
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis and Dissertation Collection

2016-03

Cost comparison among provable data possession schemes

Bremer, Stephen J.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/48485

NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
COST COMPARISON AMONG PROVABLE DATA

POSSESSION SCHEMES

by

Stephen J. Bremer

March 2016

Thesis Advisor: Mark Gondree
Second Reader: Zachary Peterson

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704�0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson Davis Highway, Suite 1204, Arlington, VA 22202�4302, and
to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

03-25-2016
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 06-11-2015 to 03-25-2016
4. TITLE AND SUBTITLE

COST COMPARISON AMONG PROVABLE DATA POSSESSION SCHEMES
5. FUNDING NUMBERS

6. AUTHOR(S)

Stephen J. Bremer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Provable data possession (PDP) provides mechanisms to efficiently audit the integrity of data held by third parties, like cloud service
providers. While multiple PDP schemes have been proposed, there is no research to date that provides in-depth cost analysis for PDP.
This research fills that gap by (1) collecting and analyzing cost data for four PDP schemes, (2) providing generic cost models (math-
ematical formulae expressing abstract models which can be used to infer future cost), and (3) comparing overall cost efficiency of
each PDP scheme. For the schemes considered in this study, we find all have nearly identical costs in practice; however, sophisticated
schemes designed with low communication complexity have higher preprocessing or storage costs which, depending on audit param-
eters, impact total scheme cost. We conclude that MAC-PDP and CPOR schemes are similar, whereas the cost of A-PDP becomes
relatively expensive at large file sizes. Our basis cost projections show tagging, storing and auditing a file for one year at one audit
per hour is at least $160 for a 1 GB file, $170 for a 1 TB file, and $2,000 for a 1 PB file using a cost model based on the Amazon S3
service.

14. SUBJECT TERMS

provable data possession, pdp, proof of retrievability, por, data integrity, data availability, cloud storage, cyber,
cyber security, costs, cost comparison

15. NUMBER OF
PAGES 59

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2�89)

Prescribed by ANSI Std. 239�18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

COST COMPARISON AMONG PROVABLE DATA POSSESSION SCHEMES

Stephen J. Bremer
Lieutenant, United States Navy

B.A., Texas State University, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN CYBER SYSTEMS AND OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
March 2016

Approved by: Mark Gondree
Thesis Advisor

Zachary Peterson
Second Reader

Cynthia Irvine
Chair, Cyber Academic Group

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Provable data possession (PDP) provides mechanisms to efficiently audit the integrity of
data held by third parties, like cloud service providers. While multiple PDP schemes have
been proposed, there is no research to date that provides in-depth cost analysis for PDP. This
research fills that gap by (1) collecting and analyzing cost data for four PDP schemes, (2)
providing generic cost models (mathematical formulae expressing abstract models which
can be used to infer future cost), and (3) comparing overall cost efficiency of each PDP
scheme. For the schemes considered in this study, we find all have nearly identical costs
in practice; however, sophisticated schemes designed with low communication complexity
have higher preprocessing or storage costs which, depending on audit parameters, impact
total scheme cost. We conclude that MAC-PDP and CPOR schemes are similar, whereas
the cost of A-PDP becomes relatively expensive at large file sizes. Our basis cost projec-
tions show tagging, storing and auditing a file for one year at one audit per hour is at least
$160 for a 1 GB file, $170 for a 1 TB file, and $2,000 for a 1 PB file using a cost model
based on the Amazon S3 service.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1

2 Background 3
2.1 Proof of Data Possession . 3

2.2 Constructions . 4

2.3 Cost Complexity . 7

2.4 Detection Probability. 8

3 Methodology 11
3.1 Experiment Environment . 11

3.2 Measurements and Costs . 12

3.3 Implementation . 13

4 Analysis 15
4.1 Tag File . 15

4.2 Generate Challenge . 18

4.3 Generate Proof . 21

4.4 Verify Proof . 26

4.5 Total Cost . 29

5 Conclusion 35
5.1 Future Work . 35

List of References 37

Initial Distribution List 41

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viii

List of Figures

Figure 3.1 PDP experiment architecture 11

Figure 3.2 Timing measurement definitions 12

Figure 4.1 File and block size vs. tag time (local data) 16

Figure 4.2 File and block size vs. tag time (S3 data) 16

Figure 4.3 File and block size vs. challenge time (local data) 19

Figure 4.4 File and block size vs. challenge time (S3 data) 19

Figure 4.5 File and block size vs. GETs . 23

Figure 4.6 File and block size vs. proof time (local data) 23

Figure 4.7 File and block size vs. proof time (S3 data) 24

Figure 4.8 File and block size vs. verify time (local data) 27

Figure 4.9 File and block size vs. verify time (S3 data) 27

Figure 4.10 Cost to tag . 30

Figure 4.11 File and block size vs. tag file overhead 31

Figure 4.12 Cost to store tag . 32

Figure 4.13 Cost to audit . 33

Figure 4.14 Cumulative tag, storage, and audit costs 34

Figure 4.15 File size vs. storage and audit costs 34

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 2.1 Asymptotic communication complexity 8

Table 3.1 Default benchmark parameters 13

Table 4.1 AWS S3 storage pricing . 30

Table 4.2 Comparison among remote storage provider limitations 30

Table 4.3 Tag file overhead and tag size . 31

Table 4.4 Max file sizes where tags can be stored as metadata 32

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

AE authenticated encryption

AWS Amazon Web Services

CIO Chief Information Officer

DISA Defense Information Systems Agency

DOD Department of Defense

NPS Naval Postgraduate School

PDP proof of data possession

POR proof of retrievability

PRF pseudo-random function

PRP pseudo-random permutation

S3 Simple Storage Service

US United States

USG United States government

VM virtual machine

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Acknowledgments

I would like to thank my advisor, Dr. Mark Gondree, for his mentorship throughout the
process of researching and writing my thesis. I am profoundly grateful for his patience and
dedication. Any quality work to be found in my thesis is solely due to his careful guidance
and advice.

I would also like to thank Dr. Pante Stanica whose sheer joy and enthusiasm for math
sparked my own interest in the subject and provided me with the tools to understand the
mathematics behind PDP.

I would especially like to thank my wife, Jodi, and our four children, Ethan, Matthew,
Silas, and Eleanor. My wife does all things well, not least of which is her provision of
graceful encouragement and support. I am undeserving of her devotion and self-sacrifice,
but immensely thankful for it. Finally, my children are a constant source of delight and joy,
which was a true blessing as I navigated this difficult task.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:

Introduction

The Department of Defense (DOD) has identified collaboration and improved access to
information as key elements of future operational success. This need, coupled with the
massive growth in data, has led the U.S. Navy and other DOD entities to invest in cloud
storage capabilities in an effort to cope with “Big Data.” In 2014, Terry Halvorsen, then-
Navy Chief Information Officer (CIO), stated the Navy needs to move about half of its
unclassified data into commercial cloud storage [1]. In late 2014, as acting DOD CIO,
Halvorsen released a memo freeing DOD agencies to procure their own commercial cloud
services, without using Defense Information Systems Agency (DISA), in an effort to speed
up the migration process [2].

With the growing use of cloud storage solutions, there is a corresponding need for secure
and efficient means of guaranteeing data integrity and availability.The Federal Cloud Com-
puting Strategy of 2011 states that agencies should explicitly state security, availability, and
quality requirements through service level agreements, and routinely monitor vendor com-
pliance [3]. The DOD Cloud Computing Strategy of 2012 also establishes the requirement
for cloud services to provide sufficient security to ensure the integrity and availability of
DOD information [4]. In 2015, the DOD released its Cloud Computing Security Require-
ments Guide (SRG), which outlines the security requirements for DOD agencies procuring
commercial cloud services. Among its recommendations are policies that would provide
audit and accountability for data additions, deletions, and modifications [5]. Recent out-
ages for well-known cloud storage providers, including Amazon S3 and Microsoft Azure,
also underscore the need for a reliable and efficient auditing mechanism to ensure data
availability and integrity as agencies migrate to the commercial cloud [6]–[8].

