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Abstract. A bootstrap approach to evaluating conditional forecast errors in ARMA
models is presented. The key to this method is the derivation of a reverse-time state space
model for generating conditional data sets that capture the salient stochastic properties of
the observed data series. We demonstrate the utility of the method using several simulation
experiments for the MA(q) and ARMA( p, q) models. Using the state space form, we are
able to investigate conditional forecast errors in these models quite easily whereas the
existing literature has only addressed conditional forecast error assessment in the pure
AR( p) form. Our experiments use short data sets and non-Gaussian, as well as Gaussian,
disturbances. The bootstrap is found to provide useful information on error distributions
in all cases and serves as a broadly applicable alternative to the asymptotic Gaussian
theory.

Keywords. Bootstrap; state space; forecasting; prediction errors; simulation.

1. INTRODUCTION

This paper is concerned with assessing the conditional forecast accuracy of
ARMA models using a state approach and the Monte Carlo bootstrap. Our
work is motivated by four considerations. First, the state space model provides a
convenient unifying representation for the AR(p), MA(q) and ARMA( p, q)
models. Second, the actual practice of forecasting involves the prediction of a
future point on an observed sample path, thus conditional forecast error
assessment is of most interest. Third, real-life applications involving time series
data are often characterized by short data sets and lack of distributional
information. Asymptotic theory provides little help here and often there are no
compelling reasons to assume Gaussian distributions apply. Finally, the utility
and applicability already demonstrated by the bootstrap for prediction of AR
processes suggests that it has much to offer in the prediction of ARMA
processes.

Early application of the bootstrap to assess conditional forecast errors is found
in Findley (1986), Stine (1987), Thombs and Schuchany (1990), Kabaila (1993)
and McCullough (1994, 1996). Interest in the evaluation of confidence intervals
for conditional forecast errors has led to methodological problems because a
backward, or reverse-time, set of residuals must be generated. Findley (1986) first
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discussed this problem and Breidt et al. (1992) offer a solution that is
implemented in the work of McCullough (1994, 1996). To date, there is a well
grounded methodology for AR models and this work has established the utility of
the bootstrap.

A similar state of affairs appears not to exist with moving-average (MA) or
ARMA models, although these models are just as important and useful as their
AR relatives. We suspect that this is due to the difficulty with which one can
identify mechanisms required to generate bootstrap data sets, whether forwards
or backwards in time. For AR models, this is easily accomplished because the
required initial, or terminal (in the case of conditional forecasts), conditions are
given in terms of the observed series. With MA or ARMA models this is not the
case because the models require solutions of difference equations involving
unobserved disturbances.

The state space model and its related innovations filter offer a way around this
difficulty. It is worthwhile, therefore, to investigate how well this can be done in
practice. Stoffer andWall (1991) found such a combination to be of use in assessing
parameter estimation error, and this naturally leads to the same question being
asked in relation to conditional prediction errors. We find that the bootstrap is as
useful in evaluating conditional forecast errors as it has proven to be in assessing
parameter estimation errors, particularly in a non-Gaussian environment.

Our paper is organized into six sections. Section 2 defines the state space
representation used for ARMA models, sets the notation for what follows, and
outlines the parameter estimation problem that is an integral part of the method
we present. Section 3 outlines our solution to the problem of obtaining backward,
or reverse-time, representations of state space models so that conditional
bootstrap data can be generated. Section 4 reviews the bootstrap procedure for
conditional forecast evaluation and Section 5 is devoted to simulation examples.
Section 6 contains a summary and conclusions. Details of the state space model
derivation are given in an appendix.

2. ARMA MODELS IN STATE SPACE FORM

The state space model used in this paper is defined by the equations

sðt þ 1Þ ¼ FsðtÞ þGxðtÞ þ wðtÞ ð1Þ

and

yðtÞ ¼ HsðtÞ þDxðtÞ þ vðtÞ ð2Þ

where s(t) is an n · 1 vector of unobserved state variables, y(t) is a m · 1 vector of
observed outputs or endogenous variables, and x(t) is an r · 1 vector of observed
inputs or exogenous variables. The constant matrices F, G, H and D represent the
model coefficients and have dimensions compatible with the matrix operations
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required in (1) and (2). The two terms w(t) and v(t) represent zero-mean random
processes that are each independent and identically distributed (i.i.d.) with

EfwðtÞwðtÞ0g ¼ Q EfvðtÞvðtÞ0g ¼ R EfwðtÞvðtÞ0g ¼ S ð3Þ

where Q is an n · n nonnegative definite matrix and R is a m · m nonnegative
definite matrix.

