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ABSTRACT 

Covert channels in modern communication networks are a 

source of security concerns. Such channels can be used to 

facilitate command and control of botnets or inject 

malicious contents into unsuspected end-user devices or 

network nodes. The vast majority of the documented covert 

channels make use of the upper layers of the Open Systems 

Interconnection (OSI) model. In this thesis, we present a 

new covert channel in IEEE 802.11 networks, making use of 

the Protocol Version field in the Medium Access Control 

(MAC) header. This is achieved by forging modified Clear To 

Send (CTS) and Acknowledgment (ACK) frames. Forward error 

correction mechanisms and interleaving were implemented to 

increase the proposed channel's robustness to error. A 

laboratory implementation of the proposed channel is 

presented by developing the necessary code in Python, 

operating in a Linux environment. We present the results of 

tests conducted on the proposed channel, including 

measurements of channel errors, available data rate for 

transmission, and level of covertness.  
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EXECUTIVE SUMMARY 

IEEE 802.11, also known as WiFi, is one of the most widely 

used set of standards in today’s wireless network 

communications. It is present in a wide variety of 

electronic equipment, from smartphones and laptops to 

kitchen appliances and automobiles. According to an 

industry report, in 2012 over one billion devices will be 

shipped with technology based on this standard onboard, and 

the number is projected to be over two billion in 2014. The 

technical capabilities and the mobility provided to the 

user make it one of the most successful wireless networking 

systems. 

As in any other type of network communication 

standard, security plays a key role. Mobility and ease of 

access are attractive characteristics to the end users, but 

along with them come additional security concerns. It is 

important to evaluate the possible weaknesses and 

vulnerabilities of a standard in order to determine 

relevant security challenges. The particular focus in this 

work is covert channels, which have the characteristic of 

being hard to detect unless we know in advance what we are 

looking for. 

Covert channels come up as one of many aspects 

involved in the security evaluation of a standard and can 

pose a threat to the unaware user. A covert channel is a 

method to transmit information using the communication 

protocol in a way that was not intended or anticipated by 
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the developers. Such covert channels can be used to 

exfiltrate information from the user’s device, propagate 

malware or control a botnet. 

The objectives of this thesis were to identify, 

implement and test a proof-of-concept covert channel in 

IEEE 802.11 networks. This was achieved by forging control 

frames and exploiting specific bits in the Medium Access 

Control (MAC) header. 

In this thesis, we developed the necessary code to 

implement the proposed covert channel, conducted laboratory 

experiments, and measured and analyzed the results. 

Operational IEEE 802.11 networks were monitored prior to 

designing the proposed covert channel, allowing us to 

gather enough information to make a sound decision on which 

frames to forge and how to manipulate them. In order to 

improve the error performance of the proposed covert 

channel, several techniques were used, such as 

convolutional coding and bit interleaving. Detectability 

and mitigation techniques were also addressed, as well as a 

throughput analysis. 

Ideas for future work include optimization of the 

channel throughput, increasing the channel’s robustness to 

errors and exploring the proposed covert channel concept in 

other emerging wireless standards, such as IEEE 802.16 

(WiMAX) or Long Term Evolution (LTE). 
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I. INTRODUCTION  

As wireless networks become more ubiquitous, so do our 

dependencies on them. In a relatively short period, day-to-

day use of wireless networks and mobile devices have become 

a large part of our modern-day lives. This trend is likely 

to continue in the coming years, regardless of the specific 

technologies. Mobility and ease of access are very 

attractive characteristics to the end users, but along with 

them come additional security concerns [1,2]. 

One security-related issue associated with 

communication networks, wired or wireless, is the concept 

of a covert channel, which takes advantage of the very 

fabric of communication networks and exploits them in a way 

that allows the communication protocols to become the 

unintended carrier of messages. This idea of network covert 

channels was documented 25 years ago by Girling [3]. 

However, the concept of a system-based covert channel was 

initially presented by Lampson in 1973 [4]. Extensive 

progress has been made in protocol design since then, but 

covert channels are still a security concern. It becomes 

difficult to account for the existence of every possible 

variation of these channels. 

According to the Department of Defense (DoD) Trusted 

Computer System Evaluation Criteria (TCSEC), a covert 

channel is defined as “any communication channel that can 

be exploited by a process to transfer information in a 

manner that violates the system’s security policy [5].” 

This means a protocol may be used in a way that was not 

intended or anticipated by the designers. 



 2

As networks and respective protocols have evolved and 

changed, so have the documented covert channels. A search 

for possible covert channels begins every time a new 

protocol is implemented or an existing one is modified.  

A new covert channel embedded in the Medium Access 

Control (MAC) layer of an IEEE 802.11-2007 [6] wireless 

network is presented and explored in this thesis. 

A. MOTIVATION 

Over the last decade, wireless communications has 

played a key role in user mobility, a much appreciated 

benefit of such technology. On the other hand, wireless 

access and user mobility pose security challenges due to 

underlying vulnerabilities associated with covert channels 

and other weaknesses. 

In order to protect wireless networks from being 

exploited, we need to constantly evaluate their 

vulnerabilities and devise techniques to mitigate them. 

Finding possible covert channels presents an ongoing 

challenge, and the possible uses for such channels range 

from well-intentioned authentication mechanisms [7], to 

malware propagation [8], exfiltration [8,9] or command and 

control of botnets [10]. 

The above gives us enough reason to ask ourselves, 

What can be worse than not being able to decipher the 

contents of an unwanted communication? Our answer would be 

not knowing such a communication is even taking place. The 

power contained in covert channels is that they have the 

possibility of being in operation long before they are 

detected and identified as channels.  The ability to 
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communicate in this manner gives the user who knows of the 

covert channel a tool that could be used in either a benign 

or malicious manner. 

Although most networks today are protected by 

intrusion detection systems (IDS) and/or intrusion 

prevention systems (IPS), an undocumented covert channel 

can be in operation without triggering an alarm [8]. The 

key factor is that these covert channels are being operated 

in the background, making it extremely hard to protect a 

network against an unknown covert channel.  The importance 

of investigating as many covert channels as possible should 

be obvious, as each networking standard has its own unique 

characteristics to exploit. For this reason, it is 

generally accepted that covert channels cannot be 

completely eliminated because of numerous variations in 

their implementation [11,12]. 

B. OBJECTIVE 

The objective of this thesis is to identify, implement 

and test a proof-of-concept covert channel in an IEEE 

802.11-2007 network environment. The purposed covert 

channel will use the MAC header of control frames to hide 

the covert information. This will be achieved by forging 

frames that use the protocol version bits in a way that was 

not intended by the designers of the IEEE 802.11 standard. 

The proposed channel will be implemented using the 

Python [13] programming language in a Linux environment. A 

graphical user interface (GUI) that resembles a typical 

chat room window will be used. Tests will be conducted over 

an operational network under different conditions. Matlab 

will be used for analyzing the measurements from the tests. 
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To increase the proposed channel's robustness to errors, 

forward error correction and bit interleaving techniques 

will be used. 

C. RELATED WORK 

Many covert channels have been documented over the 

years and reflect the technological stage of the networks 

at which they were documented. As networking technologies 

evolve, so do the corresponding protocols and their 

complexity. With the release of each new networking 

standard, such complexity opens the door for new covert 

channels, which makes the research in covert channels 

challenging. 

The vast majority of academic research has focused on 

documenting covert channels in layer 3 or above of the Open 

Systems Interconnection (OSI) model, partly neglecting 

layers 1 and 2 [14]. These types of covert channels based 

on higher layer protocols span a wider variety of networks, 

since they are not limited by the physical or medium access 

mechanisms. The two most explored protocols above layer 2 

are IP and TCP [12,15,16]. Even higher layer protocols, 

such as Internet Control Message Protocol (ICMP), HyperText 

Transfer Protocol (HTTP) or Domain Name System (DNS), have 

several documented covert channels [14,17,18]. 

More recently, researchers began investigating 

wireless networks, specifically identifying covert channels 

in the MAC layer [19,20,21,22]. Frame forging plays a key 

role in this type of covert channel. Creating fake frames 

with modified header bits is a recurring theme to implement 

such channels. MAC header fields such as the sequence 
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number [21], initialization vector [21] or destination 

address [22], have been used to hide the covert 

information. 

Our work differs from the techniques reported in the 

literature. In the proposed covert channel, a different MAC 

header field is used: the protocol version field. Our work 

also addresses the error robustness and throughput 

analysis, supported by extensive experimental results. 

D. ORGANIZATION 

An overview of the IEEE 802.11-2007 standard is 

presented in Chapter II. The 802.11 data link layer and the 

different types of MAC frames are discussed. An overview of 

covert channels and a formal classification are provided. 

In Chapter III, the formulation and design of the proposed 

covert channel based on empirical foundations are 

presented. A large volume of data is collected and analyzed 

in support of the covert channel formulation.  

An implementation of the proposed channel is presented 

in Chapter IV. We describe the code along with the 

different test scenarios and experimental setups. An 

exhaustive analysis of the results is contained in this 

chapter, including the measurements of channel errors, 

available throughput, and the level of covertness. Use of 

forward error correction (FEC) and interleaving to improve 

the channel performance are discussed. 

Chapter V includes conclusions and recommendations for 

future work. The required steps to launch the proposed 

covert channel are detailed in Appendix A, and the Python 

code used to implement it is given in Appendix B. 
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II. BACKGROUND 

In this chapter, we present the basic IEEE 802.11-2007 

architectures, types of frames of interest, and an overview 

of covert channels. 

A. OVERVIEW OF IEEE 802.11 

1. Protocol Architecture 

The IEEE 802.11-based wireless nodes share a common 

medium for communication. The 802.11 protocol architecture 

can be seen in Figure 1. It addresses the user access at 

layers 1 and 2 of the OSI model, i.e., the physical and the 

data link layer, respectively. 

 

OSI MODEL  IEEE 802 MODEL 

Data Link 

Layer 

 802.2 Logical Link Control (LLC) 

 802.11 Medium Access Control (MAC) 

Physical 

Layer 
 

802.11 

Physical 1 

802.11 

Physical 2 

802.11 

Physical (…) 

Figure 1.   OSI model compared to IEEE 802 protocol 
architecture. 

