
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis and Dissertation Collection

2016-03

Applications and benefits for big data sets using tree

distances and the t-SNE algorithm

Lee, Suyoung

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/48546

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

APPLICATIONS AND BENEFITS FOR BIG DATA SETS
USING TREE DISTANCES AND THE T-SNE

ALGORITHM

by

Suyoung Lee

March 2016

Thesis Advisor: Samuel E. Buttrey
Second Reader: Lyn R. Whitaker

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
March 2016

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
APPLICATIONS AND BENEFITS FOR BIG DATA SETS USING TREE
DISTANCES AND THE T-SNE ALGORITHM

5. FUNDING NUMBERS

6. AUTHOR(S) Suyoung Lee

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol
number ____N/A____.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Modern data sets often consist of unstructured data and mixed data; that is, they include both

numerical and categorical variables. Often, these data sets will include noise, redundancy,
missing values and outliers. Clustering is one of the most important and widely-used data analytic
methods. However, clustering requires the ability to measure distances or dissimilarities, which
are not defined in an obvious way for mixed data. Practitioners often use the Gower dissimilarity
for this task. In this work we use tree distance computed using Buttrey’s treeClust package in R,
as discussed by Buttrey and Whitaker in 2015, to process mixed data, at the same time handling
missing values and outliers. Visualization is also an important method for big data. We use the t-
distributed Stochastic Neighbor Embedded (t-SNE) algorithm for visualization introduced by van
der Maaten and Hinton in 2008, which produces visualization for high-dimensional data by
assigning individual data points in a two- or three-dimensional map. We also use popular
visualization techniques grouped under the name “multidimensional scaling.” We compare the
results using the tree distance and the t-SNE algorithm to results from using Gower dissimilarity
and multidimensional scaling. Unlike established dimensionality reduction techniques, which
generally map from high dimensions directly to two (or three) dimensions, we explore a new
approach in which the dimensionality reduction takes place in several separate steps. Our
experiments show that our new techniques can outperform the established techniques in
producing visualizations of high-dimensional mixed data.
14. SUBJECT TERMS
big data sets, tree distance algorithm, treeClust, visualization, t-SNE algorithm,
dimensionality reduction

15. NUMBER OF
PAGES

81
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

APPLICATIONS AND BENEFITS FOR BIG DATA SETS USING TREE
DISTANCES AND THE T-SNE ALGORITHM

Suyoung Lee
Captain, Republic of Korea Army

B.Sc., Korea Maritime and Ocean University, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
March 2016

Approved by: Samuel E. Buttrey
Thesis Advisor

Lyn R. Whitaker
Second Reader

Patricia A. Jacobs
Chair, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Modern data sets often consist of unstructured data and mixed data; that

is, they include both numerical and categorical variables. Often, these data sets

will include noise, redundancy, missing values and outliers. Clustering is one of

the most important and widely-used data analytic methods. However, clustering

requires the ability to measure distances or dissimilarities, which are not defined

in an obvious way for mixed data. Practitioners often use the Gower dissimilarity

for this task. In this work we use tree distance computed using Buttrey’s treeClust

package in R, as discussed by Buttrey and Whitaker in 2015, to process mixed

data, at the same time handling missing values and outliers. Visualization is also

an important method for big data. We use the t-distributed Stochastic Neighbor

Embedded (t-SNE) algorithm for visualization introduced by van der Maaten and

Hinton in 2008, which produces visualization for high-dimensional data by

assigning individual data points in a two- or three-dimensional map. We also use

popular visualization techniques grouped under the name “multidimensional

scaling.” We compare the results using the tree distance and the t-SNE algorithm

to results from using Gower dissimilarity and multidimensional scaling. Unlike

established dimensionality reduction techniques, which generally map from high

dimensions directly to two (or three) dimensions, we explore a new approach in

which the dimensionality reduction takes place in several separate steps. Our

experiments show that our new techniques can outperform the established

techniques in producing visualizations of high-dimensional mixed data.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION .. 1
A. BACKGROUND .. 1
B. OBJECTIVES AND THESIS OUTLINE .. 2

II. LITERATURE REVIEW ... 5
A. BIG DATA AND BIG DATA SETS .. 5
B. CLUSTERING ... 6
C. TREE DISTANCE ALGORITHM ... 8
D. T-DISTRIBUTED STOCHASTIC EMBEDDING ALGORITHM 11
E. DIMENSIONALITY REDUCTION.. 16

1. Principal Component Analysis (PCA) 16
2. Multidimensional Scaling (MDS) 17

F. DATA SETS .. 21
1. Splice ... 21
2. MNIST .. 22
3. Covertype .. 23

G. SUMMARY .. 24

III. METHODOLOGY ... 25
A. TREECLUST ALGORITHM FOR CLUSTERING.......................... 25
B. BARNES-HUT T-SNE ALGORITHM FOR VISUALIZATION 26
C. CLASSICAL MULTIDIMENSIONAL SCALING (CMDS) 29
D. EXPERIMENTS ... 30

IV. RESULTS .. 33
A. THE RESULTS WITH THE SPLICE DATA SET 33
B. THE RESULTS WITH THE MNIST DATA SET 43
C. THE RESULTS WITH THE COVERTYPE DATA SET 50

V. CONCLUSION ... 57

LIST OF REFERENCES ... 59

INITIAL DISTRIBUTION LIST .. 63

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. The treeClust plot for the splice data ... 10

Figure 2. The t-SNE local min problem on MNIST data 15

Figure 3. PCA and Sammon projection of six-dimensions 19

Figure 4. Classical multidimensional scaling and Sammon mapping 20

Figure 5. Examples of MNIST data set ... 22

Figure 6. Examples of MNIST data set ... 23

Figure 7. t-SNE 2D plot of MNIST data .. 27

Figure 8. Rtsne 2D plot of MNIST data .. 27

Figure 9. Rtsne 2D plot of Splice data .. 28

Figure 10. Rtsne 3D plot of Splice data .. 28

Figure 11. CMDS 2D plot of Splice data ... 29

Figure 12. CDMS 3D plot of Splice data ... 30

Figure 13. Splice data 2D using daisy() function .. 34

Figure 14. Splice data 3D using daisy() function .. 35

Figure 15. Long path of t-SNE of Splice data using daisy() function 37

Figure 16. Long path of t-SNE of Splice data using daisy() function 38

Figure 17. Splice data 2D using treeClust() function .. 39

Figure 18. Splice data 3D using treeClust() function .. 40

Figure 19. Long path of t-SNE of Splice data using treeClust() function 41

Figure 20. Long path of t-SNE of Splice data using treeClust() function 42

Figure 21. MNIST data 2D using daisy() and treeClust() function 44

Figure 22. Long path of t-SNE of MNIST data using daisy() function 46

Figure 23. Long path of t-SNE of MNIST data using daisy() function 47

Figure 24. Long path of t-SNE of MNIST data using treeClust() function 48

Figure 25. Long path of t-SNE of MNIST data using treeClust() function 49

Figure 26. Covertype data using daisy() and treeClust() function 51

Figure 27. Long path of t-SNE of Covertype data using daisy() function 52

Figure 28. Long path of t-SNE of Covertype data using daisy() function 53

Figure 29. Long path of t-SNE of Covertype data using treeClust() 54

Figure 30. Long path of t-SNE of Covertype data using treeClust() 55

 x

 THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF ACRONYMS AND ABBREVIATIONS

CMDS Classical Multidimensional Scaling
MDS Multidimensional Scaling
PCA Principal Component Analysis
SNE Stochastic Neighbor Embedded
t-SNE t-distributed Stochastic Neighbor Embedded

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

Most big data sets consist of unstructured data and mixed data, that is

they contain both numerical and categorical variables. In data analytics,

clustering is one of the most important methods for obtaining valuable

information. Many clustering approaches require a measure of distance between

observations. One such measure is the tree distance, which measures proximity

between observations of mixed-type data while handling missing values and

outliers. We use the treeClust package of Buttrey (2015) in R data analysis

software, discussed by Buttrey and Whitaker (2015b), to compute these

distances.

Visualization is also an important method for big data analytics. We use

the t-distributed Stochastic Neighbor Embedded (t-SNE) algorithm for

visualization introduced by van der Maaten and Hinton (2008). The t-SNE

algorithm produces visualizations of high-dimensional data by assigning

individual data points in a two or three-dimensional map (van der Maaten &

Hinton, 2008). It is especially effective for high-dimensional data that consists of

a large number of classes and produces more discernible visualizations than

other techniques. We also use classical multidimensional scaling (CMDS), which

is one of the most popular visualization techniques.

In this thesis, we compare the tree distance algorithm to the most popular

measure of inter-point distance, which is the Gower dissimilarity, and compare

the t-SNE algorithm to other visualization technique, including CMDS and two

non-metric competitors. We also explore a dimensionality reduction technique

using the t-SNE algorithm. Unlike established dimensionality reduction

techniques, which reduce the dimensionality from the original high number of

dimensions to two or three dimensions directly, we apply dimensionality

reduction in a “long path” reducing the dimension gradually (e.g., from the

original dimensionality to 100 to 60 to 30 to 2). We operate on several well-

xiv

known data sets and compare the performance of the two distance measures

and the different scaling techniques.