The ARMA(p, q) process that we represent in state space form is defined by

yðtÞ þ a1yðt % 1Þ þ & & & þ apyðt % pÞ ¼ eðtÞ þ b1eðt % 1Þ þ & & & þ bqeðt % qÞ

where eðtÞ is an i.i.d. process with finite variance r2e . Its realization in state
space form is achieved by defining n ¼ maxf p; qg;m ¼ 1 and employing an
observable canonical form in the definition of the state space coefficient
matrices:

F ¼
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1 . . . 0 0 0 %an%1
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and

H ¼ 0 . . . 0 0 0 1½ (

G = 0 and D = 0. If n > p then a‘ ¼ 0 for ‘ > p, and if n > q then b‘ ¼ 0 for
‘ > q. The random processes are defined by vðtÞ ¼ eðtÞ and wðtÞ ¼ g0eðtÞ where

g0 ¼ bn % an bn%1 % an%1 . . . b3 % a3 b2 % a2 b1 % a1½ (0

The variance-covariance matrices are given by

Q ¼ r2eg0g
0
0 R ¼ ½r2e ( S ¼ r2eg0

Note that w(t) and v(t) are always correlated in state representations of ARMA
models.

The model coefficients and the correlation structure are assumed to be uniquely
parameterized by a k · 1 vector h; that is, F ¼ FðhÞ;G ¼ GðhÞ;H ¼ HðhÞ, etc. The
vector h is assumed to be an element of some compact space, P, usually a subset
of Rk. The use of the observable canonical form ensures the model is completely
identified – see, for example Wall (1987) – and the parameterization is unique
once we impose the usual invertability and stability conditions on the
autoregressive and moving-average operators.

Let sðt þ 1jtÞ denote the best linear predictor of sðt þ 1Þ based on the data
Yt ¼ fyð1Þ; yð2Þ; . . . ; yðtÞg and X t ¼ fxð1Þ; xð2Þ; . . . ; xðtÞg, obtained via the Kal-
man filter. Also obtained from the Kalman filter are the innovations, the
innovations covariance matrix, and the Kalman filter gain matrix,
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!ðtÞ ¼ yðtÞ %Hsðtjt % 1Þ %DxðtÞ ð4Þ
RðtÞ ¼ HPðtjt % 1ÞH0 þ R ð5Þ
KðtÞ ¼ ½FPðtjt % 1ÞH0 þ S(RðtÞ%1 ð6Þ

respectively, where Pðtjt % 1Þ is the covariance matrix of the state estimation
error, sðtÞ % sðtjt % 1Þ. This matrix is generated recursively according to

Pðtþ 1jtÞ ¼ ½F%KðtÞH(Pðtjt% 1Þ½F%KðtÞH(0 þQþKðtÞRKðtÞ0 % SKðtÞ0 %KðtÞS0

The model innovations give rise to the innovations form representation of the
observations:

sðt þ 1jtÞ ¼ Fsðtjt % 1Þ þGxðtÞ þ KðtÞ!ðtÞ ð7Þ

yðtÞ ¼ Hsðtjt % 1Þ þDxðtÞ þ !ðtÞ ð8Þ

Parameter estimation is accomplished via Gaussian maximum likelihood
(GML). The essential part of the logarithm of the Gaussian likelihood function is

LðhjYT ;XT Þ ¼ %
X

T

t¼1

flnðdetRðt; hÞÞ þ !ðt; hÞ0Rðt; hÞ%1!ðt; hÞg ð9Þ

Parameter estimation is achieved by minimizing this function with respect to h.
We employ a BFGS variable metric algorithm to accomplish this, proceeding
iteratively from some initial guess, h0, to convergence. The value of h at
convergence constitutes the GML estimate and is denoted by ĥh. The numerical
approximation to the inverse Hessian of LðhjYT ;XT Þ at convergence (an
automatic by-product of the BFGS algorithm) gives the variance-covariance
matrix of the parameter estimates.

3. GENERATING REVERSE-TIME DATASETS

The generation of bootstrap data sets in forward time is easy. Given an initial
condition or prior, sðt0jt0 % 1Þ and Pðt0jt0 % 1Þ, and a bootstrap sample, !ðtÞ) with
!ðt0Þ) ¼ !ðt0Þ, the innovations form, (7) and (8), is solved recursively from t = 1
through t = T to produce realizations passing through the given initial
observation. Such computations are all that is required in obtaining bootstrap
estimates of parameter estimation error statistics or unconditional forecast error
statistics (Stoffer and Wall, 1991). The generation of bootstrap data sets for
assessing conditional forecast errors is not so straightforward because they must
be generated backward and this requires a backward-time state space model.

An early discussion of the problems related to backward time models in
assessing conditional forecast errors is found in Findley (1986). Further
consideration of the problem is found in Breidt et al. (1992). This literature
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stresses the need to properly construct a set of ‘backward’ residuals and Breidt
et al. (1992) provide an algorithm for this that solves the problem for AR(p)
models. A similar result is needed for state space models, but development of
backward-time representations has not received much attention in the literature.
Notable exceptions are the elegant presentation found in Caines (1988, ch. 4) and
a derivation in Aoki (1989, ch. 5). Our work requires an extension of their results
to the time-varying case.

