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  Acoustic fields in shallow water have a statistical nature due to complex, time-evolving sound speed fields and scattering from rough
boundaries. Previously, coupled-mode transport theory [Raghukumar and Colosi (2012)] was applied to high frequency acoustic fluctuations in
an environment typical of the Shallow Water 2006 (SW06) experiment on the New Jersey continental shelf. As a consequence of the strong
adiabatic component in SW06 propagation, a hybrid approach was used to calculate mode coherences where mode energies from the Dozier-
Tappert approach were combined with adiabatic phase terms. Mode energies, coherences and acoustic intensities were examined and it was
found that internal and surface waves preferentially couple low and high modes respectively. Here, we extend that study to include higher
moments such as scintillation index and shift focus to modes that are coupled by both internal and surface waves. Oceanographic and sea
surface measurements are used to constrain the internal wave and sea surface models. The relative importance of linear internal waves and
surface scattering effects are studied using transport theory and Monte Carlo simulations.
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INTRODUCTION

The coastal ocean is a shallow water environment that is often subject to intensive internal
and surface wave activity, as well as seabed roughness, all of which lead to a statistical nature
for shallow water acoustic fields. While random linear internal waves are a dominant cause of
acoustic fluctuation at low frequencies (Colosi et al., 2012), surface waves play an important role
at higher frequencies due to the greater role played by surface interacting acoustic modes
(Thorsos et al., 2004).

The acoustic field in a fluctuating environment can be described by quantities such as the
mean and variance of acoustic intensity, and a measure of coherence. While these quantities can
be obtained by full-physics Monte Carlo simulations (Headrick et al., 2000), reduced-physics
models based on transport theory (Colosi and Morozov, 2009) directly compute the desired
metrics in addition to providing physical insight on the acoustically relevant scales of
oceanographic fluctuations.

Here we examine the predictability of acoustic fluctuations in shallow water at high
frequencies (1500 Hz), and examine the ocean processes that contribute most strongly to
acoustic variability. We focus our attention on two key processes important to shallow water
acoustics: random linear internal waves as described by a shallow water version of the
Garett-Munk spectrum, and random surface gravity waves as described by the
Pierson-Moskowitz spectrum. A comprehensive transport theory that accounts for internal
wave-induced sound speed perturbations along with rough surface scattering is presented in
this work.

Previously, theoretical estimates of the cross mode coherence matrix, mean intensity, and
time and depth coherence have showed excellent agreement with Monte Carlo simulations in a
variety of deep (Colosi and Morozov, 2009; Colosi et al., 2012, accepted for publication;
Chandrayadula et al., 2012, accepted for publication) and shallow water scenarios (Colosi et al.,
2012) at low frequency in the presence of linear and non-linear internal waves. Additionally,
Thorsos et al. (2004, 2010) have developed a transport theory to explain the evolution of mode
coherence by surface scattering mechanisms. Transport theory allowed for several physical
insights into the mechanism of mode coupling previously lacking in Monte Carlo simulations in
addition to a vastly reduced computational effort. In shallow water, Colosi et al. (2012) have
shown that the acoustic variability seen for nonlinear waves alone is much different from the
effects seen for linear and nonlinear internal waves together. Similar behavior is demonstrated
here when the treatment of a rough sea surface and linear internal waves are included together.

TRANSPORT THEORY

Using a 2D normal mode-based approach, the acoustic pressure field, p(r, z) can be
expressed as

p(r, z)=
N∑

n=1

an(r)φn(z)√
knr

(1)

where φn(z) is the unperturbed mode shape, with all variability contained in the
range-dependent mode amplitude, an(r), and the complex eigen-wavenumber ln = kn + iαn.

Creamer (1996) expressed the evolution of mode amplitudes in shallow water as

dan

dr
− ilnan =−i

N∑
m=1

Γmn(r)am(r) (2)
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where Γmn(r) is the symmetric coupling matrix, which in the presence of internal wave-induced
sound speed perturbations, is given by

Γmn(r)= k2
0√

knkm

∫D

0

φn(z)φm(z)
ρ0(z)

δc(r, z)
c0

dz (3)

where δc(r, z) is the sound speed perturbation for a background sound speed c0, D is the water
depth, ρ0(z) is the density profile and k0 =ω/c0 is a representative wavenumber. On the other
hand, in the presence of surface waves, the symmetric mode coupling matrix is given by
(Thorsos et al., 2004)

Γmn(r)=− h(r)
2ρ0(0)

1√
knkm

dφm

dz
dφn

dz
(4)

where h(r) is the surface displacement, and the derivatives are evaluated at z = 0.