The logical link control (LLC) acts as a uniform 

interface between the upper layer and the MAC layer. This 

enables the network layer to operate normally regardless of 

the type of MAC being implemented, i.e., for the same LLC, 

different MAC options are possible. 

The medium access control enables the use of a shared 

medium among several stations. Following the same concept 
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as before, we see that for the same MAC, different 

variations of the physical layer can be used. In order to 

regulate the access to the physical layer, 802.11 makes use 

of the carrier sense multiple access with collision 

avoidance (CSMA/CA) scheme [6]. This scheme was developed 

to avoid collisions due to simultaneous transmissions. Such 

collisions cause frame loss, reduce the network's 

throughput and increase delay. 

The physical layer enables the transmission of 

information in the form of electromagnetic signals through 

the use of different modulation schemes, frequency 

spreading techniques, multiplexing, etc. As we can see from 

Figure 1, different types of physical layer technologies 

were incorporated into the 802.11 standard. 

It is important to mention that different versions of 

the 802.11 protocol are available. These versions differ 

mainly in the physical layer. The frequency band and bit 

rate differences among the most common versions are 

summarized in Table 1. Note that 802.11a, b and g are 

incorporated in the IEEE 802.11-2007 version of the 

standard [6]. The 802.11b version is the subject of all the 

tests and results presented in this thesis. 
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Table 1. 802.11 versions comparison [From 23]. 

802.11 version 
Frequency Band 

(Ghz) 

Maximum bit rate 

(Mbps) 

802.11-1997 2.4 2 

802.11a 5 54 

802.11b 2.4 11 

802.11g 2.4 54 

802.11n 2.4 and/or 5 600 

 

2. Network Architecture 

The fundamental building block of the 802.11 

architecture is called the basic service set (BSS). One BSS 

may be connected to other BSSs via a distribution system 

(DS). Within this framework, stations can connect in ad-hoc 

mode or infrastructure mode. The simpler case is ad-hoc 

mode, where two stations can connect directly, point to 

point, without a DS and an access point (AP). Although 

convenient, the ad-hoc mode of operation does not support 

some functions, such as power save. 

If we have the stations connecting via an AP and 

making use of a DS, then we say they are setup in 

infrastructure mode. A wider range of functions and control 

mechanisms are possible in this mode, along with 

centralized security management and extended reach. This 

type of setup is adequate when we want our wireless network 

to connect to an existing Ethernet network or other 

wireless networks in the vicinity, making use of the AP's 

wider range. An example of such a setup can be seen in 
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Figure 2. Here, we can see BSS1 being actively protected by 

a firewall and passively monitored by an Intrusion 

Detection System (IDS). 

 

 

Figure 2.   Example of an 802.11 network in 
infrastructure mode. 

B. 802.11 MAC FRAME  

1. Header Format 

In Figure 3, we can see the generic MAC format for an 

802.11 MAC frame. The frame consists of the MAC header, the 

frame body and the frame check sequence (FCS).  
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Figure 3.   MAC frame format [From 6]. 

The first field in the MAC header is the frame control 

(FC), and consists of two octets. In order to better 

understand the contents and use of this field, a detailed 

view is depicted in Figure 4. 

 

 

Figure 4.   Frame control field [From 6]. 

Within the FC, the field in which we are interested is 

the first field, corresponding to the Protocol Version 

(PV). The PV field consists of two bits that specify the 

version number of the 802.11 protocol being used. As of 

this writing, PV is expected to be set to zero [6]. This 

value may change in the future if a newer version of the 

standard is released.  

The protocol version is the field we will be using for 

the proposed covert channel. We utilize the remaining three 

possible combinations of the PV field to hide the covert 

information. 
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2. Frame Types of Interest 

Four types of frames exist in the 802.11 protocol, as 

listed in Table 2. We have the management, data, reserved 

and control frames. 

The management frames exist to initiate, establish and 

maintain the communication between stations. Examples of 

management frames can be seen in the subtype column of 

Table 2. Frames responsible for association, 

disassociation, authentication and beaconing are part of 

this type. These frames are not very common and for that 

reason not very interesting for our research. 

Data frames are the ones that carry the information 

and can also provide some services, such as quality of 

service (QoS). 

The reserved frames have no specific task, they are 

just a type of frames not currently assigned by the 

standard to perform a specific task. 

The last type of frame is the control type. These 

facilitate the exchange of data frames between stations. 

Within the existing control subtypes, we are interested in 

the smaller sized frames, the acknowledgement (ACK) and the 

clear to send (CTS).  

a. Clear to Send/ Request to Send 

The IEEE 802.11 MAC layer makes use of the 

CSMA/CA scheme in order to minimize the number of 

collisions and subsequent frame loss. This is a way to 

force the transmitting station to sense the medium, hold 

its transmissions until the medium is free, and transmit if 

the media is not in use.  
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Sometimes, a transmitting station may not be in 

range of another transmitting station and might sense the 

medium as free when in fact the medium is being used. A 

third station, in range of the previous two, will receive 

both signals simultaneously, sensing a collision. This is 

known as the hidden node problem [24]. To address this 

issue, a RTS/CTS handshake mechanism is used. This is done 

every time a station has information to transmit, making 

these kind of frames very common.  

The CTS is a 14-byte long frame, whereas the RTS 

is 20 bytes long. 

b. Acknowledgment 

This type of frame is generated when a station 

correctly receives a packet, and it is intended to signal 

the source station that the reception was successful. For 

this reason, this type of frame also tends to be very 

common in an operational wireless network. The length of 

this frame is the same as the CTS, 14 bytes. 

The format of the CTS frame, as well as the ACK 

frame, is shown in Figure 5. Both frames share the same 

format and only differ in one bit in the subtype field 

within the frame control, as seen in Table 2. The ACK frame 

has the subtype value set to 1101; the CTS sets it to 1100. 

 

 

Figure 5.   ACK and CTS frame format [From 6]. 
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Table 2. Type and subtype assignments [From 6]. 

Type 
value 
b3 b2

Type 
descript
ion

Subtype 
value b7 
b6 b5 b4

 
Subtype description 

00 Management 0000 Association request
00 Management 0001 Association response 

00 Management 0010 Reassociation request 

00 Management 0011 Reassociation response 

00 Management 0100 Probe request 

00 Management 0101 Probe response 

00 Management 0110–0111 Reserved 

00 Management 1000 Beacon 

00 Management 1001 ATIM 

00 Management 1010 Disassociation 

00 Management 1011 Authentication 

00 Management 1100 Deauthentication 

00 Management 1101 Action 

00 Management 1110–1111 Reserved 

01 Control 0000–0111 Reserved 

01 Control 1000 Block Ack Request (BlockAckReq) 

01 Control 1001 Block Ack (BlockAck) 

01 Control 1010 PS-Poll 

01 Control 1011 RTS 

01 Control 1100 CTS 

01 Control 1101 ACK 

01 Control 1110 CF-End 

01 Control 1111 CF-End + CF-Ack 
10 Data 0000 Data 

10 Data 0001 Data + CF-Ack 

10 Data 0010 Data + CF-Poll 

10 Data 0011 Data + CF-Ack + CF-Poll 

10 Data 0100 Null (no data) 

10 Data 0101 CF-Ack (no data) 

10 Data 0110 CF-Poll (no data) 

10 Data 0111 CF-Ack + CF-Poll (no data) 

10 Data 1000 QoS Data 

10 Data 1001 QoS Data + CF-Ack 

10 Data 1010 QoS Data + CF-Poll 

10 Data 1011 QoS Data + CF-Ack + CF-Poll 

10 Data 1100 QoS Null (no data) 

10 Data 1101 Reserved 

10 Data 1110 QoS CF-Poll (no data) 

10 Data 1111 QoS CF-Ack + CF-Poll (no data) 

11 Reserved 0000–1111 Reserved 
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We will focus on ACK and CTS frames, since they 

are small in size and tend to be large in volume. As a 

result, if we use them for covert communications, it is 

difficult to be noticed by monitoring devices such as 

firewalls and IDSs. The volume of these frames is 

experimentally verified in Chapter III.  

C. COVERT CHANNELS AND RELATED WORK 

We presented a definition of covert channels in 

Chapter I, and we now will look at the different types of 

channels reported in the literature. 

1. Types of Covert Channels 

In his 1987 paper, Girling [3] identified two major 

types of covert channels: storage and timing. The storage 

covert channels make use of protocols or other mechanisms 

to write additional information in a way that was not 

intended, whereas the timing channels signal information 

between processes by means of varying delays and changing 

the timing of events [5]. The first type tends to be easier 

to implement and is the most common. Based on this, the 

proposed channel in this thesis is a storage channel. 

2. Related Work 

The work of Frikha et al. [21] was the starting point 

for this project, inspiring the proposed covert channel 

configuration. In Frikha's paper, two implementations of a 

covert channel are presented, both using fields in the 

802.11 MAC header. The first uses the eight most 

significant bits of the sequence control field. This field 

has a length of two bytes, which is subdivided into two 
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subfields. The first subfield is the sequence number and 

comprises the first 12 bits. The following four bits 

represent the fragment number.  By using the eight most 

significant bits of the sequence number subfield, their 

covert channel achieves a throughput of one byte per frame. 

The second implementation in [21] applies to networks 

where Wired Equivalent Privacy (WEP) is in use. If this is 

the case, the initialization vector subfield is used to 

carry the covert message. This technique allows a 

throughput of three bytes per frame. 

Another covert channel proposed by Butti [22] uses a 

part of the destination address field of ACK frames to hide 

the payload. A throughput of one byte per frame is achieved 

in this case. Butti [22] also presents complete code for 

the channel's implementation. 

Each of these approaches relies on the forging of 

frames by manipulating the contents of the MAC header in 

order to hide the covert information.   

D. CONCEPT OF THE PROPOSED COVERT CHANNEL 

In this thesis, we propose a MAC layer storage covert 

channel that would ideally work in an environment as 

illustrated in Figure 6. This figure represents two 

stations embedded in an 802.11 infrastructure network but 

at the same time exchanging information through the use of 

a covert channel. This is the ultimate goal of our 

research, although it was not fully achieved.  

