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Absolute precision stopping rules are often used to determine the length of sequential experiments to estimate
confidence intervals for simulated performance measures. Much is known about the asymptotic behavior

of such procedures. In this paper, we introduce coverage contours to quantify the trade-offs in interval coverage,
stopping times, and precision for finite-sample experiments using absolute precision rules. We use these contours
to evaluate the coverage of a basic absolute precision stopping rule, and we show that this rule will lead
to a bias in coverage even if all of the assumptions supporting the procedure are true. We define optimal
stopping rules that deliver nominal coverage with the smallest expected number of observations. Contrary to
previous asymptotic results that suggest decreasing the precision of the rule to approach nominal coverage in
the limit, we find that it is optimal to increase the confidence coefficient used in the stopping rule, thus obtaining
nominal coverage in a finite-sample experiment. If the simulation data are independent and identically normally
distributed, we can calculate coverage contours analytically and find a stopping rule that is insensitive to the
variance of the data while delivering at least nominal coverage for any precision value.
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1. Introduction
Stopping rules are used to determine how many
observations (replications, batch means, regenerative
cycles, etc.) to collect in a sequential sampling exper-
iment. These are typically used in sequential con-
fidence interval procedures (CIPs) designed to help
assess the risks in making a decision based on sim-
ulation results. A conventional method for deciding
when to stop collecting observations is to estimate
confidence intervals with nominal coverage probabil-
ity, �, after each observation. If the half-width of a
confidence interval drops below a threshold, �, the
experiment is stopped, and a confidence interval is
reported. This is called an absolute precision stop-
ping rule, which is used, for example, when � is the
minimal performance improvement required to make
a proposed change worth its cost or to ensure that
a system’s performance is within a contracted toler-
ance. The confidence level � is a component of the
risk taken in discontinuing the simulation experiment
and making a decision. We will consider two-sided
confidence intervals for the mean of some stochastic
simulation output.

Although such sequential CIPs produce confidence
interval estimates with appropriate half-widths, the

intervals generated in practice typically do not cover
the true parameter value as often as intended, under-
estimating risk. Stopping may occur when the sample
variance is small, but the observations may not be
centered near the true mean. Of course, coverage can
be affected by many factors other than the stopping
rule: these include the lack of independence or nor-
mality in the data, bias in the variance estimator, and
output that is biased because of run initialization. In
this paper, we focus on the loss of coverage as a result
of the choice of stopping rule.

Chow and Robbins (1965) and Glynn and Whitt
(1992) give conditions where the coverage of a CIP
designed to estimate the sample mean approaches
� as � is decreased toward 0. Encouraged by this
asymptotic result, methods have been proposed to
find values of � that are small enough to provide
the desired coverage (see Heidelberger and Welch
1983, Law and Carson 1979). Sproule (1985) extends
the work of Chow and Robbins (1965) to procedures
designed to estimate the mean of U -statistics. We
will see that such stopping rules cannot return the
desired coverage. Some rules allow for the possibility
of early stopping, which can lead to a loss in cover-
age, whereas other rules produce intervals wider than
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what is necessary, resulting in coverage higher than
expected. Generally, a loss in coverage occurs even
when very small values of � are used.

Stopping rules are typically incorporated in CIPs
that seek to return valid confidence intervals for data
that may be dependent or nonnormal (Chen and
Kelton 2007, Hoad et al. 2009, Steiger and Wilson
2002, Tafazzoli et al. 2011). Sequential ad hoc stopping
rules are sometimes tailored to a specific set of simu-
lation test models to provide better results. To study
how the stopping rules affect coverage, we will need
a more general framework to analyze the coverage of
CIPs employing sequential stopping rules that is inde-
pendent of any specific simulation model. This is nec-
essary in order to isolate the effect of the stopping rule
on the loss in coverage and to determine the actual
coverage for practical (finite-sample) experiments.

Schruben (1980) introduces coverage functions as
a way of evaluating the coverage performance of
a CIP over the space of possible confidence coeffi-
cients. Schmeiser and Yeh (2002) introduce a metric
for evaluating CIPs based on the deviations of cover-
age functions from nominal coverage. Here, we intro-
duce coverage contours as a way of viewing coverage
over the space of possible confidence coefficients �
and precision values �. We calculate the contours for
the most basic type of absolute precision rule studied
in the above references (where stopping occurs when
the half-width of the confidence interval falls below
the threshold precision value). Other variations on
CIPs use relative precision rules, which involve stop-
ping when the half-width is less than some fraction
of the sample mean. These types of stopping rules are
described in Law (2007). In this paper, we focus on
absolute precision stopping rules.

We analytically derive the coverage contours for
the case when the underlying data are indepen-
dent and normally distributed, providing a basis for
understanding coverage in the finite-sample domain,
whereas much of the previous literature focused on
asymptotic limits. We find that coverage can be deter-
mined by integrating over the range of possible val-
ues of the sample mean and sample variance as each
observation is collected in order to find the distri-
bution of the stopping time. Our results show that
coverage is usually less than nominal for popular
parameter choices (high values of � and low val-
ues of �) even though the data are independent and
identically distributed (i.i.d.) normal, providing evi-
dence of the systematic bias inherent in these types of
sequential stopping rules. For nonnormal data, these
coverage contours can be estimated by applying stop-
ping rules repeatedly to streams of simulated data.
Simulation of stopping rules applied to i.i.d. normal
data produces the same results as those calculated
using our method (within some level of numerical

error), encouraging us to use simulation to calculate
coverage contours for nonnormal data if analytical
methods are not tractable.

We also calculate the contours of the expected stop-
ping time of absolute precision rules over the same
space of � and �. (For normally distributed data, we
derive the distribution of the stopping time analyti-
cally.) These results, together with the coverage con-
tours, can be used to define an optimal stopping rule
that delivers nominal coverage with a minimal num-
ber of expected replications. Contrary to what is sug-
gested by the asymptotic theory on stopping rules,
we find that better results can be achieved by vary-
ing the confidence coefficient used in a CIP instead of
the half-width threshold. We then find a stopping rule
that is insensitive to the variance and delivers at least
nominal coverage for any precision value when the
data are normally distributed.

