
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2011-06

A MAC layer covert channel in 802.11 networks

Gonçalves, Ricardo André Santana

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/48138

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36740213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A MAC LAYER COVERT CHANNEL IN 802.11
NETWORKS

by

Ricardo André Santana Gonçalves

June 2011

 Thesis Co-Advisors: Murali Tummala
 John McEachen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2011

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A MAC Layer Covert Channel in
802.11 Networks

5. FUNDING NUMBERS

6. AUTHOR(S) Ricardo André Santana Gonçalves
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government. IRB Protocol number _______N/A_________.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Covert channels in modern communication networks are a source of security
concerns. Such channels can be used to facilitate command and control of
botnets or inject malicious contents into unsuspected end-user devices or
network nodes. The vast majority of the documented covert channels make use of
the upper layers of the Open Systems Interconnection (OSI) model. In this
thesis, we present a new covert channel in IEEE 802.11 networks, making use of
the Protocol Version field in the Medium Access Control (MAC) header. This is
achieved by forging modified Clear To Send (CTS) and Acknowledgment (ACK)
frames. Forward error correction mechanisms and interleaving were implemented
to increase the proposed channel's robustness to error. A laboratory
implementation of the proposed channel is presented by developing the
necessary code in Python, operating in a Linux environment. We present the
results of tests conducted on the proposed channel, including measurements of
channel errors, available data rate for transmission, and level of covertness.
14. SUBJECT TERMS
IEEE802.11 MAC frame, Frame forging, Covert channel, Protocol
version

15. NUMBER OF
PAGES

103
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A MAC LAYER COVERT CHANNEL IN 802.11 NETWORKS

Ricardo André Santana Gonçalves
Lieutenant, Portuguese Navy

B.S., Portuguese Naval Academy, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2011

Author: Ricardo André Santana Gonçalves

Approved by: Murali Tummala
Thesis Co-Advisor

John McEachen
Thesis Co-Advisor

Clark Robertson
Chair, Department of Electrical and Computer
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Covert channels in modern communication networks are a

source of security concerns. Such channels can be used to

facilitate command and control of botnets or inject

malicious contents into unsuspected end-user devices or

network nodes. The vast majority of the documented covert

channels make use of the upper layers of the Open Systems

Interconnection (OSI) model. In this thesis, we present a

new covert channel in IEEE 802.11 networks, making use of

the Protocol Version field in the Medium Access Control

(MAC) header. This is achieved by forging modified Clear To

Send (CTS) and Acknowledgment (ACK) frames. Forward error

correction mechanisms and interleaving were implemented to

increase the proposed channel's robustness to error. A

laboratory implementation of the proposed channel is

presented by developing the necessary code in Python,

operating in a Linux environment. We present the results of

tests conducted on the proposed channel, including

measurements of channel errors, available data rate for

transmission, and level of covertness.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. MOTIVATION ...2
B. OBJECTIVE ..3
C. RELATED WORK4
D. ORGANIZATION5

II. BACKGROUND ..7
A. OVERVIEW OF IEEE 802.117

1. Protocol Architecture7
2. Network Architecture9

B. 802.11 MAC FRAME10
1. Header Format10
2. Frame Types of Interest12

a. Clear to Send/ Request to Send12
b. Acknowledgment13

C. COVERT CHANNELS AND RELATED WORK15
1. Types of Covert Channels15
2. Related Work15

D. CONCEPT OF THE PROPOSED COVERT CHANNEL16

III. DESIGNING THE COVERT CHANNEL19
A. NETWORK MONITORING19

1. Type of Frame Analysis19
2. Sequence of Frames Analysis21
3. Protocol Version Field Analysis23
4. Choosing the Frame Type25

B. PROPOSED COVERT CHANNEL28
1. MAC Header Manipulation28
2. Important MAC Header Parameters29

C. DETECTING AND DISABLING THE USE OF THE PROPOSED
COVERT CHANNEL32

IV. EXPERIMENTS AND RESULTS35
A. TEST BED ..35
B. CODE DESCRIPTION36
C. RESULTS ...41

1. Error Performance of the Covert Channel42
a. Channel 143
b. Channel 945

2. Error Performance of the Covert Channel With
Forward Error Correction49
a. Alternating CTS and ACK51
b. Alternating CTS and ACK Using Sequence

Numbers51

 viii

3. Error Performance of the Covert Channel With
Forward Error Correction and Interleaving56
a. FEC Without Interleaving58
b. FEC With Interleaving59

D. THROUGHPUT ANALYSIS60

V. CONCLUSIONS ..65
A. SIGNIFICANT RESULTS66
B. FUTURE WORK66

APPENDIX A ..69

APPENDIX B ..71

LIST OF REFERENCES ..77

INITIAL DISTRIBUTION LIST83

 ix

LIST OF FIGURES

Figure 1. OSI model compared to IEEE 802 protocol
architecture.....................................7

Figure 2. Example of an 802.11 network in infrastructure
mode..10

Figure 3. MAC frame format [From 6].......................11
Figure 4. Frame control field [From 6]....................11
Figure 5. ACK and CTS frame format [From 6]...............13
Figure 6. Network topology in which the covert channel

operates..17
Figure 7. Frequency of occurrence of the monitored frame

types...20
Figure 8. Distribution of acknowledgement (ACK) frame

burst length....................................22
Figure 9. Distribution of clear to send (CTS) frame burst

length..23
Figure 10. Wireshark capture of a CTS frame with PV = 3

and incorrect check sum.........................26
Figure 11. Frame control field [From 6]....................28
Figure 12. Wireshark capture of an “A” being transmitted

using the proposed covert channel...............29
Figure 13. Forged ACK structure............................31
Figure 14. Forged CTS structure............................31
Figure 15. Network topology used in the experiments........36
Figure 16. Flow chart of the covert channel code

implementation..................................38
Figure 17. Covert channel GUI screen capture...............40
Figure 18. Network traffic profile and percentage of

errors for sentence and sequence receptions in
channel 1.......................................44

Figure 19. A selected portion of network traffic profile
for channel 1...................................45

Figure 20. Network traffic profile of channel 9............46
Figure 21. Network traffic profile and percentage of

errors for sentence and sequence receptions in
channel 9.......................................47

Figure 22. A selected portion of network traffic profile
for channel 9...................................48

Figure 23. Zoom of network traffic profile for channel 9
using three different delays in forged frame
transmission....................................48

Figure 24. Bit interleaving process........................50
Figure 25. Representation of the frame structure using the

flag bits for sequencing........................52

 x

Figure 26. Wireshark capture of transmitted forged ACK and
CTS frames using flag bits for sequencing.......53

Figure 27. Percentage of errors before (red) and after FEC
(blue) per received sentence, using flag bits
for sequencing..................................54

Figure 28. Percentage of errors before (red) and after FEC
(blue) per received sequence, using flag bits
for sequencing..................................55

Figure 29. Representation of the frame structure using
three bits for sequencing and six bits for
payload...56

Figure 30. FEC and interleaving block diagram..............57
Figure 31. Wireshark capture of transmitted forged ACK and

CTS frames using three bits for sequencing and
six bits for payload............................58

Figure 32. Percentage of errors before (red) and after FEC
(blue) per received sentence without
interleaving....................................59

Figure 33. Percentage of errors before (red) and after FEC
(blue) per received sentence with interleaving..60

Figure 34. Timing constraints in an 802.11 frame
transmission [After 35].........................61

 xi

LIST OF TABLES

Table 1. 802.11 versions comparison [From 23].............9
Table 2. Type and subtype assignments [From 6]...........14
Table 3. Protocol version field values of all captured

frames..24
Table 4. Protocol version field values of the captured

ACK frames......................................24
Table 5. Protocol version field values of the captured

CTS frames......................................25
Table 6. Measured throughput values compared to the

channel data rate...............................63

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ACK Acknowledgment

AP Access Point

BSS Basic Service Set

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

CTS Clear To Send

DNS Domain Name System

DoD Department of Defense

DoS Denial of Service

DS Distribution System

FC Frame Control

FCS Frame Check Sequence

FEC Forward Error Correction

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IP Internet Protocol

IPS Intrusion Prevention System

LLC Logical Link Control

MAC Medium Access Control

OS Operating System

OSI Open Systems Interconnection

PV Protocol Version

 xiv

QoS Quality of Service

RTS Request To Send

SNR Signal-To-Noise Ratio

TCSEC Trusted Computer System Evaluation Criteria

WEP Wired Equivalent Privacy

 xv

ACKNOWLEDGMENTS

Quero agradecer aos meus pais por terem plantado em

mim o bichicho de querer saber e por inspirarem a coragem

necessária para enfrentar os desafios que a vida nos

coloca. Deixo também um agradecimento muito especial à

minha mulher, Inês, e às nossas duas pestes, Maria e Rita,

por todo o amor, paciência, apoio e compreensão em todos os

momentos, independentemente das horas a que chegasse a

casa. Uma última palavra de agradecimento à Marinha de

Guerra Portuguesa e a todos os profissionais que tornaram

esta experiência possível.

I would like to thank my thesis advisor, Professor

Murali Tummala, for his infinite patience and excellent

guidance during this learning experience. I have much to

thank him and his contribution to the successful completion

of this thesis. I would like to thank Professor John

McEachen for his time and insightful suggestions of this

thesis and valuable feedback.

Last but not least, I would like to extend my

appreciation to all who have contributed to the completion

of this work in one way or another.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

IEEE 802.11, also known as WiFi, is one of the most widely

used set of standards in today’s wireless network

communications. It is present in a wide variety of

electronic equipment, from smartphones and laptops to

kitchen appliances and automobiles. According to an

industry report, in 2012 over one billion devices will be

shipped with technology based on this standard onboard, and

the number is projected to be over two billion in 2014. The

technical capabilities and the mobility provided to the

user make it one of the most successful wireless networking

systems.

As in any other type of network communication

standard, security plays a key role. Mobility and ease of

access are attractive characteristics to the end users, but

along with them come additional security concerns. It is

important to evaluate the possible weaknesses and

vulnerabilities of a standard in order to determine

relevant security challenges. The particular focus in this

work is covert channels, which have the characteristic of

being hard to detect unless we know in advance what we are

looking for.

Covert channels come up as one of many aspects

involved in the security evaluation of a standard and can

pose a threat to the unaware user. A covert channel is a

method to transmit information using the communication

protocol in a way that was not intended or anticipated by

 xviii

the developers. Such covert channels can be used to

exfiltrate information from the user’s device, propagate

malware or control a botnet.

The objectives of this thesis were to identify,

implement and test a proof-of-concept covert channel in

IEEE 802.11 networks. This was achieved by forging control

frames and exploiting specific bits in the Medium Access

Control (MAC) header.

In this thesis, we developed the necessary code to

implement the proposed covert channel, conducted laboratory

experiments, and measured and analyzed the results.

Operational IEEE 802.11 networks were monitored prior to

designing the proposed covert channel, allowing us to

gather enough information to make a sound decision on which

frames to forge and how to manipulate them. In order to

improve the error performance of the proposed covert

channel, several techniques were used, such as

convolutional coding and bit interleaving. Detectability

and mitigation techniques were also addressed, as well as a

throughput analysis.

Ideas for future work include optimization of the

channel throughput, increasing the channel’s robustness to

errors and exploring the proposed covert channel concept in

other emerging wireless standards, such as IEEE 802.16

(WiMAX) or Long Term Evolution (LTE).

 1

I. INTRODUCTION

As wireless networks become more ubiquitous, so do our

dependencies on them. In a relatively short period, day-to-

day use of wireless networks and mobile devices have become

a large part of our modern-day lives. This trend is likely

to continue in the coming years, regardless of the specific

technologies. Mobility and ease of access are very

attractive characteristics to the end users, but along with

them come additional security concerns [1,2].