An alternative configuration as described in Chapter 

IV, in which the covert channel and an Ethernet connection 

were in use simultaneously, through the use of two network 
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adapters, was successfully implemented. The reason for 

implementing a simplified channel is related to the 

limitations presented by the available hardware. We only 

had one wireless network card adapter in each station, and 

for the covert channel to be functional, that card had to 

be set to Monitor mode. This mode does not allow a 

simultaneous connection to the infrastructure network. One 

possible solution would be installing a second wireless 

network adapter to connect to the infrastructure network.  

 

 

 

Figure 6.   Network topology in which the covert channel 
operates. 

Once the covert channel is established, the robustness 

of the channel becomes relevant. The error performance of 

the channel depends on the network traffic and potential 

collisions and loss of frames. To ensure the proposed 
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channel has some degree of resilience to transmission 

errors, the use of forward error correction (FEC) and 

interleaving was considered and tested. A convolutional 

code of rate 2
3
 and constraint length of four was employed. 

In summary, this chapter provided an overview of the 

IEEE 802.11-2007 standard, protocol and network 

architectures, frame construction and most common frame 

types. A classification of covert channels and existing 

work on covert channels related to our work were presented. 

A conceptual description of the proposed covert channel was 

provided. 
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III. DESIGNING THE COVERT CHANNEL 

A covert channel can be used as a means to convey 

information without other parties realizing that there is a 

hidden communication taking place. In this thesis we 

investigate the implementation of a covert channel in an 

IEEE 802.11-2007 wireless network. 

An overview of different covert channels and the 

architecture, as well as some frame formats of the IEEE 

802.11-2007 standard were covered in Chapter III. A new 

covert channel that utilizes specific bits in the MAC 

header of an 802.11 network is presented in this chapter, 

and the problem of implementing a functional covert channel 

is addressed. 

A. NETWORK MONITORING 

In the previous chapter we discussed the various types 

of frames in 802.11 networks. For the construction of the 

proposed covert channel, we examine these frames to 

identify one or more fields in the MAC header that are 

suitable for information transfer. In order to do so, we 

must first choose the type of frame suitable for this 

purpose. The necessary analysis to make a sound decision is 

provided in the following section. 

1. Type of Frame Analysis 

A heavily used 802.11 network on campus is monitored 

to collect frame traffic on multiple channels. The network 

channels monitored were channel 1 and channel 9. From the 

MAC frame traffic collected, channel 1 is found to be the 
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one with most traffic volume and number of users. We 

collected over 22 million packets to analyze the following 

frame basic characteristics. 

The first characteristic we examined was the type of 

frame that would best suit our needs. Ideally, we want a 

frame that is short in length, common in occurrence, and 

still valid if some bits are changed. Additionally, its 

presence in bursts should not be a rare event. These 

features are desirable for achieving a reasonable 

throughput while providing covertness.  

The results of our analysis are shown in Figure 7 as a 

pie chart, which represents the frequency of occurrence of 

different types of frames. The data frames are dominant, 

followed by CTS, ACK and beacons. The "others" refers to 

the sum of all other frames that represent less than 1% 

individually. From this plot, we can clearly see that two 

types of control frames matching our needs stand out, the 

ACK and the CTS. 

 

 

Figure 7.   Frequency of occurrence of the monitored 
frame types 
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We chose to use CTS for building the proposed covert 

channel as the CTS traffic volume is large and is of same 

frame size as ACK. The next desirable characteristic of the 

frame is the burst length, i.e., the consecutive occurrence 

of the same frame type in an 802.11 wireless network under 

normal operating conditions. 

2. Sequence of Frames Analysis 

Initially, one aspect taken into consideration was the 

importance of having sequences of ACK or CTS originating 

from the same station. This became irrelevant since the 

frame does not contain a source address, and the 

destination address of the forged frame can be manipulated 

as necessary. The importance of frame sequence is relevant 

when we are concerned with the detectability of our 

channel. One could detect a rogue station by observing the 

received power level, the signal-to-noise ratio (SNR) of 

the received frames, and recognizing the fact that the 

frames originated from the same location [25]. Such 

analysis might work if the wireless stations are 

stationary, which defeats the purpose of mobility, but it 

may be a typical scenario for a limited time, as in an 

office space or conference room.  

In the traffic we collected, long sequences of 

consecutive frames of the same type, either ACK or CTS, 

directed to different stations were observed. The sequence 

length versus the frequency of occurrence of the ACK and 

CTS, respectively, are illustrated in Figures 8 and 9. We 

excluded any sequence length with less than two 

occurrences. For reference, a maximum length of 252 
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consecutive CTS frames was recorded once, but it was 

clearly a unique event in all of the monitored traffic.  

In Figure 8, we notice the high incidence of short 

sequences of consecutive frames (up to 10 consecutive 

frames), and lower occurrence of lengths above 40 

consecutive ACK frames. 

 

 

Figure 8.   Distribution of acknowledgement (ACK) frame 
burst length. 

From Figure 9, it is clear that CTS is more likely to 

have long consecutive sequences.  

One abnormality noticed during the traffic analysis 

was the presence of “unexpected” frames among the collected 

traffic. By unexpected, we mean that some of the captured 

frames contain a protocol version number other than zero, 



 23

which should be the default value [6]. The following 

section examines the protocol version field.  

 

Figure 9.   Distribution of clear to send (CTS) frame 
burst length. 

3. Protocol Version Field Analysis 

The zero value for the protocol version field is set 

by the standard, and at the time of this writing it has not 

been changed. This led us to look into it with more 

attention, since this is one potential field that can be 

used by the proposed covert channel. 

The results of traffic analysis conducted on the 

protocol version field are contained in Tables 3 to 5. From 

the traffic data collected in our experiment, we selected 

6,189,701 frames to examine the protocol version field, as 

shown in Table 3. A vast majority of the frames 
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(6,182,148 frames or 99.88%) were found to contain version 

0. Frames containing version numbers 1, 2, and 3 were very 

few in number. 

 

Table 3. Protocol version field values of all captured 
frames. 

Version
# 

Total 
# 

Total 
% 

0 6,182,148 99.88 
1 2,880 0.05 
2 3,347 0.05 
3 1,326 0.02 

ALL  6,189,701 100 
 

 

We conducted the same analysis on the two specific 

frames of interest, the ACK and CTS frames, and the results 

are listed in Tables 4 and 5. As we can see, the incidence 

of protocol version other than zero is quite low.  

Table 4. Protocol version field values of the captured ACK 
frames. 

Version
# 

Total 
# 

Total 
% 

0 1,269,379 99.95 
1 288 0.02 
2 296 0.02 
3 8 0.00 

 ALL 1,269,971 100 
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Table 5. Protocol version field values of the captured CTS 
frames.  

Version
# 

Total 
# 

Total 
% 

0 2,997,890 99.99 
1 88 0.00 
2 310 0.01 
3 13 0.00 

ALL  2,998,301 100 

 

Presence of the protocol version other than 0 is 

puzzling. On the one hand, this means that the security 

mechanisms in the access point may not be performing a 

thorough analysis of the frame headers; a properly 

functioning security mechanism should block the frames with 

non-zero protocol version field. On the other hand, if we 

intended to use this field as a means for the covert 

channel, the existence of other stations transmitting a 

value other than zero would be a source of noise in the 

channel. 

To insure that frames contain non-zero version field 

are not a result of malformed, corrupted or fragmented 

packets, we further examined the frame traffic. We found 

that frames with a protocol version higher than zero 

contained mismatched frame check sums; i.e., they were 

formed due to bit errors. An example of such a frame can be 

seen in Figure 10, a Wireshark [26] capture, where we 

highlighted the version field and the failed checksum. 

4. Choosing the Frame Type 

In the process of choosing a frame for the covert 

channel, several frames were considered, such as RTS and 
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ACK. These frames could serve as well as the CTS, but they 

were found to be less frequent than CTS. Also, among these 

three frames, RTS is the longest one with 20 bytes, and the 

CTS and ACK have only 14 bytes. For this reason we narrowed 

the options to ACK and CTS. The smaller the number of bits 

we have to transmit to send a covert message, the more 

efficient the channel becomes. 

 

 

Figure 10.   Wireshark capture of a CTS frame with PV = 3 
and incorrect check sum. 

From monitoring of frame traffic on the campus 

wireless network and empirical analysis, we found that the 

CTSs occur with a frequency twice that of the ACKs. The 

monitoring was conducted in different traffic scenarios, 
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ranging from low traffic periods to high levels of 

utilization of the network. By choosing CTS, we can 

minimize the chance of causing a traffic anomaly based on 

the type and frequency of packets flowing through the 

network. Also, we already found that the presence of a long 

burst of CTS's is not uncommon in 802.11 networks. During 

frame traffic monitoring, we frequently observed long 

sequences (up to 50) of consecutive CTS's. Of course, this 

sequence length would not allow us to send that many bits 

in a row. A way around this issue is to slow down the rate 

at which we generate and transmit the forged frames. This 

would drastically reduce the throughput but would increase 

the stealthiness of our channel. 

Since CTS and ACK have a similar frame structure, it 

is easier to switch from one to the other, according to our 

objectives. The main concept of the proposed covert channel 

applies equally to both frames. It is even possible to have 

one end of the channel transmitting ACK frames and the 

other transmitting CTS frames without any loss or 

degradation of performance. Alternating frame types, such 

as transmitting a forged ACK followed by a forged CTS is 

also viable. Many other variations are also feasible. 

The fact that both CTS and ACK frames do not contain a 

source address also contributes to a higher level of 

stealthiness since it is not possible to immediately 

identify the source of the transmission. 
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B. PROPOSED COVERT CHANNEL 

1. MAC Header Manipulation 

In the proposed covert channel, we use two bits in the 

protocol version field of the MAC header of an 802.11 CTS 

packet to carry hidden information. The first two bytes in 

the MAC header is the frame control field. The generic two-

octet long frame control field with the protocol version 

field highlighted is shown in Figure 11.  

 

 

Figure 11.   Frame control field [From 6]. 

The proposed covert channel uses the protocol version 

bits in a variety of ways to signal the beginning and end 

of the transmission as well as to carry the information, 

one bit at a time. 