Currently, CIPs are tested by repeatedly applying
the rule (usually with confidence coefficients of 0.90
or 0.95 and small values of �) against various types of
data with known distributions. Schruben (1980) and
Schmeiser and Yeh (2002) show that it is much more
informative to test coverage at all levels of � in order
to evaluate CIPs. In this paper, we show how test-
ing a rule over the entire parameter space of � and
� can reveal potential problems in CIPs. We focus
on the loss in coverage associated with the stopping
component of CIPs, and we provide evidence of this
problem by analytically deriving the coverage when
a CIP is applied to i.i.d. normal data. The optimiza-
tion method proposed provides a systematic way of
choosing a stopping rule that will achieve nominal
coverage while minimizing computational effort.

The rest of this paper is organized as follows: the
first half of the paper gives the derivation of the ana-
lytical coverage contours for the normal distribution,
and the second half shows how to use coverage con-
tours to find optimal stopping rule parameters in gen-
eral. Section 2 provides background on the sequential
stopping rule literature and notation needed to set up
a basic stopping rule. Section 3 reviews the procedure
for calculating coverage contours of CIPs analytically
for normally distributed data as in Singham and
Schruben (2009); §4 discusses the coverage contours
using our procedure from §3. Section 5 defines an opti-
mal policy for choosing the stopping rule based on
coverage results. Section 6 shows how our analysis can
be applied to data from nonnormal and dependent
output distributions, and it provides some recommen-
dations for designing stopping rules. Future research
topics and concluding remarks are given in §7.

2. Background and Notation
In this section, we introduce some notation for the
stopping rule used for the analysis in the rest of
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the paper, and we review the literature on sequential
stopping rules. We focus on a simple absolute preci-
sion stopping rule in order to calculate coverage ana-
lytically. Simulations often employ CIPs to estimate
the unknown mean performance of some system, �,
by generating independent replications of estimates
of the performance. The goal of a CIP is to obtain
an �-confidence interval for � with an absolute preci-
sion of �. The data can generically represent such out-
puts as a replication average, a batch mean, the mean
difference between runs of two competing systems,
etc. For now, let these outputs Xi be estimates for �
that are assumed to be independent and normally dis-
tributed with mean � and known variance �2.

We make these assumptions for two main reasons.
The first and most important reason for this paper
is to isolate the effects of the stopping rule on the
actual coverage probability by avoiding the problems
associated with dependence and nonnormality. The
second reason is that the analytical contours provide
insight for making stopping rule decisions. Coverage
contours can be estimated for any distribution using
simulation, but in the next two sections, we focus on
the analytical derivation of coverage contours for nor-
mally distributed data. The fact that these contours
closely match those calculated by simulation for nor-
mal data encourages the use of simulated contours
from other distributions. Section 6 gives examples of
some coverage contours for stopping rules applied to
simulated nonnormal and dependent data.

Let ±Xk be the cumulative sample mean of the first k
i.i.d. N4�1�25 performance estimators X11 0 0 0 1Xk. We
can construct symmetric confidence intervals of the
form 6±Xk − H�1k1 ±Xk + H�1k7, where H�1k is the half-
width of the confidence interval and is calculated in
the usual manner by

H�1k = t�1k−1

√

S2
k

k
1 (1)

where the sample variance is denoted as S2
k . The term

t�1k−1 is the 41 + �5/2 quantile of the t-distribution
with k− 1 degrees of freedom.

One could fix a sample size k, generate k i.i.d. sim-
ulation observations, and calculate a confidence inter-
val with the correct (nominal) coverage probability
using (1). However, the half-width of this confidence
interval might be too large to provide a meaning-
ful estimate of �. Let � be chosen according to some
desired absolute precision criteria. A sequential stop-
ping rule would involve generating observations until
a confidence interval with a half-width no greater
than � is obtained. Let k∗ be a random variable that is
the stopping time of a sequential procedure that stops
and generates a confidence interval when the half-
width is less than �. Then k∗ is determined by

k∗
= arg min

k

H�1k ≤ �0 (2)

The CIP would return the confidence interval:

6±Xk∗ − �1 ±Xk∗ + �70 (3)

It is possible that the half-width at stopping is less
than �, but here we assume that the user takes inter-
vals of the form (3) instead of 6±Xk∗ −H�1k∗1 ±Xk∗ +H�1k∗ 7.
Confidence intervals using � have coverage greater
than or equal to those using the half-width at stop-
ping and meet the precision requirement exactly.

Asymptotically, sequential procedures using (3)
have adequate coverage probability at the limits of
both small and large values of �. As � approaches 0,
the observed coverage of sequential CIPs applied to
simulated i.i.d. N4�1�25 data approaches the nominal
coverage � as the required sample size approaches
infinity, as expected from the results in Chow and
Robbins (1965) and Glynn and Whitt (1992). On the
other hand, as � becomes very large, stopping occurs
quickly, and the coverage probability will necessarily
approach 1 as the intervals become wide. If the output
confidence intervals used the half-width H�1k∗ instead,
the coverage would approach � as � increases and
the expected stopping time decreases. Even though
(3) results in wider intervals than those that take the
half-width at stopping, the coverage is still usually
different from �.