One security-related issue associated with

communication networks, wired or wireless, is the concept

of a covert channel, which takes advantage of the very

fabric of communication networks and exploits them in a way

that allows the communication protocols to become the

unintended carrier of messages. This idea of network covert

channels was documented 25 years ago by Girling [3].

However, the concept of a system-based covert channel was

initially presented by Lampson in 1973 [4]. Extensive

progress has been made in protocol design since then, but

covert channels are still a security concern. It becomes

difficult to account for the existence of every possible

variation of these channels.

According to the Department of Defense (DoD) Trusted

Computer System Evaluation Criteria (TCSEC), a covert

channel is defined as “any communication channel that can

be exploited by a process to transfer information in a

manner that violates the system’s security policy [5].”

This means a protocol may be used in a way that was not

intended or anticipated by the designers.

 2

As networks and respective protocols have evolved and

changed, so have the documented covert channels. A search

for possible covert channels begins every time a new

protocol is implemented or an existing one is modified.

A new covert channel embedded in the Medium Access

Control (MAC) layer of an IEEE 802.11-2007 [6] wireless

network is presented and explored in this thesis.

A. MOTIVATION

Over the last decade, wireless communications has

played a key role in user mobility, a much appreciated

benefit of such technology. On the other hand, wireless

access and user mobility pose security challenges due to

underlying vulnerabilities associated with covert channels

and other weaknesses.

In order to protect wireless networks from being

exploited, we need to constantly evaluate their

vulnerabilities and devise techniques to mitigate them.

Finding possible covert channels presents an ongoing

challenge, and the possible uses for such channels range

from well-intentioned authentication mechanisms [7], to

malware propagation [8], exfiltration [8,9] or command and

control of botnets [10].

The above gives us enough reason to ask ourselves,

What can be worse than not being able to decipher the

contents of an unwanted communication? Our answer would be

not knowing such a communication is even taking place. The

power contained in covert channels is that they have the

possibility of being in operation long before they are

detected and identified as channels. The ability to

 3

communicate in this manner gives the user who knows of the

covert channel a tool that could be used in either a benign

or malicious manner.

Although most networks today are protected by

intrusion detection systems (IDS) and/or intrusion

prevention systems (IPS), an undocumented covert channel

can be in operation without triggering an alarm [8]. The

key factor is that these covert channels are being operated

in the background, making it extremely hard to protect a

network against an unknown covert channel. The importance

of investigating as many covert channels as possible should

be obvious, as each networking standard has its own unique

characteristics to exploit. For this reason, it is

generally accepted that covert channels cannot be

completely eliminated because of numerous variations in

their implementation [11,12].

B. OBJECTIVE

The objective of this thesis is to identify, implement

and test a proof-of-concept covert channel in an IEEE

802.11-2007 network environment. The purposed covert

channel will use the MAC header of control frames to hide

the covert information. This will be achieved by forging

frames that use the protocol version bits in a way that was

not intended by the designers of the IEEE 802.11 standard.

The proposed channel will be implemented using the

Python [13] programming language in a Linux environment. A

graphical user interface (GUI) that resembles a typical

chat room window will be used. Tests will be conducted over

an operational network under different conditions. Matlab

will be used for analyzing the measurements from the tests.

 4

To increase the proposed channel's robustness to errors,

forward error correction and bit interleaving techniques

will be used.

C. RELATED WORK

Many covert channels have been documented over the

years and reflect the technological stage of the networks

at which they were documented. As networking technologies

evolve, so do the corresponding protocols and their

complexity. With the release of each new networking

standard, such complexity opens the door for new covert

channels, which makes the research in covert channels

challenging.

The vast majority of academic research has focused on

documenting covert channels in layer 3 or above of the Open

Systems Interconnection (OSI) model, partly neglecting

layers 1 and 2 [14]. These types of covert channels based

on higher layer protocols span a wider variety of networks,

since they are not limited by the physical or medium access

mechanisms. The two most explored protocols above layer 2

are IP and TCP [12,15,16]. Even higher layer protocols,

such as Internet Control Message Protocol (ICMP), HyperText

Transfer Protocol (HTTP) or Domain Name System (DNS), have

several documented covert channels [14,17,18].

More recently, researchers began investigating

wireless networks, specifically identifying covert channels

in the MAC layer [19,20,21,22]. Frame forging plays a key

role in this type of covert channel. Creating fake frames

with modified header bits is a recurring theme to implement

such channels. MAC header fields such as the sequence

 5

number [21], initialization vector [21] or destination

address [22], have been used to hide the covert

information.

Our work differs from the techniques reported in the

literature. In the proposed covert channel, a different MAC

header field is used: the protocol version field. Our work

also addresses the error robustness and throughput

analysis, supported by extensive experimental results.

D. ORGANIZATION

An overview of the IEEE 802.11-2007 standard is

presented in Chapter II. The 802.11 data link layer and the

different types of MAC frames are discussed. An overview of

covert channels and a formal classification are provided.

In Chapter III, the formulation and design of the proposed

covert channel based on empirical foundations are

presented. A large volume of data is collected and analyzed

in support of the covert channel formulation.

An implementation of the proposed channel is presented

in Chapter IV. We describe the code along with the

different test scenarios and experimental setups. An

exhaustive analysis of the results is contained in this

chapter, including the measurements of channel errors,

available throughput, and the level of covertness. Use of

forward error correction (FEC) and interleaving to improve

the channel performance are discussed.

Chapter V includes conclusions and recommendations for

future work. The required steps to launch the proposed

covert channel are detailed in Appendix A, and the Python

code used to implement it is given in Appendix B.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. BACKGROUND

In this chapter, we present the basic IEEE 802.11-2007

architectures, types of frames of interest, and an overview

of covert channels.

A. OVERVIEW OF IEEE 802.11

1. Protocol Architecture

The IEEE 802.11-based wireless nodes share a common

medium for communication. The 802.11 protocol architecture

can be seen in Figure 1. It addresses the user access at

layers 1 and 2 of the OSI model, i.e., the physical and the

data link layer, respectively.

OSI MODEL IEEE 802 MODEL

Data Link

Layer

 802.2 Logical Link Control (LLC)

 802.11 Medium Access Control (MAC)

Physical

Layer

802.11

Physical 1

802.11

Physical 2

802.11

Physical (…)

Figure 1. OSI model compared to IEEE 802 protocol
architecture.

The logical link control (LLC) acts as a uniform

interface between the upper layer and the MAC layer. This

enables the network layer to operate normally regardless of

the type of MAC being implemented, i.e., for the same LLC,

different MAC options are possible.

The medium access control enables the use of a shared

medium among several stations. Following the same concept

 8

as before, we see that for the same MAC, different

variations of the physical layer can be used. In order to

regulate the access to the physical layer, 802.11 makes use

of the carrier sense multiple access with collision

avoidance (CSMA/CA) scheme [6]. This scheme was developed

to avoid collisions due to simultaneous transmissions. Such

collisions cause frame loss, reduce the network's

throughput and increase delay.

The physical layer enables the transmission of

information in the form of electromagnetic signals through

the use of different modulation schemes, frequency

spreading techniques, multiplexing, etc. As we can see from

Figure 1, different types of physical layer technologies

were incorporated into the 802.11 standard.

It is important to mention that different versions of

the 802.11 protocol are available. These versions differ

mainly in the physical layer. The frequency band and bit

rate differences among the most common versions are

summarized in Table 1. Note that 802.11a, b and g are

incorporated in the IEEE 802.11-2007 version of the

standard [6]. The 802.11b version is the subject of all the

tests and results presented in this thesis.

 9

Table 1. 802.11 versions comparison [From 23].

802.11 version
Frequency Band

(Ghz)

Maximum bit rate

(Mbps)

802.11-1997 2.4 2

802.11a 5 54

802.11b 2.4 11

802.11g 2.4 54

802.11n 2.4 and/or 5 600

2. Network Architecture

The fundamental building block of the 802.11

architecture is called the basic service set (BSS). One BSS

may be connected to other BSSs via a distribution system

(DS). Within this framework, stations can connect in ad-hoc

mode or infrastructure mode. The simpler case is ad-hoc

mode, where two stations can connect directly, point to

point, without a DS and an access point (AP). Although

convenient, the ad-hoc mode of operation does not support

some functions, such as power save.

If we have the stations connecting via an AP and

making use of a DS, then we say they are setup in

infrastructure mode. A wider range of functions and control

mechanisms are possible in this mode, along with

centralized security management and extended reach. This

type of setup is adequate when we want our wireless network

to connect to an existing Ethernet network or other

wireless networks in the vicinity, making use of the AP's

wider range. An example of such a setup can be seen in

 10

Figure 2. Here, we can see BSS1 being actively protected by

a firewall and passively monitored by an Intrusion

Detection System (IDS).

Figure 2. Example of an 802.11 network in
infrastructure mode.

B. 802.11 MAC FRAME

1. Header Format

In Figure 3, we can see the generic MAC format for an

802.11 MAC frame. The frame consists of the MAC header, the

frame body and the frame check sequence (FCS).

 11

Figure 3. MAC frame format [From 6].

The first field in the MAC header is the frame control

(FC), and consists of two octets. In order to better

understand the contents and use of this field, a detailed

view is depicted in Figure 4.

Figure 4. Frame control field [From 6].

Within the FC, the field in which we are interested is

the first field, corresponding to the Protocol Version

(PV). The PV field consists of two bits that specify the

version number of the 802.11 protocol being used. As of

this writing, PV is expected to be set to zero [6]. This

value may change in the future if a newer version of the

standard is released.

The protocol version is the field we will be using for

the proposed covert channel. We utilize the remaining three

possible combinations of the PV field to hide the covert

information.

 12

2. Frame Types of Interest

Four types of frames exist in the 802.11 protocol, as

listed in Table 2. We have the management, data, reserved

and control frames.

The management frames exist to initiate, establish and

maintain the communication between stations. Examples of

management frames can be seen in the subtype column of

Table 2. Frames responsible for association,

disassociation, authentication and beaconing are part of

this type. These frames are not very common and for that

reason not very interesting for our research.

Data frames are the ones that carry the information

and can also provide some services, such as quality of

service (QoS).

The reserved frames have no specific task, they are

just a type of frames not currently assigned by the

standard to perform a specific task.

The last type of frame is the control type. These

facilitate the exchange of data frames between stations.

Within the existing control subtypes, we are interested in

the smaller sized frames, the acknowledgement (ACK) and the

clear to send (CTS).

a. Clear to Send/ Request to Send

The IEEE 802.11 MAC layer makes use of the

CSMA/CA scheme in order to minimize the number of

collisions and subsequent frame loss. This is a way to

force the transmitting station to sense the medium, hold

its transmissions until the medium is free, and transmit if

the media is not in use.

 13

Sometimes, a transmitting station may not be in

range of another transmitting station and might sense the

medium as free when in fact the medium is being used. A

third station, in range of the previous two, will receive

both signals simultaneously, sensing a collision. This is

known as the hidden node problem [24]. To address this

issue, a RTS/CTS handshake mechanism is used. This is done

every time a station has information to transmit, making

these kind of frames very common.

The CTS is a 14-byte long frame, whereas the RTS

is 20 bytes long.

b. Acknowledgment

This type of frame is generated when a station

correctly receives a packet, and it is intended to signal

the source station that the reception was successful. For

this reason, this type of frame also tends to be very

common in an operational wireless network. The length of

this frame is the same as the CTS, 14 bytes.

The format of the CTS frame, as well as the ACK

frame, is shown in Figure 5. Both frames share the same

format and only differ in one bit in the subtype field

within the frame control, as seen in Table 2. The ACK frame

has the subtype value set to 1101; the CTS sets it to 1100.