In order to facilitate communication in the proposed 

covert channel, we divided the transmission into three 

segments: start message delimiter, message, and end message 

delimiter. The start and end delimiters are realized by 

transmitting a sequence of five frames with 01 in the 

protocol version field. The message bits are transmitted 

using combinations of 10 as binary "0" and 11 as binary "1" 

in the protocol version field. The message is organized 

into 8-bit ASCII characters. 
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An example of this procedure is shown in Figure 12, 

where a capture of Wireshark is displayed in which we can 

see the transmission of the ASCII character “A” converted 

into the binary string “01000001.” A total of 18 frames 

were transmitted as follows: 

  five CTS frames with protocol version one (01) 

mark the beginning of the transmission; 

  eight CTS frames corresponding to the binary 

representation of the ASCII code of character 

'A', with protocol version 2 (10) representing a 

binary zero and protocol version 3 (11) a binary 

one; and 

  five CTS frames with protocol version one (01) 

marking the end of the transmission. 

 

Figure 12.   Wireshark capture of an “A” being 
transmitted using the proposed covert channel. 

2. Important MAC Header Parameters 

It is important to keep the forged frame as a valid 

frame to minimize the chance of detection and reduce the 

likelihood of elimination or blocking by access points, 
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firewalls or IDSs. Any such device could be looking into 

the contents of packet headers and discarding invalid ones. 

The forged CTS generated in our covert channel can be 

modified to include a valid destination MAC address that 

exists in the network in which we are operating and a valid 

checksum. The only deviation from a system generated frame 

is the PV field value. This can be seen in Figures 13 and 

14, where the first highlighted field of the frames, d6 and 

c7, respectively, represents the type, subtype and protocol 

version. By inspection we can see that a protocol version 2 

is present in Figure 13, indicating the transmission of a 

binary zero, in our covert channel, and a version 3 is 

present in Figure 14, signaling a binary one. 

The d6 and c7 values are the hexadecimal 

representation of the bits that comprise the first octet in 

the MAC header. From Table 2, d6 in Figure 13 is composed 

as follows: 

 
B0 B1 B2 B3 B4 B5 B6  B7 
0 1 1 0 1 0 1 1 

 
PV=1   TYPE=Control    SUBTYPE=ACK  

 

By taking B7 as the most significant bit, we get 

11010110(bin)=d6(hex). The same process applies to the 

construction of c7. 
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Figure 13.   Forged ACK structure. 

 

 

Figure 14.   Forged CTS structure. 

The ID field or duration field is set to zero in 

Figures 13 and 14. If the forged frame is an ACK sent by a 

non-QoS station and has the More Fragments flag set to 

zero, then this field is also zero. Otherwise, it has a 

non-zero value [6]. On the other hand, if the forged packet 

is a CTS, this field indicates how long the referred 

station in the destination address field has air time to 

transmit its data, while the remaining stations hold their 

transmissions during the same period. If this field is set 

to zero, there are no practical implications to the 

network. However, if this field contains a non-zero value, 

all the other stations will hold their transmissions for 

that amount of time. This could be the basis for a Denial 

of Service (DoS) attack [27]. 
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C. DETECTING AND DISABLING THE USE OF THE PROPOSED COVERT 
CHANNEL 

Once we are aware of the existence of a covert 

channel, it is relatively easy to protect against its 

unwanted use.  

In order to limit the use of the proposed covert 

channel or any of its derivatives that are built upon the 

same concept, we just have to monitor the PV field in the 

MAC header. If the PV field is different from zero (00), 

the packet is discarded. This blocking technique works 

regardless of the type of packet we forge, since all types 

of packets have the PV in common [6]. Notice that this 

blocking rule would only limit (not eliminate) the use of 

the channel. For example, the frame would be blocked by an 

AP, but any station in the range of the transmitting 

station would still “hear” this frame.  

In our experiments, since we recorded frames with PV 

values other than 00 but with an invalid CRC, we cannot 

infer whether or not the APs are filtering such frames. 

What we can conclude is that invalid frames with altered PV 

values exist in the network and that stations within the 

covert channel's range still “hear” such frames. 

Another aspect that could raise suspicion is the 

presence of a long sequence of frames of the same type to 

the same MAC address in a short period of time. Although we 

described a way to circumvent this effect, this is still 

something to consider and is worth analyzing.  

Yet another aspect that could trigger an alarm would 

be the anomalous increase of the network's traffic during 

our use of the covert channel. We will examine such a 
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scenario in Chapter IV, but spacing the transmission of the 

forged frames in time mitigates this effect. This, however, 

comes at a cost since the throughput decreases and the 

transmission period increases. 

In this chapter, we presented the results of traffic 

monitoring in an IEEE 802.11 wireless network and proposed 

a covert channel. The process of choosing the right frame 

to forge based on empirical results was explained. The CTS 

frame was chosen, and some considerations about the frame 

choice, its strengths and weaknesses were made. The basic 

premise of the proposed covert channel is to use the PV 

field in the MAC header for message transmission. Aspects 

related to the detectability and mitigation were also 

discussed. The test bed model used for the experiments and 

a description of the developed code and the analysis of 

experimental results is presented in the next chapter.  



 34

THIS PAGE INTENTIONALLY LEFT BLANK 



 35

IV. EXPERIMENTS AND RESULTS 

In this chapter, we analyze three parameters of our 

channel: stealthiness, error robustness, and throughput. 

The intent is to present the results of experiments 

conducted using a proof-of-concept covert channel program 

developed by the author. 

A. TEST BED 

For conducting tests, we used two laptops with the 

same hardware configuration, using a PCM 3COM 3CRPAG175 

with an Atheros chip AR5212 as the wireless network 

adapter. One laptop was used as transmitter (Station A) and 

the other one as passive monitor (Station B). Station A was 

running Backtrack4 as the operating system (OS) as well as 

some additional software described in Appendix A. Station B 

ran Windows XP SP2 and the monitoring program used was 

Airopeek NX, version 3.0.1 [28]. 

In Chapter II, we described the ultimate goal of this 

thesis as having two stations that are part of an 

infrastructure wireless network, communicating between them 

through a covert channel. Although the concept is fairly 

simple, the practical implementation is not. For that 

reason, and also due to time constraints, our approach for 

the practical tests consisted of having two stations 

located in the physical area of an infrastructure 802.11 

network but not connected to it, trading messages between 

them using the proposed covert channel. The setup used for 

the experiments is illustrated in Figure 15. 
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Figure 15.   Network topology used in the experiments. 

B. CODE DESCRIPTION 

In order to implement the proposed covert channel, we 

developed the necessary code to forge, transmit, and 

receive frames. To provide error robustness, we used 

convolutional coding along with interleaving. 

Python [13] was the chosen programming language due to 

its simplicity, available libraries and extension modules 

that facilitated our task. For the OS, a Linux environment 

was elected as being more flexible, open source and GNU 

licensed. The chosen distribution was Backtrack4. Diverse 

documentation on this OS flavor can be found online. All 

the additional software (see Appendix A) is also under GNU 

licensing, so no proprietary software was used to implement 

the covert channel. 

In order to simplify the use of our covert channel, a 

graphical user interface was used. Since this is a proof-
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of-concept effort, implementation of a half-duplex chat 

room environment seemed reasonable to meet our objectives. 

This way, we made use of an open-source chat environment 

previously developed by Wolfman and Filth [29]. The visual 

interface is used almost unchanged; several internal 

routines and processes were extensively altered. Effort was 

put into making the program applicable to realistic 

application scenarios. A small description of the code 

follows. In our code we wrapped the covert channel in a 

friendly GUI, so it looks and operates as a basic chat 

console. 

The code is divided into three major processes running 

simultaneously in a virtual sense, meaning the processor 

alternates between all processes in a very small amount of 

time. This is crucial to the code performance; the code 

optimization was on our mind but did not take a high 

priority. Figure 16 is a simple representation of the major 

blocks constituting the final code. A main program is 

initiated, along with the loading of several libraries and 

definition of variables. One of the most important 

libraries is Scapy [30], a Python packet manipulation 

program that enabled us to listen and disassemble frames as 

well as forge our own frames. The GUI is built using 

Tkinter. A screen capture of the GUI is shown in Figure 17. 

The various menus and the welcome message are visible, as 

well as an example of a transmitted and a received message. 

The transmitted message is the first line, identified with 

user John, and the second line is the received message, 

identified with Eve. 
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Figure 16.   Flow chart of the covert channel code 
implementation. 



 39

Following the flow direction on Figure 16, we then 

move to Thread1, where we initiate the listening part of 

our program. Here we filter the frames of interest, 

identify the beginning and end of the covert communication, 

and write the resulting message to a log file after 

converting the recovered string of bits to ASCII 

characters. The routine responsible for converting the bits 

to characters and storing them to the log file is: 

 

def conv(bin2): 
 bl=[bin2[i:i+8] for i in range(0, len(bin2), 8)] 
 final='' 
 for z in range(0,len(bl)): 
  final2=chr(int(bl[z],2)) 
  final=final+final2 
 timestamp='('+"%.19s" % str(datetime.now())+') ' 
        user='Received message'+': ' 
        txt = timestamp+user+final+'\n' 
        f = open(file.name, 'arb',5) 
        f.write(txt) 
 f.close() 
 

 
Thread2 corresponds to the transmitting part of the 

code. We continuously scan the log file, where all the 

keyboard inputs are saved, check for an update in the file; 

and if one is detected, we build our binary string, forge 

the frames, and transmit them. This way, all the received 

and transmitted messages are saved in the log file with a 

time stamp and identification of message originator. 

During the transmission period of time, we set an 

internal control flag to 1 in order to suspend the 

listening routine, thus avoid listening to our own 

transmission. 
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Finally, Thread3 handles possible discrepancies in the 

identification of the beginning and end of the covert 

communication. The other version 1 frames (with bad 

checksums) circulating in the network become noise to our 

version 1 frames forming the start and end delimiters. 

Thread3 is responsible for filtering out these unwanted 

frames. The Python code segment of Thread3 is: 

 
def treset(): 
 while True: 
  global magic 
  c=magic 
  tm.sleep(10) 
  if c-magic==0 and magic<5: 
   magic=0 

  
 
A complete listing of the code is provided in 

Appendix B. 

 

Figure 17.   Covert channel GUI screen capture. 
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C. RESULTS 

Frame traffic was recorded over operational wireless 

networks during week days in order to capture the real-

world scenarios. 

Three different scenarios were considered and tested. 

All scenarios consisted of transmitting similar messages 

during approximately the same time of day. The difference 

between the scenarios is the way the data was transmitted, 

since we varied the type of frames used and applied 

different error mitigation mechanisms. 