This thesis concludes with some issues concerning dimensionality

reduction. When we try to conduct long-path dimensionality reduction, it

sometimes gives more discernible visualization than the established techniques.

However, the algorithm also produces errors of unknown cause. Finally, we

suggest more research into the long path dimensionality reduction technique for

more discernible visualization.

References
Buttrey, S. E., & Whitaker, L. R. (2015a). A scale-independent, noise-resistant

dissimilarity for tree-based clustering of mixed data (submitted), Naval
Postgraduate School, Monterey, CA.

Buttrey, S. E., & Whitaker, L. R. (2015b). treeClust: An R package for tree-based
clustering dissimilarities. The R Journal, 7(2), 227–236.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal
of Machine Learning Research, 1 (2008) 1–48

 xv

ACKNOWLEDGMENTS

I would like to thank Professor Buttrey and Professor Whitaker for allowing

me to work with them. It is an honor and I really enjoyed working with them.

I also would like to thank my government for giving me the chance to have

such a valuable experience at the Naval Postgraduate School.

Lastly, I would like to thank my family, who always encourages and

supports me.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

“Big data” is a broad term for extremely large and complex sets of data for

which traditional applications are inappropriate (Oguntimilehin & Ademola, 2014).

More specifically, big data refers to datasets that cannot be “acquired, managed,

and processed” by established technologies and tools within a reasonable time

(Chen, Mao, Zhang, & Leung, 2014). Big data analytics is the process of

analyzing large data sets having numerical, categorical, and other variables to

discover “hidden patterns, unknown correlations, market trends, customer

preferences and other useful information” (Rouse, 2014). The results can

improve the efficiency of operations, and increase profits, quality of customer

service, and effectiveness in marketing. Specifically, the government can achieve

cost benefits, improvement in productivity, and innovation utilizing big data within

public institutions. Big data analytics can also be applied to military problems.

Further, large numbers of data sets in the military, such as manpower data, are

both big and of mixed data types, having both numerical and categorical

variables.

A number of researchers have developed techniques to analyze and find

patterns in mixed-type multidimensional data over the years. One important

consideration in these data sets is defining a suitable measure of inter-point

distance. One such measure is the widely-used dissimilarity of Gower (1971).

Buttrey and Whitaker (2015a) implemented and expanded the competing “tree

distance” algorithm in the R data analysis software (R Core Team, 2015),

through the package “treeClust” (Buttrey, 2015). This technique seems to hold

advantages for high-dimensional and mixed-type data sets. Once an inter-point

distance is defined, it can be useful to map the high-dimensional data into low

dimensions for the purposes of visualization and interpretation. Among the

techniques for mapping data to lower dimensions, the t-distributed Stochastic

Neighbor Embedding (t-SNE) algorithm (van der Maaten & Hinton, 2008) is well

 2

suited for high-dimensional data. In particular, the t-SNE algorithm produces

high-quality visualizations by minimizing the tendency of points mapped from

very high dimensions to gather at the center of the low dimensional map.

Although t-SNE was originally developed to visualize numeric data in Euclidean

space, in combination with a measure of dissimilarity for mixed-type data, such

as those produced by the tree distance algorithm, t-SNE can be used to visualize

high-dimensional mixed-type data.

In this thesis, we compare the results of visualizations of high-dimensional

data by using the tree distance algorithm together with the t-SNE algorithm to the

results produced by other dissimilarity measures like that of Gower and other

mapping techniques like classical multidimensional scaling (CMDS), to examine

the ability of tree distances and t-SNE to improve visualization.

B. OBJECTIVES AND THESIS OUTLINE

In this thesis, we describe a measure of inter-point distance, the tree

distance produced by the treeClust algorithm that we use for our study, and a

visualization technique, which is the t-SNE algorithm suitable for our study. We

use t-SNE as a tool for dimensionality reduction. Unlike the usual dimensionality

reduction technologies, which map from high-dimensional space to two or three

dimensions directly, we apply dimensionality reduction several times reducing the

dimension each time (e.g., from dimension 100 to 60 to 30 to 2). We use a

number of data sets from the literature to compare the results from conducting a

sequence of dimensionality reductions to one-time dimensionality reduction using

t-SNE and also using other multidimensional scaling techniques.

We discuss how well our new, “long path,” technique performs in terms of

the goals of dimensionality reduction: to maintain as much as possible of the

structure in high dimensions in the two- or three-dimensional visualization (van

der Maaten & Hinton, 2008). We finish the thesis by suggesting the long path

dimensionality reduction technique for visualization.

 3

The outline of the thesis is as follows. In Chapter II, we introduce the tree

distance algorithm as presented by Buttrey and Whitaker (2015a; 2015b), which

we use to produce inter-point distances, and introduce the t-SNE algorithm as

presented by van der Maaten and Hinton (2008), which we use as a visualization

technique. In Chapter III, we present the methodology and experimental setup

we used to evaluate dimensionality reduction. In Chapter IV, we present and

discuss the results produced from our experiments. In Chapter V, conclusions

and recommendations for future work are presented.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. LITERATURE REVIEW

In this chapter, we review overall aspects of big data analysis today and

examine two major methods for clustering and dimensionality reduction mapping:

the use of the tree distance algorithm implemented and expanded by Buttrey and

Whitaker (2015a; 2015b) and the t-SNE algorithm introduced by van der Maaten

and Hinton (2008). We also describe the data sets used to explore our new

technique in this chapter.

The chapter is organized as follows: Section A introduces the overall

aspects of big data analysis today. Section B describes clustering and the

importance of clustering. In Section C, we describe the tree distance algorithm

and its benefits when it is used for analysis of big data. Section D describes the t-

SNE algorithm. In Section E, we demonstrate dimensionality reduction for

visualizing the data. Finally, Section F introduces the data sets we use for our

experiment.

A. BIG DATA AND BIG DATA SETS

In this section, we demonstrate some of the properties of big data. Big

data is a “large volume of data—both structured and unstructured—that

inundates a business on a day-to-day basis” (SAS, n.d.).

Laney (2001) characterized big data by “three v’s”: volume, velocity, and

variety. In these paragraphs we examine these three facets of big data.

Volume: There has been exponential growth in the size of data size in

recent years. According to IBM, ninety percent of the all data today was created

in the past 2 or 3 years and every day we create 2.5 quintillion bytes of data. A

study by the Institute for Digital Communications predicts that we will have 50

times that amount of data by 2020 (Mearian, 2011). Storing big data was a

problem in the past, but this is becoming easier owing to the development of new

technologies (e.g., Hadoop [The Apache Software Foundation, 2014]).

 6

Velocity: In the past it could take considerable time for computers and

servers to acquire and process data. But now with the advent of the World Wide

Web, data is often created in real time and computers and devices are expected

to process the data immediately.

Variety: most of the data in the past was structured data, for example, in

the form of numeric matrices. Today the data becomes more unstructured,

complicated—having both numeric and categorical data. Data can be stored in

various formats: structured, semi-structured, unstructured, and mixed data (e.g.,

text documents, email, video, and audio).

Marr (2015) explains two more V’s that describe the properties of big data

today more completely: veracity and value.

Veracity: This represents confidence in the data. Big data’s quality and

accuracy are hard to control, with problems like hashtags, abbreviations, and

typographical errors. Now it is becoming possible to deal with these data types

through the technology of big data analytics.

Value: The final V represents the capability to turn the data into value. Big

data can deliver value in almost any area of business or society. Value is an

important issue in a big data society today and many data scientists are trying to

develop ways to get valuable information from big data.

Big data is not just a large quantity of data; it is also a concept that allows

us to understand the existing data in new ways and helps us interpret existing

data and analyze future data (Pinal, 2013). Big data analytics is an important

progress in big data practices, and if utilized effectively, it can produce a lot of

benefits to the field (Burbank, 2016).

B. CLUSTERING

Clustering is another important skill in big data analytics by which to

extract valuable information. It is the process of organizing data into groups

according to certain properties or similarities. Clustering is used to discover

 7

natural groups or underlying structure of a given data set in, for example, text

mining, social network analysis, bioinformatics, market research, and many other

fields (Hu & Kaabouch, 2013). That is, clusters are sets of data points that share

similar attributes, and clustering algorithms are the techniques that group these

data points into different clusters based on their similarities.

The significant part of most clustering algorithms is the measurement of

proximity between two observations. The proximity is a measurement of the

similarity or dissimilarity. If the larger proximity value for two objects means that

they are close, the measurement can be referred to as similarity. If the larger

proximity value for two objects means that they are very different, it can be

referred to as dissimilarity. The proximities can be of different data types and can

be measured on different data scales—binary, discrete, continuous, qualitative

and quantitative.