Figure 5. ACK and CTS frame format [From 6].

 14

Table 2. Type and subtype assignments [From 6].

Type
value
b3 b2

Type
descript
ion

Subtype
value b7
b6 b5 b4

Subtype description

00 Management 0000 Association request
00 Management 0001 Association response

00 Management 0010 Reassociation request

00 Management 0011 Reassociation response

00 Management 0100 Probe request

00 Management 0101 Probe response

00 Management 0110–0111 Reserved

00 Management 1000 Beacon

00 Management 1001 ATIM

00 Management 1010 Disassociation

00 Management 1011 Authentication

00 Management 1100 Deauthentication

00 Management 1101 Action

00 Management 1110–1111 Reserved

01 Control 0000–0111 Reserved

01 Control 1000 Block Ack Request (BlockAckReq)

01 Control 1001 Block Ack (BlockAck)

01 Control 1010 PS-Poll

01 Control 1011 RTS

01 Control 1100 CTS

01 Control 1101 ACK

01 Control 1110 CF-End

01 Control 1111 CF-End + CF-Ack
10 Data 0000 Data

10 Data 0001 Data + CF-Ack

10 Data 0010 Data + CF-Poll

10 Data 0011 Data + CF-Ack + CF-Poll

10 Data 0100 Null (no data)

10 Data 0101 CF-Ack (no data)

10 Data 0110 CF-Poll (no data)

10 Data 0111 CF-Ack + CF-Poll (no data)

10 Data 1000 QoS Data

10 Data 1001 QoS Data + CF-Ack

10 Data 1010 QoS Data + CF-Poll

10 Data 1011 QoS Data + CF-Ack + CF-Poll

10 Data 1100 QoS Null (no data)

10 Data 1101 Reserved

10 Data 1110 QoS CF-Poll (no data)

10 Data 1111 QoS CF-Ack + CF-Poll (no data)

11 Reserved 0000–1111 Reserved

 15

We will focus on ACK and CTS frames, since they

are small in size and tend to be large in volume. As a

result, if we use them for covert communications, it is

difficult to be noticed by monitoring devices such as

firewalls and IDSs. The volume of these frames is

experimentally verified in Chapter III.

C. COVERT CHANNELS AND RELATED WORK

We presented a definition of covert channels in

Chapter I, and we now will look at the different types of

channels reported in the literature.

1. Types of Covert Channels

In his 1987 paper, Girling [3] identified two major

types of covert channels: storage and timing. The storage

covert channels make use of protocols or other mechanisms

to write additional information in a way that was not

intended, whereas the timing channels signal information

between processes by means of varying delays and changing

the timing of events [5]. The first type tends to be easier

to implement and is the most common. Based on this, the

proposed channel in this thesis is a storage channel.

2. Related Work

The work of Frikha et al. [21] was the starting point

for this project, inspiring the proposed covert channel

configuration. In Frikha's paper, two implementations of a

covert channel are presented, both using fields in the

802.11 MAC header. The first uses the eight most

significant bits of the sequence control field. This field

has a length of two bytes, which is subdivided into two

 16

subfields. The first subfield is the sequence number and

comprises the first 12 bits. The following four bits

represent the fragment number. By using the eight most

significant bits of the sequence number subfield, their

covert channel achieves a throughput of one byte per frame.

The second implementation in [21] applies to networks

where Wired Equivalent Privacy (WEP) is in use. If this is

the case, the initialization vector subfield is used to

carry the covert message. This technique allows a

throughput of three bytes per frame.

Another covert channel proposed by Butti [22] uses a

part of the destination address field of ACK frames to hide

the payload. A throughput of one byte per frame is achieved

in this case. Butti [22] also presents complete code for

the channel's implementation.

Each of these approaches relies on the forging of

frames by manipulating the contents of the MAC header in

order to hide the covert information.

D. CONCEPT OF THE PROPOSED COVERT CHANNEL

In this thesis, we propose a MAC layer storage covert

channel that would ideally work in an environment as

illustrated in Figure 6. This figure represents two

stations embedded in an 802.11 infrastructure network but

at the same time exchanging information through the use of

a covert channel. This is the ultimate goal of our

research, although it was not fully achieved.

An alternative configuration as described in Chapter

IV, in which the covert channel and an Ethernet connection

were in use simultaneously, through the use of two network

 17

adapters, was successfully implemented. The reason for

implementing a simplified channel is related to the

limitations presented by the available hardware. We only

had one wireless network card adapter in each station, and

for the covert channel to be functional, that card had to

be set to Monitor mode. This mode does not allow a

simultaneous connection to the infrastructure network. One

possible solution would be installing a second wireless

network adapter to connect to the infrastructure network.

Figure 6. Network topology in which the covert channel
operates.

Once the covert channel is established, the robustness

of the channel becomes relevant. The error performance of

the channel depends on the network traffic and potential

collisions and loss of frames. To ensure the proposed

 18

channel has some degree of resilience to transmission

errors, the use of forward error correction (FEC) and

interleaving was considered and tested. A convolutional

code of rate 2
3
 and constraint length of four was employed.

In summary, this chapter provided an overview of the

IEEE 802.11-2007 standard, protocol and network

architectures, frame construction and most common frame

types. A classification of covert channels and existing

work on covert channels related to our work were presented.

A conceptual description of the proposed covert channel was

provided.

 19

III. DESIGNING THE COVERT CHANNEL

A covert channel can be used as a means to convey

information without other parties realizing that there is a

hidden communication taking place. In this thesis we

investigate the implementation of a covert channel in an

IEEE 802.11-2007 wireless network.

An overview of different covert channels and the

architecture, as well as some frame formats of the IEEE

802.11-2007 standard were covered in Chapter III. A new

covert channel that utilizes specific bits in the MAC

header of an 802.11 network is presented in this chapter,

and the problem of implementing a functional covert channel

is addressed.

A. NETWORK MONITORING

In the previous chapter we discussed the various types

of frames in 802.11 networks. For the construction of the

proposed covert channel, we examine these frames to

identify one or more fields in the MAC header that are

suitable for information transfer. In order to do so, we

must first choose the type of frame suitable for this

purpose. The necessary analysis to make a sound decision is

provided in the following section.

1. Type of Frame Analysis

A heavily used 802.11 network on campus is monitored

to collect frame traffic on multiple channels. The network

channels monitored were channel 1 and channel 9. From the

MAC frame traffic collected, channel 1 is found to be the

 20

one with most traffic volume and number of users. We

collected over 22 million packets to analyze the following

frame basic characteristics.

The first characteristic we examined was the type of

frame that would best suit our needs. Ideally, we want a

frame that is short in length, common in occurrence, and

still valid if some bits are changed. Additionally, its

presence in bursts should not be a rare event. These

features are desirable for achieving a reasonable

throughput while providing covertness.

The results of our analysis are shown in Figure 7 as a

pie chart, which represents the frequency of occurrence of

different types of frames. The data frames are dominant,

followed by CTS, ACK and beacons. The "others" refers to

the sum of all other frames that represent less than 1%

individually. From this plot, we can clearly see that two

types of control frames matching our needs stand out, the

ACK and the CTS.

Figure 7. Frequency of occurrence of the monitored
frame types

 21

We chose to use CTS for building the proposed covert

channel as the CTS traffic volume is large and is of same

frame size as ACK. The next desirable characteristic of the

frame is the burst length, i.e., the consecutive occurrence

of the same frame type in an 802.11 wireless network under

normal operating conditions.

2. Sequence of Frames Analysis

Initially, one aspect taken into consideration was the

importance of having sequences of ACK or CTS originating

from the same station. This became irrelevant since the

frame does not contain a source address, and the

destination address of the forged frame can be manipulated

as necessary. The importance of frame sequence is relevant

when we are concerned with the detectability of our

channel. One could detect a rogue station by observing the

received power level, the signal-to-noise ratio (SNR) of

the received frames, and recognizing the fact that the

frames originated from the same location [25]. Such

analysis might work if the wireless stations are

stationary, which defeats the purpose of mobility, but it

may be a typical scenario for a limited time, as in an

office space or conference room.

In the traffic we collected, long sequences of

consecutive frames of the same type, either ACK or CTS,

directed to different stations were observed. The sequence

length versus the frequency of occurrence of the ACK and

CTS, respectively, are illustrated in Figures 8 and 9. We

excluded any sequence length with less than two

occurrences. For reference, a maximum length of 252

 22

consecutive CTS frames was recorded once, but it was

clearly a unique event in all of the monitored traffic.

In Figure 8, we notice the high incidence of short

sequences of consecutive frames (up to 10 consecutive

frames), and lower occurrence of lengths above 40

consecutive ACK frames.

Figure 8. Distribution of acknowledgement (ACK) frame
burst length.

From Figure 9, it is clear that CTS is more likely to

have long consecutive sequences.

One abnormality noticed during the traffic analysis

was the presence of “unexpected” frames among the collected

traffic. By unexpected, we mean that some of the captured

frames contain a protocol version number other than zero,

 23

which should be the default value [6]. The following

section examines the protocol version field.

Figure 9. Distribution of clear to send (CTS) frame
burst length.

3. Protocol Version Field Analysis

The zero value for the protocol version field is set

by the standard, and at the time of this writing it has not

been changed. This led us to look into it with more

attention, since this is one potential field that can be

used by the proposed covert channel.

The results of traffic analysis conducted on the

protocol version field are contained in Tables 3 to 5. From

the traffic data collected in our experiment, we selected

6,189,701 frames to examine the protocol version field, as

shown in Table 3. A vast majority of the frames

 24

(6,182,148 frames or 99.88%) were found to contain version

0. Frames containing version numbers 1, 2, and 3 were very

few in number.

Table 3. Protocol version field values of all captured
frames.

Version

Total

Total
%

0 6,182,148 99.88
1 2,880 0.05
2 3,347 0.05
3 1,326 0.02

ALL 6,189,701 100

We conducted the same analysis on the two specific

frames of interest, the ACK and CTS frames, and the results

are listed in Tables 4 and 5. As we can see, the incidence

of protocol version other than zero is quite low.

Table 4. Protocol version field values of the captured ACK
frames.

Version

Total

Total
%

0 1,269,379 99.95
1 288 0.02
2 296 0.02
3 8 0.00

 ALL 1,269,971 100

 25

Table 5. Protocol version field values of the captured CTS
frames.

Version

Total

Total
%

0 2,997,890 99.99
1 88 0.00
2 310 0.01
3 13 0.00

ALL 2,998,301 100

Presence of the protocol version other than 0 is

puzzling. On the one hand, this means that the security

mechanisms in the access point may not be performing a

thorough analysis of the frame headers; a properly

functioning security mechanism should block the frames with

non-zero protocol version field. On the other hand, if we

intended to use this field as a means for the covert

channel, the existence of other stations transmitting a

value other than zero would be a source of noise in the

channel.

To insure that frames contain non-zero version field

are not a result of malformed, corrupted or fragmented

packets, we further examined the frame traffic. We found

that frames with a protocol version higher than zero

contained mismatched frame check sums; i.e., they were

formed due to bit errors. An example of such a frame can be

seen in Figure 10, a Wireshark [26] capture, where we

highlighted the version field and the failed checksum.

4. Choosing the Frame Type

In the process of choosing a frame for the covert

channel, several frames were considered, such as RTS and

 26

ACK. These frames could serve as well as the CTS, but they

were found to be less frequent than CTS. Also, among these

three frames, RTS is the longest one with 20 bytes, and the

CTS and ACK have only 14 bytes. For this reason we narrowed

the options to ACK and CTS. The smaller the number of bits

we have to transmit to send a covert message, the more

efficient the channel becomes.