It is important to notice that Stations A and B were 

operating in the ad-hoc mode of operation, i.e., outside 

the infrastructure wireless network being monitored. As a 

result, the mechanisms in the 802.11 standard designed to 

minimize collisions are not entirely observed. CSMA/CA was 

still used since it is a built-in functionality of the 

wireless adapter. The stations transmit without any 

coordination from the access point.  This likely causes 

collisions, and thus frame losses, which are interpreted as 

errors for analysis purposes. 

There were two types of messages used during the 

tests. The first message was a classic steganographic 

sentence used during WWII by a German spy [31]: 

Apparently neutral's protest is thoroughly 
discounted and ignored. Isman hard hit. Blockade 
issue affects for pretext embargo on by-products, 
ejecting suets and vegetable oils. 

The sentence has a total of 1408 bytes. The second 

type of message sent is a 25,000-bit long sequence of 

binary 1s. 
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These messages were transmitted under three scenarios. 

In the first scenario, the messages were sent without any 

error control.  

A demonstration of the sentence transmission is 

presented now using the chat room GUI. The result of a 

correct reception of a message sent over the covert channel 

is shown in Example 1, and a totally unreadable message is 

shown in Example 2. Both messages were sent over a Scenario 

1 environment in channel 1 with no error correction. 

Example 1:  

(2011-03-04 01:43:52) Received message: Apparently neutral's 
protest is thoroughly discounted and ignored. Isman hard hit. 
Blockade issue affects for pretext embargo on by-produce, 
ejecting suets and vegetable oil. 

Example 2: 

(2011-03-04 01:48:56) Received message: ‚_yeóªt‚—®;__ ƒ’ÜU›_Õ‡M_-
µ[B4�?oÒÍa gdB�óïkC@»4�Ai�__CÄ_eÒ\¥)_?7R€_x,ÚM¿ F�•)-
*ep>¹_KXQÕT\…Y{6ŒW7DõøH1ì€tÇžc‹D‡ÉQ_ 
 

Forward error correction  (FEC) is used to improve 

robustness of transmitted messages in the second scenario. 

The last scenario consisted of forward error correction and 

bit interleaving to further enhance robustness. 

1. Error Performance of the Covert Channel 

CTS frames are used to carry the message in the PV 

field. This yields a throughput of approximately one bit 

per transmitted frame. Actually, it is slightly less than 

one bit per frame, since we have an overhead of ten frames 

to mark the beginning and end of the transmission. Channels 

1 and 9 of the network were monitored for frame traffic. 

Before conducting the analysis, it is important to 

define what we considered to be an error. In this thesis, 
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an error is the loss of a payload (information) bit. If we 

send one payload bit per frame, then the loss of one frame 

corresponds to one error. The reception of malformed 

frames, with invalid checksum indicating bit flips, is 

classified as a lost frame in our analysis. 

a. Channel 1 

In Figure 18(a) we can see the profile of the 

traffic collected for a period of about ten hours on 

channel 1. The percentage of errors detected upon reception 

of the test sentence is displayed in Figure 18(b). Finally, 

the percentages of errors recorded for the 25,000 long bit 

sequence of binary 1s is illustrated in Figure 18(c). The 

plots are time aligned. The width of the bars in Figures 

18(b) and 18(c) indicate the time it takes to transmit the 

complete sequence.  

Summarizing this analysis, we observed an average 

error of approximately 3% for the sentence and 2% for the 

sequence of ones over a total of 30 sets of transmissions. 

One desirable characteristic we want to preserve 

in a covert channel is the stealthiness of message 

transmission; that is, we try to hide as much as possible 

such that the use of the covert channel remains unnoticed. 
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Figure 18.   Network traffic profile and percentage of 
errors for sentence and sequence receptions in 

channel 1. 

Figure 19 is a partial magnification of the 

traffic profile shown in Figure 18(a), where the black 

(lower) line represents the normal network traffic, and the 

red (upper) line shows the normal traffic plus the traffic 

due to covert (forged) frames. As we can see in Figure 19, 

the difference between the red line and the black line 

corresponds to the amount of traffic added by the use of 

the covert channel. Since the network traffic is fairly 

heavy in channel 1, the presence of the covert channel is 

not obvious; our traffic just blends in with the overall 

traffic. 

(a)

(b)

(c)
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Figure 19.   A selected portion of network traffic 
profile for channel 1. 

b. Channel 9 

We repeated the same experiment using channel 9 

instead of channel 1. Here, we did not expect any heavy 

traffic; thus, no significant information is gained 

regarding traffic profile shaped by users. For that reason 

we reduced the sequence of ones from 25,000 to 2,500 bits 

in order to have a large number of sequences in a shorter 

amount of time. The results in Figure 20 correspond to a 

two-hour period of monitoring channel 9 without any covert 

activity. 
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Figure 20.   Network traffic profile of channel 9. 

The results of the traffic profile with covert 

channel activity are shown in Figures 21 and 22. Figure 

21(a) is the graphical representation of the number of 

frames per second in circulation in the network between 9AM 

and 7PM on a weekday. The percentage of errors in the 

sentence reception is shown in Figure 21(b). In Figure 

21(c) we have the representation of the percentage of 

errors for the 2,500 bit long sequence.  

A zoomed in view of the normal traffic in the 

network versus the covert channel traffic is displayed in 

Figure 22. In this case the difference is large, and the 

presence of the channel is easily revealed. The red line 

represents the traffic due to the covert channel, whereas 

the black line is the normal traffic in the network. This 

situation is exactly what we do not wish in a real-world 

application. 
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Figure 21.   Network traffic profile and percentage of 
errors for sentence and sequence receptions in 

channel 9. 

The stealthiness of the channel can be improved 

by spacing the transmission of forged frames. How the 

covert traffic can be made less visible by introducing 

spacing between frames is illustrated in Figure 23. This of 

course reduces the throughput. Segment (a) in Figure 23 

corresponds to normal frame transmission with no additional 

spacing between the frames. For this segment the total 

transmission time was approximately two minutes at an 

average of 30 frames per second (fps). In segment (b) 

frames are sent once every two seconds, resulting in a 

total transmission time of 2 hours and 12 minutes. Finally, 

 

 

(a)

(b)

(c)
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segment (c) is shown only partially; we sent one frame 

every four seconds for a total transmission time of 4.5 

hours.  

 

 

Figure 22.   A selected portion of network traffic 
profile for channel 9. 

 

Figure 23.   Zoom of network traffic profile for channel 
9 using three different delays in forged frame 

transmission. 

(a) 

(b)

(c) 
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The important aspect is that the difference 

between the legitimate and covert traffic becomes smaller 

and smaller as the spacing increases; at some point, it is 

possible to make it almost invisible as we extend the 

spacing. On the other hand, the throughput is degrading 

proportionately. 

Another technique to camouflage our use of the 

covert channel is to space the forged frames transmission 

in a non-uniform way instead of sending the frames at 

regular time intervals. Although considered, this variation 

was not tested. 

2. Error Performance of the Covert Channel With 
Forward Error Correction 

We now introduce forward error correction in order to 

reduce the number of errors in the covert channel. 

There are several options for implementing FEC: block 

codes such as Hamming and Reed-Solomon, convolutional 

codes, turbo codes, or low density parity check codes. In 

this thesis, a convolutional code was used for error 

correction. 

A convolutional encoder takes an m -bit message and 

encodes it into an n-bit symbol. The ratio m
n
 is the code 

rate. In our case a code rate of 2
3
 was used, meaning the 

encoded message will be one and a half times as long as the 

original message. This increases the time needed to 

transmit the same message as before since a larger number 

of channel bits is being sent. 

Another important parameter in convolutional coding is 

the constraint length. This parameter,k , represents the 
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number of bits in the encoder memory that affect the 

generation of the n output bits [32]. A constraint length 

of four is used for our experiments. 

In order to deal with the presence of burst errors in 

the channel, in association with the convolutional coder we 

also used bit interleaving [33,34]. This consisted of 

breaking the coded message in blocks of eight bits and 

building a matrix with each block in a different row. By 

reading the matrix out by column, from top to bottom, we 

generate a new string of bits, effectively interleaving all 

the eight bit blocks.  The number of rows depends on the 

length of the message we are transmitting. This process is 

shown in Figure 24. 

 

 

Figure 24.   Bit interleaving process. 

Forward error correction is typically applied to a 

transmission of a stream of bits sent and received 

sequentially. In our case, however, the bits are embedded 

into independent frames, which are prone to loss. As a 
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result, when a frame is lost, the receiver has no 

indication that a bit was missing. Consequently, we now 

need to know exactly which frames were lost in order to 

apply the FEC correctly. Different approaches were tested, 

and the results are reported below.  

a. Alternating CTS and ACK 

A rudimentary mechanism for determining the 

location of the lost frames can be implemented by 

alternating the frame type, accomplished by sending 

alternate ACKs and CTSs. Essentially, we are using the 

subtype field in the MAC header to accomplish this; the PV 

field is still the carrier of the covert information. 

This approach effectively emulates a 1-bit 

sequence number. As soon as we lose more than one frame in 

a row, the entire sequence is corrupted, and the error 

correction scheme is unable to correct the errors (lost 

frames). A better scheme is needed.  

b. Alternating CTS and ACK Using Sequence 
Numbers 

We propose to use the eight flag bits in the 

frame control field of the MAC header to obtain a longer 

sequence number, which makes determining the location of 

lost frames an easier task. However, it is important to 

state that applying this use of the flag bits will increase 

the probability of detection of the covert channel since 

unexpected flag attributions will be present. This was not 

further investigated, but we are aware of the increased 

risk of detection taken when pursuing an increase in the 

channel’s error performance. In order not to use the flag 
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bits, one could use the type and subtype fields of the MAC 

header. As shown in Table 2, the IEEE802.11 standard 

defines some bit combinations of the subtype field as 

“Reserved.” Exploring these combinations could be an 

option; although, we did not test it. 

Figure 25 is a representation of how we 

accommodated the information and sequence bits within the 

MAC header. The blue squares represent our covert channel 

bits. These bits are used in the same way described in 

Chapter III: the first bit (B0) signals the presence of the 

channel and the second is payload (B1). The red circles 

refer to the sequence bits, which are placed in the flag 

bits of the frame control field. Given that we have eight 

flags, this gives us a total of 256 possible sequence 

numbers. This alone provides a reasonable amount of 

protection against a long burst of frame losses when 

compared to the previous approach.  