Proof of data possession schemes may provide the best mechanism to fulfill these demands
to actively track vendor compliance and assure the integrity of data in storage. Through
the use of cryptographic protocols, proof of data possession (PDP) schemes provide prob-
abilistic guarantees that data on storage servers has not been maliciously or inadvertently
deleted or altered. They claim to provide this guarantee at low cost to both the proving
and verifying entities. Its guarantees are probabilistic and its asymptotic costs are strictly

1

sublinear in file size. This technology has not yet been implemented by or for a commer-
cial service; however, there has been substantial research in PDP and other data integrity
schemes over the past decade [9]–[32].

While multiple PDP schemes have been proposed, each with varying degrees of efficiency
and security, there is no research to date that provides in-depth cost analysis comparing the
real-world efficiencies of PDP schemes. All prior research has focused on two aspects of
PDP schemes: providing high probability guarantees of data possession (security) while
minimizing the size of the challenge and response (communication complexity). These are
important criteria, especially in bandwidth-constrained environments; however, to date, no
research has provided comparisons of PDP schemes in terms of real-world costs (time to
generate proof, time to verify proof, time to tag, cost to store tag overhead, cost to run an
audit service, cost to service requests from an audit service, etc).

Our research fills that gap by (1) collecting and analyzing cost data for four PDP schemes,
(2) providing generic cost models (mathematical formulae expressing abstract models
which can be used to infer future cost), and (3) comparing overall cost efficiency of each
PDP scheme. Additionally, instead of measuring costs primarily in terms of the size of the
query and response – a bandwidth concern – this research recognizes (a) the importance
of processing time when evaluating the cost of a particular scheme, and (b) the asymmet-
ric costs associated with some cloud cost models (e.g., PUTs are typically more expensive
than GETs).

Based on our generic cost models, we show that the basis costs to audit are nearly identical
for MAC-PDP, A-PDP, and CPOR, but tag and storage costs are different enough to have
a significant impact on total cost among the schemes. We also show that the total cost
of MAC-PDP and CPOR are similar, but A-PDP becomes expensive relative to the other
schemes at large file sizes, due to its higher tag and storage costs. We show that the total
basis cost (up-front cost to tag and cumulative cost storing and auditing) for one year at one
audit per hour of a 1 GB file is under $1 for MAC-PDP, A-PDP, and CPOR, but that cost
ranges from $4,400 to $38,700 across schemes for a 1 PB file.

2

CHAPTER 2:

Background

This research focuses on four specific PDP schemes: a simple MAC-based PDP scheme
(MAC-PDP), the scheme described by Ateniese, Burns, Curtmola, Herring, Kissner, Pe-
terson and Song (A-PDP) [33], the scheme decsribed by Ateniese, Pietro, Mancini and
Tsudik (SEPDP) [34] and the scheme described by Shacham and Waters (CPOR) [35].
Our research is primarily concerned with building accurate cost models for each scheme
based on experimental audit data. Below, we provide a generic description of PDP and a
description of each PDP scheme considered in our experiments.

2.1 Proof of Data Possession
A PDP system can be divided into two generic phases: the set-up phase and the challenge
phase. In the set-up phase, a client generates a public and private key pair, tags the file, and
uploads the file and tag data to storage, deleting it from local storage. During the challenge
phase, the client generates a challenge for a specified number of file blocks and sends the
challenge to the prover. The prover uses the challenge to generate a proof of possession,
which is returned to the client. The client then validates the proof, providing a probabilistic
guarantee that the prover does or does not possess the client’s file.

Following the notation of Juels and Kaliski [36] and Bower, Juels, and Oprea [37], a file
M can be divided into n blocks, M = 〈m1,m2, ...,mn〉. We let P denote the prover (server),
V denote the verifier (client), η denote the file’s identifier, and ω denote local client state.
We represent unspecified values with a ⊥ symbol. A generic PDP scheme can be consid-
ered a five-tuple of algorithms, 〈KeyGen,Tag,Challenge,Proof,Verify〉, each described as
the following.

KeyGen(1k) → (pk, sk). This algorithm is used by the client to generate random public
and private keys by employing security parameter k.

Tag(M; pk, sk,ω) → M∗η . This algorithm is used by the client to process a file and pro-
duce verification tag data. It takes as input a public and private key pair (pk, sk) and
file M . It generates a file ID η and returns M∗η , the encoded file with verification tag

3

data. It also updates the client state ω to include and locally held data such as the file
ID, file size, number of blocks, etc. The data M∗η can be stored remotely.

Challenge(η; pk, sk,ω) → c. This algorithm is used by the client to produce a challenge
c. This challenge will sent to the prover during an audit.

Proof(η,M∗η ,c; pk) → p. This algorithm is used by the prover to demonstrate proof of
possession of specified file blocks as a response to challenge c. It takes as input the
remote, encoded data M∗η and challenge c, to generate proof p.

Verify(c,p, η; pk, sk,ω) → b ∈ {0,1}. This algorithm is used by the client to validate the
proof p. It takes as input the public and private key pair (pk, sk), challenge c and
proof p. Upon successful validation it returns 1, else it returns 0.

2.2 Constructions
In this section, we provide detailed descriptions of each PDP scheme employed in our
study: MAC-PDP, A-PDP, SEPDP and CPOR.

2.2.1 MAC-PDP
The MAC-PDP scheme is defined below, following the description and notation from
Shacham and Waters [35] and Riebel [38], adapted slightly for uniformity with the other
schemes in Section 2.2.

Let f be a keyed pseudo-random function, as follows:

f : {0,1}∗ × Kpr f → Zp

KeyGen(1k) → (pk, sk). Choose a random secret key for a hash-based MAC function
kmac

R
←− Kpr f . The secret key is sk = 〈kmac〉 and public key is pk =⊥.

Tag(M; pk, sk,ω) → M∗η . The file is split into n blocks, M = 〈m1,m2, ...,mn〉. Choose
a random file ID η, where η ∈ Zp. For each block mi, (1 ≤ i ≤ n), generate tag
σi = M ACkmac (η | |mi). The data stored remotely is M∗η = 〈M,{σi}1≤i≤n〉.

Challenge(η; pk, sk,ω) → c. Choose a random `-element subset I ⊆ [1,n] of indices.
Let c be the set {i}i∈I .

Proof(η,M∗η ,c; pk) → p. For each i ∈ c, return to the verifier p = {(mi,σi)}i∈c.

4

Verify(c,p, η; pk, sk,ω) → b ∈ {0,1}. For each i ∈ c, check if σi
?
= M ACkmac (η | |mi). If

all l checks are correct then return b = 1, else return b = 0.

2.2.2 A-PDP
The A-PDP scheme is defined below, following the description and notation from Ateniese
et al. [33], adapted slightly for uniformity with the other schemes in Section 2.2.

Let H be a cryptographic hash function, h be a full-domain hash function, f be a pseudo-
random function and π be a pseudo-random permutation (PRP) as follows (where κ,`, λ
are security parameters):

h : {0,1}∗ → QRN (QRN is the set of quadratic residues modulo N)

f : {0,1}κ × {0,1}log2(n) → {0,1}`
π : {0,1}κ × {0,1}log2(n) → {0,1}log2(n)

KeyGen(1k) → (pk, sk). Choose safe primes p,q, where p = 2p′+ 1 and q = 2q′+ 1. Let
N = pq. Let g be a generator of QRN , the set of quadratic residues modulo N . Let
v

R
←− {0,1}κ. The public key pk = 〈N, g〉 and the secret key sk = 〈e,d, v〉, such that

e is a large secret prime with ed = 1 (mod p′q′), e > λ, d > λ.
Tag(M; pk, sk,ω) → M∗η . The file is split into n blocks, M = 〈m1,m2, ...,mn〉. For each

block mi, compute Ti,mi = (h(Wi) · gmi)d mod N , where Wi = v | |i. The data stored
remotely is M∗η = 〈M,{(Ti,mi ,Wi)}1≤i≤n〉.