The key system in generating bootstrap data sets is the innovations, filter form,
(7) and (8), rewritten here using the standardized residuals, eðtÞ ¼ RðtÞ%

1
2eðtÞ, and

the stacked vector nðtÞ ¼ ½s0ðt þ 1jtÞ : y0ðtÞ(0:

nðtÞ ¼ F 0
H 0

! "

nðt % 1Þ þ G
D

! "

xðtÞ þ G1ðtÞ
D1ðtÞ

! "

eðtÞ ð10Þ

where G1ðtÞ ¼ KðtÞRðtÞ
1
2 and D1ðtÞ ¼ RðtÞ

1
2. We require a backward-time

representation of this system. All the problems highlighted by Findley (1986)
and Breidt et al. (1992) appear here. For example, the first block row of (10)
cannot be solved backwards in time by simply expressing sðtjt % 1Þ in terms of
sðt þ 1jtÞ. First, F is not always invertible; e.g., MA(q) models. Second, even
when F is invertible, F)1 has characteristic roots outside the unit circle
whenever F has its characteristic roots inside the unit circle. This situation is
intolerable in generating reverse time trajectories because of the explosive
nature of the solutions for sðtjt % 1Þ. In addition, we now have a time-varying
system; i.e., the last terms of each of the equations immediately above depend
on t.

These difficulties are overcome by building on the method found in Caines
(1988, pp. 236–7). Special attention must be given to the way in which the time-
varying matrices propagate through the derivations and proper account must be
taken of the effects of the known, or observed input sequence x(t). First, assume
xðtÞ * 0 (the case when xðtÞ 6¼ 0 is addressed below). Application of the symmetry
of minimal splitting subspaces yields the following reverse-time state space
representation for t ¼ T % 1; T % 2; . . . ; 1 :

rðtÞ ¼ F0rðt þ 1Þ þ AðtÞsðtjt % 1Þ % BðtÞeðtÞ
yðtÞ ¼ NðtÞrðt þ 1Þ % LðtÞsðtjt % 1Þ þMðtÞeðtÞ

where

AðtÞ ¼ VðtÞ%1 % F0Vðt þ 1Þ%1F

BðtÞ ¼ F0Vðt þ 1Þ%1G1ðtÞ
CðtÞ ¼ I%G1ðtÞ0Vðt þ 1Þ%1G1ðtÞ
LðtÞ ¼ D1ðtÞB0ðtÞ %HVðtÞAðtÞ
MðtÞ ¼ D1ðtÞCðtÞ %HVðtÞBðtÞ
NðtÞ ¼ HVðtÞF0 þD1ðtÞG0

1ðtÞ
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and

Vðt þ 1Þ ¼ FVðtÞF0 þG1ðtÞG0
1ðtÞ

The reverse-time state vector is r(t). The backward recursion begins at t = T)1
using rðT Þ ¼ VðT Þ%1sðT jT % 1Þ. Details of the derivation are given in Appendix
A.

The algorithm specified above is equivalent to that given in Breidt et al. (1992)
when the model is restricted to the stationary AR(p) case. For example, consider
the AR(1) model. Its state space representation is defined by F ¼
F0 ¼ %a1;H ¼ 1;G ¼ D ¼ 0;Q ¼ a21r

2
e ;R ¼ r2e and S ¼ %a1r2e . The solutions to

(4)–(8) in the stationary case are obtained when t0 ! %1 in all difference
equations. In steady-state Pðtjt % 1Þ ¼ 0, the filter innovations are identical to the
eðtÞ process, RðtÞ ¼ r2e and KðtÞ ¼ %a1. The coefficient matrices in our reverse
time state space model reduce to constants:

VðtÞ ¼ V ¼ a21
h

1% a21
i%1

r%2
e

AðtÞ ¼ A ¼
h

1% a21
i2
a%2
1 r%2

e

BðtÞ ¼ B ¼
h

1% a21
i

r%1
e

CðtÞ ¼ C ¼ a21
LðtÞ ¼ L ¼ 0

MðtÞ ¼ M ¼ 0

NðtÞ ¼ N ¼ %a1
h

1% a21
i%1

r2e

The associated reverse time difference equation for y(t) is obtained by manipu-
lating the equations for r(t) and y(t) given above. First, advance the time index in
the equation for r(t) and substitute the result into the equation for y(t). Second,
substitute

rðt þ 2Þ ¼ N%1½ yðt þ 2Þ þ Lsðt þ 1ÞjtÞ %Meðt þ 1Þ(

from the equation defining y(t) when its time index has been advanced by one
period. The result is the first-order backwards difference equation:

yðtÞ ¼ %a1yðt þ 1Þ % 1% a21
a1

sðt þ 1jtÞ þ a1reeðt þ 1Þ

In the stationary case

reeðt þ 1Þ ¼ eðt þ 1Þ

and
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sðt þ 1jtÞ ¼ %a1
X

t

j¼%1
ð%a1Þt%jeð jÞ

from solution of (7). Making these substitutions gives

yðtÞ ¼ %a1yðt þ 1Þ þ a1eðt þ 1Þ þ
X

t

j¼%1
ð%a1Þt%jeð jÞ %

X

t

j¼%1
ð%a1Þtþ2%jeð jÞ

¼ %a1yðt þ 1Þ þ a1eðt þ 1Þ þ eðtÞ þ
X

t

j¼%1
ð%a1Þtþ1%j½eð j% 1Þ þ a1eð jÞ(

The method of Breidt et al. solves the backward difference equation

aðL%1ÞyðtÞ ¼ wðtÞ

where

wðtÞ ¼ aðL%1Þ
aðLÞ

eðtÞ

For the AR(1) model, we have aðL%1Þ ¼ 1þ a1L%1 so the backward difference
equation of Breidt et al. is