 

Figure 25.   Representation of the frame structure using 
the flag bits for sequencing. 

Figure 26 is an illustration of Wireshark capture 

of part of the transmission sequence of the sentence. 

Looking at the flag field, we can see how the hexadecimal 

values are increasing sequentially. 
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Figure 26.   Wireshark capture of transmitted forged ACK 
and CTS frames using flag bits for sequencing. 

This way of using the flag bits does not affect 

the traffic profile in the network since the number of 

forged frames is still the same. 

The percentage of errors as a function of 15 

repeated transmissions of the sentence in channel 1 over a 

period of four hours is shown in Figure 27. The length of 

the transmitted sentence is now 2,112 bits long because we 

applied a 2
3 rate encoder on a 1,408-bit string. The red 

stems (x) represent the number of errors detected in the 

received sentence, and the blue stems (o) the number of 

errors in the received sentence with FEC. In most cases the 

number of errors drops to zero or is significantly reduced. 
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Figure 27.   Percentage of errors before (red) and after 
FEC (blue) per received sentence, using flag bits 

for sequencing. 

This is consistent with our expectations. We have one 

outlier in that for the 13th repetition of the sentence we 

got a larger number of errors with FEC.  

We recorded a total of 67 errors in this 

experiment (without FEC), which translates into an average 

of 4.5 errors per sentence, or an average error percentage 

of 0.21%. After the execution of FEC, the total number of 

errors dropped to 21, resulting in an average of 1.4 errors 

per sentence, or an overall average of 0.09% relative to 

the 1,408 bits of the original message. This was an 

improvement of more than two-fold. However, this gain was 

the direct result of having to transmit more bits to send 

the same message when compared to the first scenario with 

no FEC, thus reducing the data rate. 
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The next test used the sequence of ones. The 

original length of 25,000 bits becomes 37,500 bits long 

after encoding. The error values for the 15 repetitions of 

the bit sequence are presented in Figure 28. Notice that 

the scale on the y-axis is different from that in Figure 27 

since larger values were plotted. The two largest values, 

corresponding to sequence numbers 3 and 4, are most likely 

the result of losing synchronization during the decoding of 

the bit string, leading to an uncontrolled increase in the 

number of errors. Recall that if the correct frame sequence 

is lost, the rest of the binary string is corrupted. An 

example of such an event is the loss of the marker that 

indicates the beginning and end of the channel use, the PV 

1 values. 

 

Figure 28.   Percentage of errors before (red) and after 
FEC (blue) per received sequence, using flag bits 

for sequencing. 
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Excluding the outliers, the total amount of 

errors at the receiver for the remaining 13 sequences was 

4,211. This gives us an average of approximately 324 errors 

per repetition, or 0.86% of the total 37,500 bits 

transmitted per sequence. After the FEC, the total number 

of errors dropped to 2,502, or 0.77% relative to the 

original 25,000 bit long sequence. 

3. Error Performance of the Covert Channel With 
Forward Error Correction and Interleaving 

In this scenario, we continued to use alternating 

sequences of CTS and ACK frames as well as FEC. We now 

consider sending more than one bit of information per 

forged frame. The proposed structure is illustrated in 

Figure 29. The blue squares indicate payload bits, and the 

red circles are sequence numbers. The green diamond (B0) 

indicates the presence of the covert channel. Bits B1, B8 

and B9 form the sequence number yielding a sequence length 

of 8. Bits B10-B15 form the payload of six bits to carry 

the message. 

 

 
Figure 29.   Representation of the frame structure using 

three bits for sequencing and six bits for payload. 

Since each frame now carries six information bits, the 

loss of one or more frames has a bigger impact on the 

number of errors in the channel. In order to mitigate this 

effect, we interleave the bit string resulting from the 



 57

convolutional coder. Figure 30 is a schematic 

representation of this idea. At the output of the 

convolutional coder, we interleave the bits in groups of 

eight bits, as shown in Figure 24. This results in a new 

string of zeros and ones which goes into the covert channel 

processing block. Here the string is separated in groups of 

six bits, and each group becomes the payload of the forged 

frames. 

 

 

Figure 30.   FEC and interleaving block diagram. 

Notice that only information bits are encoded and 

interleaved; in this implementation the convolutional coder 

is applied after we have the complete message we want to 

transmit. In other words, first we capture the entire 

message, then we encode it, interleave it, and finally run 

the resulting string through the covert channel. The frame 

is forged as follows: six information bits are placed in 

the selected flag bits, three other bits are used for 

sequence numbers, and the first PV bit is set to one, 

indicating the use of the covert channel. 

Figure 31 is a display of a Wireshark capture of some 

transmitted frames. Notice how the flag values of 

successive frames change in a non-sequential way since 

every forged frame has different contents for these fields. 
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Figure 31.   Wireshark capture of transmitted forged ACK 
and CTS frames using three bits for sequencing and 

six bits for payload. 

a. FEC Without Interleaving 

We first test the channel using FEC and no 

interleaving. The error values for the 15 repetitions of 

the sentence are depicted in Figure 32. The average number 

of errors per repetition was 85, or 0.27%, of the total 

amount of bits sent per sentence. After tracking the 

sequence numbers and correcting the bit sequence, the final 

number of errors was reduced to 35 or 0.16%. 



 59

 

Figure 32.   Percentage of errors before (red) and after 
FEC (blue) per received sentence without 

interleaving. 

b. FEC With Interleaving 

In this experiment, we use three bits for 

sequencing. For a payload of six bits, the loss of one 

packet has a bigger effect in the error performance of the 

channel. For this reason we resorted to the use of 

interleaving.  

The percentage of errors per sentence repetition 

can be seen in Figure 33. From this figure we notice an 

outlier at repetition 12, actually gaining errors after the 

FEC. This was an isolated event and was excluded from this 

analysis. The result is an average number of 1.53 errors 

per repetition, or 0.07%, of the total amount of bits sent 

per sentence. Following the sequence number tracking, de-
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interleaving and correcting the bit sequence, we see that 

the total number of errors is reduced to zero. These are 

significant results; however, the sample space is small, 

and we cannot conclude that this level of robustness will 

be achieved in every reception. 

 

Figure 33.   Percentage of errors before (red) and after 
FEC (blue) per received sentence with interleaving. 

D. THROUGHPUT ANALYSIS 

In order to evaluate the throughput offered in each 

scenario, the rate at which the frames were transmitted was 

measured. This was done using Airopeek [28] and by 

averaging the rate of the forged frames on a per second 

(fps) basis.  The measured transmission rates may have 

large variations and may reach zero in some cases because 

sometimes no frame is sent during an entire second. 

Depending on the network usage at the time, the frame rate 
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varies significantly. Another factor responsible for this 

variation is the continuous adjustment of the maximum data 

rate of the network as dictated by the channel conditions. 

For IEEE 802.11b networks, the maximum network data rate 

possible values are 1, 2, 5.5, and 11 Mbps [6].  

To obtain a benchmark for performance comparison, we 

first determine the maximum data rate possible for the 

covert channel under optimal conditions. The conditions we 

assume are: 

1. The channel is ideal with no errors; 

2. There is only one station with frames to 

transmit; 

3. We use a data rate of 2 Mbps, the highest 

possible for 802.11b control frames (basic rate 

set) [6]. 

The medium access scheme has to obey some 

predetermined timing constraints set by the standard. 

Figure 34 is a graphical representation of the timing 

requirements for transmitting a frame. 

 

Figure 34.   Timing constraints in an 802.11 frame 
transmission [After 35] 
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Applying the work of Xiao and Rosdhal [36] and Jun et 

al. [37] to the proposed covert channel, the minimum amount 

of time necessary to transmit a forged CTS mint  can be 

expressed as 

   min 2
cwin slot

SIFS CTS

N t
t t t

 
 (1) 

 
where SIFSt  is the short interframe time, 


 

 6

14 8
10.18

11 10CTSt  µs is the transmission time of the 14-

byte CTS frame, cwinN  is the maximum size of the contention 

window, and slott  is the slot time.  

From the standard we use SIFSt 10 µs, cwinN 31 and 

slott 20 µs. This yields mint 376 µs, corresponding to a 

maximum of 2659 forged frames per second. At one bit per 

frame, the maximum bit rate is 2659 bps; at six bits per 

frame, we get 15.954 kbps. The measured throughput values, 

however, are significantly smaller. 

Having established a benchmark, we now determine the 

experimental throughput results. In the first experiment, 

we were able to transmit one bit of information in each 

forged frame, but we have the overhead of the start and end 

delimiters, a total of ten signaling frames. The measured 

average frame rate was 61 frames per second. Since each 

frame represents a bit, and considering our message payload 

of 1408 bits, we transmit a total of 1418 bits. At 61 fps 

this corresponds to a total transmission time of 23.25 sec 

and a useful bit rate or throughput of 60.5 bits per second 

(bps).  

The next experiment introduced FEC, and although we 

did not change the frame construction, the measured average 
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frame rate is smaller. This is due to the additional 

processing introduced with the sequencing of the frames. 

Instead of the previous 61 fps, we now have 43 fps being 

transmitted. Also, the total number of bits needed to send 

the message increases to 2122 due to the use of the 

convolutional coder. This corresponds to a total 

transmission time of 49.4 seconds, yielding a useful 

throughput of 21.3 bps. 

In the last experiment, we transmitted six bits per 

forged frame and introduced the use of interleaving. The 

measured average transmission rate was 32 fps, and 

transmitting the same 2122 bits as before, we obtain a 

total transmission time of 11 seconds. The resulting 

throughput value is 127.4 bps. The measured results are 

summarized in Table 6. 

Table 6. Measured throughput values compared to the 
channel data rate 

 
Useful bit rate 

(bps) 

Max. bit rate 
(Theoretical) 2659 

Without FEC and 

1 bit payload 
60.5 

With FEC and I 

bit payload 
21.3 

With FEC and 6 

bit payload 
127.4 

 

In summary, results of testing the proposed covert 

channel were presented in this chapter. The Python code 
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used to implement the covert channel was briefly described. 