In practice, sequential stopping rules using (3) with
smaller values of � have been consistently observed
to yield coverage that is less than nominal, even when
the data are i.i.d. N4�1�25. Problems with coverage
have been observed in stopping rules in Anscombe
(1954), Ray (1957), and Starr (1966), with the last
two references focusing on the case where the data
are i.i.d. normal. The research by Anscombe (1954)
and Ray (1957) studied variations of our standard
sequential procedure in order to evaluate coverage
and stopping time distributions. For some of the stop-
ping rules, the authors are able to approximate the
expected stopping time, and Ray develops a rule that
stops after every two observations (starting with the
first three observations) that allows for exact compu-
tation of the distribution of the stopping time. Ray
is only able to compute coverage for stopping rules
that have relatively small expected stopping times
(under 30 observations). With improved computing
power, we can analyze rules that stop after thou-
sands of observations, allowing us to explore finite-
sample behavior closer to the limit. Starr’s (1966)
work expands on Ray’s computations and also proves
the asymptotic consistency and efficiency of absolute
precision stopping rules applied to normal data with
finite variance. Law (1983) surveyed many sequen-
tial procedures applied to different types of data and
reported on coverage results, with many procedures
returning less than nominal coverage. Given that pre-
vious research has shown that there is often a loss in
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coverage using sequential stopping rules, our objec-
tive is to provide a systematic way of evaluating
this loss and optimizing parameter choice to improve
coverage.

In the rest of this paper, we will consider CIPs using
stopping rules of the form (2) that produce confidence
intervals given by (3). Although sequential stopping
rules are asymptotically valid under our assumptions,
real simulation experiments must stop for any posi-
tive value of �. This paper focuses on determining the
loss in coverage associated with the resulting finite
random-sized sample. Most of the previous references
focus on coverage performance when � is high. The
quality of a CIP can be evaluated using coverage func-
tions, which plot the coverage of a procedure for all
possible values of �. In addition to coverage, CIPs
can also be evaluated by their effectiveness according
to criteria such as the expected length of the half-
width (de Peretti and Siani 2010). We model the stop-
ping process to assess the quality of CIPs according to
these and other criteria. By evaluating rules according
to their coverage, precision, and expected stopping
time, we can analyze the trade-offs between these per-
formance measures and see whether an optimal solu-
tion can be reached.

3. Method for Calculating Coverage
In this section, we summarize the method of analyti-
cally calculating coverage for sequential CIPs produc-
ing intervals (3) that is introduced in Singham and
Schruben (2009) for i.i.d. normal data. As stated in the
previous section, we focus on the normal distribution
to isolate the stopping rule bias and to obtain ana-
lytical coverage results. We calculate the actual cover-
age, �∗4�1�5, and expected stopping time, Ek∗4�1�5,
associated with parameters � and �. Coverage is cal-
culated for CIPs employing stopping rules of the
form (2).

We condition the coverage probability on the ran-
dom stopping time k∗ and calculate the distribution
of k∗ to determine coverage. Knowledge of the distri-
bution of k∗ also provides information on the quality
of the procedure, because premature stopping con-
tributes to lower coverage. The value of Ek∗4�1�5 is
calculated from the distribution of k∗ to measure the
expected work required by the CIP.

The actual coverage of the procedure �∗ ≡ �∗4�1�5
is computed by conditioning on the CIP stop-
ping time:

�∗
=P4Cover5=

∑

k

P4Cover �Stop at k5P4Stop at k50 (4)

To calculate the probability of coverage given stop-
ping at k, we need the following theorem.

Theorem 1 (Robbins 1959). Suppose that Xi are i.i.d.
normal random variables. The distribution of ±Xk∗ given
that k∗ = k, where k is fixed, is the same as the uncondi-
tional distribution of the sample mean ±Xk.

Proof. See Robbins (1959, p. 237). A more detailed
proof is provided in Appendix A. �

The proof of this theorem shows that the sample
mean at stopping is independent of the history of
the sample variances leading up to stopping (for i.i.d.
normal data). The unconditional distribution of ±Xk is
N4�1�2/k5. Therefore, (4) can be written as

P4Cover5=

�
∑

k=2

P4�− �≤ ±Xk ≤�+ �5P4k∗
= k50 (5)

At least two replications are needed to calculate a
confidence interval, although most practitioners start
with a higher value of k to avoid stopping early. If
stopping occurs at k, then H�1k must be less than or
equal to �, so we rewrite the stopping condition as

S2
k ≤

�2k

t2
�1k−1

0

The distribution of the sample variance of normally
distributed data is related to the chi-squared distri-
bution, and because the starting sample size is 2,
P4k∗ = 25 can be defined as P4S2

2 ≤ 2�2/t2
�115. Rearrang-

ing the terms and using the fact that for i.i.d. normal
data, S2

2 has the distribution of the random variable
�2�2

1 , we write

P4k∗
= 25= P

(

�2
1 ≤

2�2

�2t2
�11

)

0

For values of k∗ greater than 2, the probability of stop-
ping must be calculated conditional on not stopping
earlier. The probability of stopping at three samples,
for example, is

P4k∗
= 35= P4k∗

= 3 � k∗ > 25P4k∗ > 250

Continuing the recursion for larger sample sizes, we
multiply the probability of not stopping at k − 1 by
the probability of stopping at k given that stopping
has not occurred by k− 1:

P4k∗
= k5 = P4k∗

= k � k∗ > k− 15

·

[ k−1
∏

i=3

P4k∗ > i � k∗ > i− 15
]

P4k∗ > 250 (6)

The next step is to calculate the conditional proba-
bilities P4k∗ = k � k∗ > k − 15 and P4k∗ > k � k∗ > k − 15
for k ≥ 3. The conditional probabilities P4k∗ = k � k∗ >
k − 15 are calculated by integrating over the possi-
ble ranges of ±Xk−1 and S2

k−1 given that stopping has
not occurred before k, and determining the values of
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the next observation (Xk) that result in stopping. The
random variable ±Xk−1 has an infinite range, but the
range of possible values of S2

k−1, given that k∗ > k− 1,
is bounded.

To see this, consider the fact that the sample vari-
ance for the first k − 1 observations must be large
enough to avoid meeting the stopping rule at k− 1
but small enough that the next observation Xk could
lower the variance enough to meet the stopping
rule at time k. Focusing on this range of S2

k−1 helps
us understand the conditions that lead to stopping,
although we could perform the calculations over the
infinite range. Let Vmin4k5 denote the greatest lower
bound on the sample variance S2

k−1 that ensures the
stopping rule is not met before k. We solve for Vmin4k5
by setting H�1k−1 greater than or equal to � and solv-
ing for S2

k−1:

S2
k−1 =

�24k− 15
t2
�1k−2

¬ Vmin4k50

Next, we find the smallest upper bound on S2
k−1. To

stop at time k, the sample variance S2
k−1 must be low

enough so that it is possible for S2
k to result in H�1k ≤�.

