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On the use of Augmented Lagrangians in the
Solution of Generalized Semi-Infinite Min-Max

Problems

E. Polak
University of California, Berkeley

J.O. Royset
Naval Postgraduate School

Abstract

We present an approach for the solution of a class of generalized semi-infinite
optimization problems. Our approach uses augmented Lagrangians to trans-
form generalized semi-infinite min-max problems into ordinary semi-infinite
min-max problems, with the same set of local and global solutions as well as
the same stationary points. Once the transformation is effected, the generalized
semi-infinite min-max problems can be solved using any available semi-infinite
optimization algorithm. We illustrate our approach with two numerical exam-
ples, one of which deals with structural design subject to reliability constraints.

1 Introduction

We consider the class of generalized semi-infinite min-max problems of the form

P min
x∈IRn

ψ(x), (1.1)

where ψ : IRn → IR is defined by

ψ(x)
4
= max

y∈Z(x)
φ(x, y) (1.2a)

where
Z(x)

4
= {y ∈ IRm | f(x, y) ≤ 0, g(y) ≤ 0}, (1.2b)

with φ : IRn × IRm → IR, f : IRn × IRm → IRr1 , g : IRm → IRr2 , and v ≤ 0 meaning
v1 ≤ 0, ..., vq ≤ 0, for any v = (v1, ..., vq) ∈ IRq. We use superscripts to denote
components of vectors.

It is the dependence of the set-valued map Z(·) on the design variable x that
makes P a generalized semi-infinite min-max problem.

In the sequel we will need the set

Y
4
= {y ∈ IRm | g(y) ≤ 0}. (1.2c)
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Generalized semi-infinite min-max problems of the form P arise in various engi-
neering applications. For example, optimal design of civil, mechanical, and aerospace
structures is frequently considered in a probabilistic framework, where uncertainties
in material properties, loads, and boundary conditions are taken into account. Let
x ∈ IRn be a vector of deterministic design variables, e.g., physical dimensions of
the structure, or parameters in the probability distribution of the random quantities.
The probability of failure of a structure p : IRn → [0, 1] is defined by, see [6],

p(x)
4
=

∫

{y∈IRm|h(x,y)≤0}

ϕ(y)dy, (1.3)

where ϕ(·) is the m-dimensional multi-variate standard normal probability density
function, and h : IRn × IRm → IR is a smooth real-valued limit-state function.

The optimal design problem is typically in the form

min
x∈X

{ c0(x) + c1(x)p(x) }, (1.4)

where c0 : IRn → IR is the initial cost of the structure and c1 : IRn → IR is the cost
of structural failure. The evaluation of p(·) is computationally expensive. Hence a
first-order approximation to the probability of failure is usually considered accept-
able. Based on such approximations, it can be shown, see [24], that (1.4) can be
approximated by

min
x∈X

max
y∈S(x)

{ c0(x) + c1(x)p̃(x, y) }, (1.5)

where

p̃(x, y)
4
= Φ

[

βh(x, 0)

h(x, y) − h(x, 0)

]

, (1.6)

whenever h(x, 0) > 0 and h(x, y)−h(x, 0) < 0. If h(x, 0) > 0 and h(x, y)−h(x, 0) ≥ 0,
then p̃(x, y) = 0, and, finally, if h(x, 0) ≤ 0, then p̃(x, y) = 1 for all y. Above, Φ(·) is
the standard normal cumulative distribution function and

S(x) = {y ∈ IRm | h(x, y) − h(x, 0) ≤ −α, ‖y‖2 ≤ β2}, (1.7)

with α, β > 0. Hence, the optimal design problem (1.4) can be solved approxi-
mately by solving a generalized semi-infinite min-max problem in the form (1.1),
with f(x, y) = h(x, y) − h(x, 0) + α and g(y) = ‖y‖2 − β2.

Theoretical results regarding the existence of and formulas for directional deriva-
tives of generalized max-functions, such as the one in (1.2a), can be found in [3, 22].
First-order optimality conditions for generalized semi-infinite optimization problems
are presented in [12, 26, 28, 29, 30, 33, 27].

In the unpublished paper [15], Levitin employs a differentiable penalty function
to remove the constraints f(x, y) ≤ 0, and shows that the sequence of global solu-
tions of the penalized problem converges to a global solution of P, as the penalty
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goes to infinity. In [33], it is shown that under the linear independence constraint
qualification for the “inner problem” in (1.2a), a class of generalized semi-infinite op-
timization problems is equivalent to an ordinary semi-infinite optimization problem,
i.e., a problem in the form minx∈IRn{f 0(x) | φ(x, ω) ≤ 0, ω ∈ Ω}, with φ(·, ·) smooth
and Ω of infinite cardinality. However, it is not clear how to implement a procedure
for constructing the equivalent problem.