Transport theory provides expressions for the range evolution of various moments of
intensity such as the first moment, 〈I〉 = 〈|p|2〉, and second moment 〈I2〉 = 〈|p|4〉. The mean
intensity can be expressed as

〈I(r, z)〉 = 〈|p(r, z)|2〉 =
N∑

n=1

N∑
p=1

〈an(r)a∗
p(r)〉

r
φn(z)φp(z)√

knkp
(5)

where 〈an(r)a∗
p(r)〉 can be recognized as the cross-mode coherence matrix. Dozier and Tappert

(1978) proposed a transport theory for the range evolution of mode energies 〈|an|2〉, or the
diagonal of the cross-mode coherence matrix, in the absence of sub-bottom attenuation.
Creamer’s transport theory contained expressions for the range evolution of the full cross-mode
coherence matrix, although the analysis was confined to the mode energy terms. Colosi and
Morozov (2009) provided a more heuristic derivation of Creamers transport theory, and
undertook a deeper analysis of the range evolution of the cross-mode coherence terms. Of
particular interest was their result that in an environment dominated by mode coupling, both
mode energies and cross-mode coherences decay with range at a similar rate. In a more recent
paper, Colosi et al. (2012) applied transport theory to a shallow water environment typical of the
SW06 experiment on the Mid-Atlantic bight (Lynch and Tang, 2008). At frequencies between
200-400 Hz, and over distances of tens of kilometers, a simple adiabatic theory was shown to
sufficiently explain most of the propagation physics.

The range evolution of the cross-mode coherence matrix is given by

d〈ana∗
p〉

dr
+ i(l∗p − ln)〈ana∗

p〉 =
N∑

m=1

N∑
q=1

〈ama∗
q〉I∗mn,qp +〈aqa∗

m〉Imp,qn −〈ana∗
q〉I∗mp,qm −〈aqa∗

p〉Imn,qm

(6)
where Imn,qp, known as the scattering matrix is given by

Imn,qp =
∫∞

0
dξΔmn,qp(ξ)e−ikqpξ (7)

where Δmn,qp(ξ)= 〈Γmn(r)Γqp(r+ξ) is the correlation function of the symmetric mode coupling
matrix for range separation ξ, in the presence of either internal or surface waves (Eqs. 3,4
respectively). The mode wavenumber difference is kqp = kp −kq.

Following Colosi et al. (2012), the scattering matrix for GM internal waves can be
analytically derived as

Imn,qp =
J∑

j=1
Gmn( j)Gqp( j)H( j)

4a
π|kqp|

[ cosθmin

(a2 +1)(a2 +2−a2 cos2θmin)
+

atanh
(√ a2

a2+1 cosθmin
)

2a(a2 +1)3/2 +i
π

4a(a2 +1)3/2

]
(8)
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where J is the maximum internal wave mode number, a = k j/|kqp|, k j the internal wave
wavenumber, sinθmin = |kqp| f /(k jNmax), with Nmax the maximum buoyancy frequency and f
the inertial frequency, and H( j)= Nj/( j2 + j2∗) is the GM vertical mode spectrum with Nj being
the normalization. For the special case of kqp = 0, the terms following H( j) in Eq. 8 simplify to
2
π

1
k j

k2
max

k2
max+k2

j
. Lastly,

Gmn( j)= k2
0

√
2

knkm

∫D

0
dz〈μ2(z)〉1/2 sin[π j ẑ(z)]

φn(z)φm(z)
ρ0(z)

(9)

with ẑ(z) being the WKB stretched vertical coordinate (Colosi et al., 2012).