To relate the variances S2
k−1 and S2

k , we use the follow-
ing recursion (Welford 1962):

S2
k =

k− 2
k− 1

S2
k−1 +

4Xk − ±Xk−15
2

k
0 (7)

The sample variance S2
k must be less than �2k/t2

�1k−1
for stopping to occur. Setting S2

k in (7) less than
�2k/t2

�1k−1 and solving for �Xk − ±Xk−1� yields the max-
imum absolute difference between Xk and ±Xk−1 that
would allow stopping for a given S2

k−1. Call this value
Xb

k4S
2
k−15:

Xb
k4S

2
k−15=

√

�2k2

t2
�1k−1

−
4k− 25kS2

k−1

k− 1
0 (8)

To find the maximum sample variance at k− 1 that
will allow stopping, consider the value of Xb

k4S
2
k−15

in (8). If S2
k−1 is too large, the term under the rad-

ical becomes negative. The maximum value of S2
k−1

that allows Xb
k4S

2
k−15 to be real-valued is the maximum

value of S2
k−1 that allows for the possibility of stop-

ping. Setting the terms under the radical to be greater
than or equal to 0 and solving for S2

k−1 yields the
upper bound on the sample variance at observation k,
Vmax4k5:

S2
k−1 =

�2k4k− 15
t2
�1k−14k− 25

¬ Vmax4k50

For values of S2
k−1 that are larger than Vmax4k5, the

sample variance is so large that even if Xk = ±Xk−1,
S2
k will not be small enough to meet the stopping rule.

We use the ranges S2
k−1 ∈ 6Vmin4k51Vmax4k57 and Xk ∈

6±Xk−1 −Xb
k4S

2
k−15

±Xk−1 +Xb
k4S

2
k−15] to construct an inte-

gral representation for the conditional probability of
stopping. Let f±Xk−1

be the probability density function
for the random variable ±Xk−1, and let fS2

k−1 �k∗>k−1 be the
density function for the sample variance conditional
on the stopping rule not being met before time k. We
calculate the conditional probability of stopping at k,
P4k∗ = k � k∗ > k− 15, as

∫

x

∫ Vmax4k5

y=Vmin4k5
P4x−Xb

k4y5≤Xk

≤ x+Xb
k4y55fS2

k−1 �k∗>k−14y5f±Xk−1
4x5dy dx0 (9)

The outer integral is over the range of the ran-
dom variable ±Xk−1, and the inner integral is over the
random variable S2

k−1, given that k∗ > k − 1. These
variables are independent by Theorem 1. Once the
distribution of the stopping time has been calculated
as in (6), the probabilities can be used to calculate
the coverage probabilities in (5). One important point
to note is that the distribution of S2

k−1, given that
stopping has not yet occurred, is different from the
unconditional distribution of S2

k−1. The history of the
sample variances determines whether stopping has
occurred and provides information on the value of
the sample variance at k− 1. The conditional density
function for S2

k−1 is derived in Appendix B.
We evaluate the integral (9) numerically using

a Newton-Cotes method with a rectangular rule
approximation. We divide the space of ±Xk−1 and S2

k−1
into equally sized rectangles and approximate the
term in the integral using the function values at the
centers of the rectangles. As smaller rectangles are
used, the distribution of k∗ calculated from (6) and (9)
appears to converge to the distribution calculated via
simulation. From these results, we learn that cover-
age of a stopping rule can be broken down according
to the distribution of the sample mean and sample
variance as each observation is collected, and that it
is possible to characterize the distribution of the stop-
ping time as the product of conditional probabilities
as in (6).

Theorem 1 allows us to treat the distribution of the
sample mean at stopping as independent of the his-
tory leading up to stopping for normally distributed
data. We are not aware of a similar result existing for
other distributions. It may still be possible to calcu-
late coverage analytically for nonnormal data using
integration, although it might be much harder if the
sample mean and sample variance are not indepen-
dent. However, our ability to derive coverage for the
normal case provides insight into the factors affecting
coverage for any distribution.
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4. Analytical Results
Using the method in the previous section, we calcu-
late the expected stopping time and actual coverage
probability of our stopping rule for a range of values
of � and �. The same quantities can be estimated for
nonnormal distributions by simulation. As suggested
in Schmeiser and Yeh (2002), the quality of a proce-
dure should be evaluated by considering all possible
values of �. We plotted the contours of �∗4�1�5 and
Ek∗4�1�5 to observe which stopping rules resulted in
better coverage (higher values of �∗) and which ones
required lower numbers of replications (lower values
of Ek∗). Figure 1 shows the contours of �∗ and Ek∗

calculated for i.i.d. N40115 data. The x axes contain
values of �, and the y axes show the range of values
of � considered.

In the left plot of Figure 1, the coverage contours are
plotted. Coverage was calculated numerically using
the distribution of k∗ (found by the method in §3)
in (5). In Region 3, coverage behaves as expected from
the asymptotic theory. As � approaches 0, coverage
approaches � from below, and as � increases, cover-
age improves. However, coverage is not always less
than �; for large �, coverage approaches 1. This is
because with large values of �, stopping occurs early,
and the output confidence interval 6±Xk∗ − �1 ±Xk∗ + �7
could be much wider than the half-width that led to
stopping.

Region 1 contains the parameters for which the
probability of stopping immediately (after two repli-
cations) is almost 1. That is, the expected stopping
time is approximately 2 according to the calculations
to compute the distribution of k∗. Region 2 contains
the parameters where increasing � leads to improved
coverage and the expected stopping time is greater
than 2. Coverage for a given value of � is lowest on
the boundary between Regions 2 and 3. The dashed

�
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Figure 1 Coverage Contours for Various �1 � (Left); Contours of Ek∗4�1 �) for Various �1 � (Right)

line shows the parameters for which nominal cover-
age is achieved. Above the dashed line, �∗4�1�5 > �,
whereas below the line, �∗4�1�5 < �.