Buttrey and Whitaker (2015a) assert that a dissimilarity measure can be

expected to have certain qualities. First, it should incorporate both numerical and

categorical variables. Second, it should be insensitive to linear scaling of numeric

variables. Third, it should permit the incorporation of variable-specific weights so

that some variables can be made more influential than others. Fourth, it should

detect the common situation where two variables contain identical information

and prevent those variables from being double-counted. That is, it should be able

to adjust for correlation among variables. Fifth, it should be insensitive to extreme

outliers in the data. Sixth, it should operate in the presence of missing data.

Seventh, it should be straightforward to compute, even in large data sets.

To satisfy these qualities, many data scientists are working on developing

new technologies, but there are still unsolved problems with measuring

proximities and hence with clustering. Processing large amounts of complex data

can be a problem, because computation time can be intolerable (Eynard, 2009).

In addition, differing clustering results can be produced by different algorithms.

 8

C. TREE DISTANCE ALGORITHM

In this thesis, we describe the tree distance algorithm, which is well suited

for computing inter-point distances in big data sets, and we use its

implementation in the treeClust package in R.

Tree distances have several advantages for measuring dissimilarities

among observations (Buttrey & Whitaker, 2015a). First, the tree distance

algorithm works on mixed data sets, which have both numeric and categorical

variables. The algorithm builds one tree per variable, treating each variable, in

turn, as the response and the remaining variables as predictors. For numeric

responses, regression trees are built and for categorical responses, classification

trees are built. Second, the distance is resistant to noise variables and unlike

Gower dissimilarities (Gower, 1966), tree distances are resistant to outliers.

Third, the tree-distance algorithm is invariant to different scales of the data and

resistant to monotonic functions of the variables.

The central idea of the tree distance algorithm is that two observations are

similar if they tend to fall in the same leaves of classification or regression trees

(Buttrey & Whitaker, 2015a). For a data set with variables, the algorithm

creates trees, each variable serving as the response variable for one tree,

with the others acting as predictors. It also uses cross-validation to prune each

tree to an optimal size and selects the size for which the cross-validated error

rate is minimized. The treeClust package in R implements this algorithm.

A tree built with a noise variable as the response often has a pruned size

of 1 and classifies every observation into the same leaf, so it contributes nothing

to the dissimilarity computations. Let the label of the leaf of the tree into which

the observation falls be denoted by . Then the algorithm measures the

dissimilarity between observations and by

,

 9

where is the “inter-leaf” distance, which is the distance between leaf

and for tree .

The package supplies four options for the specific form of dt. For the

distance called d1 for example, dt(i,j) = 1 when Lt(i) ≠ Lt(j). After a tree is built, the

algorithm computes the sum of deviances in its leaves. A tree’s quality can be

measured by the ratio of the change in deviance between root and leaves to the

deviance at the root. This ratio is denoted by , a number between zero and 1. A

tree with a large is presumably better able to help cluster individual

observations. For the distance d2, therefore, each tree gets a weight based on

how big its is compared to the largest observed across all trees. That means

when observations and fall in the same leaf of tree , then , and

otherwise is . A third distance, d3, accounts for distances among the

leaves within a specific tree, and a fourth, d4, uses d3 but also assign weights to

trees as d2 does. Buttrey and Whitaker (2015a, pp. 5–6) show a hypothetical

example of a tree in their paper.

The treeClust package includes options for clustering and measures the

clustering solution’s quality by Cramer’s V (Cramér, 1999), which is the usual

measure of association for the two-way table, scaled to produce a number

between 0 and 1. Cramer’s V will be small when the cluster labels assigned by

the clustering algorithm do not follow class labels representing actual cluster

membership well, and close to 1 when most clusters correspond to classes.

Figure 1 is a picture of the treeClust output for the “splice” data (see

section F). This picture shows the deviance ratio on the y axis, scaled to have

maximum 1, and the tree number (or the corresponding variable number) on the

x axis. Each point shown by a digit gives the size (the number of leaves) of a

tree. The splice data has 60 variables, which means the treeClust algorithm

makes 60 trees. After pruning only 59 trees are left. We can see the number “1”

at x=32. The number “1” means that the tree for the 32nd variable was pruned

 10

down to the root node and dropped from the distance computation. The best

tree—the one whose deviance ratio is highest—is number 30; that tree has three

leaves.

Figure 1. The treeClust plot for the splice data

Another distance we use in this work is the Gower distance. This well-

known distance is especially suited for handling mixed-type data. Gower (1971)

introduced the distance between and across variables as the average of all

component-wise distances. The Gower distance is defined as

1 1

/
p p

ij ijk ijk ijk
k k

S Sδ δ
= =

= ∑ ∑ , where

is a dissimilarity score for xi and xj on variable k, k = 1,…, p, that ranges

between 0 and 1. For a numeric variable, is defined as

. For categorical variables, is 0 if xik = xjk and

otherwise 1. adjusts for the ability to make comparisons, taking the value 0

when no comparison can be made (because of missing values, or when xi = xj =

0 for an “asymmetric” binary variable where only the value “1” carries

information). The Gower distance is produced by the daisy() function in R

 11

(Maechler, Rousseeuw, Struyf, Hubert & Hornik, 2015), which also permits

component-wise weights; we use this function in our work to compare Gower’s

distance with the results of the tree distance algorithm.

As part of analyzing the data, it is valuable to be able to visualize it. Data

visualization is a powerful way to convey knowledge and enables decision

makers to see analytic results visually. One of the most important benefits is that

it makes it possible to identify and examine large amounts of data (Iliinsky, 2012).

It also allows access to challenging data sets and provides useful information in

an efficient way.

D. T-DISTRIBUTED STOCHASTIC EMBEDDING ALGORITHM

In this section, we describe the t-SNE algorithm for visualization. This

section follows the development of van der Maaten and Hinton (2008). t-SNE

stands for t-distributed stochastic neighbor embedding. The t-SNE algorithm

produces a visualization of high-dimensional data by assigning individual data

points into a two or three-dimensional map. The t-SNE algorithm is especially

effective for high-dimensional data that consists of a large number of classes.

Maaten and Hinton also explain that this algorithm is efficient not only to capture

the high dimensions’ local structure, but also to find a global structure having

clusters with various scales. Also the algorithm produces high quality

visualizations by minimizing the tendency of points to gather at the center of the

map.

According to van der Maaten and Hinton (2008), the original Stochastic

Neighbor Embedding (SNE) algorithm calculates Euclidean distances in high

dimensions and generates conditional probabilities which reflect similarities. They

set the original high-dimensional data’s conditional probability as , which is

the similarity of datapoint to datapoint . The conditional probability for the

high-dimensional data is defined by

 12

,

where is the variance of a Gaussian distribution centered on . Since the

density of the data varies, there is no unique optimal for all datapoints. If a

part is crowded with data points, ‘s value is smaller than a part the data points

are distant. So will be high for neighboring points and will be very tiny for far

distant points.

They also set the low-dimensional data’s conditional probability as for

the low-dimensional analogues and of the high-dimensional data points

and . The authors set the Gaussian variance to for , so the

conditional probability for low-dimensional data is denoted by

If the points produced for the low-dimensional map accurately represent

the proximity between data points in high dimensions, the conditional

probabilities and will be equal. So the SNE algorithm is designed to find a

representation of low-dimensional data points that minimizes the discrepancy

between conditional probabilities.

The SNE algorithm establishes a cost function based on the sum of

Kullback-Leiber divergences. The cost function C is defined by

where denotes the conditional probability distribution over all data points from

 in high-dimensional space, and denotes the conditional probability

 13

distribution over all data points from in low-dimensional space. Since the

Kullback-Leibler divergence is asymmetric, it does not measure the errors in low

dimensions equally. To reduce the cost, using neighboring points is reasonable

for displaying far distant points.

A gradient descent method is used for the minimization of the cost function C.

The gradient has a very simple form given by

 .

Although the SNE algorithm constructs reasonably good visualizations,

the cost function is difficult to optimize. It also suffers from the “crowding

problem.” In van der Maaten and Hinton’s study, the crowding problem means

that the two-dimensional map is not large enough to express the distance

between two points in high dimensions, so most points that are at a “moderate

distance from data point ” are placed much closer than the actual distances in

the high-dimensional map. So, most points that are at a “moderate distance from

datapoint ” should be placed much farther apart to more accurately reflect

distances in the original space. The t-SNE algorithm alleviates both these

problems.

The cost function in the t-SNE algorithm differs in two ways from the cost

function in the SNE algorithm (van der Maaten & Hinton, 2008). First, it uses “a

symmetrized version of the SNE cost function with simpler gradients” introduced

by Cook, Sutskever, Mnih, and Hinton (2007). In particular, the conditional

probabilities for the high-dimensional space are replaced by

| |

2
i j j i

ij

p p
p

+
=

with pii=0 and with the analogous replacement for the conditional probabilities in

the low-dimensional space.

 14

Second, the cost function in the t-SNE algorithm uses a Student-t

distribution with one degree of freedom (that is, a Cauchy distribution), while the

cost function in the SNE algorithm uses a Gaussian distribution to compute the

proximity between points in low dimensions.