Results of experiments were presented, with emphasis on 

robustness to errors, channel covertness and achieved 

throughput. A summary of the conclusions made in previous 

chapters, significant results and recommendations for 

future work are given in the next chapter. 
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V. CONCLUSIONS  

The IEEE 802.11-2007 standard was the subject of our 

work in this thesis. This standard was first introduced in 

1997, yet it is still expanding and is one of the most 

widely used wireless networking standards. According to an 

industry report, in 2012 over a billion devices will be 

shipped with technology based on this standard onboard and 

the number is projected to be over two billion in 2014 

[38]. For this reason, we think it is important to evaluate 

the possible weaknesses and vulnerabilities in order to 

determine relevant security challenges. The particular 

focus in this work is covert channels, which have the 

characteristic of being hard to detect unless we know in 

advance what we are looking for. Consequently, continuous 

research and investigation in this field are essential. 

A previously undocumented 802.11 covert channel was 

implemented and tested in this thesis. We introduced and 

discussed the basic concept of the proposed covert channel. 

We then implemented the channel in a Linux environment and 

tested it under different scenarios in order to analyze its 

robustness, covertness and throughput. The necessary code 

to implement the channel and a GUI were developed in 

Python. The results of the experiments were presented and 

discussed. Considerable effort and resources were put into 

the development of the code, collection of the network 

frame traffic, and analysis of a large quantity of recorded 

network traffic. 
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A. SIGNIFICANT RESULTS 

A new covert channel in wireless networks based on the 

802.11 standard was identified. We used the protocol 

version field in the MAC header to hide and transfer the 

covert information. 

The proposed covert channel was implemented by 

developing the necessary code in Python. A GUI chat console 

is used for message transmission. The test bed used for 

experiments operated in a Linux environment. 

Robustness to errors in the covert channel was 

improved by the use of forward error correction and bit 

interleaving. Preliminary results indicate significant 

improvement in the error performance of the channel. 

The achieved throughput of the covert channel was 

measured under three scenarios. The maximum channel data 

rate is also determined. The case of a 6-bit payload along 

with convolutional coding and interleaving yielded the 

highest measured throughput. 

B. FUTURE WORK 

There are several aspects in which this work can be 

complemented and improved. One aspect to be potentially 

explored is to test whether the covert channel can be 

detected by APs. This would expand the characterization of 

the channel, providing a better understanding of its range 

of features. 

On the structural side of the proposed channel, other 

types and subtypes of frames can be investigated and 
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implemented. Not only the ones directly assigned by the 

standard, but also the set of types and subtypes classified 

as reserved (see Table 2). 

A further study of error performance would also be 

beneficial. One can conduct a larger range of tests under 

different scenarios, including experimenting in a 

controlled environment where the noise level and frame 

collision rates can be monitored. The possibility of using 

other error correction mechanisms is also of interest. 

Possible techniques include the use of a repetition code, 

where the frames are sent a fixed number of times. Knowing 

the number of repetitions and comparing the expected number 

to the actual number of received frames would allow us to 

find the location of lost frames. A spreading code would 

work in a similar way, but occasionally the bit values are 

inverted. 

In this work, we only used one wireless network 

adapter. Future research should consider the possibility of 

having two wireless network adapters installed in each 

station in order to explore the scenario described in 

Chapter II, where the stations are part of an 

infrastructure network while simultaneously using the 

covert channel. 

A future effort should consider the extension of the 

concept behind the proposed covert channel to wireless 

networks based on other standards, such as IEEE 802.16 

(WiMAX)[39] or Long Term Evolution (LTE)[40]. 
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APPENDIX A 

The necessary steps taken to execute the developed 

software and implement the proposed covert channel are 

described in this Appendix. 

We started by installing a fresh copy of the 

Backtrack4 Linux distribution on the stations. Once the 

installation was complete, we updated it by executing the 

following commands: 

 apt-get update 
 apt-get upgrade && apt-get autoclean 

 

This action downloaded and installed all the available 

updates and cleaned the unnecessary installation files.  

Now we disable the wireless interface ath1 in order to 

reinstall drivers that are compatible with our needs for 

raw packet injection. To do that, we execute: 

 ifconfig ath1 down 
 svn –r 4073 checkout http://svn.madwifi-

project.org/madwifi/trunk/ madwifi-ng 
 cd madwifi-ng 
 wget http://patches.aircrack-ng.org/madwifi-ng–

r4073.patch 
 patch –N –p 1 –I madwifi-ng-r4073.patch 
 ./scripts/madwifi –unload 
 make 
 make install 

 

This loads and sets the madwifi drivers as the interface 

drivers.  

We now need to blacklist the old drivers, so only the 

new ones are loaded. This is accomplished by: 

 go to /etc/modprobe.d/blacklist 
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 edit the file and add this line at the end: 
blacklist ath5k 

 reboot 

After rebooting the machine, we logon as root, start 

the GUI by executing: 

 startx 

and initialize the wireless adapter in the following way: 

 modprobe ath_pci 
 airmon-ng stop ath0 
 airmon-ng start wifi0 
 aireplay-ng -9 ath0 (to test the injection capability) 

 

Now the machine is almost ready to run our code, but 

some additional software is still needed. The Python 

version used in this thesis was 2.5.2 [13]. Also, Psycho 

1.6 [41] was installed in order to speed up the execution 

of the Python code. We also installed Scapy version 2.1.0 

[27] to enable frame forging. To have the ability to 

generate PDF files of the captured packets using Scapy 

(e.g., Figures 13 and 14), we execute the following 

commands: 

 apt-get install tcpdump graphviz imagemagick 

python-gnuplot python-crypto python-pyx  

To install PDF Reader 9.4 for linux: 

linux-english-version 9.4.tar.bz2 

(http://get.adbe.com/reader/otherversions) 
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APPENDIX B 

############################################################################ 
#This program implements a covert channel by forging and transmitting # 
#control frames in 802.11 networks. It was written using the previous work # 
#of Wolfman and Filth for the graphical interface and reception routine. # 
#The forging and transmission routines are original work of Ricardo  # 
#Goncalves, as part of the requirements for MSCEE degree at NPS, CA, USA. # 
#March2011         # 
############################################################################ 
 
from __future__ import with_statement # MUST remain at the beginning of the file 
import time as tm # used to avoid 100% cpu usage 
from Tkinter import * # for the main portion of the program 
import threading # to allow simultaneous reading/writing 
from datetime import datetime, date, time # for timestamping save file and program output 
from tkFileDialog   import askopenfilename, asksaveasfilename # open/save dialogs 
import sys # to ensure proper termination 
from socket import * #enables the use of sockets 
from scapy.all import sniff,Dot11 #loads scapy and the necessary tools to sniff packets 
import pylorcon  
from fcntl import ioctl 
import binascii 
import psyco 
 
#set the inject and monitor modes for the wireless adapter (ath0) 
wifi=pylorcon.Lorcon("ath0,”"madwifing") 
wifi.setfunctionalmode("INJECT"); 
wifi.setmode("MONITOR"); 
 
global sending 
sending=0 
# set the default name for the archive file, which holds the conversations. 
class file: 
    name='covert.txt' 
 
# now we try to open it, and create it with some default text if it dosent exist 
try: 
    f = open(file.name, 'r+b') 
except IOError: 
    f = open(file.name, 'wb') 
    f.write('''                                                       
  ,ad8888ba,    ,ad8888ba,   I8,        8        ,8I   
 d8"'    `"8b  d8"'    `"8b  `8b       d8b       d8'   
d8'           d8'             "8,     ,8"8,     ,8"    
88            88               Y8     8P Y8     8P     
88            88               `8b   d8' `8b   d8'     
Y8,           Y8,               `8a a8'   `8a a8'      
 Y8a.    .a8P  Y8a.    .a8P      `8a8'     `8a8'       
  `"Y8888Y"'    `"Y8888Y"'        `8'       `8'        
                                                      (2011) 
-----------------------------//----------------------------- 
''') 
    f.close() 
finally: 
    f.close() 
 
######################################################################## 
# open the user file...or create it 
try: 
    f = open('.user', 'r+b') 
except IOError: 
    f = open('.user', 'wb') 
    f.write('Tony') # set your own default here if the file doesnt exist... 
    f.close() 
finally: 
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    f.close() 
# define that we want the user in the program to come from the file 
class who: 
    u=open('.user').read() 
 
######################################################################## 
# begin menubar functions 
def openf(): 
    choice=askopenfilename() 
    file.name=choice 
    #print 'open dialog returned '+choice 
    # this can be uncommented for testing proper execution of file dialog 
 
def save(): 
    n='CCW covert channel v1 '+"%.16s" % str(datetime.now())+'.txt' 
    save=asksaveasfilename(initialfile=n) # this is quite straitforward... 
    with open(file.name) as f: 
        g=open(save, 'wb') 
        for line in f.readlines(): 
            g.write(line) # it copies the file line by line 
    #print 'saved file at '+save 
    # much like the other dialog, this can be uncommented for testing 
 
def exit(): 
    sys.exit(0) 
 
# you can change the display name as you wish...it will be saved 
def name(): 
    root=Tk() 
    root.config(bg='black') 
    l=Label(root, text='Please enter your name below') 
    l.config(bg='black', fg='red', bd=0) 
    l.pack(side=TOP) 
    name=Entry(root) 
    name.config(width=14, bg='black', fg='red', insertbackground='red', bd=0, 
highlightbackground='red') 
    name.insert(INSERT, str(who.u).strip('\n')) 
    name.pack(side=BOTTOM) 
    def save(s): 
        who.u=name.get().strip('\n') 
        with open('.user', 'wb') as f: 
            f.write(who.u) 
        root.destroy() 
    name.bind('<Return>', save) 
 
# help menus are always useful...this one will be too, when i get around to making it 
def help(): 
    win=Tk() 
    win.config(bg='black') 
    win.title('About') 
    say=Text(win) 
    say.insert(0.0, ''' 
  ,ad8888ba,    ,ad8888ba,   I8,        8        ,8I   
 d8"'    `"8b  d8"'    `"8b  `8b       d8b       d8'   
d8'           d8'             "8,     ,8"8,     ,8"    
88            88               Y8     8P Y8     8P     
88            88               `8b   d8' `8b   d8'     
Y8,           Y8,               `8a a8'   `8a a8'      
 Y8a.    .a8P  Y8a.    .a8P      `8a8'     `8a8'       
  `"Y8888Y"'    `"Y8888Y"'        `8'       `8'        
                                                      (2011) 
-----------------------------//----------------------------- 
 
All Python documentation can be found online. 
All documentation for this program is within the code that comprises the program and 
simple text editor may be used to view it. 
Additional insight to this code is provided in the thesis document. 
This is an adaptation of the original work of Wolfman & Filth Programming. 
 