The right plot shows the contours of Ek∗ for the
same parameter space. These values are calculated
numerically using the distribution function for k∗ dis-
cussed in §3. The function Ek∗ appears to be convex
and increasing as � increases and � decreases. The
contours (spaced by 100 for Ek∗ ≥ 100) reveal that
the expected stopping time increases rapidly as � is
decreased and � is increased. It is important to note
that if batching or some other aggregation method is
used to generate each observation k, then the actual
computation cost might be greater than what these
contours suggest.

From the literature it is known that stopping rules
in CIPs often lead to less-than-nominal coverage.
These figures reveal how the relationships between
� and � affect coverage performance. Of course, the
figures in this section only pertain to the N40115 dis-
tribution. However, similar contours can be generated
for other distributions using simulation (see §6), and
generally, the same relationships hold. If the user is
willing to use large values of �, coverage may be bet-
ter than nominal. Usually, however, small values of �
and high values of � are used, resulting in subnom-
inal coverage and high numbers of replications. This
provides the motivation to use optimization to deter-
mine whether better parameter choices can be found.

5. Optimal Policies for Coverage
Using the results of the previous section, we deter-
mine an optimal policy for obtaining a confidence
interval with coverage level �o within a specified half-
width �o. Again, we focus on the contours calcu-
lated for normally distributed data using the method
in §3 because those are calculated analytically. Our
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optimization method can also apply to contours gen-
erated by simulation for other distributions if they
have the same general shape as those for the normal
distribution. Even if the assumptions of our optimiza-
tion model do not hold for the contours in question, a
search over the feasible space can yield the minimum-
cost rule that meets the confidence and precision
requirements of the user.

Suppose the user wishes to design a CIP that
returns intervals with coverage of at least �o while
having a half-width of at most �o. Setting a stop-
ping rule with parameters 4�o1�o5 will result in cov-
erage �∗4�o1�o5 that is most likely different from �o.
If the parameters are below the dashed line in the
left plot of Figure 1, the coverage obtained is less
than �o. For the moment, assume that we are below
the dashed line in the area we refer to as the subnom-
inal coverage region. We can either increase the value
of the requested confidence coefficient � or decrease
the value of the requested precision � to improve
actual coverage. However, decreasing the value of �
alone, as suggested from the asymptotic theory, will
not bring the coverage to at least �—only closer to
it. In fact, our results suggest quite the opposite—
that nominal coverage can be achieved (at least cost)
by increasing the confidence level requested in the
procedure.

There are various possibilities involving combi-
nations of decreasing � and increasing � to bring
the coverage up to what is desired. We suggest that
the least-cost solution (with cost measured in terms of
the expected stopping time Ek∗) is to change � while
leaving � the same. If 4�o1�o5 is in the subnominal
region, the optimal choice is to increase �, whereas �
should be decreased if it is above the nominal bound-
ary. We first find an optimal policy for parameters in
Region 3, which is a subset of the subnominal region.

Assume that Ek∗ is a convex function of � and �
and that the function �∗ has contours of the form in
Figure 1. To achieve a confidence interval with cov-
erage �o and half-width less than or equal to �o in
Region 3, the optimal parameter choices (that mini-
mize Ek∗) are �′ > �o such that �∗4�′1�o5 = �o, and
� = �o. To show this, we formulate the minimization
as follows:

min
�1�

Ek∗4�1�5

s0t0 �∗4�1�5≥ �o1

�≤ �o0

We seek a set of procedure parameters 4�1�5 that will
minimize the expected stopping time of the proce-
dure while meeting the sequential CIP precision-and
coverage-level requirements. Because Ek∗ is a convex
function with respect to � and �, the solution will

be a Karush-Kuhn-Tucker (KKT) point of the feasi-
ble space, i.e., a point that meets the KKT conditions
for optimality in a nonlinear program (Luenberger
2003). Consider the point (�′1�o), where �∗4�′1�o5 =

�o. There is a one-to-one mapping between � and
�∗4�1�o5, and �∗4�1�o5 increases with �. In the sub-
nominal region, �∗4�o1�o5 < �o for �o > 0. There-
fore, �′ must be greater than �o in order to have
�∗4�′1�o5= �o.

Our solution, 4�′1�o5, meets both constraints at
equality. The dual feasibility condition is
(

¡Ek∗/¡�

¡Ek∗/¡�

)

+u1

(

−¡�∗/¡�

−¡�∗/¡�

)

+u2

(

0

1

)

= 01 (10)

where u1 and u2 are required to be nonnegative for
4�′1�o5 to be a solution. Solving for u1 and u2 yields

u1 =
¡Ek∗/¡�

¡�∗/¡�
1

u2 =

(

¡Ek∗/¡�

¡�∗/¡�

)

4¡�∗/¡�5− 4¡Ek∗/¡�50

For u1 to be nonnegative, the derivatives of Ek∗ and
�∗ with respect to � must be either both positive or
both negative. Both the coverage and the expected
stopping time are increasing in �, so u1 ≥ 0.

Next, we show that u2 ≥ 0 in Region 3. Keeping in
mind that Ek∗ and �∗ decrease with increasing values
of �, to have u2 ≥ 0, we need the following to hold:

¡Ek∗/¡�

¡�∗/¡�
≤

¡Ek∗/¡�

¡�∗/¡�
0 (11)

The ratio of the increase in expected cost to the
increase in coverage gained should be higher for
decreasing � than for increasing �. Figure 2 shows the
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Figure 2 Contours of �∗4�1 �5 and Ek∗4�1 �5 in Region 3
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contours of �∗4�1�5 and Ek∗4�1�5 in part of Region 3.
We see that decreasing � requires relatively more com-
putations for the amount of coverage gained than
the amount of computations required for increas-
ing �. Additionally, calculating the partial derivatives
numerically confirms that u2 ≥ 0. Therefore, within
Region 3, the optimal parameter choice to obtain cov-
erage of �o and half-widths of �o is to choose �′ and �o

such that �∗4�′1�o5= �o. We summarize the optimiza-
tion stopping rule in the following result.

