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ABSTRACT 

Modern data sets often consist of unstructured data and mixed data; that 

is, they include both numerical and categorical variables. Often, these data sets 

will include noise, redundancy, missing values and outliers. Clustering is one of 

the most important and widely-used data analytic methods. However, clustering 

requires the ability to measure distances or dissimilarities, which are not defined 

in an obvious way for mixed data. Practitioners often use the Gower dissimilarity 

for this task. In this work we use tree distance computed using Buttrey’s treeClust 

package in R, as discussed by Buttrey and Whitaker in 2015, to process mixed 

data, at the same time handling missing values and outliers. Visualization is also 

an important method for big data. We use the t-distributed Stochastic Neighbor 

Embedded (t-SNE) algorithm for visualization introduced by van der Maaten and 

Hinton in 2008, which produces visualization for high-dimensional data by 

assigning individual data points in a two- or three-dimensional map. We also use 

popular visualization techniques grouped under the name “multidimensional 

scaling.” We compare the results using the tree distance and the t-SNE algorithm 

to results from using Gower dissimilarity and multidimensional scaling. Unlike 

established dimensionality reduction techniques, which generally map from high 

dimensions directly to two (or three) dimensions, we explore a new approach in 

which the dimensionality reduction takes place in several separate steps. Our 

experiments show that our new techniques can outperform the established 

techniques in producing visualizations of high-dimensional mixed data. 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION ........................................................................................ 1 
A. BACKGROUND .............................................................................. 1 
B. OBJECTIVES AND THESIS OUTLINE .......................................... 2 

II. LITERATURE REVIEW ............................................................................. 5 
A. BIG DATA AND BIG DATA SETS .................................................. 5 
B. CLUSTERING ................................................................................. 6 
C. TREE DISTANCE ALGORITHM ..................................................... 8 
D. T-DISTRIBUTED STOCHASTIC EMBEDDING ALGORITHM ..... 11 
E. DIMENSIONALITY REDUCTION.................................................. 16 

1. Principal Component Analysis (PCA) ............................. 16 
2. Multidimensional Scaling (MDS) ..................................... 17 

F. DATA SETS .................................................................................. 21 
1. Splice ................................................................................. 21 
2. MNIST ................................................................................ 22 
3. Covertype .......................................................................... 23 

G. SUMMARY .................................................................................... 24 

III. METHODOLOGY ..................................................................................... 25 
A. TREECLUST ALGORITHM FOR CLUSTERING.......................... 25 
B. BARNES-HUT T-SNE ALGORITHM FOR VISUALIZATION ....... 26 
C. CLASSICAL MULTIDIMENSIONAL SCALING (CMDS) .............. 29 
D. EXPERIMENTS ............................................................................. 30 

IV. RESULTS ................................................................................................ 33 
A. THE RESULTS WITH THE SPLICE DATA SET .......................... 33 
B. THE RESULTS WITH THE MNIST DATA SET ............................ 43 
C. THE RESULTS WITH THE COVERTYPE DATA SET ................. 50 

V. CONCLUSION ......................................................................................... 57 

LIST OF REFERENCES ..................................................................................... 59 

INITIAL DISTRIBUTION LIST ............................................................................ 63 

 



 viii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 ix 

LIST OF FIGURES 

Figure 1. The treeClust plot for the splice data ................................................. 10 

Figure 2. The t-SNE local min problem on MNIST data ................................... 15 

Figure 3. PCA and Sammon projection of six-dimensions ............................... 19 

Figure 4. Classical multidimensional scaling and Sammon mapping ............... 20 

Figure 5. Examples of MNIST data set ............................................................. 22 

Figure 6. Examples of MNIST data set ............................................................. 23 

Figure 7. t-SNE 2D plot of MNIST data ............................................................ 27 

Figure 8. Rtsne 2D plot of MNIST data ............................................................ 27 

Figure 9. Rtsne 2D plot of Splice data .............................................................. 28 

Figure 10. Rtsne 3D plot of Splice data .............................................................. 28 

Figure 11. CMDS 2D plot of Splice data ............................................................. 29 

Figure 12. CDMS 3D plot of Splice data ............................................................. 30 

Figure 13. Splice data 2D using daisy() function ................................................ 34 

Figure 14. Splice data 3D using daisy() function ................................................ 35 

Figure 15. Long path of t-SNE of Splice data using daisy() function .................. 37 

Figure 16. Long path of t-SNE of Splice data using daisy() function .................. 38 

Figure 17. Splice data 2D using treeClust() function .......................................... 39 

Figure 18. Splice data 3D using treeClust() function .......................................... 40 

Figure 19. Long path of t-SNE of Splice data using treeClust() function ............ 41 

Figure 20. Long path of t-SNE of Splice data using treeClust() function ............ 42 

Figure 21. MNIST data 2D using daisy() and treeClust() function ...................... 44 

Figure 22. Long path of t-SNE of MNIST data using daisy() function ................. 46 

Figure 23. Long path of t-SNE of MNIST data using daisy() function ................. 47 

Figure 24. Long path of t-SNE of MNIST data using treeClust() function ........... 48 

Figure 25. Long path of t-SNE of MNIST data using treeClust() function ........... 49 

Figure 26. Covertype data using daisy() and treeClust() function ...................... 51 

Figure 27. Long path of t-SNE of Covertype data using daisy() function ............ 52 

Figure 28. Long path of t-SNE of Covertype data using daisy() function ............ 53 

Figure 29. Long path of t-SNE of Covertype data using treeClust() ................... 54 

Figure 30. Long path of t-SNE of Covertype data using treeClust() ................... 55 



 x 

 THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 



 xi 

LIST OF ACRONYMS AND ABBREVIATIONS 

CMDS  Classical Multidimensional Scaling 
MDS  Multidimensional Scaling 
PCA Principal Component Analysis 
SNE  Stochastic Neighbor Embedded 
t-SNE t-distributed Stochastic Neighbor Embedded 
 
 
 
 

 



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK   



 xiii 

EXECUTIVE SUMMARY 

Most big data sets consist of unstructured data and mixed data, that is 

they contain both numerical and categorical variables. In data analytics, 

clustering is one of the most important methods for obtaining valuable 

information. Many clustering approaches require a measure of distance between 

observations. One such measure is the tree distance, which measures proximity 

between observations of mixed-type data while handling missing values and 

outliers. We use the treeClust package of Buttrey (2015) in R data analysis 

software, discussed by Buttrey and Whitaker (2015b), to compute these 

distances.  

Visualization is also an important method for big data analytics. We use 

the t-distributed Stochastic Neighbor Embedded (t-SNE) algorithm for 

visualization introduced by van der Maaten and Hinton (2008). The t-SNE 

algorithm produces visualizations of high-dimensional data by assigning 

individual data points in a two or three-dimensional map (van der Maaten & 

Hinton, 2008). It is especially effective for high-dimensional data that consists of 

a large number of classes and produces more discernible visualizations than 

other techniques. We also use classical multidimensional scaling (CMDS), which 

is one of the most popular visualization techniques.  

In this thesis, we compare the tree distance algorithm to the most popular 

measure of inter-point distance, which is the Gower dissimilarity, and compare 

the t-SNE algorithm to other visualization technique, including CMDS and two 

non-metric competitors. We also explore a dimensionality reduction technique 

using the t-SNE algorithm. Unlike established dimensionality reduction 

techniques, which reduce the dimensionality from the original high number of 

dimensions to two or three dimensions directly, we apply dimensionality 

reduction in a  “long path” reducing the dimension gradually (e.g., from the 

original dimensionality to 100 to 60 to 30 to 2). We operate on several well-



xiv 

known data sets and compare the performance of the two distance measures 

and the different scaling techniques.  