yðtÞ ¼ %a1yðt þ 1Þ þ a1eðt þ 1Þ þ eðtÞ % a1wðt % 1Þ

The last term in this equation can be represented in terms of eð jÞ using the
rational lag definition for w(t):

wðt % 1Þ ¼ aðL%1Þ
X

1

j¼0

ð%a1LÞjeðt % 1Þ

¼
X

1

j¼0

ð%a1LÞjaðL%1Þeðt % 1Þ

¼
X

1

j¼0

ð%a1Þj½eðt % 1% jÞ þ a1eðt % jÞ(

¼
X

t

j¼%1
ð%a1Þt%j½eð j% 1Þ þ a1eð jÞ(:

Thus

%a1wðt % 1Þ ¼
X

t

j¼%1
ð%a1Þtþ1%j½eð j% 1Þ þ a1eð jÞ(

and the Breidt et al. backward difference equation is identical to that obtained
with our algorithm.
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Non-zero observed inputs, x(t), are incorporated easily by applying the above
derivation to the model written in terms of variations, ~yyðtÞ ¼ yðtÞ % yf ðtÞ and
~ssðtÞ ¼ sðtÞ % sf ðtÞ, taken about the !forced’ response. First, one computes the
solution to

sf ðt þ 1Þ ¼ Fsf ðtÞ þGxðtÞ
yf ðtÞ ¼ Hsf ðtÞ þDxðtÞ

with sf ð0Þ ¼ 0. Next, one sets xðtÞ * 0 and replaces y(t) and sðtjt % 1Þ by ~yyðtÞ and
~ssðtÞ. After applying the above derivation to the variational model, the complete
backward trajectory is obtained by !adding back in’ the forced response, i.e., by
using ~yyðtÞ þ yf ðtÞ as the backward data set.

The above specifies a three-step procedure for the generation of backward time
data sets (written here for xðtÞ * 0):

1. Generate VðtÞ;AðtÞ;BðtÞ;CðtÞ;LðtÞ;MðtÞ and NðtÞ forwards in time from
t = 1 through t = T given

Vð1Þ ¼ Efsð1j0Þsð1j0Þ0g ð11Þ

2. For given fe)ðtÞ; 1OtOT % 1g, set s)ð1Þ ¼ 0 and generate fs)ðtÞ; 1OtOTg
forwards in time from t = 1 through t = T via

s)ðt þ 1Þ ¼ Fs)ðtÞ þG1ðtÞe)ðtÞ ð12Þ

3. Set rðT Þ ¼ VðT Þ%1sðT jT % 1Þ and generate fy)ðtÞ; 1OtOTg backwards in
time from t = T)1 through t = 1 via the reverse time state space
model

rðtÞ ¼ F0rðt þ 1Þ þ AðtÞs)ðtÞ % BðtÞe)ðtÞ ð13Þ
y)ðtÞ ¼ NðtÞrðt þ 1Þ % LðtÞs)ðtÞ þMðtÞe)ðtÞ ð14Þ

This procedure assumes one already has drawn randomly, with replacement,
from the model estimated standardized residuals to obtain a set of T)1
residuals denoted fe)ðtÞ; 1OtOT % 1g. The last residual is kept set at
e)ðT Þ ¼ eðT Þ in order to ensure the conditioning requirement is met on
n)ðT Þ, i.e., that n)ðT Þ ¼ nðT Þ. This requirement follows from the autoregressive
structure of (10). The creation of an arbitrary number of bootstrap data sets is
accomplished by repeating the above for each set of bootstrap residuals
fe)ðtÞ; 1OtOT % 1; e)ðT Þ ¼ eðT Þg. Figure 1 presents a sample of 100 reverse-
time trajectories for the ARMA(2,1) model

yðtÞ ¼ 1:4yðt % 1Þ % 0:85yðt % 2Þ þ eðtÞ þ 0:6eðt % 1Þ

with re ¼ 0:2 and T = 49. The original, observed sample is plotted with the bold
line.
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4. COMPUTING FORECAST ERRORS VIA THE BOOTSTRAP

We first obtain ĥh via GML estimation using the original data. The associated
residuals are denoted fêeðtÞ; 1OtOTg and their standardized values are denoted
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by fêeðtÞ; 1OtOTg. For b ¼ 1; 2; 3; . . . ;B (where B is the number of bootstrap
replications) we execute the following six steps:

1. Construct a sequence of T + L standardized residuals febðtÞ; 1OtOT þ Lg
via random draws, with replacement, from the standardized residuals
fêeðtÞ; 1OtOTg. This sequence is formed as follows:

(i) Use T)1 vectors to form febðtÞ; 1OtOT % 1g.
(ii) Fix ebðT Þ ¼ êeðT Þ.
(iii) Use the remaining L vectors to form febðtÞ; T þ 1OtOT þ Lg.