The scattering matrix for surface waves can be written as

Imn,qp = 1
4ρ2(0)

dφm

dz
dφn

dz
dφq

dz
dφpdz

∫∞

0

Sh(k)√
k2 −k2

qp

dk (10)

where Sh(k) is the surface wave horizontal wavenumber spectrum with k =
√

k2
x +k2

y. Following
Thorsos et al. (2004), the surface waves are modeled using the Pierson-Moskowitz spectrum,
given by

Sh(k)= α

2k3 exp
(
− k2

L

k2

]
(11)

where α= 8.1×10−3, k2
L =βg/U4, β= 0.74, g = 9.8 m/s2, and U is the wind speed in m/s.

Because internal and surface waves are uncorrelated, a superposition of the scattering
matrices in Eqs. 8 and 10 can be used in the transport equation, Eq. 6, to predict the range
evolution of the cross-mode coherence matrix.

Hybrid theory

At high frequencies (>1kHz), the numerical solution of Eq. 6 was found to exhibit strong
instabilities. An approximate solution has been sought by first recognizing that the evolution of
mode energies is insensitive to the off-diagonal coherence terms (Colosi and Morozov, 2009). As
a result, mode energies can be obtained by solving Creamers equation

d|an|2
dr

=−2αn〈|an|2〉+
N∑

m=1
2Re(Imn,mn)

(
〈|am|2〉−〈|an|2〉

)
. (12)

Next, it is recognized that the off-diagonal elements of the cross-mode coherence matrix have a
strong adiabatic component. As a result, a hybrid approach is proposed where the adiabatic
expression for the evolution of mode coherences (Eq. 28 in Colosi and Morozov (2009)) is
adjusted for range evolution of mode amplitudes, to give

〈ana∗
p〉(r)= 〈|an|2〉1/2(r)〈|ap|2〉1/2(r)ei(θn(0)+θp(0))ei(ln−l∗p)r e−(Inn,nn−2Inn,pp+Ipp,pp)r (13)

where θnis the initial phase of the mode (for a point source, θn is either 0 or π).

Edge effect

Inherent to the transport theory explained thus far is the assumption that the range r is
longer than the correlation length of internal or surface waves. While this assumption is valid at
long ranges, it breaks down at short ranges, close to the receiver, and incorrectly predicts mode
coherences at these short ranges. As a result, a correction is needed to account for this edge
effect, as provided by Colosi et al. (2012), Eq. 18. We will not go into details of this correction in
the present manuscript.
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RESULTS

A combined transport theory that predicts the evolution of the cross-mode coherence matrix
in the presence of internal and surface waves is demonstrated here in a shallow water
environment. Fig. 1 shows a sound speed profile with a weak surface duct measured during the
SW06 experiment, along with a buoyancy profile and a subset of propagating acoustic modes at
1500 Hz. A point source is located at a depth of 25 m, at the sound speed minimum. The range
evolution of mode energies and coherences is calculated out to 50 km. Three different

���� ���� ���� ����

FIGURE 1: (a) SW06 sound speed profile, along with source location, (b) Buoyancy frequency, (c,d) Acoustic modes,
1-3, 29-31, 71-73

fluctuation scenarios are demonstrated: internal wave scattering, surface wave scattering,
combined internal and surface wave scattering.

A metric that shows the degree of mode coupling for the three cases can be obtained by
examining Eq. 12. This equation is similar to a diffusion equation, where the matrix Re(Imn,mn)
facilitates energy transfer from mode m to mode n, and the rate depends on the mode energy
difference. Under the small angle forward scattering assumption, mode coupling can be shown
to be dominated by nearest neighbor coupling. The first off-diagonal element is a measure of
nearest-neighbor mode coupling, and is shown in Fig. 2. Internal waves are predicted to
preferentially couple lower order modes, and surface waves preferentially couple higher order
modes, increasing with wind speed. Since previous work (Raghukumar and Colosi, 2012)
contains results for the lowest- and highest-order modes, at this time results for intermediate
modes 29-31 are shown. These modes (Fig. 2) are particularly interesting as they lay on the
mode number threshold between internal and surface wave coupling. From Fig. 2, coupling by
mode 29 can be expected to be dominated by internal wave scattering, mode 30 by both internal
and surface waves, while coupling by mode 30 should be dominantly influenced by surface
waves.