This thesis concludes with some issues concerning dimensionality 

reduction. When we try to conduct long-path dimensionality reduction, it 

sometimes gives more discernible visualization than the established techniques. 

However, the algorithm also produces errors of unknown cause. Finally, we 

suggest more research into the long path dimensionality reduction technique for 

more discernible visualization. 
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I. INTRODUCTION 

A. BACKGROUND 

“Big data” is a broad term for extremely large and complex sets of data for 

which traditional applications are inappropriate (Oguntimilehin & Ademola, 2014). 

More specifically, big data refers to datasets that cannot be “acquired, managed, 

and processed” by established technologies and tools within a reasonable time 

(Chen, Mao, Zhang, & Leung, 2014). Big data analytics is the process of 

analyzing large data sets having numerical, categorical, and other variables to 

discover “hidden patterns, unknown correlations, market trends, customer 

preferences and other useful information” (Rouse, 2014). The results can 

improve the efficiency of operations, and increase profits, quality of customer 

service, and effectiveness in marketing. Specifically, the government can achieve 

cost benefits, improvement in productivity, and innovation utilizing big data within 

public institutions. Big data analytics can also be applied to military problems. 

Further, large numbers of data sets in the military, such as manpower data, are 

both big and of mixed data types, having both numerical and categorical 

variables. 

A number of researchers have developed techniques to analyze and find 

patterns in mixed-type multidimensional data over the years. One important 

consideration in these data sets is defining a suitable measure of inter-point 

distance. One such measure is the widely-used dissimilarity of Gower (1971). 

Buttrey and Whitaker (2015a) implemented and expanded the competing “tree 

distance” algorithm in the R data analysis software (R Core Team, 2015), 

through the package “treeClust” (Buttrey, 2015). This technique seems to hold 

advantages for high-dimensional and mixed-type data sets. Once an inter-point 

distance is defined, it can be useful to map the high-dimensional data into low 

dimensions for the purposes of visualization and interpretation. Among the 

techniques for mapping data to lower dimensions, the t-distributed Stochastic 

Neighbor Embedding (t-SNE) algorithm (van der Maaten & Hinton, 2008) is well 
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suited for high-dimensional data. In particular, the t-SNE algorithm produces 

high-quality visualizations by minimizing the tendency of points mapped from 

very high dimensions to gather at the center of the low dimensional map. 

Although t-SNE was originally developed to visualize numeric data in Euclidean 

space, in combination with a measure of dissimilarity for mixed-type data, such 

as those produced by the tree distance algorithm, t-SNE can be used to visualize 

high-dimensional mixed-type data. 

In this thesis, we compare the results of visualizations of high-dimensional 

data by using the tree distance algorithm together with the t-SNE algorithm to the 

results produced by other dissimilarity measures like that of Gower and other 

mapping techniques like classical multidimensional scaling (CMDS), to examine 

the ability of tree distances and t-SNE to improve visualization. 

B. OBJECTIVES AND THESIS OUTLINE 

In this thesis, we describe a measure of inter-point distance, the tree 

distance produced by the treeClust algorithm that we use for our study, and a 

visualization technique, which is the t-SNE algorithm suitable for our study. We 

use t-SNE as a tool for dimensionality reduction. Unlike the usual dimensionality 

reduction technologies, which map from high-dimensional space to two or three 

dimensions directly, we apply dimensionality reduction several times reducing the 

dimension each time (e.g., from dimension 100 to 60 to 30 to 2). We use a 

number of data sets from the literature to compare the results from conducting a 

sequence of dimensionality reductions to one-time dimensionality reduction using 

t-SNE and also using other multidimensional scaling techniques. 

We discuss how well our new, “long path,” technique performs in terms of 

the goals of dimensionality reduction: to maintain as much as possible of the 

structure in high dimensions in the two- or three-dimensional visualization (van 

der Maaten & Hinton, 2008). We finish the thesis by suggesting the long path 

dimensionality reduction technique for visualization. 
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The outline of the thesis is as follows. In Chapter II, we introduce the tree 

distance algorithm as presented by Buttrey and Whitaker (2015a; 2015b), which 

we use to produce inter-point distances, and introduce the t-SNE algorithm as 

presented by van der Maaten and Hinton (2008), which we use as a visualization 

technique. In Chapter III, we present the methodology and experimental setup 

we used to evaluate dimensionality reduction. In Chapter IV, we present and 

discuss the results produced from our experiments. In Chapter V, conclusions 

and recommendations for future work are presented. 
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II. LITERATURE REVIEW 

In this chapter, we review overall aspects of big data analysis today and 

examine two major methods for clustering and dimensionality reduction mapping: 

the use of the tree distance algorithm implemented and expanded by Buttrey and 

Whitaker (2015a; 2015b) and the t-SNE algorithm introduced by van der Maaten 

and Hinton (2008). We also describe the data sets used to explore our new 

technique in this chapter. 

The chapter is organized as follows: Section A introduces the overall 

aspects of big data analysis today. Section B describes clustering and the 

importance of clustering. In Section C, we describe the tree distance algorithm 

and its benefits when it is used for analysis of big data. Section D describes the t-

SNE algorithm. In Section E, we demonstrate dimensionality reduction for 

visualizing the data. Finally, Section F introduces the data sets we use for our 

experiment.  

A. BIG DATA AND BIG DATA SETS 

In this section, we demonstrate some of the properties of big data. Big 

data is a “large volume of data—both structured and unstructured—that 

inundates a business on a day-to-day basis” (SAS, n.d.). 

Laney (2001) characterized big data by “three v’s”: volume, velocity, and 

variety. In these paragraphs we examine these three facets of big data. 

Volume: There has been exponential growth in the size of data size in 

recent years. According to IBM, ninety percent of the all data today was created 

in the past 2 or 3 years and every day we create 2.5 quintillion bytes of data. A 

study by the Institute for Digital Communications predicts that we will have 50 

times that amount of data by 2020 (Mearian, 2011). Storing big data was a 

problem in the past, but this is becoming easier owing to the development of new 

technologies (e.g., Hadoop [The Apache Software Foundation, 2014]). 
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Velocity: In the past it could take considerable time for computers and 

servers to acquire and process data. But now with the advent of the World Wide 

Web, data is often created in real time and computers and devices are expected 

to process the data immediately. 

Variety: most of the data in the past was structured data, for example, in 

the form of numeric matrices. Today the data becomes more unstructured, 

complicated—having both numeric and categorical data. Data can be stored in 

various formats: structured, semi-structured, unstructured, and mixed data (e.g., 

text documents, email, video, and audio).  

Marr (2015) explains two more V’s that describe the properties of big data 

today more completely: veracity and value.  

Veracity: This represents confidence in the data. Big data’s quality and 

accuracy are hard to control, with problems like hashtags, abbreviations, and 

typographical errors. Now it is becoming possible to deal with these data types 

through the technology of big data analytics. 

Value: The final V represents the capability to turn the data into value. Big 

data can deliver value in almost any area of business or society. Value is an 

important issue in a big data society today and many data scientists are trying to 

develop ways to get valuable information from big data. 