2. Generate data fybðtÞ; 1OtOT % 1g via the backward state space model (13)
and (14) with h ¼ ĥh using the residuals febðtÞ; 1OtOT % 1g. Set
ybðT Þ ¼ yðT Þ.

3. Generate data fybðtÞ; T þ 1OtOT þ Lg via the forward state space model
(10) with h ¼ ĥh and sbðT jT % 1Þ ¼ sðT jT % 1Þ using the residuals
febðtÞ; T þ 1OtOT þ Lg.

4. Compute model parameter estimates hb via GML using the data
fybðtÞ; 1OtOT g and fxðtÞ; 1OtOT g.

5. Compute the bootstrap conditional forecasts fŷybðT þ ‘; hbÞ; 1O‘OLg via
the forward time state space model (10) with h ¼ hb,
sbðT jT % 1Þ ¼ sðT jT % 1Þ and ebðtÞ ¼ 0 for t + T þ 1.

6. Compute the bootstrap conditional forecast errors via

dbð‘Þ ¼ ybðT þ ‘; ĥhÞ % ŷybðT þ ‘; hbÞ 1O‘OL

The extent to which the bootstrap captures the behaviour of the actual
forecast errors derives from the extent to which these errors mimic the stochastic
process

dð‘Þ ¼ yðT þ ‘; hÞ % ŷyðT þ ‘; ĥhÞ 1O‘OL

5. SIMULATION EXPERIMENTS

We now present some evidence of the value of the bootstrap in conditional
forecast error estimation via simulation experiments. These begin with a known
model and complete information concerning the distributions for w(t) and v(t).
Thus, we approximate the true conditional forecast error distribution in an
informative way by direct sampling. This requires careful attention be given to the
generation of backward sample paths because we seek to evaluate conditional
forecast errors. Since an understanding of this approach is essential to the
interpretation of our results, we give the details of how this is done before
proceeding.
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We first re-write the underlying model, (1)–(2), in a form similar to the
innovations representation so that the backward time generation algorithm can be
applied to it in a straightforward manner:

sðt þ 1Þ ¼ FsðtÞ þGxðtÞ þG2eðtÞ ð15Þ
yðtÞ ¼ HsðtÞ þDxðtÞ þD2eðtÞ ð16Þ

where

eðtÞ ¼ W%1=2½wðtÞ0vðtÞ0(0

G2 ¼
h

Ip 0
i

W1=2

D2 ¼
h

0 Iq
i

W1=2

andW is the variance-covariance matrix of the joint process ½wðtÞ0vðtÞ0(0. Using this
notation for the data generating process, the algorithm used to simulate !true’
conditional forecast errors is as follows:

Given a sample path fy0ðtÞ; 1OtOTg from which conditional forecasts
(initialized at y0ðT Þ) are projected, let m denote the simulation index. For
m ¼ 1; 2; . . . ;M execute the following five steps.

1. Make T + L draws from the known distributions for w(t) and v(t).
2. Generate a conditional sample path passing through y0ðT Þ:

(a) Use the forward time model, (15) and (16), with h ¼ h0; ymðT Þ ¼ y0ðT Þ
and sðT Þ ¼ s0ðT Þ, to generate fymðT þ ‘Þ; 1O‘OLg. This utilizes
fwmðT þ ‘Þ and vmðT þ ‘Þ; 1O‘OLg to produce the future data to be
forecasted.

(b) Use the backward time algorithm applied to (15)–(16). This produces
the data fymðtÞ; TPtP1g with ymðT Þ ¼ y0ðT Þ to use in estimating the
parameter vector.

3. Estimate the model parameter vector via GML to obtain ĥhm.
4. Compute the conditional forecast of the future data using the estimated

model: Set h ¼ ĥhm; sðT þ 1jT Þ ¼ sðT þ 1jT ; ĥhmÞ and eðtÞ ¼ 0 in the forward
time model, (10), and solve for fŷymðT þ ‘; ĥhmÞ; 1O‘OLg.

5. Compute and store the conditional forecast error:

dmð‘Þ ¼ ymðT þ ‘; hÞ % ŷymðT þ ‘; ĥhmÞ 1O‘OL

Note that the original sample path is only used to fix the point from which all
backward data sets originate and all forecasts propagate. In the simulation
experiments below, we use M = 2,000 and L = 4. The approximate ‘true’
distribution is then given by the relative frequency histogram of the observed
conditional forecast errors.

Each of the experiments presented below is summarized by two sets of four
histograms. One set presents the approximate !true’ relative frequency histograms
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for each forecast lead time, while the other set presents the relative frequency
histograms obtained from application of the bootstrap. Superimposed on each is
the Gaussian density that follow from application of the asymptotic Gaussian
theory. All experiments use short data sets with T = 49 to emphasize the efficacy
of the bootstrap when the use of asymptotics is questionable and where bias is a
factor in the forecasts. Prediction intervals follow immediately from the data
sumarized in the histograms. Although we choose to present only the histograms,
the percentile, the bias-corrected (BC), and the accelerated bias-corrected (BCa)
method all are applicable for generating confidence intervals using the generated
data (Efron, 1987).