Figure 10. Wireshark capture of a CTS frame with PV = 3
and incorrect check sum.

From monitoring of frame traffic on the campus

wireless network and empirical analysis, we found that the

CTSs occur with a frequency twice that of the ACKs. The

monitoring was conducted in different traffic scenarios,

 27

ranging from low traffic periods to high levels of

utilization of the network. By choosing CTS, we can

minimize the chance of causing a traffic anomaly based on

the type and frequency of packets flowing through the

network. Also, we already found that the presence of a long

burst of CTS's is not uncommon in 802.11 networks. During

frame traffic monitoring, we frequently observed long

sequences (up to 50) of consecutive CTS's. Of course, this

sequence length would not allow us to send that many bits

in a row. A way around this issue is to slow down the rate

at which we generate and transmit the forged frames. This

would drastically reduce the throughput but would increase

the stealthiness of our channel.

Since CTS and ACK have a similar frame structure, it

is easier to switch from one to the other, according to our

objectives. The main concept of the proposed covert channel

applies equally to both frames. It is even possible to have

one end of the channel transmitting ACK frames and the

other transmitting CTS frames without any loss or

degradation of performance. Alternating frame types, such

as transmitting a forged ACK followed by a forged CTS is

also viable. Many other variations are also feasible.

The fact that both CTS and ACK frames do not contain a

source address also contributes to a higher level of

stealthiness since it is not possible to immediately

identify the source of the transmission.

 28

B. PROPOSED COVERT CHANNEL

1. MAC Header Manipulation

In the proposed covert channel, we use two bits in the

protocol version field of the MAC header of an 802.11 CTS

packet to carry hidden information. The first two bytes in

the MAC header is the frame control field. The generic two-

octet long frame control field with the protocol version

field highlighted is shown in Figure 11.

Figure 11. Frame control field [From 6].

The proposed covert channel uses the protocol version

bits in a variety of ways to signal the beginning and end

of the transmission as well as to carry the information,

one bit at a time.

In order to facilitate communication in the proposed

covert channel, we divided the transmission into three

segments: start message delimiter, message, and end message

delimiter. The start and end delimiters are realized by

transmitting a sequence of five frames with 01 in the

protocol version field. The message bits are transmitted

using combinations of 10 as binary "0" and 11 as binary "1"

in the protocol version field. The message is organized

into 8-bit ASCII characters.

 29

An example of this procedure is shown in Figure 12,

where a capture of Wireshark is displayed in which we can

see the transmission of the ASCII character “A” converted

into the binary string “01000001.” A total of 18 frames

were transmitted as follows:

 five CTS frames with protocol version one (01)

mark the beginning of the transmission;

 eight CTS frames corresponding to the binary

representation of the ASCII code of character

'A', with protocol version 2 (10) representing a

binary zero and protocol version 3 (11) a binary

one; and

 five CTS frames with protocol version one (01)

marking the end of the transmission.

Figure 12. Wireshark capture of an “A” being
transmitted using the proposed covert channel.

2. Important MAC Header Parameters

It is important to keep the forged frame as a valid

frame to minimize the chance of detection and reduce the

likelihood of elimination or blocking by access points,

 30

firewalls or IDSs. Any such device could be looking into

the contents of packet headers and discarding invalid ones.

The forged CTS generated in our covert channel can be

modified to include a valid destination MAC address that

exists in the network in which we are operating and a valid

checksum. The only deviation from a system generated frame

is the PV field value. This can be seen in Figures 13 and

14, where the first highlighted field of the frames, d6 and

c7, respectively, represents the type, subtype and protocol

version. By inspection we can see that a protocol version 2

is present in Figure 13, indicating the transmission of a

binary zero, in our covert channel, and a version 3 is

present in Figure 14, signaling a binary one.

The d6 and c7 values are the hexadecimal

representation of the bits that comprise the first octet in

the MAC header. From Table 2, d6 in Figure 13 is composed

as follows:

B0 B1 B2 B3 B4 B5 B6 B7
0 1 1 0 1 0 1 1

PV=1 TYPE=Control SUBTYPE=ACK

By taking B7 as the most significant bit, we get

11010110(bin)=d6(hex). The same process applies to the

construction of c7.

 31

Figure 13. Forged ACK structure.

Figure 14. Forged CTS structure.

The ID field or duration field is set to zero in

Figures 13 and 14. If the forged frame is an ACK sent by a

non-QoS station and has the More Fragments flag set to

zero, then this field is also zero. Otherwise, it has a

non-zero value [6]. On the other hand, if the forged packet

is a CTS, this field indicates how long the referred

station in the destination address field has air time to

transmit its data, while the remaining stations hold their

transmissions during the same period. If this field is set

to zero, there are no practical implications to the

network. However, if this field contains a non-zero value,

all the other stations will hold their transmissions for

that amount of time. This could be the basis for a Denial

of Service (DoS) attack [27].

 32

C. DETECTING AND DISABLING THE USE OF THE PROPOSED COVERT
CHANNEL

Once we are aware of the existence of a covert

channel, it is relatively easy to protect against its

unwanted use.

In order to limit the use of the proposed covert

channel or any of its derivatives that are built upon the

same concept, we just have to monitor the PV field in the

MAC header. If the PV field is different from zero (00),

the packet is discarded. This blocking technique works

regardless of the type of packet we forge, since all types

of packets have the PV in common [6]. Notice that this

blocking rule would only limit (not eliminate) the use of

the channel. For example, the frame would be blocked by an

AP, but any station in the range of the transmitting

station would still “hear” this frame.

In our experiments, since we recorded frames with PV

values other than 00 but with an invalid CRC, we cannot

infer whether or not the APs are filtering such frames.

What we can conclude is that invalid frames with altered PV

values exist in the network and that stations within the

covert channel's range still “hear” such frames.

Another aspect that could raise suspicion is the

presence of a long sequence of frames of the same type to

the same MAC address in a short period of time. Although we

described a way to circumvent this effect, this is still

something to consider and is worth analyzing.

Yet another aspect that could trigger an alarm would

be the anomalous increase of the network's traffic during

our use of the covert channel. We will examine such a

 33

scenario in Chapter IV, but spacing the transmission of the

forged frames in time mitigates this effect. This, however,

comes at a cost since the throughput decreases and the

transmission period increases.

In this chapter, we presented the results of traffic

monitoring in an IEEE 802.11 wireless network and proposed

a covert channel. The process of choosing the right frame

to forge based on empirical results was explained. The CTS

frame was chosen, and some considerations about the frame

choice, its strengths and weaknesses were made. The basic

premise of the proposed covert channel is to use the PV

field in the MAC header for message transmission. Aspects

related to the detectability and mitigation were also

discussed. The test bed model used for the experiments and

a description of the developed code and the analysis of

experimental results is presented in the next chapter.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

IV. EXPERIMENTS AND RESULTS

In this chapter, we analyze three parameters of our

channel: stealthiness, error robustness, and throughput.

The intent is to present the results of experiments

conducted using a proof-of-concept covert channel program

developed by the author.

A. TEST BED

For conducting tests, we used two laptops with the

same hardware configuration, using a PCM 3COM 3CRPAG175

with an Atheros chip AR5212 as the wireless network

adapter. One laptop was used as transmitter (Station A) and

the other one as passive monitor (Station B). Station A was

running Backtrack4 as the operating system (OS) as well as

some additional software described in Appendix A. Station B

ran Windows XP SP2 and the monitoring program used was

Airopeek NX, version 3.0.1 [28].

In Chapter II, we described the ultimate goal of this

thesis as having two stations that are part of an

infrastructure wireless network, communicating between them

through a covert channel. Although the concept is fairly

simple, the practical implementation is not. For that

reason, and also due to time constraints, our approach for

the practical tests consisted of having two stations

located in the physical area of an infrastructure 802.11

network but not connected to it, trading messages between

them using the proposed covert channel. The setup used for

the experiments is illustrated in Figure 15.

 36

Figure 15. Network topology used in the experiments.

B. CODE DESCRIPTION

In order to implement the proposed covert channel, we

developed the necessary code to forge, transmit, and

receive frames. To provide error robustness, we used

convolutional coding along with interleaving.

Python [13] was the chosen programming language due to

its simplicity, available libraries and extension modules

that facilitated our task. For the OS, a Linux environment

was elected as being more flexible, open source and GNU

licensed. The chosen distribution was Backtrack4. Diverse

documentation on this OS flavor can be found online. All

the additional software (see Appendix A) is also under GNU

licensing, so no proprietary software was used to implement

the covert channel.

In order to simplify the use of our covert channel, a

graphical user interface was used. Since this is a proof-

 37

of-concept effort, implementation of a half-duplex chat

room environment seemed reasonable to meet our objectives.

This way, we made use of an open-source chat environment

previously developed by Wolfman and Filth [29]. The visual

interface is used almost unchanged; several internal

routines and processes were extensively altered. Effort was

put into making the program applicable to realistic

application scenarios. A small description of the code

follows. In our code we wrapped the covert channel in a

friendly GUI, so it looks and operates as a basic chat

console.

The code is divided into three major processes running

simultaneously in a virtual sense, meaning the processor

alternates between all processes in a very small amount of

time. This is crucial to the code performance; the code

optimization was on our mind but did not take a high

priority. Figure 16 is a simple representation of the major

blocks constituting the final code. A main program is

initiated, along with the loading of several libraries and

definition of variables. One of the most important

libraries is Scapy [30], a Python packet manipulation

program that enabled us to listen and disassemble frames as

well as forge our own frames. The GUI is built using

Tkinter. A screen capture of the GUI is shown in Figure 17.

The various menus and the welcome message are visible, as

well as an example of a transmitted and a received message.

The transmitted message is the first line, identified with

user John, and the second line is the received message,

identified with Eve.

 38

Figure 16. Flow chart of the covert channel code
implementation.

 39

Following the flow direction on Figure 16, we then

move to Thread1, where we initiate the listening part of

our program. Here we filter the frames of interest,

identify the beginning and end of the covert communication,

and write the resulting message to a log file after

converting the recovered string of bits to ASCII

characters. The routine responsible for converting the bits

to characters and storing them to the log file is:

def conv(bin2):
 bl=[bin2[i:i+8] for i in range(0, len(bin2), 8)]
 final=''
 for z in range(0,len(bl)):
 final2=chr(int(bl[z],2))
 final=final+final2
 timestamp='('+"%.19s" % str(datetime.now())+') '
 user='Received message'+': '
 txt = timestamp+user+final+'\n'
 f = open(file.name, 'arb',5)
 f.write(txt)
 f.close()

Thread2 corresponds to the transmitting part of the

code. We continuously scan the log file, where all the

keyboard inputs are saved, check for an update in the file;

and if one is detected, we build our binary string, forge

the frames, and transmit them. This way, all the received

and transmitted messages are saved in the log file with a

time stamp and identification of message originator.

During the transmission period of time, we set an

internal control flag to 1 in order to suspend the

listening routine, thus avoid listening to our own

transmission.

 40

Finally, Thread3 handles possible discrepancies in the

identification of the beginning and end of the covert

communication. The other version 1 frames (with bad

checksums) circulating in the network become noise to our

version 1 frames forming the start and end delimiters.

Thread3 is responsible for filtering out these unwanted

frames. The Python code segment of Thread3 is:

def treset():
 while True:
 global magic
 c=magic
 tm.sleep(10)
 if c-magic==0 and magic<5:
 magic=0

A complete listing of the code is provided in

Appendix B.

Figure 17. Covert channel GUI screen capture.

 41

C. RESULTS

Frame traffic was recorded over operational wireless

networks during week days in order to capture the real-

world scenarios.