Challenge(η; pk, sk,ω) → c. To audit ` blocks of M , generate challenge c =

〈`, k1, k2, gs〉, where k1 and k2 are random κ-bit keys, and gs = gs mod N for random
s

R
←− Z∗N .

Proof(η,M∗η ,c; pk) → p. For 1 ≤ j ≤ `, generate indices i j = πk1 (j) and coeffi-
cients a j = f k2 (j). Compute T = T a1

i1,mi1
· . . . · T a`

i` ,mi`
= (h(Wi1)a1 · . . . · h(Wi`)

a` ·

ga1mi1+...+a`mi`)d mod N . Compute ρ = H (g
a1mi1+...+a`mi`
s mod N). The proof is

p = 〈T, ρ〉.
Verify(c,p, η; pk, sk,ω) → b ∈ {0,1}. Let τ = T e. For 1 ≤ j ≤ `, compute i j =

πk1 (j),Wi j = v | |i j ,a j = f k2 (j), and τ = τ
h(Wi j

)a j mod N . If H (τs mod N) = ρ then
return b = 1, else return b = 0.

5

2.2.3 CPOR
The CPOR scheme is defined below, following the description and notation from Shacham
and Waters [35], adapted slightly for uniformity with the other schemes in Section 2.2.

Let f be a keyed pseudo-random function, as follows:

f : {0,1}∗ × Kpr f → Zp

KeyGen(1k) → (pk, sk). Choose a random key kenc
R
←− Kenc for symmetric encryption

scheme Enc, and a random HMAC key kmac
R
←− Kmac. The secret key is sk =

〈kenc, kmac〉 and public key is pk =⊥.
Tag(M; pk, sk,ω) → M∗η . Given the file M , split M into n blocks, each s sectors

long: M = 〈mi j〉1≤i≤n
1≤ j≤s

. Choose a PRF key kpr f
R
←− Kpr f and s random num-

bers α1, ...,αs
R
←− Zp. Let τ0 = 〈n| |Enckenc (kpr f | |α1 | | · · · | |αs)〉. The file tag is

τ = 〈τ0 | |MACkmac (τ0)〉. For each i,1 ≤ i ≤ n, compute

σi ← f kpr f (i) +

s∑
j=1

α j mi j

The data stored remotely is M∗η = 〈{mi j},{σi}〉.
Challenge(η; pk, sk,ω) → c. Choose a random `-element subset I ⊆ [1,n]. For each

i ∈ I choose random vi
R
←− Zp. Let c be the set {(i, vi)}i∈I .

Proof(η,M∗η ,c; pk) → p. The prover parses c as {(i, vi)} and computes

µ j ←
∑

(i,vi)∈c

vimi j for 1 ≤ j ≤ s, and σ ←
∑

(i,vi)∈c

viσi

The proof is p = 〈µk ,σ〉1≤k≤s.

Verify(c,p, η; pk, sk,ω) → b ∈ {0,1}. Check σ ?
=

∑
(i,vi)∈c

vi f kpr f (i) +
s∑

j=1
α j µ j . If equal

then return b = 1, else return b = 0.

2.2.4 SEPDP
The SEPDP scheme is defined below, following the description and notation from Ateniese
et al. [34], adapted slightly for uniformity with the other schemes in Section 2.2.

6

Let t be the number of possible challenges, H be a cryptographic hash function, AE be an
authenticated encryption scheme, f be a keyed pseudo-random function and π be a keyed
pseudo-random permutation, defined as follows:

H : {0,1}∗ → {0,1}d

f : {0,1}k × {0,1}log(t) → {0,1}L

π : {0,1}L × {0,1}log(n) → {0,1}log(n)

KeyGen(1k) → (pk, sk). Choose secret permutation key W
R
←− {0,1}k , master challenge

nonce key Z
R
←− {0,1}k and master encryption key K

R
←− {0,1}k . The secret key

sk = 〈W, Z,K〉. The public key pk =⊥.
Tag(M; pk, sk,ω) → M∗η . Divide message M into n blocks. Choose the number t of

possible random challenges and the number ` of block indices per verification. For
each 1 ≤ i ≤ t, generate the i-th tag as:

Generate a permutation key ki = fW (i) and nonce ci = f Z (i).
Compute the set of indices {i j ∈ [1,n] | 1 ≤ j ≤ `} where i j = πki (j).
Compute token vi = H (ci,mi1 , . . . ,mi`).
Encrypt the token σi ← AEK (i, vi).

The data stored remotely is M∗η = 〈M,{i,σi}〉.
Challenge(η; pk, sk,ω) → c. Generate the i-th challenge c = 〈ki,ci〉 by recomputing

ki = fW (i) and ci = f Z (i).
Proof(η,M∗η ,c; pk) → p. Compute z = H

(
ci,mi1 , . . . ,mi`

)
where i j = πki (j). The proof

is p = 〈z,σi〉.
Verify(c,p, η; pk, sk,ω) → b ∈ {0,1}. Compute v = AE−1

K (σi). If v ?
= (i, z) then return

b = 1, else return b = 0.

2.3 Cost Complexity
The asymptotic communication complexity for each target PDP scheme is summarized
in Table 2.1. While MAC-PDP affords a simple implementation, it is criticized for its
relatively large communication complexity. Schemes like A-PDP, CPOR and SEPDP are
designed with the goal of minimizing communication complexity [33]–[35].

7

Table 2.1: Asymptotic communication complexity of MAC-PDP, A-PDP,
CPOR and SEPDP.

Challenge Proof

MAC-PDP O(` log(n)) O(`(bs + k))
A-PDP O(log(` + 2κ + log(N)) O(log(N))
CPOR O(` + (log(n) + d)) O(log(p))
SEPDP O(L) O(d + L)

The block size bs is a function of �le size and n, the number of �le blocks.

2.4 Detection Probability
It is not the objective of this study to compare proofs associated with PDP schemes. To
compare the cost of each scheme does require, however, selection of comparable param-
eters. There are at least three senses in which PDP schemes might be considered to be
comparable.

Strength of Security. For a scheme, this is expressed as Pr[f orge], the probability that a
prover can get the verifier to accept a forged proof as valid (i.e., when it was com-
puted without using some blocks involved in the challenge).

Strength of Audit. For a scheme, this is expressed as Pr[audit], the probability that a
single audit will appear to succeed even when k of n blocks have been deleted. For
many schemes, this is a combinatorial argument based on the probability that the `
random challenge indices are among the k blocks deleted.

Efficiency of Recovery. Some PDP schemes, often called proof of retrievability (POR)
schemes, have the additional characteristic that the original file can be recovered
even after some number of failed audits. For such a scheme, this is expressed as
Pr[recover], the probability of retrieval after an ε fraction of audits have failed.

Comparison across schemes in these senses is problematic for a number of reasons: (i)
schemes rely on different primitives (full-domain hash functions, authenticated encryption
schemes, pseudorandom permutations) making parameter selection to achieve compara-
ble Pr[f orge] difficult; (ii) schemes have expressed these properties in slightly different
adversarial models and employing slightly different arguments; (iii) arguments have been
expressed in asymptotic terms rather than concrete terms, making parameter derivation dif-

8

ficult, especially when arguments employ bounds that are known to not be tight. Thus we
do not select parameters in this study with the objective of providing absolute apples-to-
apples comparison across schemes. Since the simple combinatorial arguments employed
for Pr[audit] tend to be most reusable, we prioritize parameter selection for comparability
in this sense. In some sense, this is a rather insignificant parameter since its probability can
be driven arbitrarily low through repeated audits, due to exponential hardness amplification
of passing a series of audits. At the same time, selection of this parameter may be most
directly related to deriving policy on how often one performs audits. As we are interested
in the recurring cost of audit, it is a natural parameter of our study to consider carefully.
We leave open for future work parameter selection to facilitate fair comparison in terms of
Pr[f orge] and Pr[recover].