For optimizing the t-SNE cost function, van der Maaten and Hinton (2008)

suggested two more tricks. The first one is “early compression”, which means

that it makes the points in the map closely gather during optimization. When two

groups of mapped points are in close proximity, one cluster can move through

another easily. This makes the exploration of space for global organization of the

data much easier. An additional L2-penalty is added to perform “early

compression” to the cost function. It is “proportional to the sum of squared

distances of the map points from the origin”. The second trick is “early

exaggeration,” which is to multiply all of the ‘s by, e.g., 4 at the initial stages of

the optimization. This means that almost all of the s, the sum of which is 1, are

too small to model their corresponding ‘s. So, the original clusters in the data

produce “tight widely-separated clusters” and the resulting empty space makes

clusters move around easily in order to find a good global organization.

The t-SNE algorithm attempts to preserve the data’s topology (Olah,

2014). According to the author, the algorithm defines neighboring points, “trying

to make all points have the same number of neighbors.”

The t-SNE algorithm often does a good job at revealing clusters in data,

but tends to get stuck in local minima (Olah, 2014). The author gives the example

depicted in Figure 2 of clusters from the MNIST data set (see Section F for a

description of this data). Without the color, there appear to be three clusters in

Figure 2. But, points in the red cluster are separated by the blue cluster because

the t-SNE algorithm converges to local minima.

 15

Figure 2. The t-SNE local min problem on MNIST data

Source: GitHub colah/Visualizing-Deep-Learning. (2014). Retrieved from
http://colah.github.io/posts/2014-10-Visualizing-MNIST/

Van der Maaten and Hinton (2008) demonstrate three potential

weaknesses of their approach, even though the t-SNE algorithm outperforms

other techniques for data visualization. First, the t-SNE algorithm’s

implementation of dimensionality reduction is obscure. This means that when the

dimensionality reduction is not conducted to two or three, but to more than three

dimensions, it is not known how t-SNE will perform. This problem arises because

the heavy tail of the Student-t distribution comprises a large section of the

probability mass in high dimensions. Second, t-SNE is sensitive to the data’s

inherent dimensionality due to the algorithm’s local nature. The t-SNE algorithm

conducts the data’s dimensionality reduction on the basis of the data’s local

properties using a local linearity assumption on the manifold which may be

violated in data sets with a high innate dimensionality. Third, the t-SNE algorithm

is not assured to identify a global optimum. The non-convexity of the cost

function is the main weakness of the t-SNE algorithm. The selection of several

parameters is needed for optimizing and the solution depends on which

parameters are selected for optimizing and initial starting conditions. According to

the authors, the quality of the visualizations do not change much even with local

optima.

 16

The t-SNE algorithm is still one of the popular techniques for visualization

even though it has weaknesses. We use the t-SNE algorithm for exploring

dimensionality reduction.

E. DIMENSIONALITY REDUCTION

The aim of dimensionality reduction is to maintain as much of the structure

in high dimensions as much as possible in the two- or three-dimensional map

(van der Maaten & Hinton, 2008). That is, dimensionality reduction represents

the process of remodeling high-dimensional data into low-dimensional data while

assuring that the process preserves corresponding information (Ray, 2015).

Dimensionality reduction techniques reconstruct a dataset with the

original high dimension D to a dataset with low dimension , preserving the

structure of the dataset in high dimensions as far as possible. There are some

benefits for dimensionality reduction (van der Maaten, Postma & van den Herik,

2008). First, it helps in data compression and reduces the storage space

required. Second, it reduces the time required for performing the same

computations. Fewer dimensions lead to less computing; they also can allow

usage of algorithms unfit for high-dimensional data. Third, reducing dimensions

also tends to reduce multi-collinearity among variables which in turn tends to

improve the performance of statistical models fit to the data.

There are many techniques to perform dimensionality reduction. We

demonstrate two common techniques here.

1. Principal Component Analysis (PCA)

Principal Components Analysis (PCA) is the one of the popular techniques

for dimensionality reduction; it is also called classical multidimensional scaling.

The main idea of PCA is the data points in n-dimensional data may lie on or near

a linear subspace of dimension d, So given n-dimensional data, PCA tries to

produce a subspace of d-dimensional data (Ghodsi, 2006). The goals of PCA are

to elicit the most meaningful clue from the data, compress the data while

 17

preserving the meaningful information, and evaluate the structure of the data set

(Abdi & Williams, 2010). The PCA replaces the original variables with the

principal components (linear functions of the original variables) to accomplish

these goals. The first principal component is the one with the biggest variance.

The second principal component has the greatest variance among those

orthogonal to the first principal component. The remaining n components are

computed likewise. Only the first d principal components are retained where d

may be 2 or 3 for visualization or d may be chosen to be large enough to explain

most (e.g. 90%) of the variability of the original variables.

PCA has a few advantages and disadvantages (Karamizadeh, Abdullah,

Manaf, Zamani, & Hooman, 2013). According to the authors, the advantages of

PCA are: its insensitivity to noise, reduced requirements for computer memory,

and increased processing speed. The authors explain that PCA also has

disadvantages. It is challenging to estimate the covariance matrix of the data,

from which the principal components are derived, and PCA does not always

admit of easy interpretation because each individual principal component is a

linear combination of the all variables.

2. Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) is one of the popular techniques for

multivariate data analysis that aims to reveal the structure of a data set by

plotting it in two or three dimensions. It is a powerful tool in data visualization and

other data processing areas.

The goal of MDS is to find a spatial configuration in low dimensions such

that the actual distance between two points, say , is close to the distance

between the two points in the low-dimensional space after multidimensional

scaling, . The distances in the usual implementations are Euclidean. MDS

arranges data points in a two- or three- dimensional map, and investigates how

well the new distances between data points preserve the relationship between

the high dimensional distances. Technically, it uses an algorithm that evaluates

 18

several new arrangements and optimizes to maximize the goodness-of-fit

(Sahasrabudhe, Machiraju, & Zhu, 2001).

Equivalently, according to van der Maaten, Postma and van den Herik

(2008), the stress measures the quality of the mapping by measuring the error

between the low-dimensional data’s pairwise distances and the high-dimensional

data’s pairwise distances. When the distances are Euclidian, the raw stress

function for MDS is given by

, where

||xi – xj|| is the Euclidean distance between the high-dimensional data points and

||yi – yj|| is the Euclidean distance between the low-dimensional data points.

MDS is a broad term that includes several types of mappings. The types

include metric and non-metric MDS and CMDS (Young, 1985).

One example of non-metric MDS is Sammon mapping. It attempts to

“minimize the differences between corresponding inter-point distances in the two

spaces”, which are the original high-dimensional one and the low dimensional

one, and tries to preserve structure in high dimensions (Henderson, 1997). The

author gives projection pictures (Figure 3) to compare PCA with Sammon

mapping. The data set has “three mutually perpendicular circles” in six-

dimensional space. The left side picture, produced by PCA, shows that the

technique does not preserve the circles in the two-dimensional mapping. In

contrast the right side picture, produced by Sammon mapping, shows some of

the topology of the original data set.

 19

Figure 3. PCA and Sammon projection of six-dimensions

Source: Sammon mapping. (1997). http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/
AV0910/henderson.pdf

According to the author, the stress for Sammon mapping, defined as

, where

 is the pairwise distance between data points in low-dimensional space and

is the pairwise distance between data points in high-dimensional space. Sammon

mapping accepts as Euclidean distance and keeps small since it gives a

higher degree of importance to small (Jung, 2013). Figure 4 shows the results

of the 1925-1929 cohorts of the bank employee data (analyzed in Izenman,

2008). It displays the CMDS in the left panel and the Sammon mapping in the

right. The Sammon mapping preserves small s better than CMDS, while

compressing relatively larger s.

 20

Figure 4. Classical multidimensional scaling and Sammon mapping

Source: Multidimensional scaling, (2013). Retrieved from http://www.stat.pitt.edu/
sungkyu/course/2221Fall13/lec8_mds_combined.pdf

Sammon’s non-linear mapping is implemented through the sammon() function in

R’s MASS library (Venables & Ripley, 2002). We use this function for

visualization as one of the MDS techniques.

Another non-metric MDS is Kruskal’s non-metric MDS, which is

implemented in the isoMDS() function in R. It uses the stress function, defined as

, where

 is the actual distance and is the distance in lower-dimensional space

(Izenman, 2008).

We also use CMDS for visualization to compare to the t-SNE algorithm.

CMDS arranges the data points in a low-dimensional map to reduce the

discrepancy between the pairwise distances in high dimensions and the pairwise

distances in low dimensions. CDMS finds the centered configuration

for some so that their pairwise distances are the same as the original

distances; then dimensionality reduction from proceeds as in

principal component analysis (Jung, 2013).

 21

One problem of MDS is that its complexity increases quickly with the

number of dimensions. This increase in the number of parameters means that

the resulting model can be as complex as the data itself. Even though MDS has

difficulties, it is still one of the popular dimensionality reduction techniques. It

performs particularly well on relatively small data sets (Young, 1985).