Result 1. Assume that the contours of Ek∗ are
convex in � and �, that Ek∗ and �∗ are increasing
in �, and that (11) holds. Then the optimal parameter
choice is to use �o, and the value of �′ higher than �o

such that the actual coverage using 4�′1�o5 is �o.

A similar analysis shows that the optimal policy is
the same for 4�o1�o5 outside of Region 3. If 4�o1�o5 lies
above the nominal boundary, then the optimal choice
of � will be less than �o. The main result of this anal-
ysis is that it is more effective to change � to improve
coverage than to change �.

Result 2. Nominal coverage can be achieved
at least cost by modifying the confidence coefficient
of the procedure while decreasing the precision value
results in approaching nominal coverage from below.
For coverage contours and expected stopping time
contours having the properties listed in Result 1, the
optimal choice of � can be defined.

For data with different distributions, the same opti-
mal solution applies if the contours of Ek∗ are convex
and the relative cost of decreasing � to achieve an
incremental increase in coverage is greater than the
cost of increasing �. If these conditions are not met,
a different optimization approach may be available to
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Figure 3 Coverage of Stopping Rules for i.i.d. Normal Data with � 2 = 1/4 and 4

solve the nonlinear program. Most of the current liter-
ature suggests values of � that lead to adequate cov-
erage; here, we suggest changing � instead. The next
section examines the coverage results for data that are
not standard normal and provides recommendations
on choosing stopping rules based on the optimal poli-
cies calculated.

6. Results for Different Distributions
and Recommendations

Our work in the previous sections addresses the cov-
erage for stopping rules applied to i.i.d. normal data.
We computed the coverage and expected stopping
time contours for the case where the variance of the
data was 1 and showed how an optimal solution
existed. We now show the results for data with dis-
tributions different from N40115. We modify the vari-
ance of the data, using i.i.d. normal data with �2 =

1/4, 4, and 100. Our numerical integration routine was
slow for large values of �2, so we used Monte Carlo
methods to compute the coverage contours when the
data were normally distributed with variance 100.
Coverage contours for these different distributions are
provided in Figures 3 and 4. The contours have the
same shape for different variances, but they scale dif-
ferently along the � axis. Intervals using a particu-
lar precision value will have greater coverage over
data with a smaller variance than data with a larger
variance.

We also evaluate the coverage of the stopping rule
applied to exponentially distributed random variables
with mean 1, and dependent data from an autoregres-
sive model with lag 1 and autocorrelation coefficient
�= 005. Here, the stopping rule assumes that the data
are i.i.d. normal in calculating confidence intervals,
but the data actually have a different distribution. Fig-
ure 5 shows the coverage contours for exponential
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Figure 4 Coverage of Stopping Rules for i.i.d. Normal Data with
� 2 = 100

data (which violates the normality assumption) and
for autoregressive data (which violates the indepen-
dence assumption). We see that the coverage is worse
than what it would be for standard normal data,
because the assumptions of the procedure are not met.
Monte Carlo methods were used to generate the plots
for these distributions where coverage could not be
calculated analytically.

Based on the optimal policy for choosing stopping
rules derived in §5, we calculate optimal values of �
over the parameter space for different distributions
of data. Let �′4�1�5 be the optimal value of � for
given parameters 4�1�5. Suppose that for a set of data
from a given distribution, we fix � and vary �. As
� approaches 0, �′ approaches � from above; as �
approaches infinity, �′ approaches 0. The value of �′ is
bounded by 1, so for a fixed �, we can find the maxi-
mum value of �′ over all values of �. This maximum

�

� �

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

0.95

0.95

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.99

0.9

0.8
0.7

0.6

0.4 0.5

0.
90.3

0.2

2.0

0.5

1.0

1.5

2.0

�
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5 Coverage of Stopping Rules for i.i.d. Exponentially Distributed Data with Mean 1 and AR(1) Data with Autocorrelation of �= 005

value of �′ as a function of � is

�̂4�5= max
�

�′4�1�50

This maximum optimal value �′ would provide
at least nominal coverage for any choice of �. We com-
pute values of �̂4�5 for normally distributed data with
various values of �2 and display them in Table 1.

We find that �̂4�5 remains relatively independent of
the variance of normally distributed data. For exam-
ple, if 90% confidence intervals are desired, the max-
imum value of � needed to obtain coverage of 90%
for any value of � is around 94.5% for the possi-
ble values of �2 tested. This implies that if the data
are normally distributed, using a stopping rule with
� = 95% should allow us to obtain coverage of at least
90% for any desired precision value of �. These results
can be useful in choosing stopping rules for experi-
ments where the underlying variance of the data is
not known. The value of �̂4�5 appears to be insen-
sitive to the variance of normally distributed data,
presumably because we are searching along the same
contours for the worst possible �, which will vary
based on the rescaling of the graph. There is variation
in the values of �̂4�5 across the columns because of
numerical error in our calculations (or finite-sample
Monte Carlo error in the last column). These values
should be taken as guides for choosing � to achieve
the required coverage level when the variance is not
known. If the variance is known, then the exact opti-
mal parameter choice can be found using the method
in §5.