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

CHAPTER 3:

Methodology

This chapter discusses our experimental environment, methodology for how timing data is
gathered, and implementation decisions for evaluating the performance of the PDP schemes
under evaluation.

3.1 Experiment Environment
Our PDP experiments can be divided into two phases: a set-up phase and an audit phase. In
the set-up phase, the client generates keys (pk, sk), generates a tagged file M∗η , and sends
M∗η to remote storage (see Figure 3.1a). For the audit phase, the client generates a challenge
c and sends it to the prover; the prover responds with a proof p, which is sent to the client;
the client verifies the proof and indicates success or failure (see Figure 3.1b).

(a) Set-up phase of PDP protocol (b) Audit phase of PDP protocol

Figure 3.1: Set-up and audit phases of PDP experiment.

Adapted from [33]: G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, �Provable data possession at untrusted stores,� in Proceedings of the

14th ACM Conference on Computer and Communications Security, 2007, pp. 598�609.

11

3.2 Measurements and Costs
It is important to define what system costs are measured in each of our experiments. We
depict what operations are included in each of our measurements in Figure 3.2. Generally,
we ignore costs associated with transfer time and service latency, focusing on significant,
recurring computational costs.

Figure 3.2: Timing measurement de�nitions, highlighting what operations
and costs are included in each measurement.

In the set-up phase we do not measure the cost of generating keys (pk, sk). During tagging
data, we ignore the cost of sending the file and tag data M∗η to the storage server S. In
the audit phase, we ignore the transfer time involved in sending the challenge to prover P

and in returning the proof to client C. For proof generation, however, we include the time
associated with retrieving challenge blocks from local or remote storage, including this as

12

part of the proof time. We believe the cost associated with parsing the challenge, retrieving
the data required for the proof, and the cost of generating the proof itself are intimately
related, and we combine these in our measurement.

3.3 Implementation
Our benchmark test is a single-threaded application written in C using the libpdp li-
brary [39], an open-source C library providing implementations for MAC-PDP, A-PDP,
CPOR, and SEPDP. In all experiments, our benchmark application is run on Amazon Elas-
tic Cloud (EC2). The client, auditor and prover are each run on the same EC2 instance: an
c3.xlarge instance, running 64-bit Ubuntu Server 14.04 LTS using HVM virtualization. In
other environments, these three parties might be separate hosts or owned by separate orga-
nizations (i.e., tagging and ingest performed by the data owner, and auditing performed by
a third-party). As we have chosen to define tag, challenge and verify timing measurements,
the properties of the network connecting these parties are irrelevant to our measurements
and so we elect to run these parties on the same host. For each of our schemes, we conduct
two types of benchmarks: using local data storage and using remote data storage. For lo-
cal storage experiments, M∗η is stored at the EC2 instance’s local storage. For the remote
storage experiments, M∗η is stored to an Amazon S3 bucket.

Table 3.1: Default benchmark parameters used in our experiments.

MAC-PDP ` = 460, kmac = 20 bytes
A-PDP ` = 460, N = 1024 bits, PRP k1 = 16 bytes, PRF k2 = 20

bytes
CPOR ` = 460, kenc = 32 bytes, kpr f = 20, kmac = 20 bytes, λ = 80,

p = 80 bits, sector size = 9 bytes
SEPDP ` = 460, AE K = 16 bytes, PRP W, Z = 16 bytes, PRF ki =

20 bytes, t = 1

Unless otherwise noted, bs = 4096 bytes and f s = 225 bytes.

Experiments are run sequentially, each time doubling block size or file size for a particular
scheme. Pre-experiment trials in which the order of experiments are randomized demon-
strated no discernible impact to our results; thus, we strongly believe our trials are in-
dependent and order of test execution had no impact to our results. Each experiment is
performed using pre-generated, random input file data. Every experiment is repeated three

13

times (graphs in Chapter 4 show raw data from all three iterations). The default parameters
used for each scheme is provided in Table 3.1.

14

CHAPTER 4:

Analysis

In this chapter, we analyze the timing data collected for each of the five major PDP algo-
rithms: KeyGen, Tag, Challenge, Proof and Verify. Each algorithm is analyzed separately
across all four schemes, including our expectations based on each algorithm, what the data
actually show, and the cost model we have developed for each scheme and algorithm.

For each cost model, we employ the following notation:

bs, block size in bytes
f s, file size in bytes
ss, sector size in bytes
c0,c1, . . ., model-specific constants.

For all the schemes, f s/bs yields the number of blocks in the file M . In each experiment,
there is a point where the file size and block size are such that the total number of blocks
falls below the default number of challenges selected for an audit. At this point, fewer
computations are performed, resulting in faster algorithm times. Otherwise, all schemes
approach some threshold where proof cost becomes constant. All model-specific constants
are derived experimentally using least-squares approximation. Unless otherwise noted, all
figure times are in seconds.

4.1 Tag File
In our experiments, there is no theoretical difference between running the Tag algorithm
with local data or using AWS S3. Our measurements also bear this out.

4.1.1 MAC-PDP
We observe that when block size is held constant and file size increases, the tag time in-
creases linearly (see Figures 4.1a and 4.2a). When the file size remains constant and as the
block size varies, the execution time is nearly constant (see Figures 4.1b and 4.2b).

This is explained in terms of MAC-PDP generating tags via a hash-based MAC on every

15

(a) File size vs. tag time (b) Block size vs. tag time

Figure 4.1: File and block size vs. tag time for local data experiments.

(a) File size vs. tag time (b) Block size vs. tag time

Figure 4.2: File and block size vs. tag time for S3 data experiments.

file block. Since the hash algorithm generates a digest through repeated operations on
fixed-size blocks, the operation time should be proportional to the size of the input. We
summarize these trends in Model 4.1, which expresses the tag time as proportional to the
file size.

c0 + c1 · f s (4.1)

16

4.1.2 A-PDP
We observe that when block size is held constant and file size increases, the tag time in-
creases linearly (see Figures 4.1a and 4.2a). When the file size is held constant and the
block size increases, the tag time decreases linearly (see Figures 4.1b and 4.2b).

This is explained in terms of A-PDP generating tags through modular exponentiation on
every block. As the file size grows, there will be more blocks to tag, resulting in increased
execution time. As block size increases, there is a corresponding decrease in the number
of blocks to tag. We summarize these trends in Model 4.2, which expresses the tag time as
proportional to the file size and inversely proportional to the block size.

c0 + c1 · f s/bs + c2 · bs + c3 · f s (4.2)

4.1.3 CPOR
We observe that when block size is held constant and file size increases, the tag time in-
creases linearly (see Figures 4.1a and 4.2a). When the file size is held constant and the
block size increases, the tag time remains constant (see Figures 4.1b and 4.2b).

This is explained in terms of CPOR generating tags through nested loops of modular mul-
tiplication and addition. The number of loops is determined by the total number of sectors.
An increase in file size results in a corresponding increase in the number of sectors. How-
ever, since changes in block size have little to no effect on the number of sectors, the al-
gorithm times remain nearly constant as the block size varies. We summarize these trends
in Model 4.3, which expresses the tag time as proportional to the file size and inversely
proportional to the sector size.

c0 + c1 · f s + c2 · f s/ss (4.3)

17

4.1.4 SEPDP
We observe that when block size is held constant and file size increases, the tag time in-
creases linearly up to a point, after which the tag time remains constant (see Figures 4.1a
and 4.2a). When the file size is held constant and the block size increases, the tag time
increases linearly up to a point, after which the tag time remains constant (see Figures 4.1b
and 4.2b).

This is explained in terms of SEPDP generating tokens by calculating the hash of a spec-
ified number of blocks. The tag time, then, is proportional to the number of bytes being
processed, which is determined by the number of blocks per token and the block size. The
number of blocks per token is defined by the default security parameter `, unless the block
and file sizes are such that there are fewer blocks than the default parameter, in which case
the token consists of all the blocks in the file. We summarize these trends in Model 4.4,
which expresses the tag time as proportional to the total number of bytes processed per
token.