F. DATA SETS

In this work we produce Gower and tree distance measures of inter-point

dissimilarity in high dimensions. Then we apply the Barns-Hut implementation of

the t-SNE algorithm (Krijthe, 2015), CMDS (R Core Team, 2015), and non-metric

MDS (Venables & Ripley, 2002) to those distances to determine combinations

that produce consistently good visualizations. In this section, we describe the

characteristics of the data sets used in our work. Each of the data sets has a

known class variable which is not incorporated into the inter-point distances. One

measure of whether the visualization of the data is adequate is whether

observations from different classes tend to fall in different clusters in the low-

dimensional map.

1. Splice

The Splice data is taken from the UC Irvine Machine Learning Repository

(Lichman, 2013). This database’s original name is “primate splice-junction gene

sequences” data set. All samples are taken from Genbank 64.1. The Splice data

has been widely used for machine learning techniques. The number of instances

is 3190 and the number of attributes is 62, which consist of the instance name,

60 sequential DNA nucleotide positions and the class. Attribute number 1 (V1) is

one of {N, EI, IE}, indicating the class. IE denotes a “from intron, which are the

parts of the DNA sequence that are spliced out, to exon, which are the parts of

the DNA sequence retained after splicing” boundary; EI denotes a “from exon to

intron” boundary, and N means “neither.” Attribute number 2 (V2) is the instance

name and is removed. Attribute numbers 3 to 62 are the sequence and each of

these attributes is usually filled by one of {A, G, T, C}. Other characters {D, N, S,

 22

R} imply imprecise knowledge among the characters {A, G, T, C}, so we do not

use the observations which include the four characters {D, N, S, R} for our test.

After excluding these observations and withholding the class, this data set has

3,175 instances and 60 attributes.

2. MNIST

We took the MNIST data from Yann LeCun’s website (LeCun, 2016). It is

data on a large set of handwritten digits data for a digit recognition system. The

training set has 60,000 digits each representing a number from 0 to 9 and the

test set has another 10,000 digits. Each monochrome image has 28 by 28 pixels,

which is 784 pixels total, and is centered within a box (Olah, 2014). Figure 5

contains examples of the MNIST data sets.

Figure 5. Examples of MNIST data set

Source: Christopher Olah. (2014). “Visualiing MNIST: An exploration of
dimensinality reduction,” October 9. Retrieved from http://colah.github.io/posts/
2014-10-Visualizing-MNIST/

According to the author, MNIST is a simple computer vision dataset. As

mentioned above, MNIST data consists of 28x28 pixel images of handwritten

digits. So the image can be regarded as “an array of numbers describing how

dark each pixel is”. For instance, we can think of number 1 as in Figure 6. Figure

6 shows how the pixels correspond to the numbers’ appearance.

 23

Figure 6. Examples of MNIST data set

Source: Christopher Olah. (2014). “Visualiing MNIST: An exploration of dimensinality
reduction,” October 9. Retrieved from http://colah.github.io/posts/2014-10-Visualizing-
MNIST/

As we can see in Figure 6, there is a 28 by 28 array for each image in

MNIST data; this can be unfolded into a 784-dimensional vector for each

observation. The vector’s value indicates “how dark” the pixel is and the value is

between zero and one (Olah, 2014).

MNIST is a favorable data set for learning pattern recognition and other

techniques, because we do not need to spend much time and effort to process

and format the data (LeCun, Bottou, Bengio, & Haffner, 1998). Practically, the

MNIST data is used vigorously for machine learning and neural networks today.

We use the MNIST data set for our experiment, because it is well

processed and formatted, as it is mentioned above, and it is a relatively large

data set which has 784 dimensions. In practice we often use a sample of 1,000

records or so, rather than using the entire set of 60,000 records.

3. Covertype

The Covertype data set is taken from the UC Irvine Machine Learning

Repository (Lichman, 2013). This database’s original name is “forest cover type

dataset” and initially compiled by Jock A. Blackard. It is for predicting forest cover

type only from cartographic variables and a mixed-type data set. The data set

 24

has 54 variables, of which ten are quantitative measures and 44 are binary

variables representing soil conditions and wilderness areas (Meyer, 2001). The

response variable is the forest cover type, which are seven specific forest cover

types; spruce/fir, lodgepole pine, ponderosa pine, cottonwood/willow, aspen,

douglas-fir, and krummholz. The actual forest cover type and the other variables

are from US Forest Service and US Geological Survey. The total number of

observations is 581,102 and the training set includes 11,340. We sample 1,000

rows and use this mixed data as our third data set.

G. SUMMARY

In this chapter, we reviewed the characteristic of big data sets today and

clustering, which is an important tool in the analysis of big data. We reviewed the

tree distance algorithm that we use to measure inter-point distances in our data

sets. The tree distance algorithm has benefits for mixed data type, noise, outliers,

and different scales of data. Then we reviewed the t-SNE algorithm for our

visualization. The t-SNE algorithm is a popular visualization technique, especially

for high-dimensional data. We note that categorical variables with c classes are

represented by c or c–1 binary variables, thus even data sets containing a

moderate number of categorical variables can be thought of as high-dimensional

data. And we reviewed dimensionality reduction and some common techniques.

At the end of the chapter, we described the data sets we used in our research:

the Splice, the MNIST, and the Covertype data sets.

 25

III. METHODOLOGY

In this chapter, we demonstrate: the tree distance algorithm for computing

inter-point distances, the Barnes-Hut implementation of the t-SNE algorithm and

CMDS for visualization and dimensionality reduction. Then, we describe the

experimental setup for our dimensionality reduction experiment. The computation

time of the Barnes-Hut t-SNE algorithm is much less expensive than that of the

original t-SNE algorithm and also outperforms it on mapping data from high

dimensions to low dimensions. We demonstrate how we conduct the new

dimensionality reduction technique in this chapter. The chapter is organized as

follows: Section A describes the treeClust package in R. Section B demonstrates

the Rtsne package in the R for t-SNE visualization. Section C describes CMDS.

Section D introduces how we explore the new technique for dimensionality

reduction.

A. TREECLUST ALGORITHM FOR CLUSTERING

In this section, we describe the treeClust package in R we use for

computing inter-point distances. We use the tree distance algorithm implemented

using treeClust for clustering since Euclidean distance usually needs to be

extended when some of the attributes are categorical (Buttrey & Whitaker,

2015b). The package has also an ability to generate a new numeric data set,

which is called “newdata,” which has the property that the inter-point distances

among observations in “newdata” mirror the inter-point distances computed with

the treeClust mechanism. This feature of treeClust allows us to handle larger

data sets, since the “newdata” set will generally have fewer entries than the

matrix of all pairwise inter-point distances produced by, for example, the Gower

technique.

Some features of treeClust deserve mention here. First, there is a choice

of tree-based dissimilarity measure, indicated by an integer from 1 to 4 and we

apply 4. Buttrey and Whitaker (2015a) compared the clustering method’s

 26

performance with Cramer’s V, and dissimilarity measure 4 frequently showed the

Cramer’s V value higher than that of the other measures. Second, a control

argument allows us to modify some of the parameters to the algorithm and to

determine which results should be returned. For example, the user can request

the “newdata” object, which is computed not from pairwise distances among

observations, but from the set of pairwise distances among leaves (Buttrey &

Whitaker, 2015b).

We apply both Gower and tree distance approaches to include both

categorical and numeric values; then we use the CMDS algorithm and the t-SNE

algorithm to the pairwise distances (Gower) or the “dists” (treeClust) for exploring

visualization and dimensionality reduction.

B. BARNES-HUT T-SNE ALGORITHM FOR VISUALIZATION

In this section, we describe the Barnes-Hut implementation of the t-SNE

algorithm. Krijthe (2015) provides this implementation in the Rtsne package in R.

According to van der Maaten (2014), the computational complexity of the SNE

class of algorithms for “the number of input objects N” increases exponentially

and it is the main limitation of the t-SNE algorithm. Practically, the application of

the t-SNE algorithm is limited to relatively small data sets, with only a few

thousand points. The author explored the Barnes-Hut approximation for the SNE

class of algorithms that “require only computation and

memory.” Application of Barnes-Hut to the t-SNE algorithm shows that the

algorithm is considerably accelerated compared to the standard t-SNE algorithm,

and it visualizes the large data sets successfully as well.

In practice, we examined the tsne package in R, Donaldson (2012), for the

Splice and MNIST data sets at first. But we found that the tsne package requires

much more computation time than the Rtsne package, which uses the Barnes-

Hut t-SNE algorithm. For example, running the tsne() function (from the tsne

package) on a sample of 1,000 observations from the MNIST data, required 390

seconds. On the other hand, the Rtsne() function on the same data required only

 27

32 seconds, less than a tenth of the time. Therefore we used the Barnes-Hut t-

SNE algorithm, in the Rtsne package in R, instead of the original t-SNE

algorithm, from the tsne package. The Barns-Hut t-SNE algorithm is also robust

for distinguishing classes of large data set in terms of visualization.