There are only a few studies dealing with numerical methods for generalized semi-
infinite optimization problems. Numerical methods for sub-classes of such problems,
e.g., as arising in robotics, can be found in [9, 11, 13, 16]. In [30, 31] we find a concep-
tual algorithm for solving optimization problems with constraints in terms of gener-
alized max-functions of the type (1.2a). In these papers it is assumed that the linear
independence constraint qualification, second-order sufficient conditions, and strict
complementary slackness, for the “inner-problem,” in (1.2a) hold. The algorithm
in [30, 31] applies a globally convergent Newton-type method to the Karush-Kuhn-
Tucker system of equations for a locally reduced problem. A conceptual algorithm,
based on discretization, is presented in [31]. In the recent monograph [27], an imple-
mentable algorithm for the class of generalized semi-infinite optimization problems
with φ(x, ·) concave and f k(x, ·), gk(·) convex is presented. The original problem
is shown to be equivalent to a Stackelberg game with inner problems replaceable by
corresponding first-order optimality conditions. This leads to a sequence of finite non-
linear programming problems, which are solved by standard optimization algorithms.
A review of generalized semi-infinite optimization can be found in [27].

Recently, we put forth the idea of using an exact penalty function to eliminate the
inequalities in (1.2a) that depend on x, i.e., f(x, y) ≤ 0 (see [25]). In [25], we used a
standard nondifferentiable exact penalty function for this purpose. This resulted in
an implementable algorithm for solving general forms of P under a calmness assump-
tion. The selected approach led to an algorithm that generates sequences converging
to weaker stationary points than the ones given in [28]. Moreover, the use of a non-
differentiable exact penalty function results in a semi-infinite min-max-min problem
with an unknown penalty parameter and two other algorithm parameters, which are
controlled by several precision-adjustment tests.

In this paper we explore an alternative approach where the inequalities in (1.2a)
that depend on x, i.e., f(x, y) ≤ 0, are eliminated by the use of an augmented
Lagrangian exact penalty function. This approach requires stronger assumptions
than the ones in [25], but gives rise to an equivalent ordinary semi-infinite min-
max problem (without unknown parameters) which is much easier to solve. The
optimality condition for the equivalent semi-infinite min-max problem appears to be
stronger than that in [25], and imply that in [26]. Note that Augmented Lagrangian
functions have earlier been used in connection with solving ordinary semi-infinite
min-max problems (see [10]). However, in [10] the Augmented Lagrangian functions
were associated with the “outer” minimization problem and not with the “inner”
maximization as we propose.
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In Section 2, we use the Rockafellar augmented Lagrangian function ([23]), and
use it to remove the constraints f(x, y) ≤ 0 from the inner problem in (1.2a). In
Section 3, we show that the resulting problem is equivalent to P. In the process
we obtain a new first-order optimality condition for P. The paper ends with two
numerical examples and concluding remarks.

2 Augmented Lagrangian Penalty Function

We remove the constraints f(x, y) ≤ 0 in (1.2a) by using the augmented Lagrangian
exact penalty function in [23]. Let π ∈ IR and η ∈ IRr1 be a penalty parameter and
a multiplier vector, respectively. Hence, we define ψ̄ : IRn+r1+1 → IR to be given by

ψ̄(x̄)
4
= max

y∈Y
φ̄(x̄, y), (2.1a)

where x̄ = (x, η, π) ∈ IRn+r1+1, with x ∈ IRn, η ∈ IRr1 , π ∈ IR, and

φ̄(x̄, y)
4
= φ(x, y) − 1

2eπ

r1
∑

k=1

[(eπfk(x, y) + ηk)2
+ − (ηk)2]. (2.1b)

In (2.1b) and the following, we use the notation a+ = (max{a1, 0},max{a2, 0}, ...,
max{ap, 0}) ∈ IRp for any a ∈ IRp. Note that the penalty associated with the aug-
mented Lagrangian exact penalty function in (2.1b) is given by eπ. Hence, the penalty
is positive for all values of the penalty parameter π ∈ IR. This transformation may
also be advantageous from a computational point of view. Typically, the order of
magnitude of π is comparable with the order of magnitude of the other components
of x̄. The use of eπ as a component of x̄ would have resulted in a more ill-conditioned
problem due to the potential large numerical difference between the penalty and the
other components of x̄.

Assumption 2.1. We assume that

(i) φ(·, ·), f k(·, ·), k ∈ r1

4
= {1, ..., r1}, and gk(·), k ∈ r2

4
= {1, ..., r2}, are continuous,

and

(ii) Y ⊂ IRm is compact, and Z(x) 6= ∅ for all x ∈ IRn.

Theorem 2.2. Suppose that Assumption 2.1 holds. Then, for all x̄ = (x, η, π) ∈
IRn+r1+1 with x ∈ IRn, η ∈ IRr1, and π ∈ IR, we have that

ψ̄(x̄) ≥ ψ(x). (2.2a)
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Proof. By definition,

ψ̄(x̄) ≥ max
y∈Y

{

φ(x, y) − 1

2eπ

r1
∑

k=1

[(eπfk(x, y) + ηk)2
+ − (ηk)2] | f(x, y) ≤ 0

}

. (2.2b)

Next, suppose that f(x, y) ≤ 0. If ηk ≤ 0, then

(eπfk(x, y) + ηk)2
+ − (ηk)2 = −(ηk)2. (2.2c)

Furthermore,
eπfk(x, y) + ηk − ηk ≤ 0. (2.2d)

Hence, if ηk > 0, then
(eπfk(x, y) + ηk)2

+ − (ηk)2 ≤ 0. (2.2e)

Therefore, f(x, y) ≤ 0 implies (2.2e) for all k ∈ r1. By (2.2b) it now follows that

ψ̄(x̄) ≥ max
y∈Y

{φ(x, y) | f(x, y) ≤ 0} = ψ(x) (2.2f)

for all x ∈ IRn, η ∈ IRr1, and π ∈ IR.