Three different scenarios were considered and tested.

All scenarios consisted of transmitting similar messages

during approximately the same time of day. The difference

between the scenarios is the way the data was transmitted,

since we varied the type of frames used and applied

different error mitigation mechanisms.

It is important to notice that Stations A and B were

operating in the ad-hoc mode of operation, i.e., outside

the infrastructure wireless network being monitored. As a

result, the mechanisms in the 802.11 standard designed to

minimize collisions are not entirely observed. CSMA/CA was

still used since it is a built-in functionality of the

wireless adapter. The stations transmit without any

coordination from the access point. This likely causes

collisions, and thus frame losses, which are interpreted as

errors for analysis purposes.

There were two types of messages used during the

tests. The first message was a classic steganographic

sentence used during WWII by a German spy [31]:

Apparently neutral's protest is thoroughly
discounted and ignored. Isman hard hit. Blockade
issue affects for pretext embargo on by-products,
ejecting suets and vegetable oils.

The sentence has a total of 1408 bytes. The second

type of message sent is a 25,000-bit long sequence of

binary 1s.

 42

These messages were transmitted under three scenarios.

In the first scenario, the messages were sent without any

error control.

A demonstration of the sentence transmission is

presented now using the chat room GUI. The result of a

correct reception of a message sent over the covert channel

is shown in Example 1, and a totally unreadable message is

shown in Example 2. Both messages were sent over a Scenario

1 environment in channel 1 with no error correction.

Example 1:

(2011-03-04 01:43:52) Received message: Apparently neutral's
protest is thoroughly discounted and ignored. Isman hard hit.
Blockade issue affects for pretext embargo on by-produce,
ejecting suets and vegetable oil.

Example 2:

(2011-03-04 01:48:56) Received message: ‚_yeóªt‚—®;__ ƒ’ÜU›_Õ‡M_-
µ[B4�?oÒÍa gdB�óïkC@»4�Ai�__CÄ_eÒ\¥)_?7R€_x,ÚM¿ F�•)-
*ep>¹_KXQÕT\…Y{6ŒW7DõøH1ì€tÇžc‹D‡ÉQ_

Forward error correction (FEC) is used to improve

robustness of transmitted messages in the second scenario.

The last scenario consisted of forward error correction and

bit interleaving to further enhance robustness.

1. Error Performance of the Covert Channel

CTS frames are used to carry the message in the PV

field. This yields a throughput of approximately one bit

per transmitted frame. Actually, it is slightly less than

one bit per frame, since we have an overhead of ten frames

to mark the beginning and end of the transmission. Channels

1 and 9 of the network were monitored for frame traffic.

Before conducting the analysis, it is important to

define what we considered to be an error. In this thesis,

 43

an error is the loss of a payload (information) bit. If we

send one payload bit per frame, then the loss of one frame

corresponds to one error. The reception of malformed

frames, with invalid checksum indicating bit flips, is

classified as a lost frame in our analysis.

a. Channel 1

In Figure 18(a) we can see the profile of the

traffic collected for a period of about ten hours on

channel 1. The percentage of errors detected upon reception

of the test sentence is displayed in Figure 18(b). Finally,

the percentages of errors recorded for the 25,000 long bit

sequence of binary 1s is illustrated in Figure 18(c). The

plots are time aligned. The width of the bars in Figures

18(b) and 18(c) indicate the time it takes to transmit the

complete sequence.

Summarizing this analysis, we observed an average

error of approximately 3% for the sentence and 2% for the

sequence of ones over a total of 30 sets of transmissions.

One desirable characteristic we want to preserve

in a covert channel is the stealthiness of message

transmission; that is, we try to hide as much as possible

such that the use of the covert channel remains unnoticed.

 44

Figure 18. Network traffic profile and percentage of
errors for sentence and sequence receptions in

channel 1.

Figure 19 is a partial magnification of the

traffic profile shown in Figure 18(a), where the black

(lower) line represents the normal network traffic, and the

red (upper) line shows the normal traffic plus the traffic

due to covert (forged) frames. As we can see in Figure 19,

the difference between the red line and the black line

corresponds to the amount of traffic added by the use of

the covert channel. Since the network traffic is fairly

heavy in channel 1, the presence of the covert channel is

not obvious; our traffic just blends in with the overall

traffic.

(a)

(b)

(c)

 45

Figure 19. A selected portion of network traffic
profile for channel 1.

b. Channel 9

We repeated the same experiment using channel 9

instead of channel 1. Here, we did not expect any heavy

traffic; thus, no significant information is gained

regarding traffic profile shaped by users. For that reason

we reduced the sequence of ones from 25,000 to 2,500 bits

in order to have a large number of sequences in a shorter

amount of time. The results in Figure 20 correspond to a

two-hour period of monitoring channel 9 without any covert

activity.

 46

Figure 20. Network traffic profile of channel 9.

The results of the traffic profile with covert

channel activity are shown in Figures 21 and 22. Figure

21(a) is the graphical representation of the number of

frames per second in circulation in the network between 9AM

and 7PM on a weekday. The percentage of errors in the

sentence reception is shown in Figure 21(b). In Figure

21(c) we have the representation of the percentage of

errors for the 2,500 bit long sequence.

A zoomed in view of the normal traffic in the

network versus the covert channel traffic is displayed in

Figure 22. In this case the difference is large, and the

presence of the channel is easily revealed. The red line

represents the traffic due to the covert channel, whereas

the black line is the normal traffic in the network. This

situation is exactly what we do not wish in a real-world

application.

 47

Figure 21. Network traffic profile and percentage of
errors for sentence and sequence receptions in

channel 9.

The stealthiness of the channel can be improved

by spacing the transmission of forged frames. How the

covert traffic can be made less visible by introducing

spacing between frames is illustrated in Figure 23. This of

course reduces the throughput. Segment (a) in Figure 23

corresponds to normal frame transmission with no additional

spacing between the frames. For this segment the total

transmission time was approximately two minutes at an

average of 30 frames per second (fps). In segment (b)

frames are sent once every two seconds, resulting in a

total transmission time of 2 hours and 12 minutes. Finally,

(a)

(b)

(c)

 48

segment (c) is shown only partially; we sent one frame

every four seconds for a total transmission time of 4.5

hours.

Figure 22. A selected portion of network traffic
profile for channel 9.

Figure 23. Zoom of network traffic profile for channel
9 using three different delays in forged frame

transmission.

(a)

(b)

(c)

 49

The important aspect is that the difference

between the legitimate and covert traffic becomes smaller

and smaller as the spacing increases; at some point, it is

possible to make it almost invisible as we extend the

spacing. On the other hand, the throughput is degrading

proportionately.

Another technique to camouflage our use of the

covert channel is to space the forged frames transmission

in a non-uniform way instead of sending the frames at

regular time intervals. Although considered, this variation

was not tested.

2. Error Performance of the Covert Channel With
Forward Error Correction

We now introduce forward error correction in order to

reduce the number of errors in the covert channel.

There are several options for implementing FEC: block

codes such as Hamming and Reed-Solomon, convolutional

codes, turbo codes, or low density parity check codes. In

this thesis, a convolutional code was used for error

correction.

A convolutional encoder takes an m -bit message and

encodes it into an n-bit symbol. The ratio m
n
 is the code

rate. In our case a code rate of 2
3
 was used, meaning the

encoded message will be one and a half times as long as the

original message. This increases the time needed to

transmit the same message as before since a larger number

of channel bits is being sent.

Another important parameter in convolutional coding is

the constraint length. This parameter,k , represents the

 50

number of bits in the encoder memory that affect the

generation of the n output bits [32]. A constraint length

of four is used for our experiments.

In order to deal with the presence of burst errors in

the channel, in association with the convolutional coder we

also used bit interleaving [33,34]. This consisted of

breaking the coded message in blocks of eight bits and

building a matrix with each block in a different row. By

reading the matrix out by column, from top to bottom, we

generate a new string of bits, effectively interleaving all

the eight bit blocks. The number of rows depends on the

length of the message we are transmitting. This process is

shown in Figure 24.

Figure 24. Bit interleaving process.

Forward error correction is typically applied to a

transmission of a stream of bits sent and received

sequentially. In our case, however, the bits are embedded

into independent frames, which are prone to loss. As a

 51

result, when a frame is lost, the receiver has no

indication that a bit was missing. Consequently, we now

need to know exactly which frames were lost in order to

apply the FEC correctly. Different approaches were tested,

and the results are reported below.

a. Alternating CTS and ACK

A rudimentary mechanism for determining the

location of the lost frames can be implemented by

alternating the frame type, accomplished by sending

alternate ACKs and CTSs. Essentially, we are using the

subtype field in the MAC header to accomplish this; the PV

field is still the carrier of the covert information.

This approach effectively emulates a 1-bit

sequence number. As soon as we lose more than one frame in

a row, the entire sequence is corrupted, and the error

correction scheme is unable to correct the errors (lost

frames). A better scheme is needed.

b. Alternating CTS and ACK Using Sequence
Numbers

We propose to use the eight flag bits in the

frame control field of the MAC header to obtain a longer

sequence number, which makes determining the location of

lost frames an easier task. However, it is important to

state that applying this use of the flag bits will increase

the probability of detection of the covert channel since

unexpected flag attributions will be present. This was not

further investigated, but we are aware of the increased

risk of detection taken when pursuing an increase in the

channel’s error performance. In order not to use the flag

 52

bits, one could use the type and subtype fields of the MAC

header. As shown in Table 2, the IEEE802.11 standard

defines some bit combinations of the subtype field as

“Reserved.” Exploring these combinations could be an

option; although, we did not test it.

Figure 25 is a representation of how we

accommodated the information and sequence bits within the

MAC header. The blue squares represent our covert channel

bits. These bits are used in the same way described in

Chapter III: the first bit (B0) signals the presence of the

channel and the second is payload (B1). The red circles

refer to the sequence bits, which are placed in the flag

bits of the frame control field. Given that we have eight

flags, this gives us a total of 256 possible sequence

numbers. This alone provides a reasonable amount of

protection against a long burst of frame losses when

compared to the previous approach.

Figure 25. Representation of the frame structure using
the flag bits for sequencing.

Figure 26 is an illustration of Wireshark capture

of part of the transmission sequence of the sentence.

Looking at the flag field, we can see how the hexadecimal

values are increasing sequentially.

 53

Figure 26. Wireshark capture of transmitted forged ACK
and CTS frames using flag bits for sequencing.

This way of using the flag bits does not affect

the traffic profile in the network since the number of

forged frames is still the same.

The percentage of errors as a function of 15

repeated transmissions of the sentence in channel 1 over a

period of four hours is shown in Figure 27. The length of

the transmitted sentence is now 2,112 bits long because we

applied a 2
3 rate encoder on a 1,408-bit string. The red

stems (x) represent the number of errors detected in the

received sentence, and the blue stems (o) the number of

errors in the received sentence with FEC. In most cases the

number of errors drops to zero or is significantly reduced.

 54

Figure 27. Percentage of errors before (red) and after
FEC (blue) per received sentence, using flag bits

for sequencing.

This is consistent with our expectations. We have one

outlier in that for the 13th repetition of the sentence we

got a larger number of errors with FEC.

We recorded a total of 67 errors in this

experiment (without FEC), which translates into an average

of 4.5 errors per sentence, or an average error percentage

of 0.21%. After the execution of FEC, the total number of

errors dropped to 21, resulting in an average of 1.4 errors

per sentence, or an overall average of 0.09% relative to

the 1,408 bits of the original message. This was an

improvement of more than two-fold. However, this gain was

the direct result of having to transmit more bits to send

the same message when compared to the first scenario with

no FEC, thus reducing the data rate.

