example, the
treeClust dissimilarity paired with Pam perform much better than any of their competitors.
The weighted dissimilarities d2 and d4 outperform their unweighted counterparts for this
data set, with the d4 dissimilarity producing the largest values of average V in every case.

Figure 2 shows an example of the variability across the set of twenty trials, in this case when
using the splice data with 50 noise variables and three clusters. There was no variability
in the results for Sparse Hierarchical clustering, which uses the pre-computed Gower dis-
similarity, nor for Pam and Agnes using the Gower. There was substantial variability with
the random forest dissimilarities, about a low mean, and for the d2 dissimilarities, about a
higher mean.

Figure 3 compares the variable selection algorithms in treeClust and Sparse Hierarchical
for one particular random number seed. The vertical scale gives the weights assigned to
each tree (treeClust) or, for Sparse Hierarchical, to each variable (grey circles). Only six

16

Table 5: Results for Splice Data, Expressed as 100 × Cramér's Coe�cient
Gower RandFor Sparse

Name Cl Ag Pa Ag Pa Hier
Splice 3 34.3 18.7 7.8 9.6 6.2
Splice 6 36.9 30.3 13.5 14.0 8.0
Splice + 15 3 23.6 22.0 12.2 5.8 1.2
Splice + 15 6 29.8 28.1 21.1 9.7 3.2
Splice + 50 3 7.8 17.4 8.1 5.6 1.1
Splice + 50 6 13.3 26.5 14.9 9.1 2.6

d1 d2 d3 d4
Name Cl Ag Pa Ag Pa Ag Pa Ag Pa
Splice 3 3.4 50.0 54.0 59.1 5.4 57.4 47.2 68.9
Splice 6 7.8 54.4 61.2 65.6 31.5 58.4 58.1 68.6
Splice + 15 3 4.0 48.2 54.0 60.8 9.1 57.8 45.4 69.0
Splice + 15 6 7.6 55.0 61.1 66.5 34.9 58.8 60.7 68.3
Splice + 50 3 4.0 50.3 51.4 58.7 8.7 57.8 45.7 69.0
Splice + 50 6 8.1 53.9 60.8 65.3 40.1 58.4 58.1 68.4

variables are retained in the latter case. For the treeClust points, the black digits shows the
size of each tree (59 of 60 are retained). We see that the “best” trees according to treeClust
are in the middle, which suits our belief that, because the junction is near the middle of
the sequence, variables near the middle ought to be best associated with the class of the
junction.

5 Conclusions
We have described a set of inter-point dissimilarity measures useful for clustering. They
define the dissimilarity between two observations as a function of the number of times
those two observations fall in different leaves of classification or regression trees. These
dissimilarities can be computed for numeric, categorical, or mixed data, and are insensitive
to linear transformation and resistant, in some sense, to non-linear monotonic ones. They
also handle missing values in a clean and reasonable way.

Our dissimilarities can be fed into standard clustering algorithms and the combination
performs well compared to Gower dissimilarities, or, for numeric data, Euclidean distances.
In a few cases, other approaches produce somewhat better results, but our approach seems to

17

Figure 2: Boxplots of 20 Cramér values, by data or distance (top label) and
clustering algorithm (bottom), using the Splice data with 50 added noise
variables and three clusters

resist noise better than using Gower or random forest dissimilarities or the sparse techniques.
Our approach will not, however, downweight redundant variables when those exist. While
the specific best performer depends on the data, the d2 dissimilarity with the Pam algorithm
generally produces good results.

A number of directions for future work might be fruitful. First, our technique is somewhat
expensive computationally, and we are implementing it in a parallel mode that allows the
various trees to be built on separate processors. Second, our approach resembles cluster
ensembles (Strehl and Ghosh, [25]); other approaches to consensus building, especially
those that give us a computational boost, are worth looking into. Further, trees are a
natural choice for building ensembles. Our methods might be used to generate ensembles

18

Figure 3: Trees built for the Splice data by variable number (x-axis), giving
ratio of decrease in deviance to maximal decrease (left y-axis). Black num-
bers indicate the number of leaves in the tree. Grey circles shows variables
kept by the Sparse Hierarchical algorithm, with heights given by variable
weights (right y-axis)

of weak clusterers. We have implemented our approach in an R package that is available
at the CRAN website, cran.r-project.org under the name treeClust, and scripts to
produce all the results in this paper are available from the authors.

19

References
[1] J. A. Hartigan, Clustering Algorithms, ser. Probability and Mathematical Statistics.

New York, NY: John Wiley and Sons Inc, 1975.

[2] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Anal-
ysis, ser. Probability and Statistics. New York, NY: Wiley-Interscience, 1990.

[3] R Core Team, R: A Language and Environment for Statistical Computing, R Foun-
dation for Statistical Computing, Vienna, Austria, 2013. [Online]. Available: http:
//www.R-project.org/

[4] B. Mirkin, Clustering: A Data Recovery Approach, Second Edition. London, UK:
Chapman and Hall/CRC, 2012.