In [23], we find a necessary and sufficient condition for the existence of particular
η and π that ensure equality in (2.2a). This condition is given in the next definition.

Definition 2.3. Consider the problem

max
y∈Z(x)

φ(x, y) (2.3a)

and let v(x, u)
4
= maxy∈Y Φ(x, y, u), with Φ(x, y, u)

4
= φ(x, y) whenever f(x, y) ≤ u,

and otherwise Φ(x, y, u)
4
= −∞.

The problems (2.3a) is said to be stable of degree 2 at x ∈ IRn if there exist an
open neighborhood U around the origin in IRr1 and a twice continuously differentiable
function Γ : U → IR such that

v(x, u) ≤ Γ(u), ∀u ∈ U, (2.3b)

and
v(x, 0) = Γ(0). (2.3c)

Theorem 2.4. ([23], Theorem 5) Suppose that Assumption 2.1 holds. Then,

ψ(x) = min
η∈IRr1

min
π∈IR

ψ̄((x, η, π)) (2.4)
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if and only if (2.3a) is stable of degree 2 at x ∈ IRn.

It is shown in [23] that a sufficient condition for stability of degree 2 is related to
the standard second-order sufficiency condition for (2.3a), stated below.

Definition 2.5. A solution ŷ ∈ Y of the problem in (2.3a) is said to satisfy the
second-order sufficient condition at x ∈ IRn if

(i) there exists an open neighborhood N0 ⊂ IRm of ŷ on which φ(·, ·), f k(·, ·), k ∈ r1,
and gk(·), k ∈ r2, are twice continuously differentiable,

(ii) there exist multiplier vectors η ∈ IRr1 and λ ∈ IRr2 such that

∇yφ(x, ŷ) − fy(x, ŷ)
Tη − gy(ŷ)

Tλ = 0, (2.5a)

ηTf(x, ŷ) + λTg(ŷ) = 0, (2.5b)

(iii) hTLyy(x, ŷ, η, λ)h > 0 for all h ∈ H(x, ŷ), where the Hessian

Lyy(x, ŷ, η, λ)
4
= φyy(x, ŷ) −

r1
∑

k=1

ηkfk
yy(x, ŷ) −

r2
∑

k=1

λkgk
yy(ŷ), (2.5c)

H(x, ŷ)
4
=



















h ∈ IRm

h 6= 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∇yf
k(x, ŷ)Th ≤ 0, k ∈ r̂1(x, ŷ),

∇yf
k(x, ŷ)Th = 0, k ∈ r̂1+(x, ŷ),

∇yg
k(ŷ)Th ≤ 0, k ∈ r̂2(ŷ),

∇yg
k(ŷ)Th = 0, k ∈ r̂2+(ŷ),



















, (2.5d)

with index sets

r̂1(x, ŷ)
4
= {k ∈ r1|fk(x, ŷ) = 0, ηk = 0}, (2.5e)

r̂1+(x, ŷ)
4
= {k ∈ r1|fk(x, ŷ) = 0, ηk > 0}, (2.5f)

r̂2(ŷ)
4
= {k ∈ r2|gk(ŷ) = 0, λk = 0}, (2.5g)

r̂2+(ŷ)
4
= {k ∈ r2|gk(ŷ) = 0, λk > 0}. (2.5h)

Definition 2.6. A point ŷ ∈ Y is said to be the unique optimal solution of (2.3a) in
the strong sense if ŷ is the only local minimizer for (2.3a).

Theorem 2.7. ([23], Theorem 6) Suppose that Assumption 2.1 holds. Let ŷ ∈ Y be
the unique optimal solution to (2.3a) in the strong sense, and assume that ŷ satisfies
the second-order sufficiency condition at x ∈ IRn with η ∈ IRr1 and λ ∈ IRr2 as the
vectors of multipliers. Then (2.3a) is stable of degree 2, and for π sufficiently large
we have ψ(x) = ψ̄((x, η, π)).
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3 Equivalent Problem and Optimality Conditions

In view of Theorems 2.4 and 2.7, we can define a problem that is equivalent to P.
Let

P̄ min
x̄∈IRn+r1+1

ψ̄(x̄). (3.1)

The next result gives the relations between global and local minimizers of P and P̄.

Let for any x̂ ∈ IRn and ρ > 0, IB(x̂, ρ)
4
= {x ∈ IRn | ‖x− x̂‖ < ρ}.

Theorem 3.1. Suppose that Assumption 2.1 holds and that (2.3a) is stable of degree
2 for all x ∈ IRn. Then, the following hold:

(a) Global minimizers of P and P̄ are equivalent in the sense that

min
x∈IRn

ψ(x) = min
x̄∈IRn+r1+1

ψ̄(x̄). (3.2a)

(b) If x̂ ∈ IRn is a local minimizer for P with domain of attraction IB(x̂, ρ), then
there exist η̂ ∈ IRr1 and π̂ ∈ IR such that ˆ̄x = (x̂, η̂, π̂) is a local minimizer for
P̄ with domain of attraction IB(x̂, ρ) × IRr1+1.

(c) If ˆ̄x = (x̂, η̂, π̂) ∈ IRn+r1+1 is a local minimizer for P̄ with domain of attraction
IB(x̂, ρ) × IRr1+1, then x̂ is a local minimizer for P with domain of attraction
IB(x̂, ρ).