 55

The next test used the sequence of ones. The

original length of 25,000 bits becomes 37,500 bits long

after encoding. The error values for the 15 repetitions of

the bit sequence are presented in Figure 28. Notice that

the scale on the y-axis is different from that in Figure 27

since larger values were plotted. The two largest values,

corresponding to sequence numbers 3 and 4, are most likely

the result of losing synchronization during the decoding of

the bit string, leading to an uncontrolled increase in the

number of errors. Recall that if the correct frame sequence

is lost, the rest of the binary string is corrupted. An

example of such an event is the loss of the marker that

indicates the beginning and end of the channel use, the PV

1 values.

Figure 28. Percentage of errors before (red) and after
FEC (blue) per received sequence, using flag bits

for sequencing.

 56

Excluding the outliers, the total amount of

errors at the receiver for the remaining 13 sequences was

4,211. This gives us an average of approximately 324 errors

per repetition, or 0.86% of the total 37,500 bits

transmitted per sequence. After the FEC, the total number

of errors dropped to 2,502, or 0.77% relative to the

original 25,000 bit long sequence.

3. Error Performance of the Covert Channel With
Forward Error Correction and Interleaving

In this scenario, we continued to use alternating

sequences of CTS and ACK frames as well as FEC. We now

consider sending more than one bit of information per

forged frame. The proposed structure is illustrated in

Figure 29. The blue squares indicate payload bits, and the

red circles are sequence numbers. The green diamond (B0)

indicates the presence of the covert channel. Bits B1, B8

and B9 form the sequence number yielding a sequence length

of 8. Bits B10-B15 form the payload of six bits to carry

the message.

Figure 29. Representation of the frame structure using

three bits for sequencing and six bits for payload.

Since each frame now carries six information bits, the

loss of one or more frames has a bigger impact on the

number of errors in the channel. In order to mitigate this

effect, we interleave the bit string resulting from the

 57

convolutional coder. Figure 30 is a schematic

representation of this idea. At the output of the

convolutional coder, we interleave the bits in groups of

eight bits, as shown in Figure 24. This results in a new

string of zeros and ones which goes into the covert channel

processing block. Here the string is separated in groups of

six bits, and each group becomes the payload of the forged

frames.

Figure 30. FEC and interleaving block diagram.

Notice that only information bits are encoded and

interleaved; in this implementation the convolutional coder

is applied after we have the complete message we want to

transmit. In other words, first we capture the entire

message, then we encode it, interleave it, and finally run

the resulting string through the covert channel. The frame

is forged as follows: six information bits are placed in

the selected flag bits, three other bits are used for

sequence numbers, and the first PV bit is set to one,

indicating the use of the covert channel.

Figure 31 is a display of a Wireshark capture of some

transmitted frames. Notice how the flag values of

successive frames change in a non-sequential way since

every forged frame has different contents for these fields.

 58

Figure 31. Wireshark capture of transmitted forged ACK
and CTS frames using three bits for sequencing and

six bits for payload.

a. FEC Without Interleaving

We first test the channel using FEC and no

interleaving. The error values for the 15 repetitions of

the sentence are depicted in Figure 32. The average number

of errors per repetition was 85, or 0.27%, of the total

amount of bits sent per sentence. After tracking the

sequence numbers and correcting the bit sequence, the final

number of errors was reduced to 35 or 0.16%.

 59

Figure 32. Percentage of errors before (red) and after
FEC (blue) per received sentence without

interleaving.

b. FEC With Interleaving

In this experiment, we use three bits for

sequencing. For a payload of six bits, the loss of one

packet has a bigger effect in the error performance of the

channel. For this reason we resorted to the use of

interleaving.

The percentage of errors per sentence repetition

can be seen in Figure 33. From this figure we notice an

outlier at repetition 12, actually gaining errors after the

FEC. This was an isolated event and was excluded from this

analysis. The result is an average number of 1.53 errors

per repetition, or 0.07%, of the total amount of bits sent

per sentence. Following the sequence number tracking, de-

 60

interleaving and correcting the bit sequence, we see that

the total number of errors is reduced to zero. These are

significant results; however, the sample space is small,

and we cannot conclude that this level of robustness will

be achieved in every reception.

Figure 33. Percentage of errors before (red) and after
FEC (blue) per received sentence with interleaving.

D. THROUGHPUT ANALYSIS

In order to evaluate the throughput offered in each

scenario, the rate at which the frames were transmitted was

measured. This was done using Airopeek [28] and by

averaging the rate of the forged frames on a per second

(fps) basis. The measured transmission rates may have

large variations and may reach zero in some cases because

sometimes no frame is sent during an entire second.

Depending on the network usage at the time, the frame rate

 61

varies significantly. Another factor responsible for this

variation is the continuous adjustment of the maximum data

rate of the network as dictated by the channel conditions.

For IEEE 802.11b networks, the maximum network data rate

possible values are 1, 2, 5.5, and 11 Mbps [6].

To obtain a benchmark for performance comparison, we

first determine the maximum data rate possible for the

covert channel under optimal conditions. The conditions we

assume are:

1. The channel is ideal with no errors;

2. There is only one station with frames to

transmit;

3. We use a data rate of 2 Mbps, the highest

possible for 802.11b control frames (basic rate

set) [6].

The medium access scheme has to obey some

predetermined timing constraints set by the standard.

Figure 34 is a graphical representation of the timing

requirements for transmitting a frame.

Figure 34. Timing constraints in an 802.11 frame
transmission [After 35]

 62

Applying the work of Xiao and Rosdhal [36] and Jun et

al. [37] to the proposed covert channel, the minimum amount

of time necessary to transmit a forged CTS mint can be

expressed as

   min 2
cwin slot

SIFS CTS

N t
t t t

 (1)

where SIFSt is the short interframe time,


 

 6

14 8
10.18

11 10CTSt µs is the transmission time of the 14-

byte CTS frame, cwinN is the maximum size of the contention

window, and slott is the slot time.

From the standard we use SIFSt 10 µs, cwinN 31 and

slott 20 µs. This yields mint 376 µs, corresponding to a

maximum of 2659 forged frames per second. At one bit per

frame, the maximum bit rate is 2659 bps; at six bits per

frame, we get 15.954 kbps. The measured throughput values,

however, are significantly smaller.

Having established a benchmark, we now determine the

experimental throughput results. In the first experiment,

we were able to transmit one bit of information in each

forged frame, but we have the overhead of the start and end

delimiters, a total of ten signaling frames. The measured

average frame rate was 61 frames per second. Since each

frame represents a bit, and considering our message payload

of 1408 bits, we transmit a total of 1418 bits. At 61 fps

this corresponds to a total transmission time of 23.25 sec

and a useful bit rate or throughput of 60.5 bits per second

(bps).

The next experiment introduced FEC, and although we

did not change the frame construction, the measured average

 63

frame rate is smaller. This is due to the additional

processing introduced with the sequencing of the frames.

Instead of the previous 61 fps, we now have 43 fps being

transmitted. Also, the total number of bits needed to send

the message increases to 2122 due to the use of the

convolutional coder. This corresponds to a total

transmission time of 49.4 seconds, yielding a useful

throughput of 21.3 bps.

In the last experiment, we transmitted six bits per

forged frame and introduced the use of interleaving. The

measured average transmission rate was 32 fps, and

transmitting the same 2122 bits as before, we obtain a

total transmission time of 11 seconds. The resulting

throughput value is 127.4 bps. The measured results are

summarized in Table 6.

Table 6. Measured throughput values compared to the
channel data rate

Useful bit rate

(bps)

Max. bit rate
(Theoretical) 2659

Without FEC and

1 bit payload
60.5

With FEC and I

bit payload
21.3

With FEC and 6

bit payload
127.4

In summary, results of testing the proposed covert

channel were presented in this chapter. The Python code

 64

used to implement the covert channel was briefly described.

Results of experiments were presented, with emphasis on

robustness to errors, channel covertness and achieved

throughput. A summary of the conclusions made in previous

chapters, significant results and recommendations for

future work are given in the next chapter.

 65

V. CONCLUSIONS

The IEEE 802.11-2007 standard was the subject of our

work in this thesis. This standard was first introduced in

1997, yet it is still expanding and is one of the most

widely used wireless networking standards. According to an

industry report, in 2012 over a billion devices will be

shipped with technology based on this standard onboard and

the number is projected to be over two billion in 2014

[38]. For this reason, we think it is important to evaluate

the possible weaknesses and vulnerabilities in order to

determine relevant security challenges. The particular

focus in this work is covert channels, which have the

characteristic of being hard to detect unless we know in

advance what we are looking for. Consequently, continuous

research and investigation in this field are essential.

A previously undocumented 802.11 covert channel was

implemented and tested in this thesis. We introduced and

discussed the basic concept of the proposed covert channel.

We then implemented the channel in a Linux environment and

tested it under different scenarios in order to analyze its

robustness, covertness and throughput. The necessary code

to implement the channel and a GUI were developed in

Python. The results of the experiments were presented and

discussed. Considerable effort and resources were put into

the development of the code, collection of the network

frame traffic, and analysis of a large quantity of recorded

network traffic.

 66

A. SIGNIFICANT RESULTS

A new covert channel in wireless networks based on the

802.11 standard was identified. We used the protocol

version field in the MAC header to hide and transfer the

covert information.

The proposed covert channel was implemented by

developing the necessary code in Python. A GUI chat console

is used for message transmission. The test bed used for

experiments operated in a Linux environment.

Robustness to errors in the covert channel was

improved by the use of forward error correction and bit

interleaving. Preliminary results indicate significant

improvement in the error performance of the channel.

The achieved throughput of the covert channel was

measured under three scenarios. The maximum channel data

rate is also determined. The case of a 6-bit payload along

with convolutional coding and interleaving yielded the

highest measured throughput.

B. FUTURE WORK

There are several aspects in which this work can be

complemented and improved. One aspect to be potentially

explored is to test whether the covert channel can be

detected by APs. This would expand the characterization of

the channel, providing a better understanding of its range

of features.

On the structural side of the proposed channel, other

types and subtypes of frames can be investigated and

 67

implemented. Not only the ones directly assigned by the

standard, but also the set of types and subtypes classified

as reserved (see Table 2).

A further study of error performance would also be

beneficial. One can conduct a larger range of tests under

different scenarios, including experimenting in a

controlled environment where the noise level and frame

collision rates can be monitored. The possibility of using

other error correction mechanisms is also of interest.

Possible techniques include the use of a repetition code,

where the frames are sent a fixed number of times. Knowing

the number of repetitions and comparing the expected number

to the actual number of received frames would allow us to

find the location of lost frames. A spreading code would

work in a similar way, but occasionally the bit values are

inverted.

In this work, we only used one wireless network

adapter. Future research should consider the possibility of

having two wireless network adapters installed in each

station in order to explore the scenario described in

Chapter II, where the stations are part of an

infrastructure network while simultaneously using the

covert channel.

A future effort should consider the extension of the

concept behind the proposed covert channel to wireless

networks based on other standards, such as IEEE 802.16

(WiMAX)[39] or Long Term Evolution (LTE)[40].

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

APPENDIX A

The necessary steps taken to execute the developed

software and implement the proposed covert channel are

described in this Appendix.

We started by installing a fresh copy of the

Backtrack4 Linux distribution on the stations. Once the

installation was complete, we updated it by executing the

following commands:

 apt-get update
 apt-get upgrade && apt-get autoclean

This action downloaded and installed all the available

updates and cleaned the unnecessary installation files.