Big data is not just a large quantity of data; it is also a concept that allows 

us to understand the existing data in new ways and helps us interpret existing 

data and analyze future data (Pinal, 2013). Big data analytics is an important 

progress in big data practices, and if utilized effectively, it can produce a lot of 

benefits to the field (Burbank, 2016).  

B. CLUSTERING 

Clustering is another important skill in big data analytics by which to 

extract valuable information. It is the process of organizing data into groups 

according to certain properties or similarities. Clustering is used to discover 
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natural groups or underlying structure of a given data set in, for example, text 

mining, social network analysis, bioinformatics, market research, and many other 

fields (Hu & Kaabouch, 2013). That is, clusters are sets of data points that share 

similar attributes, and clustering algorithms are the techniques that group these 

data points into different clusters based on their similarities. 

The significant part of most clustering algorithms is the measurement of 

proximity between two observations. The proximity is a measurement of the 

similarity or dissimilarity. If the larger proximity value for two objects means that 

they are close, the measurement can be referred to as similarity. If the larger 

proximity value for two objects means that they are very different, it can be 

referred to as dissimilarity. The proximities can be of different data types and can 

be measured on different data scales—binary, discrete, continuous, qualitative 

and quantitative.  

Buttrey and Whitaker (2015a) assert that a dissimilarity measure can be 

expected to have certain qualities. First, it should incorporate both numerical and 

categorical variables. Second, it should be insensitive to linear scaling of numeric 

variables. Third, it should permit the incorporation of variable-specific weights so 

that some variables can be made more influential than others. Fourth, it should 

detect the common situation where two variables contain identical information 

and prevent those variables from being double-counted. That is, it should be able 

to adjust for correlation among variables. Fifth, it should be insensitive to extreme 

outliers in the data. Sixth, it should operate in the presence of missing data. 

Seventh, it should be straightforward to compute, even in large data sets. 

To satisfy these qualities, many data scientists are working on developing 

new technologies, but there are still unsolved problems with measuring 

proximities and hence with clustering. Processing large amounts of complex data 

can be a problem, because computation time can be intolerable (Eynard, 2009). 

In addition, differing clustering results can be produced by different algorithms.  
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C. TREE DISTANCE ALGORITHM 

In this thesis, we describe the tree distance algorithm, which is well suited 

for computing inter-point distances in big data sets, and we use its 

implementation in the treeClust package in R.  

Tree distances have several advantages for measuring dissimilarities 

among observations (Buttrey & Whitaker, 2015a). First, the tree distance 

algorithm works on mixed data sets, which have both numeric and categorical 

variables. The algorithm builds one tree per variable, treating each variable, in 

turn, as the response and the remaining variables as predictors. For numeric 

responses, regression trees are built and for categorical responses, classification 

trees are built. Second, the distance is resistant to noise variables and unlike 

Gower dissimilarities (Gower, 1966), tree distances are resistant to outliers. 

Third, the tree-distance algorithm is invariant to different scales of the data and 

resistant to monotonic functions of the variables.  

The central idea of the tree distance algorithm is that two observations are 

similar if they tend to fall in the same leaves of classification or regression trees 

(Buttrey & Whitaker, 2015a). For a data set with  variables, the algorithm 

creates  trees, each variable serving as the response variable for one tree, 

with the others acting as predictors. It also uses cross-validation to prune each 

tree to an optimal size and selects the size for which the cross-validated error 

rate is minimized. The treeClust package in R implements this algorithm.  

A tree built with a noise variable as the response often has a pruned size 

of 1 and classifies every observation into the same leaf, so it contributes nothing 

to the dissimilarity computations. Let the label of the leaf of the  tree into which 

the  observation falls be denoted by . Then the algorithm measures the 

dissimilarity between observations  and  by  

, 
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where  is the “inter-leaf” distance, which is the distance between leaf   

and  for tree . 

The package supplies four options for the specific form of dt. For the 

distance called d1 for example, dt(i,j) = 1 when Lt(i)  ≠ Lt(j). After a tree is built, the 

algorithm computes the sum of deviances in its leaves. A tree’s quality can be 

measured by the ratio of the change in deviance between root and leaves to the 

deviance at the root. This ratio is denoted by , a number between zero and 1. A 

tree with a large is presumably better able to help cluster individual 

observations. For the distance d2, therefore, each tree gets a weight based on 

how big its is compared to the largest  observed across all trees. That means 

when observations  and  fall in the same leaf of tree , then , and 

otherwise is . A third distance, d3, accounts for distances among the 

leaves within a specific tree, and a fourth, d4, uses d3 but also assign weights to 

trees as d2 does. Buttrey and Whitaker (2015a, pp. 5–6) show a hypothetical 

example of a tree in their paper.  

The treeClust package includes options for clustering and measures the 

clustering solution’s quality by Cramer’s V (Cramér, 1999), which is the usual  

measure of association for the two-way table, scaled to produce a number 

between 0 and 1. Cramer’s V will be small when the cluster labels assigned by 

the clustering algorithm do not follow class labels representing actual cluster 

membership well, and close to 1 when most clusters correspond to classes.  

Figure 1 is a picture of the treeClust output for the “splice” data (see 

section F). This picture shows the deviance ratio on the y axis, scaled to have 

maximum 1, and the tree number (or the corresponding variable number) on the 

x axis. Each point shown by a digit gives the size (the number of leaves) of a 

tree. The splice data has 60 variables, which means the treeClust algorithm 

makes 60 trees. After pruning only 59 trees are left. We can see the number “1” 

at x=32. The number “1” means that the tree for the 32nd variable was pruned 



 10 

down to the root node and dropped from the distance computation. The best 

tree—the one whose deviance ratio is highest—is number 30; that tree has three 

leaves.  

Figure 1.  The treeClust plot for the splice data 

 
 

Another distance we use in this work is the Gower distance. This well-

known distance is especially suited for handling mixed-type data. Gower (1971) 

introduced the distance between  and  across variables  as the average of all 

component-wise distances. The Gower distance is defined as 

1 1

/
p p

ij ijk ijk ijk
k k

S Sδ δ
= =

= ∑ ∑ , where 

is a dissimilarity score for xi and xj on variable k, k = 1,…, p, that ranges 

between 0 and 1. For a numeric variable, is defined as 

. For categorical variables, is 0 if xik = xjk and 

otherwise 1.   adjusts for the ability to make comparisons, taking the value 0 

when no comparison can be made (because of missing values, or when xi = xj = 

0 for an “asymmetric” binary variable where only the value “1” carries 

information). The Gower distance is produced by the daisy() function in R 
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(Maechler, Rousseeuw, Struyf, Hubert & Hornik, 2015), which also permits 

component-wise weights; we use this function in our work to compare Gower’s 

distance with the results of the tree distance algorithm. 

As part of analyzing the data, it is valuable to be able to visualize it. Data 

visualization is a powerful way to convey knowledge and enables decision 

makers to see analytic results visually. One of the most important benefits is that 

it makes it possible to identify and examine large amounts of data (Iliinsky, 2012). 

It also allows access to challenging data sets and provides useful information in 

an efficient way. 

D. T-DISTRIBUTED STOCHASTIC EMBEDDING ALGORITHM 

In this section, we describe the t-SNE algorithm for visualization. This 

section follows the development of van der Maaten and Hinton (2008). t-SNE 

stands for t-distributed stochastic neighbor embedding. The t-SNE algorithm 

produces a visualization of high-dimensional data by assigning individual data 

points into a two or three-dimensional map. The t-SNE algorithm is especially 

effective for high-dimensional data that consists of a large number of classes. 