Proof. Part (a) follows directly from Theorem 2.4. Consider Part (b). Let x̂, ρ be as
stipulated, and let η̂ ∈ IRr1 and π̂ ∈ IR be such that minη∈IRr1 minπ∈IR ψ̄((x̂, η, π)) =
ψ̄((x̂, η̂, π̂)). Let (x∗, η∗, π∗) ∈ IB(x̂, ρ) × IRr1+1 be arbitrary. Then, using Theorem
2.4 and the local optimality of x̂ we obtain that

ψ̄((x∗, η∗, π∗)) ≥ min
η∈IRr1

min
π∈IR

ψ̄((x∗, η, π))

= ψ(x∗)

≥ ψ(x̂)

= ψ̄((x̂, η̂, π̂)).

(3.2b)

Next, we consider Part (c). Let x̂, η̂, π̂, ρ be as stipulated, and let x∗ ∈ IB(x̂, ρ) be
arbitrary and let η∗ ∈ IRr1 and π∗ ∈ IR be such that minη∈IRr1 minπ∈IR ψ̄((x∗, η, π)) =
ψ̄((x∗, η∗, π∗)). Then, using Theorem 2.4 and the local optimality of (x̂, η̂, π̂) we
obtain that

ψ(x∗) = min
η∈IRr1

min
π∈IR

ψ̄((x∗, η, π))

= ψ̄((x∗, η∗, π∗))

≥ ψ̄((x̂, η̂, π̂))

= min
η∈IRr1

min
π∈IR

ψ̄((x̂, η, π))

= ψ(x̂).

(3.2c)
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This completes our proof.
Before we initiate our discussion of stationary points, we need an additional as-

sumption.

Assumption 3.2. We assume that φ(·, ·), f k(·, ·), k ∈ r1, and gk(·), k ∈ r2, are con-
tinuously differentiable.

Since P̄ is an ordinary semi-infinite min-max problem, a corresponding optimality
condition is available in the literature:

Theorem 3.3. (e.g., [20], Theorem 3.1.5) Suppose that Assumptions 2.1 and 3.2
hold. If ˆ̄x = (x̂, η̂, π̂) ∈ IRn+r1+1 is a local minimizer of P̄, then

0 ∈ Ḡψ̄(ˆ̄x)
4
= conv

y∈Y





























ψ̄(ˆ̄x) − φ̄(ˆ̄x, y)

∇xφ̄(ˆ̄x, y)

∇ηφ̄(ˆ̄x, y)

∇πφ̄(ˆ̄x, y)





























. (3.3a)

In view of Theorems 2.4, 3.1, and 3.3, we deduce the following new optimality
condition for P.

Theorem 3.4. Suppose that Assumptions 2.1 and 3.2 hold. If x̂ ∈ IRn is a local
minimizer of P and (2.3a) is stable of degree 2 in some neighborhood of x̂ ∈ IRn, then
there exist η̂ ∈ IRr1 and π̂ ∈ IR such that

0 ∈ Ḡψ̄(ˆ̄x), (3.3b)

where ˆ̄x = (x̂, η̂, π̂).

In view of Theorems 3.3 and 3.4, it is clear that P and P̄ have equivalent stationary
points. The optimality condition in Theorem 3.4 can be related to the following
optimality condition deduced from [26]. For brevity, let

Ŷ (x)
4
= arg max

y∈Z(x)
φ(x, y). (3.4)

Theorem 3.5. Suppose that Assumptions 2.1 and 3.2 hold, x is a local minimizer for
P, and the Mangasarian-Fromowitz constraint qualification holds at every y ∈ Ŷ (x),
i.e., for every y ∈ Ŷ (x), there exists an h ∈ IRm such that ∇yf

k(x, y)Th < 0, for all
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k ∈ r1 such that f k(x, y) = 0, and ∇gk(y)Th < 0, for all k ∈ r2 such that gk(y) = 0.
Then,

0 ∈ conv
y∈Ŷ (x)

conv
α∈A(x,y)

{∇xφ(x, y) − fx(x, y)
Tα}, (3.5a)

where

A(x, y)
4
=











α ∈ IRr1

∣

∣

∣

∣

∣

∣

∣

∇yφ(x, y) − fy(x, y)
Tα− gy(y)

Tβ = 0

αTf(x, y) + βTg(y) = 0

α ≥ 0; β ∈ IRr2 , β ≥ 0











. (3.5b)

Theorem 3.6. Suppose that Assumptions 2.1 and 3.2 hold, x̄ = (x, η, π) ∈ IRn+r1+1

satisfies
0 ∈ Ḡψ̄(x̄), (3.6)

and the Mangasarian-Fromowitz constraint qualification holds at every y ∈ Ŷ (x).
Then, (3.5a) holds.