5.1. Moving average models

Our first experiment uses the MA(2) model:

yðtÞ ¼ vðtÞ % 0:40vðt % 1Þ % 0:45vðt % 2Þ

where v(t) = 0.2z(t) and z(t) is a centered exponential with unit variance. The
model is second-order with

F ¼ 0 1
0 0

! "

G ¼ %0:40
%0:45

! "

H ¼ 1 0½ ( D ¼ 0

The issue here is not the accuracy of the bootstrap relative to the Gaussian
theory (the Gaussian theory is clearly inapplicable) but the fidelity of the
bootstrap relative to the !true’ distribution. We want to know how informative
is the bootstrap when we know the asymptotic Gaussian theory is inapplicable.
Figure 2 depicts the results for the !true’ distribution of conditional forecast
errors and Figure 3 gives the results of the bootstrap. The bootstrap represents
clearly the salient features of the true situation; it indicates the small sample
bias, the asymmetry and peakedness of the true forecast errors.

5.2. Autoregressive-moving average models

Our next simulation experiment involves the ARMA(1,1):

yðtÞ ¼ 0:7yðt % 1Þ þ vðtÞ þ 0:10vðt % 1Þ

where v(t) = 0.2z(t) and z(t) is a mixture of 90% N(–1/9, .15) and 10% N(1, .15).
The model is first-order with

F ¼ ½0:70( G ¼ ½0:80( H ¼ ½1( D ¼ 0

Figures 4 and 5 reveal the value of the bootstrap. Indication of the mixture
distribution is striking in both the ‘true’ and the bootstrap; the bimodality and
asymmetry are clearly evident.
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6 CONCLUSIONS

Our presentation demonstrates the utility of the bootstrap in assessing the
conditional forecast errors of state space models. Since these model representa-
tions include as special cases the MA(q), ARMA(p,q), dynamic factor, and time-
varying parameter models, we also provide means to evaluate conditional forecast
error in models that have not received much attention in the literature. Simulation
experiments show the bootstrap yields informative estimates of the conditional
forecast error distribution for MA(q), ARMA( p,q), and state space models. With
as few as 1000 bootstrap replication we are able to detect non-Gaussian situations
and bias. The ability of the bootstrap to detect non-Gaussian situations is
startling. Even in cases where all the disturbances are Gaussian, the bootstrap is
able to detect departures from the asymptotic situation. Our empirical application
suggests that invoking the asymptotic Gaussian theory is not justified, even with
sample series as long as 50 observations when only two parameters are estimated.
We note, in passing, that our results are more suggestive than complete; we must
await the results of large scale simulation studies with M on the order of 104 with
coverage probabilities computed on the basis of ensembles composed of 1000 or
more time series.

FIGURE 2. ‘True’ histograms for the MA(2) example.
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The computational demands of bootstrapping are not burdensome. An
implementation in GAUSS on a 400MHz Pentium II desktop PC requires
approximately 27 minutes for a model with three or four estimated parameters
when B¼ 2000. One resample of the model residuals, the generation of a
conditional (backward) dataset and the estimation of the model parameters is
completed in less than one second in our empirical example, and this involves
additional time to set up the time-varying matrices within the Kalman filter.

APPENDIX

A: DERIVATION OF THE REVERSE-TIME INNOVATIONS FILTER

The derivation assumes x(t) = 0. If xðtÞ 6¼ 0, the derivation is applied to the variational
model, as outlined in the text. With this in mind, the reverse-time state space model
corresponding to (10) is

rðtÞ ¼ FBðtÞrðt þ 1Þ þG1;BðtÞeBðtÞ
yðtÞ ¼ HBðtÞrðt þ 1Þ þD1;BðtÞeBðtÞ

FIGURE 3. Bootstrap histograms for the MA(2) example.
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Allowance is made for time variation in all matrices. The objective is to express
FBðtÞ;G1;BðtÞ;HBðtÞ;D1;BðtÞ and eBðtÞ in terms of the coefficient matrices and variables of
the forward-time model (10). We do this first for the state equation, deriving FBðtÞ and the
joint term G1;BðtÞeBðtÞ. We next address the output equation, deriving HBðtÞ and the joint
term D1;BðtÞeBðtÞ. The terms involving the backward residual, eBðtÞ, are found to be a
function of both the forward residual and the forward state. To simplify notation, we use
sðtÞ to denote sðtjt % 1Þ and assume the reader has no difficulty identifying NðtÞ with HBðtÞ.