''') 
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    say.config(bg='black', fg='red', state=DISABLED) 
    say.tag_add('tag', 0.0, END) 
    say.tag_config('tag', justify=CENTER, wrap=WORD) 
    say.pack() 
# end menubar functions 
######################################################################## 
 
######################################################################## 
# begin GUI definition ################################################# 
######################################################################## 
# Create socket and bind to address 
serveraddress="ath0" 
sock=socket(PF_PACKET,SOCK_RAW) 
sock.bind((serveraddress,3)) 
 
magic=0 
bin2="" 
 
 
def conv(bin2): 
 bl=[bin2[i:i+8] for i in range(0, len(bin2), 8)] 
 final='' 
 for z in range(0,len(bl)): 
  final2=chr(int(bl[z],2)) 
  final=final+final2 
 timestamp='('+"%.19s" % str(datetime.now())+') ' # prepares a timestamp 
        user='Received message'+': ' # prepares username 
        txt = timestamp+user+final+'\n' # adds it all together with a newline 
        f = open(file.name, 'arb',5) # opens file 
        f.write(txt) # writes text 
 f.close() # closes file  
    
#sniff received frames   
def sniffack(p): 
 global magic, d,bin2, sending 
 if sending==0: 
  d=p.sprintf("[%Dot11.proto%]") 
  if d=="[1L]": 
   magic=magic+1 
   print magic 
  if magic>4: #loooks for the markers of the message 
   if p.sprintf("[%Dot11.proto%]")=="[2L]": 
    b="0" 
    bin2=bin2+b 
    print bin2 
   if p.sprintf("[%Dot11.proto%]")=="[3L]": 
    b="1" 
    bin2=bin2+b 
    print bin2 
   else: 
    pass 
  if magic>8: 
   print bin2 
   conv(bin2) 
   bin2="" 
   magic=0 
 else: 
  pass 
 
#transmit forged frames 
def sendpkt(packet): 
 global sending 
 sending=1 
 destination_addr='\x11\x0c\xf1\x0b\x7e\x1e'; 
 packet=packet + '\x00\x00' 
 packet=packet + destination_addr  
 wifi.setchannel(36) 
 wifi.setchannel(9) 
 wifi.txpacket(packet) 
 tm.sleep(0.01) 
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 sending=0 
 
######################################################################## 
# begin main program 
class main: 
    def __init__(self, window): 
        window.title('NPS - Covert channel v1.0') 
        window.config(bg='black') 
        self.input() # main input 
        self.frame() # main display with scrollbar and copy ability 
        self.menu() # main menu at the top 
    def menu(m): 
        menu=Menu(window) 
        menu.config(bg='black', fg='red', activeforeground='black', 
activebackground='red') # gotta make it pretty 
######################################################################## 
        filemenu = Menu(menu, tearoff=0) # tearoff just adds a perforation-like look to 
the top of the menu 
        filemenu.config(bg='black', fg='red') 
        filemenu.add_command(label="Open...,” command=openf, activeforeground='black', 
activebackground='red') # gotta have commands for a decent menu 
        filemenu.add_command(label="Save...,” command=save, activeforeground='black', 
activebackground='red') 
 filemenu.add_command(label="Send file...,” command=sendfile, 
activeforeground='black', activebackground='red') 
        filemenu.add_separator() 
        filemenu.add_command(label="Exit,” command=exit, activeforeground='black', 
activebackground='red') 
        menu.add_cascade(label="File,” menu=filemenu) 
######################################################################## 
        editmenu = Menu(menu, tearoff=0) 
        editmenu.config(bg='black', fg='red', activeforeground='black', 
activebackground='red') 
        editmenu.add_command(label="Cut    Ctrl-X,” activeforeground='black', 
activebackground='red') 
        editmenu.add_command(label="Copy  Ctrl-C,” activeforeground='black', 
activebackground='red') 
        editmenu.add_command(label="Paste Ctrl-V,” activeforeground='black', 
activebackground='red') 
        editmenu.add_command(label="Name...,” command=name, activeforeground='black', 
activebackground='red') 
        menu.add_cascade(label="Edit,” menu=editmenu) 
######################################################################## 
        helpmenu = Menu(menu, tearoff=0) 
        helpmenu.config(bg='black', fg='red', activeforeground='black', 
activebackground='red') 
        helpmenu.add_command(label="About,” command=help, activeforeground='black', 
activebackground='red') 
        menu.add_cascade(label="Help,” menu=helpmenu) 
        window.config(menu=menu) 
######################################################################## 
    def input(i): 
        window.clipboard_append('') # make sure we have something in the clipboard 
        input=Text(window) # create input window 
        input.config(height=5, takefocus=1, bg='black', fg='red', insertbackground='red', 
bd=1, highlightcolor='red', highlightbackground='red') 
        # configure input window 
        # be able to write the conversation to the file 
        def writetext(t): 
            text = str(input.get(0.0, END)).strip('\n') # gets what you typed 
            timestamp='('+"%.19s" % str(datetime.now())+') ' # prepares a timestamp 
            user=who.u+': ' # prepares username 
            txt = timestamp+user+text+'\n' # adds it all together with a newline 
            f = open(file.name, 'arb',5) # opens file 
            f.write(txt) # writes text 
     f.close() # closes file 
     def b1(n): 
      return "01"[n%2] 
     def b2(n): 
      return b1(n>>1)+b1(n) 
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     def b3(n): 
      return b2(n>>2)+b2(n) 
     def b4(n): 
      return b3(n>>4)+b3(n) 
     bytes = [ b4(n) for n in range(256)] 
     def binstring(s): 
      return ''.join(bytes[ord(c)] for c in s) 
     p=binstring(text) 
  # read one bit at a time 
     r=len(p) 
     for a in range(r): 
      if a==0: 
       for b in range(5): 
        packet='\xc5\00' #'\xd5\00' 
        sendpkt(packet) 
      else: 
       pass 
      b=p[a] 
      if b=="1": 
       packet='\xc7\00' 
      else: 
       packet='\xc6\00' 
      sendpkt(packet) 
      if a==r-1: 
       for b in range(5): 
        packet='\xc5\00' 
        sendpkt(packet) 
      else: 
       pass 
            input.delete(0.0, END)# clears input area 
            return 'break' # makes sure the newline dosent get put in afterwards... 
             
        # event handlers!...basic cut/copy/paste support 
        # event handlers!...basic cut/copy/paste support 
        def copy1(c): 
            try: 
                window.clipboard_clear() 
                window.clipboard_append(input.get(SEL_FIRST, SEL_LAST)) 
            except TclError: 
                return 'break' 
                pass 
        def cut(c): 
            try: 
                window.clipboard_clear() 
                window.clipboard_append(input.get(SEL_FIRST, SEL_LAST)) 
                input.delete(SEL_FIRST, SEL_LAST) 
            except TclError: 
                #window.clipboard_append('') 
                return 'break' 
                pass 
        def paste(p): 
            try: 
                input.delete(SEL_FIRST, SEL_LAST) 
            except TclError: 
                window.clipboard_append('') 
                pass 
            finally: 
                input.insert(INSERT, window.selection_get(selection='CLIPBOARD')) 
        # event bindings... 
        input.bind('<Control-v>', paste) 
        input.bind('<Control-x>', cut) 
        input.bind('<Control-c>', copy1) 
        input.bind("<Key-Return>,” writetext) 
        input.pack(side=BOTTOM, fill=BOTH, expand=1) 
    def frame(f): 
            frame=Frame() 
            frame.pack(in_=window, fill=BOTH, expand=1) 
            T=Text(frame, wrap=WORD) # LOVE wordwrap...very good at formatting the 
display... 
            s=Scrollbar(frame) 
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            s.config(command=T.yview, bg='black', bd=0, highlightbackground='red', 
width=8, activebackground='#4e4e4e', trough='red') 
            T.config(yscrollcommand=s.set, bg='black', fg='red', bd=1, relief=FLAT, 
highlightbackground='red') 
            T.pack(in_=frame, side=LEFT, fill=BOTH, expand=1) 
            s.pack(in_=frame, side=RIGHT, fill=Y, expand=0) 
            # with ctrl-z, you can copy from the text output...i will be working on 
appending this 
            # functionality to the other copy function 
            def copy(c): 
                try: 
                    frame.clipboard_clear() 
                    frame.clipboard_append(T.get(SEL_FIRST, SEL_LAST)) 
                except TclError: 
                    frame.clipboard_append('') 
                    pass 
            # yes, you can access this function from anywhere within the window...not 
just the widget 
            window.bind('<Control-z>', copy) 
            # gotta be able to see things...monitors the file (specified earlier) and 
prints contents line by line as it changes 
            def outputtext(): 
                    choice=file.name 
                    with open(file.name, 'rb') as f: 
                        while 1: 
                            for line in f.readlines(): 
                                T.insert(END, line) 
                                T.see(END) 
                                if choice!=file.name: 
                                    continue 
                            # of you open another file, it will display whever is in it 
if it can be read 
                            else: 
                                if choice!=file.name: 
                                    T.delete(0.0, END) 
                                    choice=file.name 
                                    f=open(file.name, 'rb') 
                                    continue 
            # the output needs to be in it's own thread...i think...i will test this 
later... 
            thread2 = threading.Thread(target=outputtext) 
            thread2.start() 
     def rxtext(): 
  while True: 
   sniff(iface="ath0,” prn=sniffack) 
 
     thread = threading.Thread(target=rxtext) 
     thread.start() 
def treset(): 
 while True: 
  global magic 
  c=magic 
  tm.sleep(10) 
  if c-magic==0 and magic<5: 
   magic=0 
  
thread3 = threading.Thread(target=treset) 
thread3.start() 
# end main program 
########################################################################5 
 
window=Tk() 
main(window) 
window.mainloop() 
 
sys.exit(0) 

# ensure that the program exits after the GUI loop has been terminated 
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