(c0 + c1 ·min((min(f s/bs, `) · bs, f s)) · t (4.4)

Above, min((min(f s/bs, `) · bs, f s) is essentially the number of bytes processed. When
f s/bs < r , the entire file is processed to generate tokens.

4.2 Generate Challenge
In our experiments, there is no theoretical difference between running the Challenge algo-
rithm with local data or using AWS S3. Our measurements and resultant models also bear
this out.

4.2.1 MAC-PDP
We observe that when block size is held constant and file size increases, the challenge
time runs in constant time up to a point, after which it runs in a slower constant time (see
Figures 4.3a and 4.4a). When the file size is held constant and the block size increases, the
challenge time runs in constant time up to a point, after which it runs in a faster constant
time (see Figures 4.3b and 4.4b).

18

(a) File size vs. challenge time (b) Block size vs. challenge time

Figure 4.3: File and block size vs. generate challenge time for local data
experiments.

(a) File size vs. challenge time (b) Block size vs. challenge time

Figure 4.4: File and block size vs. generate challenge time for S3 data
experiments.

This is explained in terms of ` and the total number of file blocks, given by f s/bs. When
there are fewer total blocks than `, then all indices are used for the challenge. However,
when there are more blocks than `, then the challenge indices must be chosen without re-
placement, which still runs in constant time, but takes longer than simply using all available
indices. We summarize these trends in Model 4.5, which expresses the challenge time as
one of two constants.

19

d f s/bse < ` : c0

d f s/bse ≥ ` : c1 (4.5)

4.2.2 A-PDP
We observe that generate challenge runs in constant time regardless of file or block size (see
Figures 4.3 and 4.4). This is explained in terms of the A-PDP challenge being independent
of the file or block size. We summarize these trends in Model 4.6, which expresses the
challenge time as constant.

c0 (4.6)

4.2.3 CPOR
We observe that when block size is held constant and file size increases, the generate chal-
lenge time increases linearly up to a point, after which it runs in constant time (see Fig-
ures 4.3a and 4.4a). When the file size is held constant and the block size increases, the
challenge time runs in constant time up to a point, after which it decreases linearly (see
Figures 4.3b and 4.4b).

This is explained in terms of CPOR generating a random `-element set for the challenge.
As the file size increases, the size of this set increases, until the number of blocks exceeds
`. Similarly, when the block size increases to the point where there are fewer total blocks
than `, then the size of the challenge set will begin to decrease. We summarize these trends
in Model 4.7, which expresses the challenge time as either constant or proportional to the
total number of blocks.

d f s/bse < ` : c1 + c2 · f s/bs

d f s/bse ≥ ` : c0 (4.7)

20

4.2.4 SEPDP

We observe that when block size is held constant and file size increases, generate challenge
runs in constant time (see Figures 4.3a and 4.4a). As the file size is held constant and the
block size increases, challenge runs in constant time up to a point, after which the run time
is almost twice as slow (see Figures 4.3b and 4.4b).

The former trend is explained in terms of SEPDP recomputing ki and ci for the i-th chal-
lenge, neither of which is affected by the file size. We are unable to explain the latter trend.
Nothing in the algorithm design suggests that block size should affect the run time, and we
believe that the anomaly is an artifact of implementation, not a feature of the scheme. We
summarize these trends in Cost Model 4.8, which expresses the challenge time as constant.

c0 (4.8)

4.3 Generate Proof
In our experiments, there is a noticeable difference between timing for the Proof algorithm
using local data storage compared to using remote data storage using AWS S3. We analyze
these two sets of experiments, separately.

For experiments interacting with S3, we observe that when block size is held constant and
file size increases, the proof time increases linearly up to the point where the number of
blocks exceeds `, after which the proof time is constant (see Figure 4.7a). When the file
size is held constant and the block size increases, the proof time is nearly constant up to the
point where ` exceeds the number of blocks, after which the proof time decreases linearly
(see Figure 4.7b).

This is explained in terms of each GET from S3 taking significantly more time than gener-
ating the proof itself (see Figure 4.6). Thus, the number of GETs dominates the trend. For
MAC-PDP, A-PDP, and CPOR there is one GET for each challenged block and one GET
for each corresponding tag (see Figure 4.5). This is summarized in Equation 4.9, which
expresses the number of GETs as twice the total number of blocks or twice `, whichever is
less.

21

2 ·min(f s/bs, `) (4.9)

For SEPDP, there is one GET for each challenged block, but only one GET for the token
corresponding to the i-th challenge (see Figure 4.5). This is summarized in Equation 4.10,
which express the number of GETs as one more than the total number of blocks or one
more than `, whichever is less.

min(f s/bs, `) + 1 (4.10)

4.3.1 MAC-PDP
For local data experiments, we observe that when block size is held constant and file size
increases, the proof time increases linearly up to the point where the number of blocks
exceeds `, after which the proof time is nearly constant, increasing slightly as the file size
grows (see Figure 4.6a). When the file size is held constant and the block size increases,
the proof time increases linearly up to the point where ` exceeds the number of blocks,
after which the proof time is constant (see Figure 4.6b).

This is explained in terms of MAC-PDP generating a proof containing a message block
and hash for each index in the challenge. The proof is dependent on the total number of
bytes hashed. We summarize these trends in Model 4.11, which expresses the proof time
as proportional to the total number of blocks, file size, and block size.

d f s/bse < ` : c0 + c1 · f s/bs + c2 · bs + c3 · f s

d f s/bse ≥ ` : c4 + c5 · bs (4.11)

22

(a) File size vs. GETs (b) Block size vs. GETs

Figure 4.5: File and block size vs. number of GETs from S3.

(a) File size vs. proof time (b) Block size vs. proof time

Figure 4.6: File and block size vs. generate proof time for local data experi-
ments.

4.3.2 A-PDP
For local data experiments, we observe that when block size is held constant and file size
increases, the proof time increases linearly up to the point where the number of blocks
exceeds `, after which the proof time remains constant (see Figure 4.6a). When the file
size is held constant and the block size increases, the proof time increases linearly (see
Figure 4.6b).

This is explained in terms of A-PDP generating proofs through modular exponentiation

23

(a) File size vs. proof time (b) Block size vs. proof time

Figure 4.7: File and block size vs. generate proof time for S3 data experi-
ments.

of ` message blocks. Thus the proof time will depend on the total number of challenge
blocks as well as the size of each block. We summarize these trends in Model 4.12, which
expresses the proof time as proportional to the number of blocks, file size, and block size
or proportional to just the block size.

d f s/bse < ` : c2 + c3 · f s/bs + c4 · bs + c5 · f s

d f s/bse ≥ ` : c0 + c1 · bs (4.12)

4.3.3 CPOR
For local data experiments, we observe that when block size is held constant and file size
increases, the proof time increases linearly up to the point where the number of blocks
exceeds `, after which the proof time remains constant (see Figure 4.6a). When the file size
is held constant and the block size increases, the proof time increases linearly up the to the
point where ` exceeds the number of blocks, after which the proof time remains constant
(see Figure 4.6b).

This is explained in terms of CPOR generating the proof by computing µ j and σ for each

24

of the indices in the challenge set. Additionally, µ j includes modular multiplication of all
the sectors of each challenge block. Therefore, the proof time increases with the indices in
the challenge set, as well as when the block size increases. We summarize these trends in
Model 4.13, which expresses the proof time as proportional to the number of blocks, file
size, and block size, or proportional to just the block size.

d f s/bse < ` : c0 + c1 · f s/bs + c2 · bs + c3 · f s

d f s/bse ≥ ` : c4 + c5 · bs (4.13)

4.3.4 SEPDP
For local data experiments, we observe that when block size is held constant and file size
increases, the proof time increases linearly up to the point where the number of blocks
exceeds `, after which the proof time remains constant (see Figure 4.6a). When the file size
is held constant and the block size increases, the proof time increases linearly up the to the
point where ` exceeds the number of blocks, after which the proof time remains constant
(see Figure 4.6b).