However, if the data are nonnormal or dependent,
then the maximum value of � required to achieve a
desired coverage level may be substantially different.
Table 2 shows the values of �̂4�) for the exponen-
tial distribution and the AR(1) data, which are much
higher than those for the normally distributed data.
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Table 1 Values of �̂4�5 for Normal Distributions with Different � 2

� (%) � 2 = 1 � 2 = 1/4 � 2 = 4 � 2 = 100

80 00874 00874 00867 00865
85 00913 00913 00912 00904
90 00947 00946 00944 00942
95 00976 00976 00977 00976
99 00996 00996 00996 00996

Table 2 Values of �̂4�5 for Exponential and Autoregressive
Data Compared to the Normal Distribution

� (%) N40115 Exp(1) AR(1), �= 005

80 00874 00961 00986
85 00913 00979 00993
90 00947 00992 00997
95 00976 00998 >00999
99 00996 >00999 >00999

The confidence coefficient of the procedure must be
much higher than the coverage desired to compensate
for the nonnormality or dependence of the underly-
ing data. This suggests another payoff in efforts to
achieve approximately i.i.d. normal observations (say,
replication or batch averages).

We also consider modifications to the basic rule
that requires stopping as soon as the half-width is
less than �. One rule checks the stopping condition
every five observations instead of after each one.
The second rule requires that the precision require-
ment be met for two observations, so stopping occurs
after HW�1k ≤� for two separate k (not necessarily in
sequential order). Table 3 shows the values of �̂4�5 for
these rules, and we see that the maximum confidence
coefficients that are required to obtain at least nomi-
nal coverage for all possible � are much lower than
the values in Table 1. However, the expected stop-
ping times for these rules are generally higher because
they do not stop as soon as the precision requirement
is met.

These results suggest that nominal coverage can be
achieved by increasing the value of � used to calculate
the confidence intervals. However, most simulation
experiments do not have known output distributions.
More research is needed to determine what adjust-
ments must be made in the cases where the output
distribution is completely unknown. What we can
suggest is that the stopping rule component be tested
against i.i.d. normally distributed data to see the
potential effect on coverage. Testing the rule against
other distributions can also provide some idea of
what might happen if the distribution is different
from that assumed. Additionally, the variance of the
underlying data plays a large role in the scale of the
contours along the � axis. Therefore, if contours can
be estimated for an approximate data distribution,

Table 3 Values of �̂4�5 for Modified Sequential Procedures
Applied to i.i.d. N40115 Data

� (%) Check every 5 obs. Meets rule twice

80 00813 00830
85 00862 00875
90 00911 00920
95 00958 00963
99 00992 00994

the user might have a better idea of the ranges of �
and � values that avoid the regions with subnominal
coverage.

7. Conclusion
This research analyzes the effects of sequential stop-
ping rules on confidence interval procedures. By
applying the stopping rules to i.i.d. normal data, we
isolate the effect of the rules on coverage. Generally
speaking, the coverage returned by a CIP using a
sequential stopping rule is different from the con-
fidence sought by the user. To achieve the target
coverage, the user can change the confidence level
and precision requested of the procedure. We gener-
ate contour plots of the coverage and expected stop-
ping time over a space of parameters to evaluate
the rules. To balance improved performance against
cost, we formulate an optimization model to choose
stopping rules and find an optimal policy. We find
that it is cheaper to increase the confidence coeffi-
cient to improve coverage rather than to decrease the
half-width threshold for the particular distributions
analyzed. By analyzing the optimal policies for the
normal distribution with different variance parame-
ters, we are able to find confidence coefficients for
stopping rules that appear to deliver at least nominal
coverage for any desired precision level.

There is generally a trade-off between coverage and
the computational cost of stopping rules. Coverage
and expected stopping time contours provide infor-
mation on approximately how many observations are
needed to obtain better coverage or a smaller preci-
sion level. Optimization methods can be used to man-
age these trade-offs in order to provide results that
meet the user’s objectives. If the data are independent
and normally distributed with unknown variance, the
values in Table 1 can be used to achieve at least nom-
inal coverage with minimal replications. If the vari-
ance of the data is known, optimal solutions can be
found using the results of §5. If the data have a known
nonnormal distribution, similar contours can be esti-
mated to see whether an optimal solution exists. We
see from the exponential and autoregressive contours
that even higher confidence coefficients must be used
if the data do not meet the assumptions of the CIP.
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In practice, batching techniques are often used to
obtain observations that are approximately i.i.d. nor-
mal, so the real computational cost associated with
each observation can be high. Future research will
determine how batching techniques used with stop-
ping rules can be evaluated using coverage contours.
If the data are dependent or nonnormal, batching and
applying the stopping rule to approximately i.i.d. nor-
mal data might be more efficient than using the opti-
mal stopping rule parameters derived for the data
directly. Additionally, many stopping rules used in
practice are more complex than the ones considered
here and may have different requirements for stop-
ping. As seen in Table 3, it is possible to improve
coverage by designing procedures that have more
strict stopping requirements. However, these proce-
dures will likely have a higher expected stopping
time, so it would be interesting to see whether there
exists an optimal class of procedures. We hope that
we have provided the motivation to explore an alter-
native method of improving coverage for many stop-
ping rules under different distributional settings.
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Appendix A

Proof of Theorem 1. We need to show that the distribu-
tion of ±Xk∗ , given that the stopping time is k, is N4�1�2/k5,
which is the unconditional distribution of the sample mean
for a fixed sample size experiment with k replications. The
probability of stopping at k depends on the history of sam-
ple variances S2

21 S
2
31 0 0 0 1 S

2
k . Thus, we seek to show that the

distribution of ±Xk, given the sample variance history, is the
same as its unconditional distribution.

First, we show that ±Xk is independent of S2
i for i ≤ k.

To do this, we rely on a version of the proof of indepen-
dence between ±Xk and S2

k presented in Davison (2003). Take
X11X21 0 0 0 1Xk to be i.i.d. N4�1�25. Consider the (k × k)
matrix BT 2

BT

=





































1
k1/2

1
k1/2

1
k1/2

000
1

k1/2

1
21/2

−1
21/2

0 000 0

1
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1
61/2
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61/2

000 0

000
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0 0 0
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1
6k4k−1571/2

1
6k4k−1571/2

1
6k4k−1571/2

000
−4k−15

6k4k−1571/2





































0

Note that BTB is the identity matrix, Ik and that BT 1k =

4
√
k101 0 0 0 105T . Let X be the vector of k observations

4X11X21 0 0 0 1Xk5
T . Let U = BTX. The distribution of U is

multivariate normal with mean vector 4
√
k�101 0 0 0 105T and

covariance matrix �2Ik.
Then, U1 = 1/

√
k
∑k

i=1 Xi =
√
k±Xk. Using the fact that U1 ∼

N4
√
k�1�25, we see that ±Xk ∼ N4�1�2/k5. This establishes

the distribution of ±Xk, and so we now show that it is inde-
pendent of historical values of the sample variance S2

i for
i < k.