Now we disable the wireless interface ath1 in order to

reinstall drivers that are compatible with our needs for

raw packet injection. To do that, we execute:

 ifconfig ath1 down
 svn –r 4073 checkout http://svn.madwifi-

project.org/madwifi/trunk/ madwifi-ng
 cd madwifi-ng
 wget http://patches.aircrack-ng.org/madwifi-ng–

r4073.patch
 patch –N –p 1 –I madwifi-ng-r4073.patch
 ./scripts/madwifi –unload
 make
 make install

This loads and sets the madwifi drivers as the interface

drivers.

We now need to blacklist the old drivers, so only the

new ones are loaded. This is accomplished by:

 go to /etc/modprobe.d/blacklist

 70

 edit the file and add this line at the end:
blacklist ath5k

 reboot

After rebooting the machine, we logon as root, start

the GUI by executing:

 startx

and initialize the wireless adapter in the following way:

 modprobe ath_pci
 airmon-ng stop ath0
 airmon-ng start wifi0
 aireplay-ng -9 ath0 (to test the injection capability)

Now the machine is almost ready to run our code, but

some additional software is still needed. The Python

version used in this thesis was 2.5.2 [13]. Also, Psycho

1.6 [41] was installed in order to speed up the execution

of the Python code. We also installed Scapy version 2.1.0

[27] to enable frame forging. To have the ability to

generate PDF files of the captured packets using Scapy

(e.g., Figures 13 and 14), we execute the following

commands:

 apt-get install tcpdump graphviz imagemagick

python-gnuplot python-crypto python-pyx

To install PDF Reader 9.4 for linux:

linux-english-version 9.4.tar.bz2

(http://get.adbe.com/reader/otherversions)

 71

APPENDIX B

#This program implements a covert channel by forging and transmitting #
#control frames in 802.11 networks. It was written using the previous work #
#of Wolfman and Filth for the graphical interface and reception routine. #
#The forging and transmission routines are original work of Ricardo #
#Goncalves, as part of the requirements for MSCEE degree at NPS, CA, USA. #
#March2011 #

from __future__ import with_statement # MUST remain at the beginning of the file
import time as tm # used to avoid 100% cpu usage
from Tkinter import * # for the main portion of the program
import threading # to allow simultaneous reading/writing
from datetime import datetime, date, time # for timestamping save file and program output
from tkFileDialog import askopenfilename, asksaveasfilename # open/save dialogs
import sys # to ensure proper termination
from socket import * #enables the use of sockets
from scapy.all import sniff,Dot11 #loads scapy and the necessary tools to sniff packets
import pylorcon
from fcntl import ioctl
import binascii
import psyco

#set the inject and monitor modes for the wireless adapter (ath0)
wifi=pylorcon.Lorcon("ath0,”"madwifing")
wifi.setfunctionalmode("INJECT");
wifi.setmode("MONITOR");

global sending
sending=0
set the default name for the archive file, which holds the conversations.
class file:
 name='covert.txt'

now we try to open it, and create it with some default text if it dosent exist
try:
 f = open(file.name, 'r+b')
except IOError:
 f = open(file.name, 'wb')
 f.write('''
 ,ad8888ba, ,ad8888ba, I8, 8 ,8I
 d8"' `"8b d8"' `"8b `8b d8b d8'
d8' d8' "8, ,8"8, ,8"
88 88 Y8 8P Y8 8P
88 88 `8b d8' `8b d8'
Y8, Y8, `8a a8' `8a a8'
 Y8a. .a8P Y8a. .a8P `8a8' `8a8'
 `"Y8888Y"' `"Y8888Y"' `8' `8'
 (2011)
-----------------------------//-----------------------------
''')
 f.close()
finally:
 f.close()

open the user file...or create it
try:
 f = open('.user', 'r+b')
except IOError:
 f = open('.user', 'wb')
 f.write('Tony') # set your own default here if the file doesnt exist...
 f.close()
finally:

 72

 f.close()
define that we want the user in the program to come from the file
class who:
 u=open('.user').read()

begin menubar functions
def openf():
 choice=askopenfilename()
 file.name=choice
 #print 'open dialog returned '+choice
 # this can be uncommented for testing proper execution of file dialog

def save():
 n='CCW covert channel v1 '+"%.16s" % str(datetime.now())+'.txt'
 save=asksaveasfilename(initialfile=n) # this is quite straitforward...
 with open(file.name) as f:
 g=open(save, 'wb')
 for line in f.readlines():
 g.write(line) # it copies the file line by line
 #print 'saved file at '+save
 # much like the other dialog, this can be uncommented for testing

def exit():
 sys.exit(0)

you can change the display name as you wish...it will be saved
def name():
 root=Tk()
 root.config(bg='black')
 l=Label(root, text='Please enter your name below')
 l.config(bg='black', fg='red', bd=0)
 l.pack(side=TOP)
 name=Entry(root)
 name.config(width=14, bg='black', fg='red', insertbackground='red', bd=0,
highlightbackground='red')
 name.insert(INSERT, str(who.u).strip('\n'))
 name.pack(side=BOTTOM)
 def save(s):
 who.u=name.get().strip('\n')
 with open('.user', 'wb') as f:
 f.write(who.u)
 root.destroy()
 name.bind('<Return>', save)

help menus are always useful...this one will be too, when i get around to making it
def help():
 win=Tk()
 win.config(bg='black')
 win.title('About')
 say=Text(win)
 say.insert(0.0, '''
 ,ad8888ba, ,ad8888ba, I8, 8 ,8I
 d8"' `"8b d8"' `"8b `8b d8b d8'
d8' d8' "8, ,8"8, ,8"
88 88 Y8 8P Y8 8P
88 88 `8b d8' `8b d8'
Y8, Y8, `8a a8' `8a a8'
 Y8a. .a8P Y8a. .a8P `8a8' `8a8'
 `"Y8888Y"' `"Y8888Y"' `8' `8'
 (2011)
-----------------------------//-----------------------------

All Python documentation can be found online.
All documentation for this program is within the code that comprises the program and
simple text editor may be used to view it.
Additional insight to this code is provided in the thesis document.
This is an adaptation of the original work of Wolfman & Filth Programming.

''')

 73

 say.config(bg='black', fg='red', state=DISABLED)
 say.tag_add('tag', 0.0, END)
 say.tag_config('tag', justify=CENTER, wrap=WORD)
 say.pack()
end menubar functions

begin GUI definition ###

Create socket and bind to address
serveraddress="ath0"
sock=socket(PF_PACKET,SOCK_RAW)
sock.bind((serveraddress,3))

magic=0
bin2=""

def conv(bin2):
 bl=[bin2[i:i+8] for i in range(0, len(bin2), 8)]
 final=''
 for z in range(0,len(bl)):
 final2=chr(int(bl[z],2))
 final=final+final2
 timestamp='('+"%.19s" % str(datetime.now())+') ' # prepares a timestamp
 user='Received message'+': ' # prepares username
 txt = timestamp+user+final+'\n' # adds it all together with a newline
 f = open(file.name, 'arb',5) # opens file
 f.write(txt) # writes text
 f.close() # closes file

#sniff received frames
def sniffack(p):
 global magic, d,bin2, sending
 if sending==0:
 d=p.sprintf("[%Dot11.proto%]")
 if d=="[1L]":
 magic=magic+1
 print magic
 if magic>4: #loooks for the markers of the message
 if p.sprintf("[%Dot11.proto%]")=="[2L]":
 b="0"
 bin2=bin2+b
 print bin2
 if p.sprintf("[%Dot11.proto%]")=="[3L]":
 b="1"
 bin2=bin2+b
 print bin2
 else:
 pass
 if magic>8:
 print bin2
 conv(bin2)
 bin2=""
 magic=0
 else:
 pass

#transmit forged frames
def sendpkt(packet):
 global sending
 sending=1
 destination_addr='\x11\x0c\xf1\x0b\x7e\x1e';
 packet=packet + '\x00\x00'
 packet=packet + destination_addr
 wifi.setchannel(36)
 wifi.setchannel(9)
 wifi.txpacket(packet)
 tm.sleep(0.01)

 74

 sending=0

begin main program
class main:
 def __init__(self, window):
 window.title('NPS - Covert channel v1.0')
 window.config(bg='black')
 self.input() # main input
 self.frame() # main display with scrollbar and copy ability
 self.menu() # main menu at the top
 def menu(m):
 menu=Menu(window)
 menu.config(bg='black', fg='red', activeforeground='black',
activebackground='red') # gotta make it pretty

 filemenu = Menu(menu, tearoff=0) # tearoff just adds a perforation-like look to
the top of the menu
 filemenu.config(bg='black', fg='red')
 filemenu.add_command(label="Open...,” command=openf, activeforeground='black',
activebackground='red') # gotta have commands for a decent menu
 filemenu.add_command(label="Save...,” command=save, activeforeground='black',
activebackground='red')
 filemenu.add_command(label="Send file...,” command=sendfile,
activeforeground='black', activebackground='red')
 filemenu.add_separator()
 filemenu.add_command(label="Exit,” command=exit, activeforeground='black',
activebackground='red')
 menu.add_cascade(label="File,” menu=filemenu)

 editmenu = Menu(menu, tearoff=0)
 editmenu.config(bg='black', fg='red', activeforeground='black',
activebackground='red')
 editmenu.add_command(label="Cut Ctrl-X,” activeforeground='black',
activebackground='red')
 editmenu.add_command(label="Copy Ctrl-C,” activeforeground='black',
activebackground='red')
 editmenu.add_command(label="Paste Ctrl-V,” activeforeground='black',
activebackground='red')
 editmenu.add_command(label="Name...,” command=name, activeforeground='black',
activebackground='red')
 menu.add_cascade(label="Edit,” menu=editmenu)

 helpmenu = Menu(menu, tearoff=0)
 helpmenu.config(bg='black', fg='red', activeforeground='black',
activebackground='red')
 helpmenu.add_command(label="About,” command=help, activeforeground='black',
activebackground='red')
 menu.add_cascade(label="Help,” menu=helpmenu)
 window.config(menu=menu)

 def input(i):
 window.clipboard_append('') # make sure we have something in the clipboard
 input=Text(window) # create input window
 input.config(height=5, takefocus=1, bg='black', fg='red', insertbackground='red',
bd=1, highlightcolor='red', highlightbackground='red')
 # configure input window
 # be able to write the conversation to the file
 def writetext(t):
 text = str(input.get(0.0, END)).strip('\n') # gets what you typed
 timestamp='('+"%.19s" % str(datetime.now())+') ' # prepares a timestamp
 user=who.u+': ' # prepares username
 txt = timestamp+user+text+'\n' # adds it all together with a newline
 f = open(file.name, 'arb',5) # opens file
 f.write(txt) # writes text
 f.close() # closes file
 def b1(n):
 return "01"[n%2]
 def b2(n):
 return b1(n>>1)+b1(n)

 75

 def b3(n):
 return b2(n>>2)+b2(n)
 def b4(n):
 return b3(n>>4)+b3(n)
 bytes = [b4(n) for n in range(256)]
 def binstring(s):
 return ''.join(bytes[ord(c)] for c in s)
 p=binstring(text)
 # read one bit at a time
 r=len(p)
 for a in range(r):
 if a==0:
 for b in range(5):
 packet='\xc5\00' #'\xd5\00'
 sendpkt(packet)
 else:
 pass
 b=p[a]
 if b=="1":
 packet='\xc7\00'
 else:
 packet='\xc6\00'
 sendpkt(packet)
 if a==r-1:
 for b in range(5):
 packet='\xc5\00'
 sendpkt(packet)
 else:
 pass
 input.delete(0.0, END)# clears input area
 return 'break' # makes sure the newline dosent get put in afterwards...