[5] B. Andreopoulos, A. An, X. Wang, and M. Schroeder, “A roadmap of clustering al-
gorithms: Finding a match for a biomedical application,” Briefings in Bioinformat-
ics, vol. 10, no. 3, pp. 297–314, 2009.

[6] S. Boriah, V. Chandola, and V. Kumar, “Similarity measures for categorical data: A
comparative evaluation.” Presented at SIAM Conference on Data Mining, Atlanta,
GA, 2008, 2008.

[7] A. Ahmad and L. Dey, “A k-mean clustering algorithm for mixed numeric and cate-
gorical data,” Data and Knowledge Engineering, vol. 63, pp. 503–527, 2007.

[8] B. McCane and M. Albert, “Distance functions for categorical and mixed variables,”
Pattern Recognition Letters, vol. 29, pp. 986–993, 2008.

[9] S. E. Buttrey, “A scale-independent clustering method with automatic variable selec-
tion based on trees.” Presented at the Joint Statistical Meetings, Seattle, WA, 2006,
2006.

[10] L. Breiman, “Random forests,”Machine Learning, vol. 45, pp. 5–32, 2001.

[11] J. Gower, “A general coefficient of similarity and some of its properties,” Biometrics,
vol. 27, no. 4, pp. 857–871, 1971.

[12] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression
Trees. Monterey, CA: Wadsworth and Brooks, 1984.

[13] L. Breiman and A. Cutler,Manual–Setting Up, Using, and Understanding Random
Forests v4.0, 2003. [Online]. Available: https://www.stat.berkeley.edu/~breiman/
Using_random_forests_v4.0.pdf

20

http://www.R-project.org/
http://www.R-project.org/
https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf
https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf

[14] T. Shi and S. Horvath, “Unsupervised learning with random forest predictors,” J.
Computational and Graphical Statistics, vol. 15, no. 1, pp. 118–138, 2006.

[15] D. Fisher, “Knowledge acquisition via incremental conceptual clustering,”Machine
Learning, vol. 2, pp. 139–172, 1987.

[16] H. Ooi, “Density visualization and mode hunting using trees,” J. Computational and
Graphical Statistics, vol. 11, no. 2, pp. 328–347, 2002.

[17] C. Smyth, D. Coomans, and Y. Everingham, “Clustering noisy data in a reduced
dimension space via multivariate regression trees,” Pattern Recognition, vol. 39, pp.
424–431, 2006.

[18] M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik, cluster: Cluster
Analysis Basics and Extensions, 2013. [Online]. Available: http://www.R-project.
org/

[19] J. H. Friedman and J. J. Meulman, “Clustering objects on subsets of attributes,” J.
Royal Statistical Society B, vol. 66, pp. 815–849, 2004.

[20] D. M. Witten and R. Tibshirani, “A framework for feature selection in clustering,” J.
Am. Stat. Assoc., vol. 105, no. 490, pp. 713–726, 2010.

[21] D. M. Witten and R. Tibshirani, sparcl: Perform sparse hierarchical clustering and
sparse k-means clustering, 2013, r package version 1.0.3. [Online]. Available: http:
//CRAN.R-project.org/package=sparcl

[22] T. Therneau, B. Atkinson, and B. Ripley, rpart: Recursive Partitioning and Re-
gression Trees, 2014, r package version 4.1-8. [Online]. Available: http://CRAN.R-
project.org/package=rpart

[23] K. Bache and M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[24] M. Charytanowicz, J. N. P. Kulczycki, P. Kowalski, S. Lukasik, and S. Zak, A
Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images.
Springer-Verlag, 2010.

[25] A. Strehl and J. Ghosh, “Cluster ensembles - a knowledge reuse framework for com-
bining multiple partitions,” J. Machine Learning Research, vol. 3, pp. 583–617,
2003.

21

http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=sparcl
http://CRAN.R-project.org/package=sparcl
http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart
http://archive.ics.uci.edu/ml

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Research Sponsored Programs Office, Code 41
Naval Postgraduate School
Monterey, California

4. Richard Mastowski (Technical Editor)
Graduate School of Operational and Information Sciences (GSOIS)
Naval Postgraduate School
Monterey, California

22

	Introduction
	The Clustering Problem
	Measuring Dissimilarity
	Organization

	Dissimilarities
	The TreeClust Dissimilarities
	Random Forest and Other Tree-Based Methods
	Gower's Dissimilarity
	Variable Selection

	Data and Algorithms
	Implementing the TreeClust Dissimilarities
	Data Sets
	Seeds
	Credit Approval
	Splice

	Adding Noise
	Clustering Algorithms
	Randomness

	Results
	Conclusions
	List of References
	Initial Distribution List