Maaten and Hinton also explain that this algorithm is efficient not only to capture 

the high dimensions’ local structure, but also to find a global structure having 

clusters with various scales. Also the algorithm produces high quality 

visualizations by minimizing the tendency of points to gather at the center of the 

map. 

According to van der Maaten and Hinton (2008), the original Stochastic 

Neighbor Embedding (SNE) algorithm calculates Euclidean distances in high 

dimensions and generates conditional probabilities which reflect similarities. They 

set the original high-dimensional data’s conditional probability as , which is 

the similarity of datapoint  to datapoint . The conditional probability for the 

high-dimensional data  is defined by 
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, 

where   is the variance of a Gaussian distribution centered on . Since the 

density of the data varies, there is no unique optimal  for all datapoints. If a 

part is crowded with data points,  ‘s value is smaller than a part the data points 

are distant. So  will be high for neighboring points and will be very tiny for far 

distant points. 

They also set the low-dimensional data’s conditional probability as  for 

the low-dimensional analogues  and  of the high-dimensional data points    

and . The authors set the Gaussian variance  to  for , so the 

conditional probability for low-dimensional data  is denoted by 

 

If the points produced for the low-dimensional map accurately represent 

the proximity between data points in high dimensions, the conditional 

probabilities  and  will be equal. So the SNE algorithm is designed to find a 

representation of low-dimensional data points that minimizes the discrepancy 

between conditional probabilities.  

The SNE algorithm establishes a cost function based on the sum of 

Kullback-Leiber divergences. The cost function C is defined by 

  

where  denotes the conditional probability distribution over all data points from 

 in high-dimensional space, and  denotes the conditional probability 
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distribution over all data points from  in low-dimensional space. Since the 

Kullback-Leibler divergence is asymmetric, it does not measure the errors in low 

dimensions equally. To reduce the cost, using neighboring points is reasonable 

for displaying far distant points.  

A gradient descent method is used for the minimization of the cost function C. 

The gradient has a very simple form given by 

 .  

Although the SNE algorithm constructs reasonably good visualizations, 

the cost function is difficult to optimize. It also suffers from the “crowding 

problem.” In van der Maaten and Hinton’s study, the crowding problem means 

that the two-dimensional map is not large enough to express the distance 

between two points in high dimensions, so most points that are at a “moderate 

distance from data point ” are placed much closer than the actual distances in 

the high-dimensional map. So, most points that are at a “moderate distance from 

datapoint ” should be placed much farther apart to more accurately reflect 

distances in the original space. The t-SNE algorithm alleviates both these 

problems.  

The cost function in the t-SNE algorithm differs in two ways from the cost 

function in the SNE algorithm (van der Maaten & Hinton, 2008). First, it uses “a 

symmetrized version of the SNE cost function with simpler gradients” introduced 

by Cook, Sutskever, Mnih, and Hinton (2007). In particular, the conditional 

probabilities for the high-dimensional space are replaced by 

| |

2
i j j i

ij

p p
p

+
=  

with pii=0 and with the analogous replacement for the conditional probabilities in 

the low-dimensional space. 
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Second, the cost function in the t-SNE algorithm uses a Student-t 

distribution with one degree of freedom (that is, a Cauchy distribution), while the 

cost function in the SNE algorithm uses a Gaussian distribution to compute the 

proximity between points in low dimensions.  

For optimizing the t-SNE cost function, van der Maaten and Hinton (2008) 

suggested two more tricks. The first one is “early compression”, which means 

that it makes the points in the map closely gather during optimization. When two 

groups of mapped points are in close proximity, one cluster can move through 

another easily. This makes the exploration of space for global organization of the 

data much easier. An additional L2-penalty is added to perform “early 

compression” to the cost function. It is “proportional to the sum of squared 

distances of the map points from the origin”. The second trick is “early 

exaggeration,” which is to multiply all of the ‘s by, e.g., 4 at the initial stages of 

the optimization. This means that almost all of the s, the sum of which is 1, are 

too small to model their corresponding ‘s. So, the original clusters in the data 

produce “tight widely-separated clusters” and the resulting empty space makes 

clusters move around easily in order to find a good global organization. 

The t-SNE algorithm attempts to preserve the data’s topology (Olah, 

2014). According to the author, the algorithm defines neighboring points, “trying 

to make all points have the same number of neighbors.” 

The t-SNE algorithm often does a good job at revealing clusters in data, 

but tends to get stuck in local minima (Olah, 2014). The author gives the example 

depicted in Figure 2 of clusters from the MNIST data set (see Section F for a 

description of this data). Without the color, there appear to be three clusters in 

Figure 2. But, points in the red cluster are separated by the blue cluster because 

the t-SNE algorithm converges to local minima.  
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Figure 2.  The t-SNE local min problem on MNIST data 

 
Source: GitHub colah/Visualizing-Deep-Learning. (2014). Retrieved from 
http://colah.github.io/posts/2014-10-Visualizing-MNIST/ 

Van der Maaten and Hinton (2008) demonstrate three potential 

weaknesses of their approach, even though the t-SNE algorithm outperforms 

other techniques for data visualization. First, the t-SNE algorithm’s 

implementation of dimensionality reduction is obscure. This means that when the 

dimensionality reduction is not conducted to two or three, but to more than three 

dimensions, it is not known how t-SNE will perform. This problem arises because 

the heavy tail of the Student-t distribution comprises a large section of the 

probability mass in high dimensions. Second, t-SNE is sensitive to the data’s 

inherent dimensionality due to the algorithm’s local nature. The t-SNE algorithm 

conducts the data’s dimensionality reduction on the basis of the data’s local 

properties using a local linearity assumption on the manifold which may be 

violated in data sets with a high innate dimensionality. Third, the t-SNE algorithm 

is not assured to identify a global optimum. The non-convexity of the cost 

function is the main weakness of the t-SNE algorithm. The selection of several 

parameters is needed for optimizing and the solution depends on which 

parameters are selected for optimizing and initial starting conditions. According to 

the authors, the quality of the visualizations do not change much even with local 

optima. 
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The t-SNE algorithm is still one of the popular techniques for visualization 

even though it has weaknesses. We use the t-SNE algorithm for exploring 

dimensionality reduction. 

E. DIMENSIONALITY REDUCTION 

The aim of dimensionality reduction is to maintain as much of the structure 

in high dimensions as much as possible in the two- or three-dimensional map 

(van der Maaten & Hinton, 2008). That is, dimensionality reduction represents 

the process of remodeling high-dimensional data into low-dimensional data while 

assuring that the process preserves corresponding information (Ray, 2015).  

Dimensionality reduction techniques reconstruct a dataset  with the 

original high dimension D to a dataset  with low dimension , preserving the 

structure of the dataset in high dimensions as far as possible. There are some 

benefits for dimensionality reduction (van der Maaten, Postma & van den Herik, 

2008). First, it helps in data compression and reduces the storage space 

required. Second, it reduces the time required for performing the same 

computations. Fewer dimensions lead to less computing; they also can allow 

usage of algorithms unfit for high-dimensional data. Third, reducing dimensions 

also tends to reduce multi-collinearity among variables which in turn tends to 

improve the performance of statistical models fit to the data. 

There are many techniques to perform dimensionality reduction. We 

demonstrate two common techniques here. 