This is explained in terms of SEPDP generating the proof by computing the hash of all
the message blocks for a particular token. The proof time is proportional, then, to the total
number of bytes being hashed, given by the number of challenge blocks and block size. We
summarize these trends in Model 4.14, which expresses the proof time as proportional to
the total number of blocks, block size, and file size, or proportional to just the block size.

d f s/bse < ` : c0 + c1 · f s/bs + c2 · bs + c3 · f s

d f s/bse ≥ ` : c4 + c5 · bs (4.14)

25

4.4 Verify Proof
In our experiments, there is no theoretical difference between running the Verify algorithm
with local data or using AWS S3. Our measurements and resultant models also bear this
out.

4.4.1 MAC-PDP
We observe that when block size is held constant and file size increases, the verify time
increases linearly up to the point where the number of challenge blocks exceeds `, after
which it remains constant (see Figures 4.8a and 4.9a). When the file size is held constant
and the block size increases, the verify time increases linearly up to the point where `
exceeds the total number of blocks, after which it remains constant (see Figures 4.8b and
4.9b).

This is explained in terms of MAC-PDP verifying a proof by hashing each index in the
challenge. Therefore, the verify time is dependent on the total number of bytes hashed. We
summarize these trends in Model 4.15, which expresses the proof time as proportional to
the file size or proportional to the block size.

d f s/bse < ` : c0 + c1 · f s

d f s/bse ≥ ` : c2 + c3 · bs (4.15)

4.4.2 A-PDP
We observe that when block size is held constant and file size increases, the verify time
increases linearly up to the point where the total number of blocks exceeds `, after which
it runs in constant time (see Figures 4.8a and 4.9a). When the file size is held constant and
the block size increases, the verify time remains constant up to the point where ` exceeds
the total number of blocks, after which it decreases linearly (see Figures 4.8b and 4.9b).

This is explained in terms of A-PDP verifying proofs by generating τ and comparing the
hash of τ with ρ. Since τ is computed by generating ` hashes, the algorithm time will
be proportional to the total number of blocks that were challenged. We summarize these

26

(a) File size vs. verify time (b) Block size vs. verify time

Figure 4.8: File and block size vs. verify proof time for local data experiments.

(a) File size vs. verify time (b) Block size vs. verify time

Figure 4.9: File and block size vs. verify proof time for S3 data experiments.

trends in Model 4.16, which expresses the verify time as constant or proportional to the
total number of blocks.

d f s/bse < ` : c0

d f s/bse ≥ ` : c1 + c2 · f s/bs (4.16)

27

4.4.3 CPOR

We observe that when block size is held constant and file size increases, the verify time
increases linearly up to the point where the total number of blocks exceeds `, after which
it runs in constant time (see Figures 4.8a and 4.9a). When the file size is held constant and
the block size increases, the verify time increases linearly (see Figures 4.8b and 4.9b).

This is explained in terms of CPOR verifying the proof by summing α j µ j for all sectors
of each block being challenged. As the file size grows, the number of sectors for each
challenge increases. As the block size grows, the number of sectors per block increases.
We summarize these trends in Model 4.17, which expresses the verify time as proportional
to the number of blocks, file size, and block size, or proportional to just the block size.

d f s/bse < ` : c0 + c1 · f s/bs + c2 · bs + c3 · f s

d f s/bse ≥ ` : c4 + c5 · bs (4.17)

4.4.4 SEPDP

We observe that when block size is held constant and file size increases, the verify time
remains constant (see Figures 4.8a and 4.9a). When the file size is held constant and the
block size increases, the verify time remains constant up to a point, after which the verify
time runs about twice as slow (see Figures 4.8b and 4.9b).

This is explained in terms of the SEPDP verify algorithm decrypting σi and comparing it
with the proof. The decryption time should not be dependent on file size. Additionally, the
decryption time should not be dependent on block size, and we believe that the anomaly is
an artifact of implementation, not a feature of the scheme. We summarize these trends in
Model 4.18, which expresses the verify time as a constant.

c0 (4.18)

28

4.5 Total Cost
We break costs down into three basic categories for analysis: (1) the cost to tag, which
includes the computational costs to compute the tag and the PUT costs of uploading the
tag; (2) the cost to store the tag; (3) the audit cost, which includes the computational cost to
challenge, prove, and verify, and the GET costs associated with retrieving file blocks and
tags during those operations.

SEPDP is not depicted on the cost graphs because its use of audit tokens does not compare
well with the other schemes. Whereas MAC-PDP, APDP, and CPOR all support an unlim-
ited number of audits once the file is tagged, the number of audits for SEPDP is chosen in
advance. Thus a total cost graph for SEPDP will depend on the desired frequency of audits
before a file needs to be retagged.

We note that the costs in our results should be thought of as minimal costs. We have
ignored auditor costs associated with waiting for a response from the prover, as well as
wake-up costs for the prover when it receives a proof request, which we do not measure
as part of our experiments (see Figure 3.2). Measuring these costs would reflect network
latency and implementation-specific details we do not believe to be strongly related to PDP.
Also, in a scaled implementation of PDP, where multiple audits are performed for clients,
simultaneously, the downtime costs may not be consequential. Thus the basis costs we
depict do not reflect actual costs, but can accurately reflect cost comparisons among the
schemes.

We chose to implement our benchmark tests on Amazon Web Services (AWS); however,
there are several alternatives with comparable pricing schemes and storage options. For
example, Microsoft Azure Blob storage, Google Cloud Storage, and Rackspace Cloud Files
all have similar storage services and pricing schemes as Amazon. The AWS S3 storage
pricing scheme is shown in Table 4.11.

1Prices were obtained from https://aws.amazon.com/s3/pricing as of March 2016.

29

https://aws.amazon.com/s3/pricing

Table 4.1: Amazon Web Services S3 standard storage pricing scheme.

Cost / GB

First 1 TB / month $0.0300
Next 49 TB / month $0.0295
Next 450 TB / month $0.0290
Next 500 TB / month $0.0285
Next 4000 TB / month $0.0280
Over 5000 TB / month $0.0275

Table 4.2: Comparison of cloud providers remote storage limitations.

Max object size Max PUT size Max metadata size

Amazon S3 5 TB 5 GB 2 KB
Microsoft Azure 195 GB 64 MB 8 KB
Google Cloud Storage 5 TB 5 TB unspecified
Rackspace 5 GB 5 GB 4 KB

4.5.1 Tag Costs
Tag costs consist of the cost to generate the tag and the PUT costs associated with uploading
the file to storage (see Figure 4.10). These costs resemble the trends we observed for
computational costs associated with generating a tag (see Figure 4.1a), with A-PDP being
the most expensive, followed by CPOR, and MAC-PDP. The approximate basis costs to tag
a file range from a fraction of a cent to $3 for a 1 GB file; $0.13 to $20 for a 1 TB file; and
$135 to $20,400 for a 1 PB file.

Figure 4.10: Cost to tag, based on tag algorithms and AWS EC2 pricing

30

4.5.2 Storage Costs
We calculate the storage cost for each scheme (see Figure 4.12) based on their correspond-
ing tag sizes (see Table 4.3). As the file size increases the tag file overhead increases
linearly for MAC-PDP, A-PDP, and CPOR, but remains constant for SEPDP; however, as
the block size increases, the tag file overhead decreases linearly for MAC-PDP, A-PDP, and
CPOR, but increases linearly for SEPDP (see Figure 4.11). Since A-PDP has the largest
tag size, it has the highest storage cost. MAC-PDP and CPOR have almost the same tag
size and, therefore, very similar storage costs.

(a) File size vs. overhead (b) Block size vs. overhead

Figure 4.11: File and block size vs. tag �le overhead.

Table 4.3: Tag �le overhead and tag size for each scheme (bs = 4096 bytes).

Total tag file overhead (% fs) Tag size (bytes)

A-PDP 4.864% 204
MAC-PDP 0.477% 20
CPOR 0.429% 18

We investigated the option of storing tags as metadata to reduce cost; however, all the stor-
age providers we reviewed included metadata as part of the overall file size. Additionally,
at the time of publication, AWS S3 limits metadata storage to 2KB. The maximum file sizes
at which the tags can be stored as metadata on AWS S3 are shown in Table 4.4.