Figure 7 and Figure 8 shows the 2D plots for the sample of 1,000

observations from the MNIST data. In each plot the points are labeled and

colored by the correct classification (that is, the actual digit written). It appears

that the plot for Rtsne (Figure 8) seems more useful in distinguishing the classes

than the plot for tsne (Figure 7).

Figure 7. t-SNE 2D plot of MNIST data

Figure 8. Rtsne 2D plot of MNIST data

 28

We also sampled 500 observations from the Splice data and applied the

Rtsne function using tree distance because all Splice variables are categorical.

Figure 9 is the 2D plot using Rtsne for Splice data with each observation colored

by its true class. The points in Figure 9 overlap a lot, so we cannot determine

easily whether the t-SNE can separate the true classes or not. So, we plotted a

three-dimensional t-SNE mapping using Rtsne in Figure 10.

Figure 9. Rtsne 2D plot of Splice data

Figure 10. Rtsne 3D plot of Splice data

 29

The three-dimensional version outperforms the two dimensional one,

especially in terms of the extent of overlapping. Because the t-SNE algorithm

tries to put a lot of space between clusters, the points are mapping crowded

inside the clusters. We explore two dimensions and three dimensions together to

see how the dimensionality reduction performs over the overlapping part as well.

C. CLASSICAL MULTIDIMENSIONAL SCALING (CMDS)

We compare CMDS with the results of the Barnes-Hut t-SNE algorithm.

CMDS is the one of the traditional dimensionality reduction techniques and it is a

linear technique that tries to keep the representation of dissimilarity between two

points in low dimensions far apart (van der Maaten & Hinton, 2008).

We also sampled 500 observations from the Splice data, and use CMDS,

which is implemented in the cmdscale() function in R. Figure 11 is the picture of

the result when we applied the CMDS to the Splice sample using tree distance.

The result looks quite good even though the points overlap a little. We also

plotted the three-dimensional picture (Figure 12).

Figure 11. CMDS 2D plot of Splice data

 30

Figure 12. CDMS 3D plot of Splice data

We can see the result of CMDS more clearly in three-dimensional plot. We

also use the Gower distance, which is implemented by the daisy() function in R,

for clustering and compare the performances both of the two distances, Gower

and tree distance for clustering and of the two visualization techniques, which are

implemented by the functions cmdscale() and Rtsne().

D. EXPERIMENTS

In this thesis, we compare the Barnes Hut t-SNE algorithm and CMDS

using Gower distance and tree distance respectively and evaluate our

dimensionality reduction experiment for the t-SNE algorithm.

Generally, CMDS performs well for visualization and dimensionality

reduction. But if the data set has a lot of variables and is of mixed data type, it

can produce poor pictures. The t-SNE algorithm frequently performs better, but

its performance depends on the inter-point distance used. The Gower distance is

widely used in clustering, while the tree distance is robust for mixed data and

outliers. So we compare two visualization and clustering based on two distances

and explore which one performs better.

 31

Moreover, dimensionality reduction techniques usually try to map the data

from high dimensions to two or three dimensions directly. We explore a new

technique that does not appear to have been tried in the literature. We conduct

what we call “longer path dimensionality reduction” using Barnes Hut t-SNE

algorithm on a data set, starting with a very high, original dimensionality from

(perhaps 100 or 200) to a high dimensionality (e.g., 60, 50) to a moderate

number of dimensions (e.g., 30,10) to a low number of dimensions (e.g., 3, 2).

We explore this technique on the Splice data, which is relatively small data set

and categorical, to the MNIST data, which is relatively large data set and

numerical, and to the Covertype data, which is a large data set of mixed type –

although for computational reasons, and to keep pictures from being overrun with

points, we use samples in these last two cases.

To recap, then, for each data set, we withheld the class variable and used

it only to color or label points in the pictures. We sampled 3,000 records from

MNIST and 1,000 records from Covertype. We use the daisy() function to

compute the Gower distance, and implemented the classical multidimensional

scaling technique, Sammon mapping, the isoMDS algorithm, and Barnes-Hut t-

SNE using the R function cmdscale(), sammon(), isoMDS() and Rtsne(). Then

we used the treeClust() function to compute inter-point distances and implement

the same visualization techniques. We show the resulting mappings as two- or

three-dimensional pictures and add color to the points based on class to identify

how well the mapping preserves classes.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

IV. RESULTS

In this chapter, we describe the results of using several visualization

techniques with the Gower distance and the tree distance and the results of our

experiment for dimensionality reduction. We demonstrate the results of our three

data sets in sections A, B, and C.

A. THE RESULTS WITH THE SPLICE DATA SET

As described above, we computed the Gower and tree distances in order

to compare those two techniques. For each distance measurement we

conducted CMDS (R Core Team, 2015), non-metric MDS (isoMDS) (Venables &

Ripley, 2002), Sammon mapping (Sammon MDS) (Venables & Ripley, 2002) and

the t-SNE algorithm on Splice data set.

There are some cases where the three-dimensional plot displays much

more informatively and makes the structure of the data easier to understand than

the two-dimensional plot does. But, sometimes the two-dimensional plot

produces clearer visualizations. So we produce both plots for a better

understanding of our experiment. Also, we conducted “long path” dimensionality

reduction with MDS, but the plots look just about the same as the plot without

taking long path dimensionality reduction. So only the t-SNE algorithm was used

for long path dimensionality reduction.

The Splice data set has 3175 rows and 60 variables. Figure 13 shows the

2D plots for CMDS, isoMDS, Sammon MDS, and t-SNE using Gower distances.

It appears that CMDS performs better in distinguishing the classes (colored dots)

than t-SNE. We can see the results more clearly in the 3D plots (Figure 14).

 34

Figure 13. Splice data 2D using daisy() function

cmdscale() isoMDS()

Sammon() Rtsne()

 35

Figure 14. Splice data 3D using daisy() function

cmdscale() isoMDS()

Sammon() Rtsne()

 36

Figure 15 shows the result of taking the long path to dimensionality

reduction using the Rtsne() function with the Gower distances. We can see the

3D plots as well (Figure 16). The plots do not look as good as the CMDS plot.

Some observations are overlapped and some boundaries between two classes

are ambiguous.

 37

Figure 15. Long path of t-SNE of Splice data using daisy() function

From original dimension to 60 to 2

From original dimension to 60 to 60 to 2

From original dimension to 60 to 50 to 2

 38

Figure 16. Long path of t-SNE of Splice data using daisy() function

From original dimension to 60 to 3

From original dimension to 60 to 60 to 3

From original dimension to 60 to 50 to 3

 39

Figure 17 is the 2D plots of CMDS, isoMDS, Sammon MDS, and t-SNE

using the treeClust() function. They look quite different from the plots using

daisy() function. CMDS plot still looks good, and is divided into several clusters

that clustered more specifically. The t-SNE plot for treeClust() has a little overlap,

but is much better than the one for daisy(). We can see that the treeClust()

performs well for clustering in the 3D plot as well (Figure 18).

Figure 17. Splice data 2D using treeClust() function

cmdscale() isoMDS()

Sammon() Rtsne()

 40

Figure 18. Splice data 3D using treeClust() function

cmdscale() isoMDS()

Sammon() Rtsne()

Figure 19 shows the plots of taking long path dimensionality reduction

using the treeClust() function. It looks much better than the plots using the daisy()

function as well. The shape is a little twisted, but the picture separates the

classes more clearly. This result is visible in the 3D plots, too (Figure 20).

 41

Figure 19. Long path of t-SNE of Splice data using treeClust() function

From original dimension to 60 to 2

From original dimension to 60 to 60 to 2

From original dimension to 60 to 50 to 2

 42

Figure 20. Long path of t-SNE of Splice data using treeClust() function

From original dimension to 60 to 3

From original dimension to 60 to 60 to 3

From original dimension to 60 to 50 to 3

 43

B. THE RESULTS WITH THE MNIST DATA SET

Our second data set is the MNIST data. It is quite a large data set, having

60,000 rows in the training data. So we sampled 3,000 points and explored

clustering, visualization and long path dimensionality reduction. For this data set

and the next we focus on the more successful CMDS and omit the results from

the Sammon and isoMDS mappings.

We found that there are some computation problems with taking the long

path to dimensionality reduction. An unknown computation error occurred in the

Rtsne package when we tried to select a dimensionality under fifty but greater

than three. Errors occurred with 40, 30, 20, and ten dimensions, so we concluded

that the Rtsne algorithm does not operate properly for fewer than fifty dimensions

and explored a limited dimensionality reduction. The paths we tried were from the

original dimension to 60 to 2 (or 3) dimensions, from the original to 60 to 60 to 2

(3), and from the original to 60 to 50 to 2(3). There were also issues for

dimensionality greater than sixty.

Figure 21 shows the plots of CMDS and t-SNE using the daisy() and

treeClust() function respectively. Surprisingly, CMDS plots look agglomerated;

we can barely recognize the classes unlike in the Splice data. For t-SNE, the

groups look well-separated for both daisy() and treeClust(). The plot for

treeClust() displays boundaries between classes more obviously than the plot for

daisy() and there are some overlapped parts in the plot for daisy() – although the

plot for daisy() is informative too.