Proof. By Caratheodory’s Theorem, see, e.g., Theorem 5.2.5 in [20], (3.6) holds if

and only if there exist yi ∈ Y , i ∈ s
4
= {1, ..., s}, with s

4
= n+ r1 + 3, and a multiplier

vector µ ∈ Σs
4
= {µ ∈ IRs| µi ≥ 0, i ∈ s,

∑

i∈s
µi = 1} such that

0 =
∑

i∈s

µi[ψ̄(x̄) − φ̄(x̄, yi)] (3.7a)

0 =
∑

i∈s

µi∇xφ̄(x̄, yi) (3.7b)

0 =
∑

i∈s

µi∇ηφ̄(x̄, yi) (3.7c)

0 =
∑

i∈s

µi∇πφ̄(x̄, yi) (3.7d)

From (3.7c), we obtain that

0 =
∑

i∈s

µi∇ηφ̄(x̄, yi)

=
1

eπ

∑

i∈s

µi[η − (eπf(x, yi) + η)+]

=
1

eπ
[η −

∑

i∈s

µi(eπf(x, yi) + η)+].

(3.7e)

Hence, for all k ∈ r1

ηk =
∑

i∈s

µi(eπfk(x, yi) + ηk)+ ≥ 0. (3.7f)
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From (3.7d), we obtain

0 =
∑

i∈s

µi∇πφ̄(x̄, yi)

=
∑

i∈s

∑

k∈r1

µi

{

1

2eπ
[(eπfk(x, yi) + ηk)2

+ − (ηk)2] − (eπfk(x, yi) + ηk)+f
k(x, yi)

}

.

(3.7g)
We now look at an individual term in the summation in (3.7g). We have five cases.
(i) Suppose that f k(x, yi) > 0. Then, because ηk ≥ 0 by (3.7f),

1

2eπ
[(eπfk(x, yi) + ηk)2

+ − (ηk)2] − (eπfk(x, yi) + ηk)+f
k(x, yi)

=
1

2eπ
[(eπfk(x, yi))

2 + 2eπfk(x, yi)η
k] − eπ(f k(x, yi))

2 − f k(x, yi)η
k

= −e
π

2
(f k(x, yi))

2.

(3.7h)

(ii) Suppose that f k(x, yi) = 0. Then, because ηk ≥ 0, we obtain

1

2eπ
[(eπfk(x, yi) + ηk)2

+ − (ηk)2] − (eπfk(x, yi) + ηk)+f
k(x, yi) = 0. (3.7i)

(iii) Suppose that f k(x, yi) < 0 and ηk = 0. Then,

1

2eπ
[(eπfk(x, yi) + ηk)2

+ − (ηk)2] − (eπfk(x, yi) + ηk)+f
k(x, yi) = 0. (3.7j)

(iv) Suppose that f k(x, yi) < 0, ηk > 0, and eπfk(x, yi) + ηk ≤ 0. Then,

1

2eπ
[(eπfk(x, yi) + ηk)2

+ − (ηk)2] − (eπfk(x, yi) + ηk)+f
k(x, yi)

= −(ηk)2

2eπ
.

(3.7k)

(v) Suppose that f k(x, yi) < 0, ηk > 0, and eπfk(x, yi) + ηk > 0. Then, (3.7h) holds.
Next, we split (3.7g) into sub-summations that corresponds to the results from the
five cases. This gives,

0 =
∑

i∈s

∑

k∈r1

µi

{

1

2eπ
[(eπfk(x, yi) + ηk)2

+ − (ηk)2] − (eπfk(x, yi) + ηk)+f
k(x, yi)

}

= −
∑

(i,k)∈I1(x)

µi e
π

2
(f k(x, yi))

2 −
∑

(i,k)∈I4(x)

µi (n
k)2

2eπ
−

∑

(i,k)∈I5(x)

µi e
π

2
(f k(x, yi))

2,

(3.7l)
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where

I1(x)
4
= {(i, k) ∈ s × r1 | fk(x, yi) > 0}

I4(x)
4
= {(i, k) ∈ s × r1 | fk(x, yi) < 0, ηk > 0, eπfk(x, yi) + ηk ≤ 0}

I5(x)
4
= {(i, k) ∈ s × r1 | fk(x, yi) < 0, ηk > 0, eπfk(x, yi) + ηk > 0}.

(3.7m)

We see from (3.7l) that µi = 0 for all i appearing in the summation over I1(x), I4(x),
and I5(x). Hence, the subset t′ ⊂ s, defined by

t′
4
= {i ∈ s | (i, k) 6∈ I1(x)

⋃

I4(x)
⋃

I5(x), ∀k ∈ r1}, (3.7n)

has the property that i 6∈ t′ implies µi = 0. Since
∑

i∈s
µi = 1, we must have t′ 6= ∅.

Moreover, if i ∈ t′, then f k(x, yi) ≤ 0 for all k ∈ r1 and, additionally, f k(x, yi) < 0
implies ηk = 0.

From (3.7a), we observe that if ψ̄(x̄) − φ̄(x̄, yi) > 0, then µi = 0. Let

t
4
= {i ∈ t′ | ψ̄(x̄) − φ̄(x̄, yi) = 0}. (3.7o)

Since
∑

i∈s
µi = 1, i 6∈ t′ implies µi = 0, and (3.7a) holds, we must have t 6= ∅.