Monte Carlo simulations are employed to demonstrate the validity of transport theory, and
are shown only for the case with internal wave scattering alone. Mode amplitudes are computed
using Eq. 2 for 200 realizations of the internal wave field. Intensity statistics are then computed
by appropriately averaging the mode amplitudes. Sub-bottom attenuation is not included at
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FIGURE 2: Mode coupling metric (m−1) in the presence of internal waves, and surface waves generated by wind
speeds of 2.5-10 m/s

present in order to focus exclusively on mode coupling effects.

���� ����

�����

FIGURE 3: Mode energies for modes 29 (Blue), 30 (Green) and 31 (Red). (a): Internal wave scattering, (b): Surface
wave scattering, (c): Internal and surface wave scattering. Transport theory is the dotted line, and Monte Carlo
simulation is the dashed line.

Fig. 3 shows mode energies for modes 29-31 for the three scattering scenarios. Fig. 3(a),
transport theory results (Eq. 12) are overlaid with Monte Carlo simulations for the case with
internal wave scattering alone, and the two are seen to be in reasonable agreement. As
expected, modes 29,30 show a stronger coupling (slope) by internal waves than mode 31. Next,
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Fig. 3(b) shows mode energies as influenced by surface scattering alone. Mode 29 is observed to
be unaffected by surface wave-induced mode coupling, and exhibits mostly adiabatic
propagation. While mode 30 is somewhat coupled by surface scattering, coupling of this mode is
weaker than with internal wave scattering. Finally, mode 31 experiences strong coupling within
the first 200 m, and is driven to equal energy with its neighbors soon after. This distance to
energy equipartition is closely related to the surface wave correlation length and will be studied
in future work. Fig. 3(c) shows the evolution of mode energies as a result of both internal and
surface wave scattering. Mode 29 is only affected by internal waves, and mode 31 only by
surface waves. Both these modes show behavior identical to the top left and right panels. Mode
30, affected by both internal and surface waves, shows a superposition of both effects.

����� �����

����

FIGURE 4: Mode coherences of mode 29 with mode 30 (Blue), mode 31 (Green) and mode 32 (Red). (a): Internal wave
scattering, (b): Surface wave scattering, (c): Internal and surface wave scattering.Transport theory is the dotted line,
and Monte Carlo simulation is the dashed line.

The range evolution of mode coherences of mode 29 with modes 30,31,32 is shown in Fig. 4
for the three scattering scenarios. For the case with internal wave scattering (Fig. 4(a)), good
agreement is seen between hybrid transport theory (dashed) and Monte Carlo simulations
(dotted). In this case, modes 29 and 30 experience mode coupling, while modes 31 and 32 are not
as strongly affected. As a result the phase relationship (coherence) between modes 29-30 is
better preserved than with the other two modes. However, with surface wave scattering
(Fig. 4(b), note the different range scale), modes 29-30 are now unaffected by surface waves, and
preserve an almost perfect coherence across range. Modes 31 and 32 are affected by surface
waves in increasing order (Fig. 2), and this is corroborated in the different rates at which their
coherence with mode 29 decays. The strong mode coupling of these higher modes results in a
rapid phase randomization and loss of coherence. Finally, Fig. 4(c) shows the combined effect of
internal and surface waves on mode coherence. The coherences are a combination of effects from
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the first two cases. The coherences of modes 29 with 30 is identical to the case with internal
wave scattering alone, modes 29 with 31 a superposition of both effects and mode 29 with 32
identical to the case with surface wave scattering alone.

CONCLUSION

Transport theory is an efficient and accurate reduced-physics model that has been used in
this paper to provide physical insights into acoustic scattering by internal and surface waves.
Mode energies and coherences as treated by hybrid transport theory show good agreement with
Monte Carlo simulations. It was previously shown that internal waves preferentially couple
lower-order modes while surface waves couple higher-order modes. In this paper, mode energies
and coherences of modes that lay on the threshold between internal and surface wave scattering
are discussed. Modes that are coupled by both phenomena are shown to have energies and
coherences that are almost a linear superposition of the two effects. In other words, while any
one effect preserves coherence for a subset of propagating modes, the combined effect results in
a loss of coherence across all modes. This is expected to have a significant effect on mean
intensity and scintillation index.
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