1. Principal Component Analysis (PCA) 

Principal Components Analysis (PCA) is the one of the popular techniques 

for dimensionality reduction; it is also called classical multidimensional scaling. 

The main idea of PCA is the data points in n-dimensional data may lie on or near 

a linear subspace of dimension d, So given n-dimensional data, PCA tries to 

produce a subspace of d-dimensional data (Ghodsi, 2006). The goals of PCA are 

to elicit the most meaningful clue from the data, compress the data while 
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preserving the meaningful information, and evaluate the structure of the data set 

(Abdi & Williams, 2010). The PCA replaces the original variables with the 

principal components (linear functions of the original variables) to accomplish 

these goals. The first principal component is the one with the biggest variance. 

The second principal component has the greatest variance among those 

orthogonal to the first principal component. The remaining n components are 

computed likewise. Only the first d principal components are retained where d 

may be 2 or 3 for visualization or d may be chosen to be large enough to explain 

most (e.g. 90%) of the variability of the original variables. 

PCA has a few advantages and disadvantages (Karamizadeh, Abdullah, 

Manaf, Zamani, & Hooman, 2013). According to the authors, the advantages of 

PCA are: its insensitivity to noise, reduced requirements for computer memory, 

and increased processing speed. The authors explain that PCA also has 

disadvantages. It is challenging to estimate the covariance matrix of the data, 

from which the principal components are derived, and PCA does not always 

admit of easy interpretation because each individual principal component is a 

linear combination of the all variables. 

2. Multidimensional Scaling (MDS) 

Multidimensional scaling (MDS) is one of the popular techniques for 

multivariate data analysis that aims to reveal the structure of a data set by 

plotting it in two or three dimensions. It is a powerful tool in data visualization and 

other data processing areas.  

The goal of MDS is to find a spatial configuration in low dimensions such 

that the actual distance between two points, say  , is close to the distance 

between the two points in the low-dimensional space after multidimensional 

scaling, . The distances in the usual implementations are Euclidean. MDS 

arranges data points in a two- or three- dimensional map, and investigates how 

well the new distances between data points preserve the relationship between 

the high dimensional distances. Technically, it uses an algorithm that evaluates 
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several new arrangements and optimizes to maximize the goodness-of-fit 

(Sahasrabudhe, Machiraju, & Zhu, 2001). 

Equivalently, according to van der Maaten, Postma and van den Herik 

(2008), the stress measures the quality of the mapping by measuring the error 

between the low-dimensional data’s pairwise distances and the high-dimensional 

data’s pairwise distances. When the distances are Euclidian, the raw stress 

function for MDS is given by  

, where 

||xi – xj|| is the Euclidean distance between the high-dimensional data points and  

||yi – yj|| is the Euclidean distance between the low-dimensional data points. 

MDS is a broad term that includes several types of mappings. The types 

include metric and non-metric MDS and CMDS  (Young, 1985).  

One example of non-metric MDS is Sammon mapping. It attempts to 

“minimize the differences between corresponding inter-point distances in the two 

spaces”, which are the original high-dimensional one and the low dimensional 

one, and tries to preserve structure in high dimensions (Henderson, 1997). The 

author gives projection pictures (Figure 3) to compare PCA with Sammon 

mapping. The data set has “three mutually perpendicular circles” in six-

dimensional space. The left side picture, produced by PCA, shows that the 

technique does not preserve the circles in the two-dimensional mapping. In 

contrast the right side picture, produced by Sammon mapping, shows some of 

the topology of the original data set.  
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Figure 3.  PCA and Sammon projection of six-dimensions 

  
Source: Sammon mapping. (1997). http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/
AV0910/henderson.pdf 

According to the author, the  stress for Sammon mapping, defined as 

, where 

 is the pairwise distance between data points in low-dimensional space and  

is the pairwise distance between data points in high-dimensional space. Sammon 

mapping accepts  as Euclidean distance and keeps small  since it gives a 

higher degree of importance to small  (Jung, 2013). Figure 4 shows the results 

of the 1925-1929 cohorts of the bank employee data (analyzed in Izenman, 

2008). It displays the CMDS in the left panel and the Sammon mapping in the 

right. The Sammon mapping preserves small s better than CMDS, while 

compressing relatively larger s.  
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Figure 4.  Classical multidimensional scaling and Sammon mapping 

 

Source: Multidimensional scaling, (2013). Retrieved from http://www.stat.pitt.edu/
sungkyu/course/2221Fall13/lec8_mds_combined.pdf 

Sammon’s non-linear mapping is implemented through the sammon() function in 

R’s MASS library (Venables & Ripley, 2002). We use this function for 

visualization as one of the MDS techniques. 

Another non-metric MDS is Kruskal’s non-metric MDS, which is 

implemented in the isoMDS() function in R. It uses the stress function, defined as 

, where 

 is the actual  distance and is the  distance in lower-dimensional space 

(Izenman, 2008).  

We also use CMDS for visualization to compare to the t-SNE algorithm. 

CMDS arranges the data points in a low-dimensional map to reduce the 

discrepancy between the pairwise distances in high dimensions and the pairwise 

distances in low dimensions. CDMS finds the centered configuration  

for some  so that their pairwise distances are the same as the original 

distances; then dimensionality reduction from  proceeds as in 

principal component analysis (Jung, 2013). 
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One problem of MDS is that its complexity increases quickly with the 

number of dimensions. This increase in the number of parameters means that 

the resulting model can be as complex as the data itself. Even though MDS has 

difficulties, it is still one of the popular dimensionality reduction techniques. It 

performs particularly well on relatively small data sets (Young, 1985). 

F. DATA SETS 

In this work we produce Gower and tree distance measures of inter-point 

dissimilarity in high dimensions. Then we apply the Barns-Hut implementation of 

the t-SNE algorithm (Krijthe, 2015), CMDS (R Core Team, 2015), and non-metric 

MDS (Venables & Ripley, 2002) to those distances to determine combinations 

that produce consistently good visualizations. In this section, we describe the 

characteristics of the data sets used in our work. Each of the data sets has a 

known class variable which is not incorporated into the inter-point distances. One 

measure of whether the visualization of the data is adequate is whether 

observations from different classes tend to fall in different clusters in the low-

dimensional map.  

1. Splice 

The Splice data is taken from the UC Irvine Machine Learning Repository 

(Lichman, 2013). This database’s original name is “primate splice-junction gene 

sequences” data set. All samples are taken from Genbank 64.1. The Splice data 

has been widely used for machine learning techniques. The number of instances 

is 3190 and the number of attributes is 62, which consist of the instance name, 

60 sequential DNA nucleotide positions and the class. Attribute number 1 (V1) is 

one of {N, EI, IE}, indicating the class. IE denotes a “from intron, which are the 

parts of the DNA sequence that are spliced out, to exon, which are the parts of 

the DNA sequence retained after splicing” boundary; EI denotes a “from exon to 

intron” boundary, and N means “neither.” Attribute number 2 (V2) is the instance 

name and is removed. Attribute numbers 3 to 62 are the sequence and each of 

these attributes is usually filled by one of {A, G, T, C}. Other characters {D, N, S, 
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R} imply imprecise knowledge among the characters {A, G, T, C}, so we do not 

use the observations which include the four characters {D, N, S, R} for our test. 

After excluding these observations and withholding the class, this data set has 

3,175 instances and 60 attributes. 