 44

Figure 21. MNIST data 2D using daisy() and treeClust() function

cmdscale() using daisy() Rtsne() using daisy()

cmdscale() using treeClust() Rtsne() using treeClust()

 45

Figures 22 and 23 shows the plots from the long path dimensionality

reduction using the daisy() function. The plot taking the longer path, e.g., from

original to 60 to 50 to 2, appears to capture the clusters more obviously. We also

found the interesting picture of t-SNE algorithm when we take long path

dimensionality reduction. We have not figured out why, but the t-SNE algorithm

tends produce twisted shapes when we take long path dimensionality reduction.

Figures 24 and 25 plot the long path dimensionality reduction using the

treeClust() function. The cluster boundaries in the plots using the treeClust()

function look more obvious.

 46

Figure 22. Long path of t-SNE of MNIST data using daisy() function

From original dimension to 60 to 2

From original dimension to 60 to 60 to 2

From original dimension to 60 to 50 to 2

 47

Figure 23. Long path of t-SNE of MNIST data using daisy() function

From original dimension to 60 to 3

From original dimension to 60 to 60 to 3

From original dimension to 60 to 50 to 3

 48

Figure 24. Long path of t-SNE of MNIST data using treeClust() function

From original dimension to 60 to 2

From original dimension to 60 to 60 to 2

From original dimension to 60 to 50 to 2

 49

Figure 25. Long path of t-SNE of MNIST data using treeClust() function

From original dimension to 60 to 3

From original dimension to 60 to 60 to 3

From original dimension to 60 to 50 to 3

 50

C. THE RESULTS WITH THE COVERTYPE DATA SET

Our third data set is the Covertype data. It is also quite a large data set,

with 11,340 rows in the training set, and mixed—both numerical and

categorical—variables. So we sampled 1,000 points and explored clustering,

visualization and long path dimensionality reduction to see how they work for

mixed type data set.

Figure 26 gives the plots of CMDS and t-SNE using daisy() and treeClust()

functions respectively. The plots show more apparent distinction between daisy()

and treeClust() function. As we described, the tree distance algorithm, which is

implemented as the treeClust() function, is robust to outliers, missing values,

various scales, and mixed type data, while Gower distance is not. Certainly,

treeClust() function outperforms daisy() function, especially for this mixed type

data set. So we conclude that the combination of treeClust() for clustering and

Rtsne() for visualization can produce good results in mixed-type data sets.

 51

Figure 26. Covertype data using daisy() and treeClust() function

cmdscale() using daisy() Rtsne() using daisy()

cmdscale() using treeClust() Rtsne() using treeClust()

Figure 27 shows the plots from taking the long path dimensionality

reduction using daisy() function. The plot taking the longer path appears to

separate the clusters more obviously, as with the MNIST data. We can see that

the t-SNE algorithm produces twists like the MNIST data set (Figures 28 and 30).

Figures 29 and 30 display plots taking long path dimensionality reduction using

treeClust() function. They do not look as good as in the MNIST data set, but it

appears that t-SNE algorithm tries to make close points closer and more distant

points farther apart.

 52

Figure 27. Long path of t-SNE of Covertype data using daisy() function

From original dimension to 60 to 2

From original dimension to 60 to 60 to 2

From original dimension to 60 to 50 to 2

 53

Figure 28. Long path of t-SNE of Covertype data using daisy() function

From original dimension to 60 to 3

From original dimension to 60 to 60 to 3

From original dimension to 60 to 50 to 3

 54

Figure 29. Long path of t-SNE of Covertype data using treeClust()

From original dimension to 60 to 2

From original dimension to 60 to 60 to 2

From original dimension to 60 to 50 to 2

 55

Figure 30. Long path of t-SNE of Covertype data using treeClust()

From original dimension to 60 to 3

From original dimension to 60 to 60 to 3

From original dimension to 60 to 50 to 3

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

V. CONCLUSION

Dimensionality reduction is a well-developed area in data analytics.

Dimensionality reduction requires a measure of inter-point distance, which

requires some thought in the case of mixed or categorical data. How to visualize

more purely and clearly is the one of the unsolved problems in analytics,

especially for high-dimensional and mixed type data sets. Also the high interest

in and demand for big data today makes the visualization more important. We

compared the t-SNE algorithm to several multidimensional scaling techniques

using both Gower distance and tree distance and explored the dimensionality

reduction taking long path using the t-SNE algorithm, which provides an effective

way to visualize data sets. We found that the tree distance, which is implemented

by the treeClust() function of the treeClust R package, outperforms the Gower

distance, which is implemented by the daisy() function of the cluster R package,

in our three data sets. We also found that t-SNE algorithm, which is implemented

by the Rtsne() function (found in the Rtsne package), outperforms classical

multidimensional scaling, which is implemented in the cmdscale() function, in

most data sets. So, we conclude that when we use treeClust() and Rtsne()

together, we usually get the best picture.

The t-SNE algorithm has some advantages and disadvantages. First, it

appears that the t-SNE algorithm visualizes more clearly when we map not just

directly from the original, high-dimensional space to two or three dimensions, but

via a “long path,” like from “very high” to “high” to “moderate” to “low” dimensions

for dimensionality reduction. However, the long path can be computationally

difficult and tends to produce twisted, snake-like shapes that can be hard to

interpret. Another computational problem arises from duplicates. The t-SNE

algorithms cannot operate on data with duplicate entries and some computational

effort goes into detecting and removing duplicates. The duplicate problem seems

to occur more often when we use the Rtsne() function for relatively small data

sets. Fourth, the Rtnse() function’s default setting dimensionality is sixty. In terms

 58

of dimensionality, when we tried the dimensionality reduction from the original

dimensions to some number greater than sixty dimensions, it did not perform

properly. There were also errors of unknown cause when trying to reduce to

fewer than 50 dimensions.

The t-SNE algorithm combined with tree distances gives us a chance to

understand high dimensional data sets, and we found some evidence that we

can produce more clear and reliable visualizations when we take the long path

for dimensionality reduction. We could not find the reason why the Rtsne()

function does not work for fewer than fifty dimensions, but it should be

considered as future works for more profound dimensionality reduction

technologies. Also, when we take long path dimensionality reduction, the

algorithm tends to produce twisted shapes. We do not yet know the reason, but if

we can figure out that, we can perhaps produce a visualization that is easier to

interpret. Reliability Improvements to t-SNE could be very valuable in pursuing

these avenues.

59

LIST OF REFERENCES

Abdi, H. & Williams, L.J. (2010). Principal component analysis. Wiley
Interdisciplinary Reviews: Computational Statistics, 2.

The Apache Software Foundation. (2014). Retrieved from
http://hadoop.apache.org/

Burbank, D. (2016). The 5 V’s of big data. Retrieved from
http://enterprisearchitects.com/the-5v-s-of-big-data/

Buttrey, S. E., & Whitaker, L. R. (2015a). A scale-independent, noise-resistant
dissimilarity for tree-based clustering of mixed data. Monterey, CA: Naval
Postgraduate School.

Buttrey, S. E., & Whitaker, L. R. (2015b). treeClust: An R package for tree-based
clustering dissimilarities. The R Journal, 7(2), 227–236.

Buttrey S. E. (2015). Package ‘treeClust’. Retrieved from https://cran.r-project.org/
web/packages/treeClust/treeClust.pdf

Chen, M., Mao, S., Zhang, Y., & Leung, V. C. M. (2014). Big data: Related
technologies, challenges and future prospects. New York, NY: Springer.

Cook, J.A., Sutskever, I., Mnih, A., & Hinton, G.E. (2007). Visualizing similarity
data with a mixture of maps. In proceedings of the 11th International
Conference on Arificial Intelligence and Statistics, 2, 67–74.

Cramér H. (1999). Mathematical methods of statistics, Princeton, NJ: Princeton
University Press.

Dave, P. (2013, October 2)., Big data—What is big data—3 Vs of bid data—
Volume, velocity and variety. Retrieved from http://blog.sqlauthority.com/
2013/10/02/big-data-what-is-big-data-3-vs-of-big-data-volume-velocity-
and-variety-day-2-of-21/

Donaldson, J. (2012). tsne: T-distributed Stochastic Neighbor Embedding for R
(t-SNE). R package version 0.1-2. Retrieved from https://CRAN.R-
project.org/package=tsne

Eynard, D. (2009). Methods for intelligent systems. Retreived from
http://davide.eynard.it/teaching/2010_msi/handout-lecture-e1.pdf

Ghodsi, A. (2006). Dimensionality reduction a short tutorial. Retrieved from
http://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/
tutorial_stat890.pdf

http://enterprisearchitects.com/the-5v-s-of-big-data/
https://cran.r-project.org/web/packages/treeClust/treeClust.pdf
https://cran.r-project.org/web/packages/treeClust/treeClust.pdf
http://blog.sqlauthority.com/2013/10/02/big-data-what-is-big-data-3-vs-of-big-data-volume-velocity-and-variety-day-2-of-21/
http://blog.sqlauthority.com/2013/10/02/big-data-what-is-big-data-3-vs-of-big-data-volume-velocity-and-variety-day-2-of-21/
http://blog.sqlauthority.com/2013/10/02/big-data-what-is-big-data-3-vs-of-big-data-volume-velocity-and-variety-day-2-of-21/
http://davide.eynard.it/teaching/2010_msi/handout-lecture-e1.pdf

 60

Gower, J. C. (1966). Some distance properties of latent root and vector methods
used in multivariate analysis. Biometrika, 53(3/4), 325–338, doi: 10.2307/
2333639

Gower J.C. (1971). A general coefficient of similarity and some of its properties,
Biometrics, 27, 857–874.