Since f k(x, yi) ≤ 0 for all k ∈ r1, i ∈ t and f k(x, yi) < 0 implies ηk = 0, we have
that

(eπfk(x, yi) + ηk)+ = ηk (3.7p)

for all k ∈ r1, i ∈ t.
In view of (3.7o) and (3.7p), we have

ψ̄(x̄) = φ̄(x̄, yi) = φ(x, yi) ∀i ∈ t. (3.7q)

Hence, it follows from Theorem 2.2 that for every i ∈ t,

ψ(x) = max
y∈Z(x)

φ(x, y) ≥ φ(x, yi) = ψ̄(x̄) ≥ ψ(x). (3.7r)

Consequently, ψ(x) = ψ̄(x̄) and yi ∈ Ŷ (x) for all i ∈ t.
From (3.7b) and (3.7p), we obtain

0 =
∑

i∈t

µi[∇xφ(x, yi) −
∑

k∈r1

(eπfk(x, yi) + ηk)+∇xf
k(x, yi)]

=
∑

i∈t

µi[∇xφ(x, yi) −
∑

k∈r1

ηk∇xf
k(x, yi)].

(3.7s)

Since yi ∈ Ŷ (x) is also a maximizer of φ̄(x̄, y) over Y , it follows from the Mangasarian-
Fromowitz constraint qualification (see, e.g., Chapter 5 in [1]) that there exists a
λ ∈ IRr2 , λ ≥ 0 such that

∇yφ̄(x̄, yi) − gy(yi)
Tλ = 0 (3.7t)
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λTg(yi) = 0. (3.7u)

Hence, it follows from (3.7t) and (3.7p) that

0 = ∇yφ̄(x̄, yi) − gy(yi)
Tλ

= ∇yφ(x, yi) −
∑

k∈r1

(eπfk(x, yi) + ηk)+∇yf
k(x, yi) − gy(yi)

Tλ

= ∇yφ(x, yi) −
∑

k∈r1

ηk∇yf
k(x, yi) − gy(yi)

Tλ

= ∇yφ(x, yi) − fy(x, yi)
Tη − gy(yi)

Tλ.

(3.7v)

In view of (3.7v) and (3.7s), we conclude that (3.5a) holds. This completes the proof.

We are able to show the reverse relation only under strong assumptions:

Theorem 3.7. Suppose that Assumptions 2.1 and 3.2 hold and x ∈ IRn satisfies
(3.5a). Furthermore, suppose that y ∈ Y is the unique optimal solution of (2.3a)
in the strong sense, that y satisfies the second-order sufficiency conditions at x with
η ∈ IRr1 and λ ∈ IRr2 as the vectors of multipliers, and that the linear independence
constraint qualification1 is satisfied at (x, y).

Then, (3.6) holds, with x̄ = (x, η, π), for some π sufficiently large.

Proof. Under the given assumptions, (3.5a) simplifies to

0 = ∇xφ(x, y) − fx(x, y)
Tη. (3.8a)

It follows from Theorem 2.7 that there exists π ∈ IR such that

ψ(x) = ψ̄(x̄), (3.8b)

where x̄ = (x, η, π). Using the fact that f k(x, y) ≤ 0 for all k ∈ r1 and f k(x, y) < 0
implies ηk = 0, we obtain

(eπfk(x, y) + ηk)+ = ηk (3.8c)

for all k ∈ r1. Hence, φ̄(x̄, y) = φ(x, y) and, by (3.8b) and the optimality of y,
ψ̄(x̄) − φ̄(x̄, y) = 0. From (3.8a) and (3.8c), we find ∇xφ̄(x̄, y) = 0. Using (3.8c), we
obtain ∇ηφ̄(x̄, y) = 0 and ∇πφ̄(x̄, y) = 0. This completes the proof.

4 Algorithms and Numerical Examples

In view of Theorem 3.1 and its assumptions, many problems of the form P can be
addressed by solving the ordinary semi-infinite min-max problem P̄. Any semi-infinite

1Can be replaced by the strict Mangasarian-Fromowitz constraint qualification [7, 14], or other
conditions which imply uniqueness of multipliers
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min-max algorithm can be used for this purpose. In particular, Algorithm 3.4.6, 3.4.9,
and 3.4.16 in [20], which are based on discretization of the set Y , Algorithm 3.4.26
in [20], which uses the outer approximation method, and the outer approximation
algorithms in [8], which includes constraint dropping schemes, are suitable. When
applied to P̄, these algorithms are known to converge to points satisfying (3.3a)
[8, 20]. Consequently, these algorithms converge to stationary points (in the sense of
Theorem 3.4) for P under the stability of degree 2 assumption. In view of Theorem
3.6, the algorithms also converge to points satisfying the optimality condition for P
in Theorem 3.5. Hence, implementable algorithms for computing stationary points
of P are available under the stability of degree 2 assumption.

We illustrate the solution strategy for solving P by considering the following nu-
merical examples using Matlab [18] and a 500 MHz PC.

4.1 Example 1

Let x = (x1, x2, x3) ∈ IR3, y ∈ IR, and

φ(x, y) = 3(x1 − y)2 + (2 − y)(x2)2 + 5(x3 + y)2 + 2x1 + 3x2 − x3 + e4y2

, (4.1a)

f(x, y) =
1

4
sin(x1x2) + y − 1

2
, (4.1b)

g1(y) = −y, (4.1c)

g2(y) = y − 1, (4.1d)

i.e., r1 = 1, r2 = 2, and Y = [0, 1] ⊂ IR.
We use the Pironneau-Polak-Pshenichnyi (PPP) min-max algorithm (i.e., Algo-

rithm 2.4.1 in [20]) to solve the finite min-max problem obtained from P̄ by dis-
cretizing Y with 1113 equally spaced points. This number of discretization points is
selected to facilitate comparison with the results in [25]. The algorithm in [25] uses
an adaptive scheme to determine the number of discretization points of Y . At the
termination point of the run of this example in [25], the discretization of Y consisted
of 1113 points. Additionally, we set the parameters in Algorithm 2.4.1 in [20] to be
αa = 0.5, βa = 0.8, and δa = 1.