 # event handlers!...basic cut/copy/paste support
 # event handlers!...basic cut/copy/paste support
 def copy1(c):
 try:
 window.clipboard_clear()
 window.clipboard_append(input.get(SEL_FIRST, SEL_LAST))
 except TclError:
 return 'break'
 pass
 def cut(c):
 try:
 window.clipboard_clear()
 window.clipboard_append(input.get(SEL_FIRST, SEL_LAST))
 input.delete(SEL_FIRST, SEL_LAST)
 except TclError:
 #window.clipboard_append('')
 return 'break'
 pass
 def paste(p):
 try:
 input.delete(SEL_FIRST, SEL_LAST)
 except TclError:
 window.clipboard_append('')
 pass
 finally:
 input.insert(INSERT, window.selection_get(selection='CLIPBOARD'))
 # event bindings...
 input.bind('<Control-v>', paste)
 input.bind('<Control-x>', cut)
 input.bind('<Control-c>', copy1)
 input.bind("<Key-Return>,” writetext)
 input.pack(side=BOTTOM, fill=BOTH, expand=1)
 def frame(f):
 frame=Frame()
 frame.pack(in_=window, fill=BOTH, expand=1)
 T=Text(frame, wrap=WORD) # LOVE wordwrap...very good at formatting the
display...
 s=Scrollbar(frame)

 76

 s.config(command=T.yview, bg='black', bd=0, highlightbackground='red',
width=8, activebackground='#4e4e4e', trough='red')
 T.config(yscrollcommand=s.set, bg='black', fg='red', bd=1, relief=FLAT,
highlightbackground='red')
 T.pack(in_=frame, side=LEFT, fill=BOTH, expand=1)
 s.pack(in_=frame, side=RIGHT, fill=Y, expand=0)
 # with ctrl-z, you can copy from the text output...i will be working on
appending this
 # functionality to the other copy function
 def copy(c):
 try:
 frame.clipboard_clear()
 frame.clipboard_append(T.get(SEL_FIRST, SEL_LAST))
 except TclError:
 frame.clipboard_append('')
 pass
 # yes, you can access this function from anywhere within the window...not
just the widget
 window.bind('<Control-z>', copy)
 # gotta be able to see things...monitors the file (specified earlier) and
prints contents line by line as it changes
 def outputtext():
 choice=file.name
 with open(file.name, 'rb') as f:
 while 1:
 for line in f.readlines():
 T.insert(END, line)
 T.see(END)
 if choice!=file.name:
 continue
 # of you open another file, it will display whever is in it
if it can be read
 else:
 if choice!=file.name:
 T.delete(0.0, END)
 choice=file.name
 f=open(file.name, 'rb')
 continue
 # the output needs to be in it's own thread...i think...i will test this
later...
 thread2 = threading.Thread(target=outputtext)
 thread2.start()
 def rxtext():
 while True:
 sniff(iface="ath0,” prn=sniffack)

 thread = threading.Thread(target=rxtext)
 thread.start()
def treset():
 while True:
 global magic
 c=magic
 tm.sleep(10)
 if c-magic==0 and magic<5:
 magic=0

thread3 = threading.Thread(target=treset)
thread3.start()
end main program
##5

window=Tk()
main(window)
window.mainloop()

sys.exit(0)

ensure that the program exits after the GUI loop has been terminated

 77

LIST OF REFERENCES

[1] H. Yang, F. Ricciato, S. Lu, and L. Zhang, "Securing a
wireless world," in Proceedings of the IEEE, vo1.94,
Issue 2, pp. 442-454, February 2006.

[2] Y. Xiao, C. Bandela, and Y. Pan, "Vulnerabilities and
security enhancements for the IEEE 802.11 WLANs," in
Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM) 2005, pp. 1655-1659, 2005.

[3] C.G. Girling, "Covert Channels in LAN's," in Software
Engineering, IEEE Transactions, vol. SE-13, no. 2, pp.
292-296, Feb. 1987.

[4] B. Lampson, "A note on the confinement problem," in
Communications of the ACM, vol. 16, pp. 613-615,
October 1973.

[5] U.S. Department of Defense, Trusted Computer System
Evaluation Criteria, pp. 80, DoD 5200.28-STD, July
1985.

[6] Institute of Electrical and Electronics Engineers,
802.11, Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications.
http://ieeexplore.ieee.org.

[7] T.E. Calhoun, R. Newman, and R. Beyah, "Authentication
in 802.11 LANs Using a Covert Side Channel," in
Communications, 2009. ICC '09. IEEE International
Conference, pp. 1-6, 14-18 June 2009.

[8] E. Couture, "Covert Channels," SANS Institute InfoSec

Reading Room.
http://www.sans.org/reading_room/whitepapers/detection
/covert-channels_33413 (accessed January 17, 2011).

[9] A. Giani, V. H. Berk, and G. V. Cybenko, "Data
Exfiltration and Covert Channels," Process Query
Systems, Thayer School of Engineering at Dartmouth.
http://www.pqsnet.net/~vince/papers/
SPIE06_exfil.ps.gz.

 78

[10] D.T. Ha, G. Yan, S. Eidenbenz, and H.Q. Ngo, "On the
effectiveness of structural detection and defense
against P2P-based botnets," in Dependable Systems &
Networks, 2009. DSN '09. IEEE/IFIP International
Conference, pp. 297-306, June 29, 2009-July 2, 2009.

[11] S. Hammouda, L. Maalej, and Z. Trabelsi, "Towards
Optimized TCP/IP Covert Channels Detection, IDS and
Firewall Integration," in New Technologies, Mobility
and Security, 2008. NTMS '08., pp.1-5, 5-7 Nov. 2008.

[12] C. H. Rowland, "Covert channels in the TCP/IP protocol
suite," in Tech. Rep. 5, First Monday, Peer Reviewed
Journal on the Internet, July 1997.

[13] PythonTM Programming Language. http://www.python.org/
(accessed July 2010).

[14] M. Smeets and M. Koot, "Research report: covert

channels," Master’s thesis, University of Amsterdam,
February 2006.

[15] S. Cabuk, C.E. Brodley, and C. Shields, "IP Covert
Timing Channels: Design and Detection," in Proc. 11th
ACM Conf. Computer and Communications Security (CCS),
pp. 178–87, October 25–29 2004.

[16] S. J. Murdoch and S. Lewis, "Embedding Covert Channels
into TCP/IP," in Proc. 7th Information Hiding
Workshop, June 2005.

[17] M. Bauer, "New Covert Channels in HTTP: Adding
Unwitting Web Browsers to Anonymity Sets," in
Proceedings of the 2003 ACM Workshop on Privacy in
Electronic Society, pp. 72–78, October 2003.

[18] A. Galatenko, A. Grusho, A. Kniazev, and E. Timonina,
"Statistical Covert Channels Through PROXY Server,"
Proceedings 3rd International Workshop - Mathematical
Methods, Models, and Architectures for Computer
Network Security, pp. 424–29, September 2005.

[19] S. Li and A. Ephremides, "A network layer covert
channel in ad-hoc wireless networks," Sensor and Ad
Hoc Communications and Networks, 2004. IEEE SECON
2004. 2004 First Annual IEEE Communications Society
Conference, pp. 88-96, 4-7 October 2004.

 79

[20] T. Calhoun, X. Cao, Y. Li, and R. Beyah, "An 802.11
MAC layer covert channel,” in Wireless
Communications and Mobile Computing, Wiley
InterScience.
http://onlinelibrary.wiley.com/doi/10.1002/wcm.969/pdf.

[21] L. Frikha, Z. Trabelsi, and W. El-Hajj,
"Implementation of a Covert Channel in the 802.11
Header," in Wireless Communications and Mobile
Computing Conference, 2008. IWCMC '08., pp. 594-599,
Aug. 6-8, 2008.

[22] L. Butti, Raw Covert.
http://rfakeap.tuxfamily.org/#Raw_Covert.(accessed
March 17, 2011).

[23] La Trobe University, Victoria, Australia

http://ironbark.bendigo.latrobe.edu.au/subjects/DC/lec
tures/22/ (accessed March 17, 2011).

[24] F.A. Tobagi and L. Kleinrock, "Packet switching in
radio channels: the hidden node problem in carrier
sense multiple access modes and the busy tone
solution," in IEEE Trans. Commun., vol. 23, pp. 1417-
1433, 1975.

[25] Y. Sheng, K. Tan, G. Chen, D. Kotz, and A. Campbell,
"Detecting 802.11 MAC Layer Spoofing Using Received
Signal Strength," in INFOCOM 2008. The 27th Conference
on Computer Communications., pp. 1768-1776, April 13-
18, 2008.

[26] Wireshark v.1.4.0 http://www.wireshark.org (accessed
October 2010).

[27] J. Bellardo and S. Savage, "802.11 Denial-of-Service
Attacks: Real Vulnerabilities and Practical
Solutions,” in Proceedings of the 12th conference on
USENIX Security Symposium, SSYM 03, vol. 12, 2003.

[28] Airopeek NX v.3.0.1 http://www.wildpackets.com/
(accessed December 2010).

[29] Wolfman & Filth chat GUI
http://en.sourceforge.jp/projects/sfnet_speak-python/
(accessed November 2010).

 80

[30] Scapy Project v.2.1.0
http://www.secdev.org/projects/scapy/ (accessed August
2010).

[31] D. Kahn, The Codebreakers. New York: The Macmillan
Company, 1967.

[32] S. Lin and D. J. Costello., Error Control Coding:
Fundamentals and Applications. New Jersey: Pearson
Prentice Hall, 1983.

[33] J. Proakis and M. Salehi, Digital Communications,
Fifth edition. New York: McGraw Hill, 2008.

[34] L. Chen,T. Sun, M. Y. Sanadidi, and M. Gerla,
"Improving wireless link throughput via interleaved
FEC," in Computers and Communications, 2004.
Proceedings. ISCC 2004. Ninth International Symposium
on , vol.1, no., pp. 539- 544 Vol.1, 28 June-July
2004.

[35] W. Stallings, Wireless Communications and Networks,
Second edition. New Jersey: Pearson Prentice Hall,
2005.

[36] Y. Xiao and J. Rosdahl, "Throughput and delay limits
of IEEE 802.11," in Communications Letters, IEEE ,
vol.6, no.8, pp. 355-357, Aug. 2002.

[37] J. Jun, P. Peddabachagari, and M. Sichitiu,
"Theoretical maximum throughput of IEEE 802.11 and its
applications," in Network Computing and Applications,
2003. NCA 2003. Second IEEE International Symposium
on, pp. 249-256, April 16-18, 2003.

[38] D. McGrath, "WLAN chip set shipments projected to
double," in EE Times, 2/17/2011.
http://www.eetimes.com/electronics-news/4213260/WLAN-
chip-set-shipments-projected-to-double.

[39] Institute of Electrical and Electronics Engineers,

802.16, Air Interface for Broadband Wireless Access
Systems (accessed March 17, 2011).
http://ieeexplore.ieee.org.

 81

[40] "Long Term Evolution Protocol Overview," Freescale
Semiconductor, white paper, October 2010
http://www.freescale.com/files/wireless_comm/doc/white
_paper/LTEPTCLOVWWP.pdf.

[41] Psycho v.1.6
http://psyco.sourceforge.net/download.html (accessed
September 2010).

 82

THIS PAGE INTENTIONALLY LEFT BLANK

 83

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chair,
Department of Electrical and Computer
Engineering
Naval Postgraduate School
Monterey, California

4. Professor Murali Tummala

Naval Postgraduate School
Monterey, California

5. Professor John McEachen

Naval Postgraduate School
Monterey, California

6. Professor Vicente Garcia

Naval Postgraduate School
Monterey, California

7. Eng. Marques da Silva

Lisboa, Portugal

8. Ricardo Gonçalves

Corroios, Portugal