Let St ¼ Hþ
t þ X t where Hþ

t is the linear span of fyðkÞ; k + tg and X t is the minimal
state space; see Caines (1988, pp. 216–35) for details. Let ðvjWÞ denote orthogonal
projection of v onto the space W and define rðtÞ ¼ vðtÞ%1sðtÞ. By definition r(t) is
orthogonal to Hþ

t but not X t, in fact

ðrðtÞjStþ1Þ ¼ ðrðtÞjX tþ1Þ
¼ VðtÞ%1EfsðtÞs0ðt þ 1Þg½Efsðt þ 1Þs0ðt þ 1Þg(%1sðt þ 1Þ
¼ VðtÞ%1EfsðtÞ½s0ðtÞF0 þ e0ðtÞG0

1ðtÞ(gVðt þ 1Þ%1sðt þ 1Þ
¼ VðtÞ%1½VðtÞF0 þ 0(Vðt þ 1Þ%1sðt þ 1Þ
¼ F0Vðt þ 1Þ%1sðt þ 1Þ
¼ F0rðt þ 1Þ

Hence FBðtÞ ¼ F0. Now

rðtÞ ¼ ðrðtÞjStþ1Þ þ zðtÞ

FIGURE 4. ‘True’ histograms for the ARMA(1,1) example.
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where zðtÞ ¼ ½rðtÞ % ðrðtÞjStþ1Þ is the projection error; i.e., that component of rðtÞ
orthogonal to Stþ1. Thus we write

rðtÞ ¼ F0rðt þ 1Þ þ ½rðtÞ % ðrðtÞjStþ1Þ(

where

rðtÞ % ðrðtÞjStþ1Þ ¼ VðtÞ%1sðtÞ % F0Vðt þ 1Þ%1sðt þ 1Þ
¼ VðtÞ%1sðtÞ % F0Vðt þ 1Þ%1½FsðtÞ þG1ðtÞeðtÞ(
¼ ½VðtÞ%1 % F0Vðt þ 1Þ%1F(sðtÞ % F0Vðt þ 1Þ%1G1ðtÞeðtÞ

Note that, by definition, this is equal to G1;BðtÞeBðtÞ. Explicit derivation of G1;BðtÞ and eBðtÞ
is not required for implementation and is not pursued. The interested reader may refer to
Caines(1998) and Aoki(1989) for further details.

The output equation derivation follows a similar route by making use of the
orthogonality between r(t + 1) and y(t):

EfyðtÞr0ðt þ 1Þg ¼ Ef½HBðtÞrðt þ 1Þ þD1;BðtÞeBðtÞ(r0ðt þ 1Þg
¼ HBðtÞEfVðt þ 1Þ%1sðt þ 1Þs0ðt þ 1ÞVðt þ 1Þ%1gþD1;BðtÞ & 0
¼ HBðtÞVðt þ 1Þ%1

but we also have

FIGURE 5. Bootstrap histograms for the ARMA(1,1) example.
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EfyðtÞr0ðt þ 1Þg ¼ Ef½HsðtÞ þD1ðtÞeðtÞ(s0ðt þ 1ÞgVðt þ 1Þ%1

¼ HEfsðtÞ½s0ðtÞF0 þ e0ðtÞG0
1ðtÞ(gVðt þ 1Þ%1

þD1ðtÞEfeðtÞ½s0ðtÞF0 þ e0ðtÞG0
1ðtÞ(gVðt þ 1Þ%1

¼ HVðtÞF0Vðt þ 1Þ%1 þD1ðtÞ & I &G0
1ðtÞVðt þ 1Þ%1

The implied identity gives

HBðtÞ ¼ HVðtÞF0 þD1ðtÞG0
1ðtÞ

Our implementation is complete by obtaining an expression for D1;BðtÞeBðtÞ ¼
yðtÞ % EfyðtÞjStþ1g. Since EfyðtÞjStþ1g ¼ HBðtÞrðt þ 1Þ this is yields

D1;BðtÞeBðtÞ ¼ HsðtÞ þD1ðtÞeðtÞ %HBðtÞVðt þ 1Þ%1sðt þ 1Þ
¼ HsðtÞ þD1ðtÞeðtÞ % ½HVðtÞF0 þD1ðtÞG0

1ðtÞ(½FsðtÞ þG1ðtÞeðtÞ(
¼ ½HVðtÞAðtÞ %D1ðtÞB0ðtÞ(sðtÞ þ ½D1ðtÞCðtÞ %HVðtÞBðtÞ(eðtÞ

Once again, we do not derive explicit expressions for D1;BðtÞ and eBðtÞ since they are not
required for implementation.

B: STEADY-STATE JUSTIFICATION OF THE PROCEDURE

We assume that we have n observations, fyðT % nþ 1Þ; . . . ; yðT Þg, and that n is large.
Throughout this appendix, we let ĥhn denote the (assumed consistent as n ! 1) Gaussian
MLE of h, and let h)n denote a bootstrap parameter estimate. We assume that the
eigenvalues of FðhÞ are within the unit circle and the system is controllable and observable;
these assumptions are enough to ensure the asymptotic stability of the filter. For one-step-
ahead forecasting, the process nðtÞ is given by

nðT þ 1Þ ¼ AðhÞnðT Þ þ BðhÞxðT þ 1Þ þ CðhÞeðT þ 1Þ ðB:1Þ

where

nðtÞ ¼ sðt þ 1jtÞ
yðtÞ

! "

ðB:2Þ

and the matrices AðhÞ;BðhÞ and CðhÞ are defined by the matrices appearing in (10) of the
text (in steady-state CðhÞ is independent of t). Recall that fxðtÞg is a fixed and known input
process. For convenience, we have dropped the parameter from the notation when
representing a filtered value that depends upon h. For example, in (B.1), we write
nðT Þ ¼ nðT ; hÞ and eðT Þ ¼ eðT ; hÞ. The process feðtÞg is the standardized, steady-state
innovations sequence so that EfeðtÞg ¼ 0 and EfeðtÞe0ðtÞg ¼ Iq.