Initial numerical testing revealed that the graph of the function ψ̄(·) appears to be
fairly flat in the direction of η. As illustrated in Figure 1, this results in significantly
slower convergence in η than in x as the algorithm progresses on P̄. In Figure 1, the
abscissa axis gives the discrepancy between the current iterate (xi, ηi) and the solution
of the problem (x∗, η∗). To compensate for this effect, we recommend to scale η by a
factor σ = ‖∇xφ̄(x̄0, y0)‖2/‖∇ηφ̄(x̄0, y0)‖2, where x̄0 is the value used for initialization
of the algorithm and y0 is an approximate maximizer of φ̄(x̄0, y). Hence, we replace
η by ση in the algorithm. However, the numbers reported in the following are scaled
back to the original η for consistency. For the various initial points in Examples 1
and 2, the recommended formula gives σ ≈ 102. Hence, we set in this example and
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Example 2, σ = 100. As seen from Figure 2, scaling creates initial oscillations (in
fact with a discrepancy larger than 9 for iterations 1-70), but convergence is reached
faster than without scaling.

The numerical results for this example are summarized in Tables 1 and 2, where the
performance of the proposed approach is compared with that of the algorithm in [25].
In Table 1, x0, η0 and π0 denote the initialization values of x, η and π, respectively,
for the Pironneau-Polak-Pshenichnyi algorithm in solving P̄. The different runs are
denoted PPP-1 to PPP-4. In Table 2, ym ∈ arg maxy∈Y φ̄(x̄, y). Hence, a positive
value of f(x, ym) indicates a constraint violation in the inner problem in (1.2a).

We observe from Table 1 that the proposed approach is significantly faster than
the one in [25]. It should be noted that the current implementation of the approach
is rather unsophisticated. Other semi-infinite min-max algorithms, such as the ones
in [20] involving adaptive discretization schemes or the efficient SQP-based algorithm
in [32], are expected to yield even better results. SQP-based algorithms may also
reduce the need for scaling.

From Tables 1 and 2, we see that there is discrepancy between ψ̄((x, η, π)) and
ψ(x) when there is a constraint violation, i.e., f(x, ym) > 0. Otherwise, we have
ψ̄((x, η, π)) = ψ(x) as stated in Theorem 2.4.

In a neighborhood of the solution x, it can be shown that

v(x, u) = φ

(

x, u− 1

4
sin(x1x2) +

1

2

)

(4.2)

for sufficiently small |u|. For a given x∗ ∈ IRn, the right-hand side of (4.2) is a
twice continuously differentiable function of u. Hence, we can set Γ(u) = φ(x∗, u −
(1/4) sin(x∗1x

∗
2)+1/2). Consequently, it follows directly from Definition 2.3 that (2.3a)

is stable of degree 2 for values close to the solution x in this example.

4.2 Example 2

A second example arises in the optimal design of a short structural column with a
rectangular cross section of dimensions b × h. As discussed in the introduction, an
approximation to the optimal design of the column can be obtained by solving (1.5).
To avoid the unrealistic case of negative dimensions of the column, we set b = (x1)2

and h = (x2)2, where x = (x1, x2) ∈ IR2 is the design vector in the optimization
problem. Suppose that the initial cost of the design is c0(x) = bh, and the cost of
failure c1(x) = 100c0(x).

The column is subjected to bi-axial bending moments and an axial force, which,
together with the yield strength of the material, are considered to be random variables.
This gives rise to a limit-state function h : IR2 × IR4 → IR defining the probability of
failure, see (1.3), where

h(x, y)
4
= 1 − 4v1(y)

(x1)2(x2)4v4(y)
− 4v2(y)

(x1)4(x1)2v4(y)
−

(

v3(y)

(x1)2(x2)2v4(y)

)2

, (4.3)
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with v(y)
4
= (v1(y), v2(y), v3(y), v4(y)) ∈ IR4 being given by

v1(y) = exp(12.386 + 0.29356z1(y)), (4.4a)

v2(y) = exp(11.693 + 0.29356z2(y)), (4.4b)

v3(y) = exp(14.712 + 0.19804z3(y)), (4.4c)

v4(y) = exp(17.499 + 0.09975z4(y)), (4.4d)

z(y)
4
= Ly, and the 4 × 4 matrix L may have different structures.

The optimal design of the column is computed by solving (1.5). By inspection,
(1.5) is of the form P, with Y = {y ∈ IR4 | ‖y‖ ≤ β}. We set α = 0.0001 and β = 3
in (1.5).

Suppose L is the unit diagonal matrix, which is the case corresponding to sta-
tistically independent random variables. By using an outer approximation algo-
rithm (OAA) (see Chapter 3 of [20]), we obtain from the initial point (x0, η0, π0) =
(
√

0.75,
√

0.75, 1, 1), with ψ(x0) = 0.5625, the result in the first rows of Tables 3 and
4. The second rows of Tables 3 and 4 contain results using the algorithm in [25] with
the same initialization. The discretization of the set Y required by the algorithm in
[25] could be constructed by using a uniform grid. However, to reduce the computing
time and to be more comparable with the outer approximation algorithm used with
the approach in this paper, we adopted an heuristic approach. The discretization of
Y was constructed as the algorithm progressed by solving the maximization problem
in (1.5) approximately at each iteration. The discretization of Y was defined as the
set of all such maximizers accumulated up to the present iteration.