For j = 21 0 0 0 1 k1Uj =
√

4j − 15/j4±Xj−1 −Xj5. Next, rewrite
the variance recursion Equation (7) as the following:

4k− 15S2
k = 4k− 25S2

k−1 +
k− 1
k

(

Xk − ±Xk−1

)2

= 4k− 35S2
k−2 +

k− 2
k− 1

(

Xk−1 − ±Xk−2

)2

+
k− 1
k

(

Xk − ±Xk−1

)2

= S2
2 +

k
∑

j=3

j − 1
j

(

Xj −
±Xj−1

)2
0

For a particular historical variance S2
k−i1 i = 11 0 0 0 1 k − 2,

we have

4k− 15S2
k = 4k− i− 15S2

k−i +

k
∑

j=k−i+1

j − 1
j

(

Xj −
±Xj−1

)2
0

Next, note that
∑k

j=1 X
2
j =XTX=XTBTBX=UTU because

BTB is the identity matrix. Then write

4k− 15S2
k =

k
∑

j=1

X2
j − k±X2

k

=

k
∑

j=1

U 2
j − k±X2

k = 4k− i− 15S2
k−i

+

k
∑

j=k−i+1

j − 1
j

(

Xj −
±Xj−1

)2
0

However, we should note that U 2
1 = k±X2

k and U 2
j =

4j − 1/j54Xj − ±Xj−15
2. Therefore, 4k − i − 15S2

k−i = U 2
2 + · · · +

U 2
k−i, and these values of Uj are independent of U1, so S2

k−i

is independent of ±Xk.
Finally, we need to show that the distribution of the mean

at stopping given that we stop at k is the same as the dis-
tribution of the mean for a fixed sample size k. Write the
distribution P4±Xk∗ ≤ z � k∗ = k5 as

P
(

±Xk ≤ z � S2
2 >Vmin4251 S

2
3 >Vmin4351 0 0 0 1 S

2
k−1

>Vmin4k− 151 S2
k ≤ Vmin4k5

)

0

Because ±Xk is independent of the history of the sample
variances, this distribution simplifies to P4±Xk ≤ z5, which
is the unconditional distribution of the mean for a fixed
sample size k. �

Alternatively, the following explanation shows how ±Xk

and S2
i (for i < k) are independent. The sample variance

S2
i consists of the squared terms ±Xi − Xj for j = 11 0 0 0 1
i − 11 i. Because both ±Xk and ±Xi − Xj are normally dis-
tributed, if they are uncorrelated, they are independent. We
rewrite the covariance of ±Xk and ±Xi −Xj as

Cov
(

X1 + · · · +Xk

k
1
X1 + · · · +Xi

i
−Xj

)

=
1
ik

Cov4X1 + · · · +Xk1X1 + · · · + 41 − i5Xj + · · · +Xi50
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Because the variables Xm, m = 11 0 0 0 1 k, are independent,
most of the cross terms cancel, and we are left with

1
ik

(

41 − i5Var4Xj5+
∑

m=110001i1m6=j

Var4Xm5

)

=
1
ik
441 − i5�2

+ 4i− 15�25= 00

Appendix B
The following analysis also appears in Singham and
Schruben (2009), although the notation has been corrected
here. We wish to calculate the density function of S2

k−1 given
k∗ > k−1, i.e., given that the stopping rule has not yet been
met by time k − 1. Consider the distribution of the sample
variance of a set of k−1 i.i.d. normal random variables with
variance �2.

Relate the distribution of S2
k to S2

k−1 by (7), and rewrite
it as

S2
k

d
=

[

S2
k−14k− 25

�2
+

4k− 154Xk − ±Xk−15
2

k�2

]

�2

4k− 15
0

Because Xk and ±Xk−1 are independent of each other and
of S2

k and S2
k−1 by Theorem 1, we can simplify the above by

noting that 4Xk − ±Xk−15 has a N401�2k/4k− 155 distribution.
Let Z2

k−1 be a squared standard normal random variable,
and write the distribution of S2

k as

S2
k

d
=

[

S2
k−14k− 25

�2
+Z2

k−1

]

�2

4k− 15
0 (B1)

Using (B1), we can write the distribution of S2
k � S2

k−1 in
terms of Z2

k−1:

P4S2
k ≤x �S2

k−15 = P

([

S2
k−14k−25

�2
+Z2

k−1

]

�2

4k−15
≤x � S2

k−1

)

= P

(

Z2
k−1 ≤

1
�2

6x4k−15−S2
k−14k−257

∣

∣

∣

S2
k−1

)

0

We index Z2
k−1 according to the number of observations

in the history prior to Xk because there will be a different
squared normal random variable associated with the transi-
tion from S2

k−1 to S2
k for each k. Recall that to have k∗ > k−1,

S2
k−1 must be bounded from below by Vmin4k5. By integrating

over the possible values of S2
k−1 according to its distribu-

tion conditional on not having stopped yet, we recursively
calculate the conditional distribution of the variance as

fS2
k �k∗>k−14x5

=

∫ �

y=Vmin4k5
fZ2

k−1

(

1
�2

6x4k− 15− y4k− 257
)

fS2
k−1 �k∗>k−14y5dy1

(B2)

where f is again used to represent the density function of
the random variable in its subscript. Because the variance is
calculated sequentially, at time k we have the value of S2

k−1.
We calculated (B2) numerically and included the results in
(9) to estimate the distribution of the stopping time.
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