Henderson, P. (1997). Sammon mapping. Retrieved from
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0910/
henderson.pdf

Hu, W. C., & Kaabouch, N. (2013). “Big data management, technologies, and
applications.” IGI Global.

Iliinsky, N. (2012, February 23). Why is data visualization so hot?. Retrieved from
http://blog.visual.ly/why-is-data-visualization-so-hot/

Izenman, A J. (2008). Modern multivariate statistical techniques. New York, NY:
Springer.

Jung, S. (2013). Multidimensional scaling. Retrieved from
http://www.stat.pitt.edu/sungkyu/course/2221Fall13/
lec8_mds_combined.pdf

Karamizadeh, S., Abdullah, S. M., Manaf, A. A., Zamani, M., & Hooman, A.
(2013). An overview of principal component analysis. Journal of Signal
and Information Processing, 4, 173–175.

Krijthe, J. (2015, May 26). Package ‘Rtsne’. Retrieved from https://cran.r-
project.org/web/packages/Rtsne/Rtsne.pdf

Laney, D. (2001). “3D data management: Controlling data volume, velocity, and
variety.” In Application Delivery Strategies, Number 949. Stamford, CT:
META Group Inc.

LeCun, Y. (2016). The MNIST database. Retrieved from http://yann.lecun.com/
exdb/mnist/

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.. (1998). “Gradient-based learning
applied to document recognition.” Proceedings of IEEE, 86(11), 2278–
2324.

Lichman, M. (2013). UCI Machine Learning Repository. Retrieved from
http://archive.ics.uci.edu/ml

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. (2015). Cluster:
Cluster analysis basics and extensions. R. package version 2.0.3.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0910/henderson.pdf
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0910/henderson.pdf
http://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec8_mds_combined.pdf
http://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec8_mds_combined.pdf
https://cran.r-project.org/web/packages/Rtsne/Rtsne.pdf
https://cran.r-project.org/web/packages/Rtsne/Rtsne.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://archive.ics.uci.edu/ml

 61

Marr, B. (2015, March 19). Why only one of the 5 Vs of big data really matters.
Retrieved from http://www.ibmbigdatahub.com/blog/why-only-one-5-vs-
big-data-really-matters

Mearian, L. (2012, Decembr 11). By 2020, there will be 5,200 GB of data for
every person on Earth. Retrieved from http://www.computerworld.com/
article/2493701/data-center/by-2020--there-will-be-5-200-gb-of-data-for-
every-person-on-earth.html

Meyer, B. (2001). Forest cover type prediction. Retrieved from
http://homepages.cae.wisc.edu/~ece539/project/f01/meyer.pdf

Olah, C. (2014, October 9). Visualizing MNIST: An exploration of dimensionality
reduction. Retrieved from http://colah.github.io/posts/2014-10-Visualizing-
MNIST/

Oguntimilehin, A. & Ademola, E.O. (2016). A review of bigh data management,
benefits and challenges. Retrieved from http://www.academia.edu/
9708014/A_Review_of_Big_Data_Management_Benefits_and_Challenge
s

Pinal D. (2013, October 2). Big data—What is big data—3 Vs of big data.
Retrieved from http://blog.sqlauthority.com/2013/10/02/big-data-what-is-
big-data-3-vs-of-big-data-volume-velocity-and-variety-day-2-of-21/

Ray, S. (2015, July 28). Beginners guide to learn dimension reduction
techniques. Retrieved from http://www.analyticsvidhya.com/blog/2015/07/
dimension-reduction-methods/

R Core Team. (2015). The R Project for statistical computing. Retrieved from
http://www.R-project.org.

Rosenberg, A. (2009, February 19). Linear regression with regularization.
Retrieved from http://eniac.cs.qc.cuny.edu/andrew/gcml/lecture5.pdf

Rouse, M. (2014, October). Big data analytics. Retrieved from
http://searchbusinessanalytics.techtarget.com/definition/big-data-analytics

Sahasrabudhe, N., Machiraju, R., & Zhu, S. C. (2001). A pattern-recognition
methodology for enabling digital lighting design. Retrieved from
ftp://ftp.cse.ohio-state.edu/pub/tech-report/2001/TR06.ps.gz

SAS. (n.d.). Big data. Retrieved February 25, 2016, from www.sas.com/en_us/
insights/big-data/what-is-big-data.html

Van der Maaten, L. (2014). Accelerating t-SNE using tree-based algorithms.
Journal of Machine Learning Research, 15 (2014) 1–21.

http://www.computerworld.com/article/2493701/data-center/by-2020--there-will-be-5-200-gb-of-data-for-every-person-on-earth.html
http://www.computerworld.com/article/2493701/data-center/by-2020--there-will-be-5-200-gb-of-data-for-every-person-on-earth.html
http://www.computerworld.com/article/2493701/data-center/by-2020--there-will-be-5-200-gb-of-data-for-every-person-on-earth.html
http://homepages.cae.wisc.edu/%7Eece539/project/f01/meyer.pdf
http://www.academia.edu/9708014/A_Review_of_Big_Data_Management_Benefits_and_Challenges
http://www.academia.edu/9708014/A_Review_of_Big_Data_Management_Benefits_and_Challenges
http://www.academia.edu/9708014/A_Review_of_Big_Data_Management_Benefits_and_Challenges
http://blog.sqlauthority.com/%E2%80%8B2013/%E2%80%8B10/%E2%80%8B02/%E2%80%8Bbig-data-what-is-big-data-3-vs-of-big-data-volume-velocity-and-variety-day-2-of-21/
http://blog.sqlauthority.com/%E2%80%8B2013/%E2%80%8B10/%E2%80%8B02/%E2%80%8Bbig-data-what-is-big-data-3-vs-of-big-data-volume-velocity-and-variety-day-2-of-21/
http://www.analyticsvidhya.com/blog/2015/07/dimension-reduction-methods/
http://www.analyticsvidhya.com/blog/2015/07/dimension-reduction-methods/
http://www.r-project.org./
http://eniac.cs.qc.cuny.edu/andrew/gcml/lecture5.pdf
http://searchbusinessanalytics.techtarget.com/definition/big-data-analytics
ftp://ftp.cse.ohio-state.edu/pub/tech-report/2001/TR06.ps.gz
http://www.sas.com/en_us/insights/big-data/what-is-big-data.html
http://www.sas.com/en_us/insights/big-data/what-is-big-data.html

 62

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research, 1 (2008) 1–48.

Van der Maaten, L., Postma, E.O., & van den Herik, H.J. (2008, January 11).
Dimensionality reduction: A comparative review. Retrieved from
http://pages.iai.uni-bonn.de/
zimmermann_joerg//dimensionality_reduction_a_comparative_review.pdf

Venables, W.N. & Ripley, B.D. (2002). Modern Applied Statistics with S. Fourth
Edition. New York, NY: Springer.

Young, F.W. (1985). Multidimensional scaling. Kotz-Johnson (Ed.) Encyclopedia
of Statistical Sciences, Volume 5. Retrieved from
http://forrest.psych.unc.edu/teaching/p208a/mds/mds.html

http://pages.iai.uni-bonn.de/zimmermann_joerg/dimensionality_reduction_a_comparative_review.pdf
http://pages.iai.uni-bonn.de/zimmermann_joerg/dimensionality_reduction_a_comparative_review.pdf
http://forrest.psych.unc.edu/teaching/p208a/mds/mds.html

 63

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INtroduCTION
	A. BACKGROUND
	B. OBJECTIVES and THESIS OUTLINE

	II. LITERATURE REVIEW
	A. Big data and Big data sets
	B. CLUSTERING
	C. TREE DISTANCE ALGORITHM
	D. t-distributed stochastic embedding algorithm
	E. Dimensionality reduction
	1. Principal Component Analysis (PCA)
	2. Multidimensional Scaling (MDS)

	F. Data sets
	1. Splice
	2. MNIST
	3. Covertype

	G. Summary

	III. methodologY
	A. treeclust algorithm for clustering
	B. barnEs-hut t-sne algorithm for visualization
	C. classical Multidimensional scaling (CMDS)
	D. experiments

	IV. ResultS
	A. the results with THE splice data set
	B. the results with THE MNIST data set
	C. the results with THE covertype data set

	V. conclusion
	List of References
	initial distribution list