The results obtained by the outer approximation algorithm (OAA) and by the
algorithm in [25] correspond to columns with cross-section dimensions b×h = 0.266×
0.715 and b × h = 0.315 × 0.631, respectively. It appears that our new approach is
significantly faster than the one in [25].

Since f(x, ym) < 0 at the final iterate (see Table 4), the constraint f(x, y) ≤ 0 in
the inner problem (1.2a) is not active. This is also indicated by the fact that η ≈ 0
and π is essentially equal to its initial value. Since f(x, y) ≤ 0 is not active at the
solution x, v(x, u) is constant with respect to u for sufficiently small perturbations
in u. Hence, Γ(u) in Definition 2.3 can be set equal to v(x, u). The same argument
holds in a sufficiently small neighborhood of the solution x. Consequently, (2.3a) is
stable of degree 2 in a neighborhood of the solution in this example.

Obviously, the situation with an inactive constraint can rarely be identified a
priori. A case where it is difficult to identify whether f(x, y) ≤ 0 is active or not
arises in optimal design with correlated random variables. Let the matrix L involved
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in the definition of the limit state function in (4.3) be defined by

L =











1 0 0 0

0.7580 0.6523 0 0

−0.5239 −0.1944 0.8293 0

0 0 0 1











. (4.5)

This corresponds to a case when the random variables are correlated. By using the ap-
proach suggested in this paper with the same outer approximation algorithm as above
(see Chapter 3 of [20]), we obtain after 12 iterations and 562 seconds from the initial
point (

√
0.75,

√
0.75, 1, 1) the local minimizer x̄ = (x, η, π) = (0.5810, 0.7828, 0.0000,

1.0001), with ψ̄(x̄) = ψ(x) = 0.2129. This corresponds to a column with cross-section
dimensions b× h = 0.338 × 0.613. Note that the constraint f(x, y) ≤ 0 is inactive in
this case as well, with η ≈ 0 and π close to its initial value. Since f(x, y) ≤ 0 is not
active in this example, (2.3a) is stable of degree 2 in a neighborhood of the solution
by the same argument as above.

5 Conclusions

We have developed an implementable approach for solving generalized semi-infinite
min-max problems based on the use of an augmented Lagrangian exact penalty func-
tion. The augmented Lagrangian is used to convert the original problem into a
ordinary semi-infinite min-max problem. The associated multipliers and penalty pa-
rameter in the augmented Lagrangian function are added as auxiliary optimization
variables in the ordinary semi-infinite min-max problem. The resulting ordinary semi-
infinite min-max problem has the same local/global solutions and stationary points
as the original problem. Using this fact, we have derived a new first-order optimality
condition for the generalized semi-infinite min-max problem, which is shown to imply
an existing first-order optimality condition.

The new approach consists of solving the equivalent ordinary semi-infinite min-
max problem. Any semi-infinite optimization algorithm can be used for this purpose.
The approach is limited to cases where the inner maximization problem is stable of
degree 2. We expect this assumption to be satisfied in most practical cases. The
approach was tested numerically on one artificial and one engineering design example
and found to compute better than an alternative algorithm.
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Figure 1: Computing without scaling of η.
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Table 1: Numerical Results for Example 1.

Algo. (x0, η0, π0) ψ(x0) Time to reach ψ(x) ≤ 2.41 ψ(x) after 625 sec.

PPP-1 (2, 1, 0, 1, 1) 22.00 291 sec. 1.9134
PPP-2 (2, 1, 0, 5, 5) 22.00 37 sec. 1.9135
PPP-3 (1, 1, 1, 1, 1) 16.94 203 sec. 1.9202
PPP-4 (1, 1, 1, 5, 5) 16.94 13 sec. 1.9135
[25] (2, 1, 0, -, -) 22.00 625 sec. 2.4100
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Table 2: Numerical Results for Example 1.

Algo. (x, η, π) after 625 sec. ψ̄((x, η, π)) f(x, ym)

PPP-1 (−0.3896,−1.1985,−0.2875, 9.9495, 5.6299) 1.9135 −0.0003
PPP-2 (−0.3896,−1.1985,−0.2875, 9.9505, 5.6302) 1.9135 −0.0003
PPP-3 (−0.3465,−1.1686,−0.3092, 9.2709, 7.1959) 1.9205 0.0007
PPP-4 (−0.3896,−1.1985,−0.2875, 9.9505, 5.6300) 1.9135 −0.0003
[25] (−0.0033,−1.0002,−0.3928, - , - ) - -
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Table 3: Numerical Results for Example 2.

Algo. Time to reach ψ(x) ≤ 0.2039 ψ(x) after 645 sec.

OAA 104 sec. 0.1950
[25] 645 sec. 0.2039
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Table 4: Numerical Results For Example 2.

Algo. (x, η, π) after 625 sec. ψ̄((x, η, π)) f(x, ym)

OAA (0.5161, 0.8454,−0.0000, 1.0001) 0.1950 −0.3741
[25] (0.5613, 0.7944, - , - ) - -
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