31

Figure 4.12: Cost to store tag, based on scheme tag overhead and AWS S3
pricing

Table 4.4: Maximum �le sizes at which tags can be stored as metadata on
AWS S3.

File size

MAC-PDP 428 kb
A-PDP 41 kb
CPOR 476 kb
SEPDP 0 kb

4.5.3 Audit Costs
We calculate the total audit cost (see Figure 4.13) by determining the number of GETs
and computational cost to generate a challenge, generate a proof, and verify the proof.
Since the proof time is significantly larger than the challenge or verify times (compare
Figure 4.7 with Figures 4.4 and 4.9), we are not surprised to find the proof time dictates the
audit cost trends. Additionally, the differences in proof times observable in the local data
experiments (see Figure 4.6) nearly disappear in the S3 experiments due to the relatively
larger times required to communicate with S3 and transfer proof data. As a consequence
of the communication time common to all schemes, the audit costs are nearly identical for

32

MAC-PDP, A-PDP, and CPOR.

It is worth noting that the audit cost for SEPDP is approximately half that of the three other
schemes. The SEPDP proof scheme has fewer GETs than the other schemes since it only
retrieves a single tag file in each audit, instead of a tag per challenge block, as in the other
schemes.

Figure 4.13: Cost to audit, based on audit cost models and AWS EC2 and
S3 pricing

4.5.4 Combined Cost Scenarios
We observe that the monthly cost to store and audit once per hour is nearly identical for all
schemes until the storage costs begin to dominate at larger file sizes, after which A-PDP
becomes much more expensive than MAC-PDP and CPOR (see Figure 4.15).

Since the audit costs are nearly identical for all three schemes, the tag and storage costs
have the most significant impact on the total cost of each scheme. Figures 4.14a and 4.14b
show the up-front cost to tag and cumulative cost storing and auditing a 1 GB and 1 TB
file, respectively, at one audit per hour each month. For the 1 GB file, the tag and storage
costs are less significant and the slightly higher audit cost of MAC-PDP can be observed

33

at one year of audits; however, the high tag and storage costs of the 1 TB file dominate,
resulting in a higher cost for the A-PDP scheme. The following are approximate basis costs
incorporating up-front cost to tag and cumulative cost storing and auditing at one audit per
hour for one year: $160 to $175 for a 1 GB file; $170 to $230 for a 1 TB file; and $2,000
to $38,700 for a 1 PB file.

(a) Tag, storage, and audit costs for 1 GB �le (b) Tag, storage, and audit costs for 1 TB �le

Figure 4.14: Cumulative tag, storage, and audit costs for one audit per hour.

(a) File size vs. storage and audit costs (b) File size vs. storage and audit costs

Figure 4.15: File size vs. storage and audit costs for �les at one audit per
hour for one month.

34

CHAPTER 5:

Conclusion

We have developed generic cost models for four PDP schemes, which can be used to in-
fer future cost. Additionally, we have shown that audit costs of some sophisticated PDP
schemes (A-PDP, CPOR) are nearly identical to those of the simple MAC-PDP scheme;
whereas, tag and storage costs have a significant impact on total cost differences among
the schemes. We conclude that the total cost of MAC-PDP and CPOR are comparable,
whereas the cost of A-PDP becomes expensive relative to the other schemes at large file
sizes. Our preliminary experimentation shows audit cost for SEPDP is about half the other
schemes; however, the scheme is limited to a finite number of audits.

From cost projections based on generic models for MAC-PDP, A-PDP, and CPOR, we find
the basis cost for tagging is less than $1 for a 1 GB file; $0.13 to $20 for a 1 TB file; and
$135 to $20,400 for a 1 PB file. The monthly basis cost for storage is a fraction of a cent
for a 1 GB file; $0.13 to $1.50 for a 1 TB file; and $130 to $1,500 for a 1 PB file. The
cost for a single audit is approximately $0.02 for files larger than 2 MB. Combined cost
projections incorporating up-front cost to tag and cumulative cost storing and auditing at
one audit per hour for one year show basis costs of $160 to $175 for a 1 GB file; $170 to
$230 for a 1 TB file; and $2,000 to $38,700 for a 1 PB file.

5.1 Future Work
While our benchmark tests covered a limited number and type of PDP implementations,
future studies could compare schemes that incorporate erasure codes, dynamic data, or
distributed file system storage, among other variants. Our experiments ignored costs as-
sociated with transfer time and service latency, focusing instead on computational costs.
Follow-on work could separate the client, auditor, and prover in order to measure the
communication costs between each entity. Lastly, follow-on work could compare costs
choosing different security parameters. In our experiments, we selected security param-
eters designed to normalize comparison in terms of the strength of audit (as defined in
Chapter 2). Future work could select parameters to facilitate scheme comparison in terms
of other properties, such as strength of security and efficiency of recovery.

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

List of References

[1] H. Kenyon, “Navy eyes cloud storage,” InformationWeek, 18 March 2014. Available:
http://www.informationweek.com/government/cloud-computing/navy-eyes-cloud-
storage/d/d-id/1127748 [Last accessed: 6 March 2016].

[2] S. Lyngaas, “Halvorsen formalizes new dod cloud procurement policy,” 2014. [On-
line]. Available: https://fcw.com/articles/2014/12/17/dod-cloud-policy.aspx

[3] V. Kundra, “Federal cloud computing strategy,” 2011. [Online]. Available: http:
//www.dhs.gov/sites/default/files/publications/digital-strategy/federal-cloud-
computing-strategy.pdf

[4] T. Takai, “Dod cloud computing strategy,” 2012. [Online]. Available: http://dodcio.
defense.gov/Portals/0/Documents/DoD%20Cloud%20Computing%20Strategy%
20Final%20with%20Memo%20-%20July%205%202012.pdf

[5] Defense Information Systems Agency, “Department of defense cloud computing
security requirements guide,” 2015. [Online]. Available: http://iase.disa.mil/cloud_
security/Documents/u-cloud_computing_srg_v1r1_final.pdf

[6] B. Butler. What broke Amazon’s cloud. Network World, 23 September 2015. Avail-
able: http://www.networkworld.com/article/2985554/cloud-computing/what-
brought-down-amazon-s-cloud.html [Last accessed: 6 March 2016].

[7] J. Jackson, “Human error root cause of November Microsoft
Azure outage,” ComputerWorld, 17 December 2014. Available:
http://www.computerworld.com/article/2860833/human-error-root-cause-of-
november-microsoft-azure-outage.html [Last accessed: 6 March 2016].

[8] T. Jones, “Rackspace tackles bug with full xen re-
boot,” TechTarget, 30 September 2014. Available:
http://searchcloudcomputing.techtarget.com/news/2240231810/Rackspace-
tackles-bug-with-full-Xen-reboot [Last accessed: 6 March 2016].

[9] G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from homomorphic identi-
fication protocols,” in Advances in Cryptology – ASIACRYPT 2009, M. Matsui, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 319–333.

[10] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson,
and D. Song, “Remote data checking using provable data possession,” ACM Trans.
Inf. Syst. Secur., vol. 14, no. 1, pp. 1–34, June 2011.