2. MNIST 

We took the MNIST data from Yann LeCun’s website (LeCun, 2016). It is 

data on a large set of handwritten digits data for a digit recognition system. The 

training set has 60,000 digits each representing a number from 0 to 9 and the 

test set has another 10,000 digits. Each monochrome image has 28 by 28 pixels, 

which is 784 pixels total, and is centered within a box (Olah, 2014). Figure 5 

contains examples of the MNIST data sets. 

Figure 5.  Examples of MNIST data set 

 
Source: Christopher Olah. (2014). “Visualiing MNIST: An exploration of 
dimensinality reduction,” October 9. Retrieved from http://colah.github.io/posts/
2014-10-Visualizing-MNIST/ 

According to the author, MNIST is a simple computer vision dataset. As 

mentioned above, MNIST data consists of 28x28 pixel images of handwritten 

digits. So the image can be regarded as “an array of numbers describing how 

dark each pixel is”. For instance, we can think of number 1 as in Figure 6. Figure 

6 shows how the pixels correspond to the numbers’ appearance. 
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Figure 6.  Examples of MNIST data set 

 
Source: Christopher Olah. (2014). “Visualiing MNIST: An exploration of dimensinality 
reduction,” October 9. Retrieved from http://colah.github.io/posts/2014-10-Visualizing-
MNIST/ 

As we can see in Figure 6, there is a 28 by 28 array for each image in 

MNIST data; this can be unfolded into a 784-dimensional vector for each 

observation. The vector’s value indicates “how dark” the pixel is and the value is 

between zero and one (Olah, 2014).  

MNIST is a favorable data set for learning pattern recognition and other 

techniques, because we do not need to spend much time and effort to process 

and format the data (LeCun, Bottou, Bengio, & Haffner, 1998). Practically, the 

MNIST data is used vigorously for machine learning and neural networks today. 

We use the MNIST data set for our experiment, because it is well 

processed and formatted, as it is mentioned above, and it is a relatively large 

data set which has 784 dimensions.  In practice we often use a sample of 1,000 

records or so, rather than using the entire set of 60,000 records. 

3. Covertype 

The Covertype data set is taken from the UC Irvine Machine Learning 

Repository (Lichman, 2013). This database’s original name is “forest cover type 

dataset” and initially compiled by Jock A. Blackard. It is for predicting forest cover 

type only from cartographic variables and a mixed-type data set. The data set 
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has 54 variables, of which ten are quantitative measures and 44 are binary 

variables representing soil conditions and wilderness areas (Meyer, 2001). The 

response variable is the forest cover type, which are seven specific forest cover 

types; spruce/fir, lodgepole pine, ponderosa pine, cottonwood/willow, aspen, 

douglas-fir, and krummholz. The actual forest cover type and the other variables 

are from US Forest Service and US Geological Survey. The total number of 

observations is 581,102 and the training set includes 11,340. We sample 1,000 

rows and use this mixed data as our third data set. 

G. SUMMARY 

In this chapter, we reviewed the characteristic of big data sets today and 

clustering, which is an important tool in the analysis of big data. We reviewed the 

tree distance algorithm that we use to measure inter-point distances in our data 

sets. The tree distance algorithm has benefits for mixed data type, noise, outliers, 

and different scales of data. Then we reviewed the t-SNE algorithm for our 

visualization. The t-SNE algorithm is a popular visualization technique, especially 

for high-dimensional data. We note that categorical variables with c classes are 

represented by c or c–1 binary variables, thus even data sets containing a 

moderate number of categorical variables can be thought of as high-dimensional 

data. And we reviewed dimensionality reduction and some common techniques. 

At the end of the chapter, we described the data sets we used in our research: 

the Splice, the MNIST, and the Covertype data sets. 
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III. METHODOLOGY 

In this chapter, we demonstrate: the tree distance algorithm for computing 

inter-point distances, the Barnes-Hut implementation of the t-SNE algorithm and 

CMDS for visualization and dimensionality reduction. Then, we describe the 

experimental setup for our dimensionality reduction experiment. The computation 

time of the Barnes-Hut t-SNE algorithm is much less expensive than that of the 

original t-SNE algorithm and also outperforms it on mapping data from high 

dimensions to low dimensions. We demonstrate how we conduct the new 

dimensionality reduction technique in this chapter. The chapter is organized as 

follows: Section A describes the treeClust package in R. Section B demonstrates 

the Rtsne package in the R for t-SNE visualization. Section C describes CMDS. 

Section D introduces how we explore the new technique for dimensionality 

reduction.  

A. TREECLUST ALGORITHM FOR CLUSTERING 

In this section, we describe the treeClust package in R we use for 

computing inter-point distances. We use the tree distance algorithm implemented 

using treeClust for clustering since Euclidean distance usually needs to be 

extended when some of the attributes are categorical (Buttrey & Whitaker, 

2015b). The package has also an ability to generate a new numeric data set, 

which is called “newdata,” which has the property that the inter-point distances 

among observations in “newdata” mirror the inter-point distances computed with 

the treeClust mechanism. This feature of treeClust allows us to handle larger 

data sets, since the “newdata” set will generally have fewer entries than the 

matrix of all pairwise inter-point distances produced by, for example, the Gower 

technique.  

Some features of treeClust deserve mention here. First, there is a choice 

of tree-based dissimilarity measure, indicated by an integer from 1 to 4 and we 

apply 4. Buttrey and Whitaker (2015a) compared the clustering method’s 
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performance with Cramer’s V, and dissimilarity measure 4 frequently showed the 

Cramer’s V value higher than that of the other measures. Second, a control 

argument allows us to modify some of the parameters to the algorithm and to 

determine which results should be returned. For example, the user can request 

the “newdata” object, which is computed not from pairwise distances among 

observations, but from the set of pairwise distances among leaves (Buttrey & 

Whitaker, 2015b).  

We apply both Gower and tree distance approaches to include both 

categorical and numeric values; then we use the CMDS algorithm and the t-SNE 

algorithm to the pairwise distances (Gower) or the “dists” (treeClust) for exploring 

visualization and dimensionality reduction. 

B. BARNES-HUT T-SNE ALGORITHM FOR VISUALIZATION 

In this section, we describe the Barnes-Hut implementation of the t-SNE 

algorithm. Krijthe (2015) provides this implementation in the Rtsne package in R. 

According to van der Maaten (2014), the computational complexity of the SNE 

class of algorithms for “the number of input objects N” increases exponentially 

and it is the main limitation of the t-SNE algorithm. Practically, the application of 

the t-SNE algorithm is limited to relatively small data sets, with only a few 

thousand points. The author explored the Barnes-Hut approximation for the SNE 

class of algorithms that “require only  computation and  

memory.” Application of Barnes-Hut to the t-SNE algorithm shows that the 

algorithm is considerably accelerated compared to the standard t-SNE algorithm, 

and it visualizes the large data sets successfully as well. 

In practice, we examined the tsne package in R, Donaldson (2012), for the 

Splice and MNIST data sets at first. But we found that the tsne package requires 

much more computation time than the Rtsne package, which uses the Barnes-

Hut t-SNE algorithm. For example, running the tsne() function (from the tsne 

package) on a sample of 1,000 observations from the MNIST data, required 390 

seconds. On the other hand, the Rtsne() function on the same data required only 
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32 seconds, less than a tenth of the time. Therefore we used the Barnes-Hut t-

SNE algorithm, in the Rtsne package in R, instead of the original t-SNE 

algorithm, from the tsne package. The Barns-Hut t-SNE algorithm is also robust 

for distinguishing classes of large data set in terms of visualization.  