The one-step-ahead conditional forecast estimate is given by

~nnðT þ 1Þ ¼ AðĥhnÞn̂nðT Þ þ BðĥhnÞxðT þ 1Þ ðB:3Þ

where, in keeping consistent with the notation, we have written n̂nðtÞ ¼ nðt; ĥhnÞ. The
conditional forecast estimate is labelled with a tilde. Watanabe (1985) showed that, under
the assumed conditions and notation,

ŝsðT þ 1=T Þ ¼ sðT þ 1=T Þ þ opð1Þðn ! 1Þ;
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and, consequently we write

n̂nðT Þ ¼ nðT Þ þ opð1Þ

noting that the final q elements of n̂nðT Þ and nðT Þ are identical. Hence, the conditional
prediction error can be written as

Dn * nðT þ 1Þ % ~nnðT þ 1Þ
¼ ½AðhÞ % AðĥhnÞ(n̂nðT Þ þ ½BðhÞ % BðĥhnÞ(xðT þ 1Þ
þ AðhÞopð1Þ þ CðhÞeðT þ 1Þ ðB:4Þ

From (B.4), we see the two sources of variation, namely the variation due to estimating the
parameter h by ĥhn and the variation due to estimating the innovation value e(T + 1) by
zero.

In the conditional bootstrap procedure, we mimic (B.1) and obtain a pseudo observation

n)ðT þ 1Þ ¼ AðĥhnÞn̂nðT Þ þ BðĥhnÞxðT þ 1Þ þ CðĥhnÞe)ðT þ 1Þ ðB:5Þ

where we hold n̂nðT Þ fixed throughout the resampling procedure. Note that, because the
filter is in steady-state, the data, fyðT % nþ 1Þ; . . . ; yðT Þg, completely determine ĥhn and
consequently n̂nðT Þ. For finite sample lengths, the data and the initial conditions determine
ĥhn. As a practical matter, if precise initial conditions are unknown, one can drop the first
few data points from the estimation of h so that changing the initial state conditions does
not change ĥhn nor n̂nðT Þ. We remark that while the data fyðT % nþ 1Þ; . . . ; yðT Þg completely
determine n̂nðT Þ, the reverse is not true; that is, fixing n̂nðT Þ in no way fixes the entire data
sequence fyðT % nþ 1Þ; . . . ; yðT Þg. For example, in the AR(1) model, fixing n̂nðT Þ is
equivalent to fixing y(T) only. In addition, e)ðT þ 1Þ is a random draw from the empirical
distribution of the standardized steady-state innovations fêeðT % nþ 1Þ; . . . ; êeðT Þg where, as
above, we have written êeðtÞ * eðt; ĥhnÞ. Under the mixing conditions of Gastwirth and
Rubin (1975), the empirical distribution of the standardized steady-state innovations
fêeðT % nþ 1Þ; . . . ; êeðT Þg converges weakly ðn ! 1Þ to the standardized steady-state
innovations distribution.

To mimic the conditional forecast in (B.3), the bootstrap estimated conditional forecast
is given by

~nn)ðT þ 1Þ * Aðh)nÞn̂nðT Þ þ Bðh)nÞxðT þ 1Þ ðB:6Þ

which yields the bootstrapped conditional forecast error

D)
n * n)ðT þ 1Þ % ~nn)ðT þ 1Þ
¼ ½AðĥhnÞ % Aðh)nÞ(n̂nðT Þ þ ½BðĥhnÞ % Bðh)nÞ(xðT þ 1Þ
þ CðĥhnÞe)ðT þ 1Þ ðB:7Þ

Comparison of (B.4) and (B.7) shows why, in finite samples, the bootstrap works; that is,
(B.7) is a sample-based imitation of (B.4). Letting n ! 1 in (B.4), while holding n̂nðT Þ fixed,
we see that if ĥhn !p h then Dn ) CðhÞu where u is a random vector that is distributed
according to the steady-state standardized innovations distribution () denotes weak
convergence). In addition, if the innovations are mixing and if conditional on the data,
h)n % ĥhn !p 0, then D)

n ) CðhÞu as n ! 1. Extending these results to k-step-ahead forecasts
follows easily by induction. Stoffer and Wall (1991) established conditions under which
h)n % ĥhn !p 0 as n ! 1when the forward innovations are resampled. It remains to determine
the conditions under which this result holds when the backward innovations are resampled.
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