37

https://fcw.com/articles/2014/12/17/dod-cloud-policy.aspx
http://www.dhs.gov/sites/default/files/publications/digital-strategy/federal-cloud-computing-strategy.pdf
http://www.dhs.gov/sites/default/files/publications/digital-strategy/federal-cloud-computing-strategy.pdf
http://www.dhs.gov/sites/default/files/publications/digital-strategy/federal-cloud-computing-strategy.pdf
http://dodcio.defense.gov/Portals/0/Documents/DoD%20Cloud%20Computing%20Strategy%20Final%20with%20Memo%20-%20July%205%202012.pdf
http://dodcio.defense.gov/Portals/0/Documents/DoD%20Cloud%20Computing%20Strategy%20Final%20with%20Memo%20-%20July%205%202012.pdf
http://dodcio.defense.gov/Portals/0/Documents/DoD%20Cloud%20Computing%20Strategy%20Final%20with%20Memo%20-%20July%205%202012.pdf
http://iase.disa.mil/cloud_security/Documents/u-cloud_computing_srg_v1r1_final.pdf
http://iase.disa.mil/cloud_security/Documents/u-cloud_computing_srg_v1r1_final.pdf

[11] D. Cash, A. Kupcu, and D. Wichs, “Dynamic proofs of retrievability via oblivi-
ous ram,” in Advances in Cryptology – EUROCRYPT 2013, T. Johansson and P. Q.
Nguyen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 279–295.

[12] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote data checking for net-
work coding-based distributed storage systems,” in Proceedings of the 2010 ACM
Workshop on Cloud Computing Security Workshop, 2010, pp. 31–42.

[13] B. Chen and R. Curtmola, “Robust dynamic provable data possession,” in 32nd In-
ternational Conference on Distributed Computing Systems Workshops (ICDCSW),
June 2012, pp. 515–525.

[14] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “Mr-pdp: Multiple-replica prov-
able data possession,” in Proceedings of the 2008 The 28th International Conference
on Distributed Computing Systems. Washington, DC, USA: IEEE Computer Society,
2008, pp. 411–420.

[15] Y. Deswarte, J.-J. Quisquater, and A. Saidane, “Remote integrity checking,” in IFIP
TC11/WG11.5 Sixth Working Conference on Integrity and Internal Control in Infor-
mation Systems (IICIS), S. Jajodia and L. Strous, Eds., 2004, pp. 1–11.

[16] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic provable data
possession,” in Proceedings of the 16th ACM Conference on Computer and Commu-
nications Security. New York, NY, USA: ACM, 2009, pp. 213–222.

[17] M. Etemad and A. Kupcu, “Transparent, distributed, and replicated dynamic prov-
able data possession,” in Proceedings of the 11th International Conference on Ap-
plied Cryptography and Network Security. Berlin, Heidelberg: Springer-Verlag,
2013, pp. 1–18.

[18] C. Hanser and D. Slamanig, “Efficient simultaneous privately and publicly verifiable
robust provable data possession from elliptic curves,” in Security and Cryptography
(SECRYPT), 2013 International Conference on, July 2013, pp. 1–12.

[19] R. S. Kumar and A. Saxena, “Data integrity proofs in cloud storage,” in Communi-
cation Systems and Networks (COMSNETS), Third International Conference on, Jan
2011, pp. 1–4.

[20] J. Li, M. Krohn, D. Mazieeres, and D. Shasha, “Secure untrusted data repository
(sundr),” in Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6. Berkeley, CA, USA: USENIX Association,
2004, pp. 9–9.

38

[21] J. Li, X. Tan, X. Chen, D. S. Wong, and F. Xhafa, “Opor: Enabling proof of retriev-
ability in cloud computing with resource-constrained devices,” Cloud Computing,
IEEE Transactions on, vol. 3, no. 2, pp. 195–205, 2015.

[22] F. Liu, D. Gu, and H. Lu, “An improved dynamic provable data possession model,”
in Cloud Computing and Intelligence Systems (CCIS), IEEE International Confer-
ence on, Sept 2011, pp. 290–295.

[23] H. Liu, P. Zhang, and J. Liu, “Public data integrity verification for secure cloud
storage,” Journal of Networks, vol. 8, no. 2, 2013. [Online]. Available: http://ojs.
academypublisher.com/index.php/jnw/article/view/jnw0802373380

[24] Z. Mo, Y. Zhou, and S. Chen, “A dynamic proof of retrievability (por) scheme with
big-oh (logn) complexity,” in Communications (ICC), IEEE International Confer-
ence on. IEEE, 2012, pp. 912–916.

[25] T. S. J. Schwarz and E. L. Miller, “Store, forget, and check: Using algebraic signa-
tures to check remotely administered storage,” in Proceedings of the 26th IEEE In-
ternational Conference on Distributed Computing Systems. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 12–33. [Online]. Available: http://dx.doi.org/10.
1109/ICDCS.2006.80

[26] Y. Wang, Q. Wu, D. S. Wong, B. Qin, S. S. M. Chow, Z. Liu, and X. Tan, “Securely
outsourcing exponentiations with single untrusted program for cloud storage,” in
19th European Symposium on Research in Computer Security (ESORICS), M. Kuty-
lowski and J. Vaidya, Eds. Cham: Springer International Publishing, 2014, pp. 326–
343. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-11203-9_19

[27] B. Wang, B. Li, and H. Li, “Panda: Public auditing for shared data with efficient
user revocation in the cloud,” IEEE Transactions on Services Computing, vol. 8,
no. 1, pp. 92–106, Jan 2015.

[28] J. Yuan and S. Yu, “Public integrity auditing for dynamic data sharing with mul-
tiuser modification,” IEEE Transactions on Information Forensics and Security,
vol. 10, no. 8, pp. 1717–1726, Aug 2015.

[29] J. Yuan and S. Yu, “Proofs of retrievability with public verifiability and constant
communication cost in cloud,” in Proceedings of the 2013 international workshop
on Security in cloud computing. ACM, 2013, pp. 19–26.

[30] J. Yuan and S. Yu, “Secure and constant cost public cloud storage auditing with
deduplication,” in Communications and Network Security (CNS), IEEE Conference
on, Oct 2013, pp. 145–153.

39

http://ojs.academypublisher.com/index.php/jnw/article/view/jnw0802373380
http://ojs.academypublisher.com/index.php/jnw/article/view/jnw0802373380
http://dx.doi.org/10.1109/ICDCS.2006.80
http://dx.doi.org/10.1109/ICDCS.2006.80
http://dx.doi.org/10.1007/978-3-319-11203-9_19

[31] Y. Zhang and M. Blanton, “Efficient dynamic provable possession of remote data
via balanced update trees,” in Proceedings of the 8th ACM SIGSAC Symposium on
Information, Computer and Communications Security. New York, NY, USA: ACM,
2013, pp. 183–194.

[32] Q. Zheng and S. Xu, “Fair and dynamic proofs of retrievability,” in Proceedings of
the First ACM Conference on Data and Application Security and Privacy. ACM,
2011, pp. 237–248.

[33] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and
D. Song, “Provable data possession at untrusted stores,” in Proceedings of the 14th
ACM Conference on Computer and Communications Security, 2007, pp. 598–609.

[34] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and efficient
provable data possession,” in Proceedings of the 4th International Conference on
Security and Privacy in Communication Networks, 2008, p. 9.

[35] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Advances in
Cryptology—ASIACRYPT 2008. Heidelberg: Springer, 2008, pp. 90–107.

[36] A. Juels and B. S. Kaliski, Jr., “Pors: Proofs of retrievability for large files,” in Pro-
ceedings of the 14th ACM Conference on Computer and Communications Security.
New York, NY, USA: ACM, 2007, pp. 584–597.

[37] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: Theory and imple-
mentation,” in Proceedings of the 2009 ACM Workshop on Cloud Computing Secu-
rity. New York, NY, USA: ACM, 2009, pp. 43–54.

[38] K. C. Riebel-Charity, “Developing a library for proofs of data possession in charm,”
master’s thesis, Naval Postgraduate School, Monterey, 2013.

[39] M. Gondree and Z. Peterson. libpdp, a library for proofs of data possession. [On-
line]. Available: https://github.com/gondree/libpdp

40

https://github.com/gondree/libpdp

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

41

	Introduction
	Background
	Proof of Data Possession
	Constructions
	Cost Complexity
	Detection Probability

	Methodology
	Experiment Environment
	Measurements and Costs
	Implementation

	Analysis
	Tag File
	Generate Challenge
	Generate Proof
	Verify Proof
	Total Cost

	Conclusion
	Future Work

	List of References
	Initial Distribution List