Figure 7 and Figure 8 shows the 2D plots for the sample of 1,000 

observations from the MNIST data. In each plot the points are labeled and 

colored by the correct classification (that is, the actual digit written). It appears 

that the plot for Rtsne (Figure 8) seems more useful in distinguishing the classes 

than the plot for tsne (Figure 7).  

Figure 7.  t-SNE 2D plot of MNIST data 

 

Figure 8.  Rtsne 2D plot of MNIST data 
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We also sampled 500 observations from the Splice data and applied the 

Rtsne function using tree distance because all Splice variables are categorical. 

Figure 9 is the 2D plot using Rtsne for Splice data with each observation colored 

by its true class. The points in Figure 9 overlap a lot, so we cannot determine 

easily whether the t-SNE can separate the true classes or not. So, we plotted a 

three-dimensional t-SNE mapping using Rtsne in Figure 10. 

Figure 9.  Rtsne 2D plot of Splice data 

 
 

Figure 10.  Rtsne 3D plot of Splice data 
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The three-dimensional version outperforms the two dimensional one, 

especially in terms of the extent of overlapping. Because the t-SNE algorithm 

tries to put a lot of space between clusters, the points are mapping crowded 

inside the clusters. We explore two dimensions and three dimensions together to 

see how the dimensionality reduction performs over the overlapping part as well. 

C. CLASSICAL MULTIDIMENSIONAL SCALING (CMDS) 

We compare CMDS with the results of the Barnes-Hut t-SNE algorithm. 

CMDS is the one of the traditional dimensionality reduction techniques and it is a 

linear technique that tries to keep the representation of dissimilarity between two 

points in low dimensions far apart (van der Maaten & Hinton, 2008).  

We also sampled 500 observations from the Splice data, and use CMDS, 

which is implemented in the cmdscale() function in R. Figure 11 is the picture of 

the result when we applied the CMDS to the Splice sample using tree distance. 

The result looks quite good even though the points overlap a little. We also 

plotted the three-dimensional picture (Figure 12). 

Figure 11.  CMDS 2D plot of Splice data 
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Figure 12.  CDMS 3D plot of Splice data 

 
 

We can see the result of CMDS more clearly in three-dimensional plot. We 

also use the Gower distance, which is implemented by the daisy() function in R, 

for clustering and compare the performances both of the two distances, Gower 

and tree distance for clustering and of the two visualization techniques, which are 

implemented by the functions cmdscale() and Rtsne(). 

D. EXPERIMENTS 

In this thesis, we compare the Barnes Hut t-SNE algorithm and CMDS 

using Gower distance and tree distance respectively and evaluate our 

dimensionality reduction experiment for the t-SNE algorithm.  

Generally, CMDS performs well for visualization and dimensionality 

reduction. But if the data set has a lot of variables and is of mixed data type, it 

can produce poor pictures. The t-SNE algorithm frequently performs better, but 

its performance depends on the inter-point distance used. The Gower distance is 

widely used in clustering, while the tree distance is robust for mixed data and 

outliers. So we compare two visualization and clustering based on two distances 

and explore which one performs better. 
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Moreover, dimensionality reduction techniques usually try to map the data 

from high dimensions to two or three dimensions directly. We explore a new 

technique that does not appear to have been tried in the literature. We conduct 

what we call “longer path dimensionality reduction” using Barnes Hut t-SNE 

algorithm on a data set, starting with a very high, original dimensionality from 

(perhaps 100 or 200) to a high dimensionality (e.g., 60, 50) to a moderate 

number of dimensions (e.g., 30,10) to a low number of dimensions (e.g., 3, 2). 

We explore this technique on the Splice data, which is relatively small data set 

and categorical, to the MNIST data, which is relatively large data set and 

numerical, and to the Covertype data, which is a large data set of mixed type – 

although for computational reasons, and to keep pictures from being overrun with 

points, we use samples in these last two cases. 

To recap, then, for each data set, we withheld the class variable and used 

it only to color or label points in the pictures. We sampled 3,000 records from 

MNIST and 1,000 records from Covertype. We use the daisy() function to 

compute the Gower distance, and implemented the classical multidimensional 

scaling technique, Sammon mapping, the isoMDS algorithm, and Barnes-Hut t-

SNE using the R function cmdscale(), sammon(), isoMDS() and Rtsne(). Then 

we used the treeClust() function to compute inter-point distances and implement 

the same visualization techniques. We show the resulting mappings as two- or 

three-dimensional pictures and add color to the points based on class to identify 

how well the mapping preserves classes. 
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IV. RESULTS 

In this chapter, we describe the results of using several visualization 

techniques with the Gower distance and the tree distance and the results of our 

experiment for dimensionality reduction. We demonstrate the results of our three 

data sets in sections A, B, and C.   

A. THE RESULTS WITH THE SPLICE DATA SET 

As described above, we computed the Gower and tree distances in order 

to compare those two techniques. For each distance measurement we 

conducted CMDS (R Core Team, 2015), non-metric MDS (isoMDS) (Venables & 

Ripley, 2002), Sammon mapping (Sammon MDS) (Venables & Ripley, 2002) and 

the t-SNE algorithm on Splice data set.  

There are some cases where the three-dimensional plot displays much 

more informatively and makes the structure of the data easier to understand than 

the two-dimensional plot does. But, sometimes the two-dimensional plot 

produces clearer visualizations. So we produce both plots for a better 

understanding of our experiment.  Also, we conducted “long path” dimensionality 

reduction with MDS, but the plots look just about the same as the plot without 

taking long path dimensionality reduction. So only the t-SNE algorithm was used 

for long path dimensionality reduction. 

The Splice data set has 3175 rows and 60 variables. Figure 13 shows the 

2D plots for CMDS, isoMDS, Sammon MDS, and t-SNE using Gower distances. 

It appears that CMDS performs better in distinguishing the classes (colored dots) 

than t-SNE. We can see the results more clearly in the 3D plots (Figure 14).  
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Figure 13.  Splice data 2D using daisy() function 
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Figure 14.  Splice data 3D using daisy() function 
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Figure 15 shows the result of taking the long path to dimensionality 

reduction using the Rtsne() function with the Gower distances. We can see the 

3D plots as well (Figure 16). The plots do not look as good as the CMDS plot. 

Some observations are overlapped and some boundaries between two classes 

are ambiguous. 
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Figure 15.  Long path of t-SNE of Splice data using daisy() function 
 

From original dimension to 60 to 2 
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From original dimension to 60 to 50 to 2 

 



 38 

Figure 16.  Long path of t-SNE of Splice data using daisy() function 
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From original dimension to 60 to 60 to 3 

 

From original dimension to 60 to 50 to 3 
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Figure 17 is the 2D plots of CMDS, isoMDS, Sammon MDS, and t-SNE 

using the treeClust() function. They look quite different from the plots using 

daisy() function. CMDS plot still looks good, and is divided into several clusters 

that clustered more specifically. The t-SNE plot for treeClust() has a little overlap, 

but is much better than the one for daisy(). We can see that the treeClust() 

performs well for clustering in the 3D plot as well (Figure 18).  

Figure 17.  Splice data 2D using treeClust() function 
 

cmdscale() isoMDS() 

  

Sammon() Rtsne() 
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Figure 18.  Splice data 3D using treeClust() function 
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Sammon() Rtsne() 

  

 

Figure 19 shows the plots of taking long path dimensionality reduction 

using the treeClust() function. It looks much better than the plots using the daisy() 

function as well. The shape is a little twisted, but the picture separates the 

classes more clearly. This result is visible in the 3D plots, too (Figure 20). 
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Figure 19.  Long path of t-SNE of Splice data using treeClust() function 
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Figure 20.  Long path of t-SNE of Splice data using treeClust() function 
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B. THE RESULTS WITH THE MNIST DATA SET 

Our second data set is the MNIST data. It is quite a large data set, having 

60,000 rows in the training data. So we sampled 3,000 points and explored 

clustering, visualization and long path dimensionality reduction. For this data set 

and the next we focus on the more successful CMDS and omit the results from 

the Sammon and isoMDS mappings. 

We found that there are some computation problems with taking the long 

path to dimensionality reduction. An unknown computation error occurred in the 

Rtsne package when we tried to select a dimensionality under fifty but greater 

than three. Errors occurred with 40, 30, 20, and ten dimensions, so we concluded 

that the Rtsne algorithm does not operate properly for fewer than fifty dimensions 

and explored a limited dimensionality reduction. The paths we tried were from the 

original dimension to 60 to 2 (or 3) dimensions, from the original to 60 to 60 to 2 

(3), and from the original to 60 to 50 to 2(3). There were also issues for 

dimensionality greater than sixty.  

Figure 21 shows the plots of CMDS and t-SNE using the daisy() and 

treeClust() function respectively. Surprisingly, CMDS plots look agglomerated; 

we can barely recognize the classes unlike in the Splice data. For t-SNE, the 

groups look well-separated for both daisy() and treeClust(). The plot for 

treeClust() displays boundaries between classes more obviously than the plot for 

daisy() and there are some overlapped parts in the plot for daisy() – although the 

plot for daisy() is informative too.  
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Figure 21.  MNIST data 2D using daisy() and treeClust() function 
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Figures 22 and 23 shows the plots from the long path dimensionality 

reduction using the daisy() function. The plot taking the longer path, e.g., from 

original to 60 to 50 to 2, appears to capture the clusters more obviously. We also 

found the interesting picture of t-SNE algorithm when we take long path 

dimensionality reduction. We have not figured out why, but the t-SNE algorithm 

tends produce twisted shapes when we take long path dimensionality reduction. 

Figures 24 and 25 plot the long path dimensionality reduction using the 

treeClust() function. The cluster boundaries in the plots using the treeClust() 

function look more obvious. 
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Figure 22.  Long path of t-SNE of MNIST data using daisy() function 
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Figure 23.  Long path of t-SNE of MNIST data using daisy() function 
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Figure 24.  Long path of t-SNE of MNIST data using treeClust() function 
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Figure 25.  Long path of t-SNE of MNIST data using treeClust() function 
 

From original dimension to 60 to 3 

 

From original dimension to 60 to 60 to 3 

 

From original dimension to 60 to 50 to 3 
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C. THE RESULTS WITH THE COVERTYPE DATA SET 

Our third data set is the Covertype data. It is also quite a large data set, 

with 11,340 rows in the training set, and mixed—both numerical and 

categorical—variables. So we sampled 1,000 points and explored clustering, 

visualization and long path dimensionality reduction to see how they work for 

mixed type data set.   

Figure 26 gives the plots of CMDS and t-SNE using daisy() and treeClust() 

functions respectively. The plots show more apparent distinction between daisy() 

and treeClust() function. As we described, the tree distance algorithm, which is 

implemented as the treeClust() function, is robust to outliers, missing values, 

various scales, and mixed type data, while Gower distance is not. Certainly, 

treeClust() function outperforms daisy() function, especially for this mixed type 

data set. So we conclude that the combination of treeClust() for clustering and 

Rtsne() for visualization can produce good results in mixed-type data sets. 
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Figure 26.  Covertype data using daisy() and treeClust() function 
 

cmdscale() using daisy() Rtsne() using daisy() 

  

cmdscale() using treeClust() Rtsne() using treeClust() 

  

 

Figure 27 shows the plots from taking the long path dimensionality 

reduction using daisy() function. The plot taking the longer path appears to 

separate the clusters more obviously, as with the MNIST data. We can see that 

the t-SNE algorithm produces twists like the MNIST data set (Figures 28 and 30). 

Figures 29 and 30 display plots taking long path dimensionality reduction using 

treeClust() function. They do not look as good as in the MNIST data set, but it 

appears that t-SNE algorithm tries to make close points closer and more distant 

points farther apart. 
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Figure 27.  Long path of t-SNE of Covertype data using daisy() function 
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Figure 28.  Long path of t-SNE of Covertype data using daisy() function 
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Figure 29.  Long path of t-SNE of Covertype data using treeClust() 
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Figure 30.  Long path of t-SNE of Covertype data using treeClust() 
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V. CONCLUSION 

Dimensionality reduction is a well-developed area in data analytics. 

Dimensionality reduction requires a measure of inter-point distance, which 

requires some thought in the case of mixed or categorical data. How to visualize 

more purely and clearly is the one of the unsolved problems in analytics, 

especially for high-dimensional and mixed type data sets. Also the high interest 

in and demand for big data today makes the visualization more important. We 

compared the t-SNE algorithm to several multidimensional scaling techniques 

using both Gower distance and tree distance and explored the dimensionality 

reduction taking long path using the t-SNE algorithm, which provides an effective 

way to visualize data sets. We found that the tree distance, which is implemented 

by the treeClust() function of the treeClust R package, outperforms the Gower 

distance, which is implemented by the daisy() function of the cluster R package, 

in our three data sets. We also found that t-SNE algorithm, which is implemented 

by the Rtsne() function (found in the Rtsne package), outperforms classical 

multidimensional scaling, which is implemented in the cmdscale() function, in 

most data sets. So, we conclude that when we use treeClust() and Rtsne() 

together, we usually get the best picture. 

The t-SNE algorithm has some advantages and disadvantages. First, it 

appears that the t-SNE algorithm visualizes more clearly when we map not just 

directly from the original, high-dimensional space to two or three dimensions, but 

via a “long path,” like from “very high” to “high” to “moderate” to “low” dimensions 

for dimensionality reduction. However, the long path can be computationally 

difficult and tends to produce twisted, snake-like shapes that can be hard to 

interpret. Another computational problem arises from duplicates. The t-SNE 

algorithms cannot operate on data with duplicate entries and some computational 

effort goes into detecting and removing duplicates. The duplicate problem seems 

to occur more often when we use the Rtsne() function for relatively small data 

sets. Fourth, the Rtnse() function’s default setting dimensionality is sixty. In terms 
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of dimensionality, when we tried the dimensionality reduction from the original 

dimensions to some number greater than sixty dimensions, it did not perform 

properly. There were also errors of unknown cause when trying to reduce to 

fewer than 50 dimensions.  

The t-SNE algorithm combined with tree distances gives us a chance to 

understand high dimensional data sets, and we found some evidence that we 

can produce more clear and reliable visualizations when we take the long path 

for dimensionality reduction. We could not find the reason why the Rtsne() 

function does not work for fewer than fifty dimensions, but it should be 

considered as future works for more profound dimensionality reduction 

technologies. Also, when we take long path dimensionality reduction, the 

algorithm tends to produce twisted shapes. We do not yet know the reason, but if 

we can figure out that, we can perhaps produce a visualization that is easier to 

interpret. Reliability Improvements to t-SNE could be very valuable in pursuing 

these avenues.  
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